

Click on any topic in the table below

Welcome to Panorama!

Tips for Using This Documentation

Installation & Activation

History of Panorama (what’s new!)

Table of Contents
Condensed

Full

Step-by-Step Tutorials

Mailing List

Checkbook

Invoice

Panorama Reference

Page 2 Panorama Handbook

Panorama 4.0 Tutorial & Handbook
Copyright © 2001, ProVUE Development,

All Rights Reserved

Table of Contents (Condensed)

– Click on any entry to jump to the page —
Condensed

Table of Contents

Table of Contents (Full) - 9

Welcome to Panorama! - 41

Tips for Using This Documentation - 67

Typographical Conventions - 68, Opening the Documentation - 68, Finding a Topic - 70, Cross Reference Links - 72,
Using the Table of Contents - 73, Searching the Manual - 76, Display Options - 79

Installation & Activation - 85

Getting Organized - 85, Installing the Software - 85, Activating the Software - 90,
Moving Your Software to Another Computer (Deactivating Your Software) - 96, Using Panorama’s “Demo Mode” - 104

Step-by-Step Tutorials - 1

Lesson 1: Building Your First Mailing List Database - 2, Entering Data Into Your New Database - 3,
Making Corrections - 5, Editing a Multi-Line Cell - 5, Saving Your Work - 7, Importing Data Into the Mailing List - 9, Adjust-
ing Column Widths, Font and Size - 13, Sorting the Database - 15, Sorting By Two or More Fields - 16,
Finding a Person - 18, Finding Multiple People - 19, Selecting Instead Of Finding - 20, Using the Sounds Like Option - 21,
Making More Complex Selections - 23, Selecting All Records - 25, Adding A Database To Your List Of Favorites - 26,
Closing a Database - 27, Re-Opening a Favorite File - 28, Printing the Data Sheet - 29,
Creating a Form for Printing Mailing Labels - 33, Previewing the Labels - 37, Printing the Labels - 39,
Switching Between Forms and the Data Sheet - 39, Creating a Data Entry Form - 40, Creating Graphic Objects - 42, Cre-
ating Text Objects - 48, Creating Data Cell Objects - 51, Using Data Cells to Edit Data - 56,
Building the Data Entry Form - 58, Linking the Mailing List with the Mini-Correspondence Wizard - 67,
Printing a Mail Merge Letter - 72, Tidying Up - 74, Lesson 2: Building and Organizing a Checkbook - 75,
Loading the Data - 77, Analyzing the Checkbook - 79, Selecting Data - 79, Calculating the Grand Total - 81,
Calculating Subtotals - 82, Hiding and Showing Detail - 86, Removing Summary Records - 93,
Automating Tasks with Procedures - 97, Using the Action Menu - 99, Editing a Procedure - 100,
Analyzing Data with a Crosstab - 102, Auditing the Crosstab Table - 107, Making a Bar Chart - 111,
Data Entry Helpers - 122, Calculating the Checkbook Balance - 137, Drawing a Check Form - 140,
Making the Form Elastic - 152, Lesson 3: Building an Invoice Database - 158, Line Item Fields - 160,
Creating an Invoice Form - 161, Entering Data into the Invoice - 172, Lesson 4: Building a Price List - 175,
Loading the Data - 175, Linking the Price List to the Invoice - 178, Using the Linked Invoice & Price List - 185,
Creating a Procedure to Add an Item - 186, Creating a Price List Form with Buttons - 187,
Creating a Price List Form with Buttons - 187, Saving a File Set - 196

Page 4 Panorama Handbook

Chapter 1: Files and Memory - 189

Files, Icons and the Desktop - 189, Opening a Database - 190, The Favorite Databases Wizard - 191,
Creating a New Database - 202, Using the New Database Wizard - 203, Saving a Database - 212,
Saving Window Positions - 213, Revert to Saved - 214, Auto-Save - 214, Working with Multiple Databases - 216,
File Sets - 217, Appending One Database to Another - 219, Replacing Obsolete Data - 221,
Importing and Exporting Data - 222, Importing a Text File - 223, Importing HTML Tables - 228,
Using the Text Import Wizard - 234, Exporting a Text File - 245, Exporting with the Text Export Wizard - 248,
Exporting HTML Tables - 259, Monitoring Memory Usage - 267, Adjusting Panorama’s Memory Allocation (Windows) -
270,
Adjusting Panorama’s Memory Allocation (Macintosh) - 271, Changing Scratch Memory Size (Macintosh) - 273

Chapter 2: Windows - 275

Window Components - 275, Tool Palette - 276, Close Box - 277, Drag Bar - 277, Title - 277, Zoom Box (Maximize) - 277,
Grow Box - 277, Scroll Bars - 278, Splitting a Window - 278, Info Palette - 279, Bringing a Window to the Front - 280,
Hiding Windows - 280, Zooming Into a Box - 281, Saving Window Positions - 281, Saving with No Windows - 282
Turning Window Components On and Off (Window Tweak Wizard) - 283, Measuring a Window (Window Size Wizard) -
285

Chapter 3: Views - 297

Types of Panorama Views - 297, Data Sheet and Form Views - 298, Other Views - 299, Switching Between Views - 302,
Opening More Than One Window Per Database - 303, Window Options - 306, The View Wizard - 307,
Form Modes: Data Access vs. Graphic Design - 315, Form Operation: Individual Pages vs.View-As-List - 316,
Creating a New Form, Crosstab or Procedure - 317, Renaming a Form, Crosstab or Procedure - 318,
Deleting a Form, Crosstab or Procedure - 318, Changing the Order of Forms, Crosstabs or Procedures - 318,
The Privilege Dialog - 319

Chapter 4: Records - 321

Data Organization - 321, Tables vs. Individual Pages - 322, Special Records - 322, Summary Records - 323,
Invisible Records - 324

Chapter 5: Fields - 327

The Setup Menu - 328, Add Field - 329, Field Properties - 330, Delete Field - 330, Changing the Width of a Field - 331,
The Design Sheet - 332, Database “Generations” - 332, Field Properties - 335,
Adding New Fields Using the Design Sheet - 336, Removing Fields Using the Design Sheet - 337,
Making a Copy of a Field - 337, Re-Arranging Fields - 339, Rules for Field Names - 339, Repeating Fields (Line Items) -
342

Chapter 6: Data Types - 351

Data Types and Memory Usage - 352, Setting Up a Field’s Data Type - 352, Numeric Data - 355,
Numeric Output Patterns - 356, Dates - 360, Date Output Patterns - 361, Choices - 364

Chapter 7: Data Entry & Editing - 369

Editing Records - 369, Moving From Record to Record - 369, Moving from Field to Field - 371,
Adding a New Record - 372, Inserting a New Record - 372, Deleting a Record - 373, Deleting Multiple Records - 374,
Delete All - 374, Duplicating a Record - 375, Moving a Record - 375, Editing Data Within a Cell - 376,
Expanding the Input Box - 377, Editing Cells Within a Form - 379, Tab Down - 381, Tab Order in Forms - 381,
Tabbing with the Space Bar - 383, Data Entry Accelerators - 384, Automatic Capitalization - 385,
Checking for Duplicate Data - 386, Clairvoyance® - 387, Clairrows - 393, Input Patterns - 393, Restricting Character
Types - 396, Default Values - 399, Creating a Unique Record Number - 403, Automatic Time/Date Stamping - 404,
Automatic Calculations - 406, Automatically Triggering a Procedure - 416, The Choice Palette - 419,
Searching for Text Within the Input Box - 421, Replacing Words or Phrases Within a Cell - 422,
Using the Spelling Checker within a Cell - 423

Page 5

Chapter 8: Sorting - 425

Basic Sorting - 425, Sorting By More Than One Field - 426, Sorting Numbers and Dates - 430, Sorting Within Groups -
431, Sorting Choices - 431

Chapter 9: Searching and Selecting - 433

Finding vs. Selecting - 433, The Find/Select Dialog - 435, Locating Dates by Month, Quarter, or Year - 438,
Find and Find Next - 439, Select - 440, Multiple Find/Select Criteria - 440, Select Reverse - 443, Undo Select - 443,
Permanently Removing Unselected Data - 443, Formula Find/Select - 447, Select Duplicates - 448

Chapter 10: Summaries and Outlines - 453

3-Step Summarizing - 453, STEP 1 - GROUP - 459, Subgroups - 459, Grand Total - 459,
Grouping by Week, Month, Quarter, or Year - 460, Manually Creating and Removing Summary Records - 462,
STEP 2 - CALCULATE - 463, Total - 463, Count - 463, Average - 463, Minimum - 463, Maximum - 463,
Recalculating Summaries - 464, Running Total - 464, Running Difference - 466, STEP 3 - OUTLINE - 469,
The Outline Level - 469, Collapsing vs. Selecting - 472, Expanding and Collapsing Specific Details - 473,
Sorting by Summary Value - 478, Sorting Within Groups - 482, Getting Rid of Summary Records - 482,
Getting Rid of Detail - 482, The Summaries & Outlines Wizard - 483

Chapter 11: Crosstabs - 493

Category and Tabulation Fields - 495, Creating and Setting Up a New Crosstab View - 496,
Crosstabs by Day, Month, Quarter or Year - 500, Adjusting Crosstab Column Widths - 501, Selecting Original Data - 501,
Crosstabs Based On Selected Data - 505, Crosstabs Containing Outlines - 505, Sorting a Crosstab - 507,
Removing and Renaming Crosstab Tables - 507, Exporting a Crosstab Table - 508,

Chapter 12: Data Processing - 509

Transforming Selected Data - 509, Filling a Field with a Fixed Value - 510, Filling a Field with a Formula - 511,
Filling Empty Cells - 521, Automatic Numbering - 522, Propagate - 523, UnPropagate - 527,
Using UnPropagate to Eliminate Duplicates - 528, Change (Find and Replace) - 530, Data Style and Color - 532

Chapter 13: Introduction to Forms - 539

Opening a Form - 540, Opening A Form in a New Window - 541, Form Modes: Data Access vs. Graphic Design - 543,
Form Operation: Individual Pages vs.View-As-List - 544, Creating a New Form - 545, Renaming a Form - 546,
Deleting a Form - 546, Browsing the Database With a Form - 546,
Browsing the Database With a View-As-List Form - 547

Chapter 14: Graphic Design - 549

Graphic Objects - 549, Creating a Graphic Object - 552, Customizing the Tool Palette - 554, SuperObjects - 557,
Modifying Objects - 557, The Graphic Control Strip - 562, Rulers - 563, Moving a Single Object - 564,
Changing the Size of a Single Object - 568, Removing Objects - 574, Fill Pattern - 575, Line Pattern - 577,
Line Width - 579, Color - 580, Font - 581, Text Size - 583, Text Style - 584, Object Type/Object Name - 585, The Object
Properties Dialog - 586, Grouping Objects Together - 588, Cluster Resize - 593, Aligning Objects - 605,
Adjusting Spacing Between Multiple Objects - 608, Duplicating Objects - 612, Cut, Copy, and Paste - 617, Overlapping
Objects - 619, Locked Objects - 626, Alignment Grid - 628, Magnification and Reduction - 630,
Form Background Colors - 633, Using the Form Explorer Wizard - 634

Chapter 15: Displaying and Editing Text - 637

Displaying Text - 637, Fixed Text Objects - 637, Text Font, Size and Style - 643, Text Alignment - 644,
Displaying Data in Auto-Wrap Text - 645, Displaying Formulas in Auto-Wrap Text - 652,
Text Display SuperObjects™ - 658, Using Formulas to Display Text - 671, Editing Text - 682,
Working with Data Cell Objects - 685, Text Editor SuperObject - 689,
Automatically Creating Rows or Columns of Data Cells or Text Editor SuperObjects - 709, Tab Order in Forms - 717,
Word Processor SuperObject - 720, Using the Word Processor - 724, The Ruler - 727, Margins (Indents) - 729,
Tab Stops - 732, Alignment - 737, Line Spacing - 738, Styles - 739, Selecting Text - 742,
Configuring the Word Processor - 744, Printing Word Processor Documents - 768,
Using the Mini Correspondence Wizard - 776

Page 6 Panorama Handbook

Chapter 16: Images & Movies - 797

Fixed Images - 797, Displaying and Printing EPS Images - 799, Flash Art™ - 806,
The Flash Art Scrapbook (Gallery) - 816, Displaying Images Directly From Disk Files - 820,
Displaying Non PICT Images (Enhanced Image Pack) - 826, Super Flash Art™ Options - 830,
“Classic” Flash Art Objects - 846, Storing Images in a Field - 847, Displaying Movies in a Form - 850

Chapter 17: Buttons & Widgets - 853

Push Buttons - 853, Super Object Push Button - 853, “Classic” Push Buttons - 860,
Flash Art™ Push Button SuperObjects™ - 862, Data Buttons - 866, Data Button SuperObjects™ - 867,
Flash Art Data Button SuperObjects™ - 879, Sticky Push Button SuperObjects™ - 881,
“Classic” Checkbox and Radio Buttons - 882, Pop-Up Menus - 884, Pop-Up Menu SuperObjects™ - 884,
“Classic” Pop-Up Buttons - 893, Creating a Pop-Up Menu with a Procedure - 896, List SuperObjects - 898,
Building the List - 912

Chapter 18: Form Goodies - 917

View-As-List Forms - 917, Elastic Forms - 940, Super Matrix Objects - 958, Building a Calendar - 975, Scroll Bars - 983,
Creating a Scrolling Matrix - 989, Balloon Help - 994, Changing the Cursor Shape Over Different Areas - 1000

Chapter 19: Charts - 1001

Chart Data - 1001, Creating a New Chart - 1002, Bar Charts - 1009, Line Charts - 1011, Area Charts - 1011, Pie Charts
- 1012, Scatter Diagrams - 1013, Preparing the Database for Drawing a Chart - 1014, Dressing Up Chart Appearance -
1022,
Chart Font, Size, and Style - 1022, Vertical Legends - 1023, Output Patterns - 1024, Grid - 1033, Non-Zero Axis OK -
1034, Tick Mark Spacing - 1035, Chart Preview - 1036, Printing a Chart - 1051

Chapter 20: Printing Basics - 1055

Printing Different Views - 1055, Printing the Data Sheet - 1055, Printing Data Sheet Headers & Footers - 1056,
Printing a Form - 1060, Preparing Data For Printing - 1060, The Page Setup Dialog - 1061, The Print Dialog - 1062,
Print Preview - 1063, Print One Record - 1065

Chapter 21: Custom Reports - 1067

Working with Tiles - 1068, Tiles In Action - 1081, Margins - 1090, Headers and Footers - 1096, Page Numbers - 1106,
Printing the Current Date and Time - 1109, The QuickReport Dialog - 1117, Printing Multiple Page Records - 1120,
Printing Data that Overflows a Page - 1122, Variable Height Records - 1131, Printing Multiple Column Reports - 1140,
Printing Summary Information - 1149, Printing Data Grouped by Month, Quarter or Year - 1156, Group Headers - 1159,
Group Sidebars - 1163, Keeping a Group Together on a Column or Page - 1168, Even and Odd Page Layout - 1172,
Special Paper Options - 1174

Chapter 22: Labels - 1177

Label Fundamentals - 1177, The QuickLabel Dialog - 1177, Printing Labels on Sheets - 1180,
Printing 3 by 10 1” Labels (Avery 5160) - 1181, Aligning Labels on the Sheet - 1181, Printing Roll Labels - 1181

Chapter 23: Formulas - 1185

Formulas In Action - 1185, Displaying/Printing A Formula - 1186, Storing Formula Results in the Database - 1188,
Using a Formula to Locate/Select Information - 1191, Using the Formula Wizard - 1195, Formula Components - 1211,
Values - 1218, Constants - 1218, Fields - 1219, Variables - 1221, Special Characters - 1225,
Working With Extremely Complex Formulas - 1227, Arithmetic Formulas - 1228, Text Formulas - 1235,
Characters and ASCII Values - 1251, The ASCII Chart Wizard - 1253, Text Arrays - 1257, Date Arithmetic - 1266,
Time Arithmetic - 1273,SuperDates (combined date and time) - 1276, Reminders - 1277, True/False Formulas - 1282,
Linking With Another Database - 1289, Zip Code Lookup - 1301, Graphic Co-Ordinates - 1301, Colors - 1308,
Raw Binary Data - 1310, Disk Files and Folders - 1317, Import/Export Functions - 1325,
System and Database Information Functions - 1326

Page 7

Chapter 24: Procedures - 1345

Introduction to (Panorama) Programming - 1345, Procedures - 1346, Statements - 1346,
Creating a Procedure with the Recorder - 1353, Writing a Procedure from Scratch - 1357,
Assignment Statements - 1367, Variables - 1369, Control Flow - 1376, True/False Formulas - 1376,
IF Statements - 1378, CASE Statements - 1380, LOOP Statements - 1380, Subroutines - 1382,
Jumping to an Another Location in the Program - 1394, Stopping the Program - 1395,
Building Subroutines On The Fly (The Execute Statement) - 1397, Program Formatting - 1406,
Suppressing Display of Text and Graphics - 1410, Debugging a Procedure - 1414,
The Panorama Interactive Debugger - 1417, Procedure Debug Log - 1427, Cross Referencing - 1435,
The Action Menu - 1442, Custom Menus - 1448, Hidden Triggers - 1480

Chapter 25: Programming Techniques - 1497

Accessing Files - 1497, Files and Folders - 1497, Locating a File with Standard Dialogs - 1500,
Opening a Panorama Database - 1504, Importing Text Files - 1507, Exporting Text Files - 1511,
Smart Merge Synchronization - 1515, Directly Reading and Writing Disk Files - 1519, Working with Resources - 1532,
Accessing the Windows Registry - 1540, Monitoring Memory Usage - 1543, Windows - 1544,
Specifying the New Window Location - 1545, Temporary “Invisible” Windows - 1554, Window Clones - 1556,
Alerts - 1562, Dialogs - 1566, Custom Dialogs - 1570, The Custom Dialog Wizard - 1571,
Accessing and Modifying the Database Structure (Fields) - 1583, Database Navigation and Editing - 1588,
Sorting - 1610, Locating Information - 1611, Summaries and Outlines - 1619, Transforming Big Chunks of Data - 1625,
Processing/Transforming an Entire Array - 1644, Programming Graphic Objects on the Fly - 1652,
Program Control of SuperObjects™ - 1678, The Active SuperObject - 1679,
Accessing and Modifying a SuperObject’s Internal Data - 1681, Text Editor SuperObject Commands - 1682,
Word Processor SuperObject Commands - 1690, Super Flash Art Commands (Including Movie Control) - 1702, List
SuperObject™ Commands - 1719, Auto Grow SuperObject™ Commands (Elastic Forms) - 1725,
Super Matrix SuperObject™ Commands - 1726, Printing - 1729

Panorama Reference - 5000

Introduction: - 5000, Online Reference: - 5000, Searching: - 5001, Minimizing: - 5004, A - 5007, B - 5067, C - 5077,
D - 5138, E - 5181, F - 5211, G - 5282, H - 5335, I - 5345, K - 5458, L - 5462, M - 5514, N - 5532, O - 5552, P - 5585,
Q - 5620, R - 5622, S - 5686, T - 5823, U - 5863, V - 5882, W - 5885, X - 5906, Y - 5909, Z - 5912

History of Panorama - 1753

Version 4.0.1 - 1753, Version 3.1 - 1778, Version 3.0 - 1781, Version 2.1 - 1783, Version 2.0 - 1783,
Version 1.0, 1.1 and 1.5 - 1783, General Corporate History - 1783

Additional Resources - 1785

On-Line Resources - 1785, Technical Support - 1789, Panorama Conferences - 1790, Publications - 1797, Consulting
Services - 1797

Copyright © 2000 ProVUE Development
All Rights Reserved

Page 8 Panorama Handbook

Page 9

Table of Contents (Full)

– Click on any entry to jump to the page —
Full

.. 1

.. 1

.. 1

.. 1

.. 1

.. 1

.. 1

.. 1

.. 2
What is a Database?... 41
A Brief History of Database Technology ... 42
What is Panorama? .. 43

Wizards.. 44
Super Fast Searching and Sorting... 44
Phonetic Searching.. 44
Easy Set-Up... 45
Crosstabs... 46
Data Outlines ... 46
Data Entry Shortcuts.. 47
Smart Dates™ ... 47
Smart Program Recorder... 47
Formulas.. 47
Compact Storage... 47
Charts .. 48
Relational Links ... 48
Favorite Database Wizard ... 49
Advanced Graphic Tools ... 49
Mail Merge and Labels .. 50
Database Publishing.. 51
View-As-List Forms.. 52
Elastic Forms... 53
Matrix Display .. 54
Images and Movies.. 55
High Speed Import... 56
Flexible Text Export (including HTML)... 56
Data Transformation .. 57
Select/Remove Duplicates... 57

Page 10 Panorama Handbook

Client/Server .. 57
Complete Programming Language and Development Tools... 58
Custom Menus, Buttons, and Dialogs ... 59
Seamless Cross Platform Operation ... 60

Getting Started With Panorama For First Time Users .. 61
Upgrading to Panorama 4.0 From an Earlier Version... 62

Switching From Macintosh to Windows... 62
Deploying Applications Built With Panorama.. 63

Panorama Direct.. 63
Panorama Engine.. 63

The Panorama Engine Licensing Process ... 63
Distributing Your Databases... 63
Panorama Engine Restrictions... 64
New Database Versions... 64
License Fees (Commercial) ... 64
License Fees (Shareware/Freeware) ... 65
Panorama Engine vs. Panorama Direct ... 65

Why So Many Pages? .. 67
Printing This Book... 67
Training Movies... 67
Typographical Conventions .. 68
Opening the Documentation ... 68
Finding a Topic ... 70

Cross Reference Links .. 72
Using the Table of Contents .. 73
Searching the Manual.. 76

What About the Find Command? ... 78
Display Options.. 79

Smooth Text & Images Option ... 79
Single Page vs. Continuous Option.. 80
Magnification .. 82
Thumbnails ... 83

Getting Organized... 85
Installing the Software... 85

The Main Installer Window .. 86
Installation Options... 86
Selecting the Installation Location.. 89

Installing the Software ... 89
Activating the Software ... 90
Moving Your Software to Another Computer (Deactivating Your Software) ... 96
Activating a Personal Use License ... 99

Setting Up and Using a Personal Use Password .. 102
Changing the Personal Use Password... 103
What To Do If You Forget Your Password ... 103

Using Panorama’s “Demo Mode”.. 104
Watching Movies... 106
Wizard & Demo File Quick Reference .. 110
Wizard Manager.. 111

Using Disabled Wizards... 113
Wizard Sets ... 114

General Productivity Wizards.. 115
Mini Contacts Wizard... 115
Mini Calendar Wizard .. 119

Page 11

Mini Calculator Wizard... 121
Mini Correspondence Wizard .. 122
Mini Statistics Wizard... 123
Stopwatch Wizard.. 123
Task Timer Wizard... 124

Database Operations Wizards .. 128
Arrange Windows Wizard .. 128
New Database Wizard ... 129
Favorite Databases Wizard ... 129
Run Automatic Calculations Wizard .. 130
Search All Fields Wizard.. 130
Summaries & Outline Wizard... 132
Text Export Wizard .. 132
Text Import Wizard .. 133

Programming and Database Development Wizards... 134
ASCII Chart.. 134
Custom Menu Editor .. 135
Debug Log ... 136
Font Usage .. 136
Form Explorer .. 137
Formula Wizard ... 137
Panorama Handbook... 137
Panorama Movies.. 138
Platform Converter... 141
Programming Reference.. 142
RPN Programmers Calculator ... 143
View Wizard... 143
Window Size .. 144
Window Tweak .. 144

Business Demo Files .. 144
Books (Product Catalog).. 145

Displaying the Book Covers ... 146
Navigation with a List SuperObject .. 146
Catalog “Search Engine” .. 149

Invoices (Line Items).. 151
Invoices (Arrays).. 152

How the Detail Lines are Stored... 155
Displaying the Detail Lines ... 156
Scrolling the Detail Lines.. 158
Adjusting for Window Size Variations... 159

Mexican Restauraunt... 160
Sales Calendar... 162
Editing the Menu .. 162

ProVUE Order Entry .. 166
Placing an Order from a Regular Customer ... 170
Placing an Order from an Occasional Customer.. 176
Adding Products to a Product Collection.. 182
Adding a New Product.. 185
Learning More About the ProVUE Order Entry System ... 188

Files and Memory...189
Files, Icons and the Desktop... 189
Opening a Database ... 190

Page 12 Panorama Handbook

Databases and RAM.. 191
The Favorite Databases Wizard... 191

Navigating the Favorite Database List with the Keyboard.. 192
Adding a Favorite Database... 193
Removing a Favorite Database.. 193
File Information... 194
Favorite File Groups... 195
Searching for a File .. 199
Selecting Multiple Favorite Files... 200

Creating a New Database... 202
Using the New Database Wizard .. 203

Creating a Database with the Wizard... 204
Creating Numeric and Date Fields ... 205
Default Values .. 205
Automatic Calculations... 206
Line Items (Repeating Fields) .. 207
Starting with a New Database Template .. 209
Creating a Database from a Text File .. 210

Closing Panorama .. 212
Saving a Database.. 212

Saving Window Positions .. 213
Revert to Saved... 214
Auto-Save.. 214

Pitfalls of Auto-Save ... 214
Backup Files .. 214

Opening Backup Files .. 215
On the Importance of Backing Up... 215
Working with Multiple Databases.. 216

Opening Multiple Files ... 216
File Sets... 217

The AutoLoad File Set.. 219
Saving Multiple Files.. 219
Appending One Database to Another.. 219

Appending an Open Database ... 220
Appending Imported Data .. 220

Replacing Obsolete Data... 221
Importing and Exporting Data ... 222

Working with Text Files.. 222
Importing a Text File .. 223

Importing into an Existing Database... 227
Importing HTML Tables.. 228
Importing OverVUE Files.. 234
Re-Arranging Imported Data .. 234
Using the Text Import Wizard... 234
Common Import Formulas.. 239
Import Templates ... 241
Choosing a Database to Import Into... 243
Converting an Import Configuration into a Procedure .. 244

Exporting a Text File.. 245
Exporting with the Text Export Wizard.. 248
Editing the Export Configuration... 252
Common Export Formulas ... 255
Export Templates ... 256

Page 13

Choosing a Database to Export From .. 258
Exporting HTML Tables.. 259
Using the Generated HTML Page .. 260
HTML Table Options .. 261

Monitoring Memory Usage.. 267
Memory Usage Details .. 268
Multiple Memory Statistic Windows ... 269

Adjusting Panorama’s Memory Allocation (Windows) .. 270
Adjusting Panorama’s Memory Allocation (Macintosh)... 271

Changing Scratch Memory Size (Macintosh) .. 273

Windows...275
Window Components.. 275

Tool Palette.. 276
Scrolling the Tool Palette ... 277

Close Box .. 277
Drag Bar .. 277
Title .. 277
Zoom Box (Maximize).. 277
Grow Box... 277
Scroll Bars ... 278
Splitting a Window ... 278
Info Palette... 279
Bringing a Window to the Front ... 280
Hiding Windows... 280
Zooming Into a Box.. 281
Saving Window Positions .. 281

Saving with No Windows.. 282
Turning Window Components On and Off (Window Tweak Wizard) .. 283
Measuring a Window (Window Size Wizard).. 285

Setting Exact Window Dimensions... 286
Arranging All Open Windows at Once (Tiling and Stacking) ... 289

Saving and Restoring Window Positions.. 292
Choosing Tile Configurations ... 292
Bringing Windows to the Front ... 295

Views..297
Types of Panorama Views .. 297
Data Sheet and Form Views ... 298

Other Views ... 299
Switching Between Views ... 302

Opening More Than One Window Per Database .. 303
Window Options ... 306

The View Wizard.. 307
View Wizard Window Size and Options ... 310
Searching All Procedures... 312

Form Modes: Data Access vs. Graphic Design .. 315
Form Operation: Individual Pages vs.View-As-List... 316
Creating a New Form, Crosstab or Procedure.. 317
Renaming a Form, Crosstab or Procedure ... 318
Deleting a Form, Crosstab or Procedure .. 318
Changing the Order of Forms, Crosstabs or Procedures ... 318
The Privilege Dialog.. 319

Page 14 Panorama Handbook

User Levels vs. Save Window Positions .. 320
Hiding Sensitive Data .. 320

Records..321
Data Organization ... 321
Tables vs. Individual Pages .. 322
Special Records.. 322

Data Records... 322
Summary Records ... 323
Invisible Records ... 324

Fields..327
The Setup Menu ... 328

Add Field.. 329
Field Properties.. 330
Delete Field.. 330

Changing the Width of a Field... 331
The Design Sheet ... 332

Database “Generations” .. 332
Typical Design Sheet Operation .. 333
Field Properties.. 335
Adding New Fields Using the Design Sheet .. 336
Removing Fields Using the Design Sheet ... 337
Making a Copy of a Field ... 337
Re-Arranging Fields... 339

Rules for Field Names .. 339
Multiple Line Field Names ... 340
Repeating Fields (Line Items).. 342

Creating Line Item Fields ... 343
Modifying Line Item Fields.. 345
Adding More Line Item Fields... 348
Learn More About Line Items ... 349

Data Types...351
Data Types and Memory Usage ... 352
Setting Up a Field’s Data Type ... 352

Data Type Conversion Problems... 353
Numeric Data .. 355

Money.. 356
Numeric Output Patterns ... 356

Fixed Decimal Point Patterns ... 358
Numbers with Commas, Punctuation, and Measurement Units... 358
Scientific Notation... 358
Special Patterns for Negative Numbers ... 359
Leading Zeros .. 359
Numbers with Multiple Components... 359
Phone Numbers ... 359
Plural Suffixes .. 360
Displaying Numbers as Words ... 360

Dates... 360
Entering Dates ... 360

Default Year and Century... 361

Page 15

Date Output Patterns ... 361
Date Pattern Components.. 362
Common Date Output Patterns .. 363

Choices ... 364
Choice Data Entry (Choice Palette)... 364
Creating the List of Choices... 365
Exceptions ... 365
Generating a List of Choices Automatically ... 366
Updating the Choice List.. 367
Using Math Operations with Choices... 367
Sorting Choices ... 367

Data Entry & Editing...369
Editing Records... 369

Moving From Record to Record... 369
Moving from Field to Field ... 371
Adding a New Record.. 372
Inserting a New Record ... 372
Deleting a Record .. 373
Deleting Multiple Records.. 374
Delete All ... 374
Duplicating a Record ... 375
The Clipboard Window .. 375
Moving a Record.. 375

Editing Data Within a Cell ... 376
The Input Box .. 376
Expanding the Input Box.. 377

Expanding a Right Justified Input Box.. 378
Editing Cells Within a Form ... 379

Tabbing from Cell to Cell .. 380
Tab Down .. 381
Tab Order in Forms ... 381
Tabbing with the Space Bar... 383

Data Entry Accelerators .. 384
Automatic Capitalization .. 385

Changing Capitalization of Existing Data ... 385
Checking for Duplicate Data .. 386

Checking for Duplicates in Existing Data ... 387
Clairvoyance® ... 387

How Clairvoyance® Works... 388
Turning Clairvoyance® On or Off ... 389
Clairvoyance® Helps Insure Data Consistency.. 389
Using Clairvoyance® With Dates ... 389
Clairvoyance® Across Multiple Files .. 389

Clairrows.. 393
Input Patterns .. 393

Entering Data with an Input Pattern ... 395
Using Input Patterns with Dates ... 395

Restricting Character Types .. 396
Custom Character Restrictions .. 397

Default Values ... 399
Default to Today’s Date.. 400
“Ditto” Defaults Based on the Previous Record.. 401

Page 16 Panorama Handbook

Automatically Incrementing Defaults (1, 2, 3, …) Based on the Previous Record 402
Creating a Unique Record Number .. 403
Manually Changing the Record Number Counter .. 404

Automatic Time/Date Stamping... 404
Automatic Calculations .. 406

Spreadsheet Mode Calculations .. 406
Procedure Mode Calculations .. 413
Automatically Triggering a Procedure .. 416
Pros and Cons of Spreadsheet vs. Procedure Mode ... 417
The Run Automatic Calculations Wizard.. 418

The Choice Palette .. 419
Changing the Shape of the Choice Palette .. 419
Creating the List of Choices ... 419
Exceptions.. 420
The Choice Palette vs. the Choices Data Type.. 420

Editing Tools within a Data Cell .. 420
Searching for Text Within the Input Box .. 421
Replacing Words or Phrases Within a Cell.. 422
Using the Spelling Checker within a Cell ... 423

Sorting..425
Basic Sorting... 425

Sorting By More Than One Field ... 426
Sorting By Color... 429
Undo Sorting.. 430
Sorting Numbers and Dates .. 430
Sorting Right Justified Text.. 431
Sorting Selected Data.. 431
Sorting Within Groups.. 431
Sorting Choices ... 431

Searching and Selecting ..433
Finding vs. Selecting... 433

The Find/Select Dialog .. 435
Locating Dates by Month, Quarter, or Year ... 438

Find and Find Next.. 439
Select .. 440
Multiple Find/Select Criteria .. 440

Select Within.. 442
Select Additional .. 442

Select Reverse.. 443
Undo Select .. 443
Permanently Removing Unselected Data ... 443
The Search All Fields Wizard.. 444

Selecting From All Fields ... 446
Searching All Fields In Another Database... 446

Formula Find/Select.. 447
The SEQ Function ... 447

The Select Summaries Command .. 448
Select Duplicates .. 448

Select Duplicates Using a Formula.. 449

Page 17

Summaries and Outlines..453
3-Step Summarizing ... 453
STEP 1 - GROUP ... 459

Subgroups ... 459
Grand Total.. 459
The Group Command.. 460
Grouping by Week, Month, Quarter, or Year ... 460
Group by Color .. 461
Propagating Data into Summary Records ... 461
Manually Creating and Removing Summary Records... 462

STEP 2 - CALCULATE ... 463
Total... 463
Count ... 463
Average ... 463
Minimum .. 463
Maximum ... 463
Recalculating Summaries .. 464
Running Total .. 464
Using Running Total to Balance a Checkbook .. 464
Running Difference.. 466

Using Running Difference to Calculate Gas Mileage ... 467
STEP 3 - OUTLINE... 469

The Outline Level... 469
Collapsing vs. Selecting ... 472

Expanding and Collapsing Specific Details ... 473
Sorting by Summary Value.. 478
Sorting Within Groups.. 482
Getting Rid of Summary Records .. 482
Getting Rid of Detail... 482

Printing Reports with Summary Information ... 483
The Summaries & Outlines Wizard... 483

Using Summary/Outline Templates ... 486
Converting a Template into a Procedure... 487
Printing the Summary Results ... 488

The Mini Statistics Wizard... 489
Saving a Statistical Snapshot .. 491
Renaming and Deleting Snapshots ... 492
Printing a Statistical Analysis... 492

Crosstabs...493
Category and Tabulation Fields .. 495
Creating and Setting Up a New Crosstab View .. 496

Crosstabs by Day, Month, Quarter or Year ... 500
Changing the Crosstab Design.. 500
Re-Calculating a Crosstab... 501
Adjusting Crosstab Column Widths ... 501
Crosstab Font and Size ... 501

Selecting Original Data ... 501
Crosstabs Based On Selected Data ... 505
Crosstabs Containing Outlines ... 505
Sorting a Crosstab .. 507
Removing and Renaming Crosstab Tables .. 507

Page 18 Panorama Handbook

Exporting a Crosstab Table .. 508

Data Processing...509
Transforming Selected Data ... 509
Filling a Field with a Fixed Value .. 510
Filling a Field with a Formula .. 511

Numeric Calculations With Formula Fill... 512
Using Formula Fill to Transform Characters.. 515
Date Calculations with Formula Fill ... 517
The SEQ Function ... 519

Filling Empty Cells .. 521
Automatic Numbering ... 522
Propagate ... 523
UnPropagate... 527

Using UnPropagate to Eliminate Duplicates.. 528
Change (Find and Replace).. 530

Changing with the Replace(Function.. 531
Data Style and Color... 532

Displaying Data Style and Color in Forms... 537
Accessing Style and Color in a Formula.. 537

Introduction to Forms ...539
Opening a Form.. 540

Opening A Form in a New Window.. 541
Form Modes: Data Access vs. Graphic Design .. 543
Form Operation: Individual Pages vs.View-As-List... 544
Creating a New Form.. 545
Renaming a Form ... 546
Deleting a Form .. 546
Browsing the Database With a Form .. 546
Browsing the Database With a View-As-List Form ... 547

Graphic Design ..549
Graphic Objects .. 549

Types of Graphic Objects .. 549
Creating a Graphic Object .. 552

Creating Perfect Squares, Circles and Lines... 554
Customizing the Tool Palette .. 554

Using the Keyboard to Select Common Tools... 557
SuperObjects ... 557

Modifying Objects ... 557
Selecting a Single Object... 558
Selecting Multiple Objects at Once.. 559

The Graphic Control Strip ... 562
Rulers.. 563
Moving a Single Object ... 564

Nudging an Object (or Objects) ... 565
Nudge “Auto Guides”.. 566

Viewing and Setting Exact Object Dimensions.. 567
Changing the Size of a Single Object ... 568

Nudging the Size of an Object ... 568
Nudge Size “Auto Guides”... 569

Page 19

Nudging to the Crosshair Cursor.. 570
Percentage Scaling.. 571
Resizing Without Handles.. 571
Changing the Radius of Round Corners.. 573

Removing Objects... 574
Modifying Object Attributes ... 574

Fill Pattern.. 575
Line Pattern ... 577
Line Width.. 579
Color .. 580
Font.. 581

Maintaining Fonts across Multiple Computers and Platforms .. 582
Universal Fonts .. 582

Text Size.. 583
Text Style... 584
Object Type/Object Name ... 585
The Object Properties Dialog... 586

Working With Multiple Objects .. 588
Grouping Objects Together ... 588
Moving Multiple Objects... 590

Fast Drag.. 590
Resizing Multiple Objects .. 592
Cluster Resize ... 593

Cluster Resize Troubleshooting ... 602
Setting Exact Dimensions of Multiple Objects ... 602
Aligning Objects... 605
Adjusting Spacing Between Multiple Objects .. 608
Duplicating Objects.. 612

Duplicate .. 612
Drag Duplicating... 613
Step and Repeat .. 614

Cut, Copy, and Paste... 617
Copying Objects Between Forms... 618
Copying Objects Between Files ... 618
Copying an Entire Form ... 618

Overlapping Objects .. 619
Changing the Stacking Order ... 620
Selecting a Completely Hidden Object ... 621
Making a Drop Shadow .. 624

Locked Objects ... 626
Ignoring Locked Objects .. 628

Alignment Grid .. 628
Magnification and Reduction... 630

A Note About Measurement Accuracy... 632
Form Background Colors .. 633
Using the Form Explorer Wizard... 634

Displaying and Editing Text ...637
Displaying Text ... 637

Fixed Text Objects... 637
Editing Fixed Text .. 640
Moving and Resizing Fixed Text Objects .. 640
Text Font, Size and Style... 643

Page 20 Panorama Handbook

Creating Reverse Type (White on Black) ... 643
Text Alignment... 644
Displaying Data in Auto-Wrap Text.. 645

Data Merge Pop-Up Menu ... 646
Using Data Merge to Create Address Labels... 647

Displaying Formulas in Auto-Wrap Text .. 652
The Build Formula Dialog... 654

Text Display SuperObjects™... 658
Creating and Modifying Text Display SuperObjects... 658
Text Display Options .. 660
Controlling Text Display Color and Style on the Fly ... 669

Using Formulas to Display Text... 671
Combining Multiple Text Items Into One .. 671
Creating a Smart Formula .. 674
Eliminating Unnecessary Punctuation and Blank Areas With the Sandwich Function....... 675
Combining Numbers with Text ... 677
Displaying Dates .. 679
Merging Images Into Text... 680

Editing Text ... 682
Types of Data Editing Objects ... 682
Working with Data Cell Objects ... 685

Data Cell Custom Output Patterns ... 688
Text Editor SuperObject .. 689

Creating and Modifying Text Editor SuperObjects ... 689
Text Editor Options... 692
Converting Data Cells into a Text Editor SuperObjects ... 708

Automatically Creating Rows or Columns of Data Cells or Text Editor SuperObjects 709
Automatic Layout Options .. 710
Line Items in a Form... 716

Tab Order in Forms ... 717
Tab Order for Variables.. 719

Field Setup in Graphics Mode ... 719
Word Processor SuperObject .. 720

Creating and Working With Word Processor SuperObjects... 720
Using the Word Processor... 724

The Ruler.. 727
Margins (Indents) ... 729
Tab Stops ... 732
Alignment ... 737
Line Spacing... 738
Styles.. 739
Selecting Text... 742

Configuring the Word Processor.. 744
Word Processor Document Storage Strategies ... 744
Storing a Collection of Documents ... 745
Searching for Text Within a Collection of Documents .. 749
Setting up Storage for a Template Document .. 750
Setting up Storage for Multiple Template Documents.. 752
Merging Data into Word Processing Documents ... 756
Forcing Merge Data to Update When Moving From Record to Record 763
Word Processor Options .. 765
Default Font and Text Size for New Documents .. 766

Printing Word Processor Documents... 768

Page 21

Printing Multiple Page Documents ... 773
Using the Mini Correspondence Wizard .. 776

Creating a New Letter .. 776
Printing a Letter .. 780
Printing a Mail Merge Letter ... 782
Viewing a List of Letters ... 784
Linking Mini Correspondence to Other Databases... 785
Correspondence Templates ... 790
Understanding the Letter Template Formulas.. 794

Images & Movies ...797
Fixed Images .. 797

Displaying and Printing EPS Images... 799
Memory Requirements for Large Images .. 800
Tracing a Scanned Form ... 801

Flash Art™.. 806
Creating Super Flash Art Objects .. 807

Using Flash Art to Display a Fixed Image .. 812
Using Flash Art to Display a Smart Background .. 813

The Flash Art Scrapbook (Gallery) .. 816
Adding a New Image to the Scrapbook.. 817
Locating an Image in the Flash Art Scrapbook .. 817
Removing an Image from the Flash Art Scrapbook ... 818
Renaming an Image ... 818
Re-Arranging the Image Order... 819
Printing the Flash Art ScrapBook ... 819
Importing PICT Files into the Flash Art Scrapbook .. 819
Transferring the Flash Art Scrapbook to Another Database .. 819

Displaying Images Directly From Disk Files .. 820
Displaying Images in a Different Folder (Directory).. 822
Displaying Non PICT Images (Enhanced Image Pack).. 826
Image File Extensions in a Cross Platform Environment (MacOS and Windows) 828

Super Flash Art™ Options... 830
Formula .. 830

Formula in a Variable .. 830
Default .. 831
Alt File .. 832
Include Pictures on Disk... 832
Display Group of Pictures... 832
Border... 838
Drop Shadow.. 838
Overflow ... 839
Scroll Bars .. 839
Align ... 839

Displaying Images from Resource Files .. 844
Displaying Icons from Resource Files .. 845

Displaying Form Preview Pictures ... 845
“Classic” Flash Art Objects .. 846
Storing Images in a Field ... 847

Displaying Movies in a Form... 850

Buttons & Widgets ...853
Push Buttons... 853

Page 22 Panorama Handbook

Super Object Push Button ... 853
Push Button Styles ... 856
Button Title ... 858
Title Positioning .. 858
3D Title ... 858
Hide Title .. 858
Click/Release ... 859
Color Options ... 859

“Classic” Push Buttons .. 860
Transparent Push Buttons.. 861

Flash Art™ Push Button SuperObjects™.. 862
Data Buttons ... 866

Data Button SuperObjects™ ... 867
Creating a Group of Radio Buttons .. 869
Multiple Value Button Groups... 873

Super Data Button Options.. 876
Data.. 876
Title... 876
Value .. 876
Allow Multiple Values ... 877
Value Separator ... 877
"Radio" button... 877
Procedure... 877
Sample ... 878

Flash Art Data Button SuperObjects™.. 879
Sticky Push Button SuperObjects™ .. 881
“Classic” Checkbox and Radio Buttons ... 882

Pop-Up Menus .. 884
Pop-Up Menu SuperObjects™ .. 884
The Pop-Up Menu Formula ... 887

Dividing Lines in the Menu ... 888
Pop-Up Menu Options ... 889

Data.. 889
Menu Formula .. 889
Menu Type ... 890
Display Options .. 892
Color ... 892
Procedure... 893
Pop-Up Menu Font, Size and Dimensions ... 893

“Classic” Pop-Up Buttons .. 893
Creating a Pop-Up Menu with a Procedure... 896

Where Will the Pop-Up Menu Appear? .. 896
The PopUp Statement.. 897
The PopUpByNumber Statement... 897
The PopUpStyle Statement.. 897

List SuperObjects.. 898
Creating List SuperObjects™ .. 898
List Options.. 902

Data.. 902
Sep ... 904
Database .. 906
Sort Up ... 908
No Duplicates ... 909

Page 23

Formula .. 909
Click Action... 910
Grow Box.. 911
Procedure... 912
Click/Release ... 912

Building the List ... 912
“Hiding” Part of a List Item.. 914
Maximum List Size ... 915

Form Goodies ..917
View-As-List Forms... 917

How View-As-List Forms Work .. 918
Creating a View-As-List Form.. 920

Working with Tiles .. 926
Adding a View-As-List Header ... 927
Editable View-As-List Forms .. 931
View-As-List Background Colors.. 937
Buttons on a View-As-List Form... 939

Elastic Forms .. 940
Theory of Elastic Forms... 941
Building an Elastic Form.. 943

Defining the Quadrants .. 943
Maximum Window Size .. 947
Removing the Window’s Scroll Bars .. 948
The Window Tweak Procedure .. 950
Opening Windows with a Procedure .. 952
Modifying an Elastic Form .. 952
Non-Rectangular Quadrants .. 953
Expanding Multiple Objects Proportionally... 955
Elastic View-As-List Forms... 956

Super Matrix Objects .. 958
The Matrix Template (and Frame Object).. 959
Creating Super Matrix Objects... 961

Linking with the Matrix Frame .. 963
Matrix Cell Borders & Background ... 964
Matrix Order ... 965
Matrix Rows and Columns ... 966

Designing a Matrix Template ... 968
Adjustable Size Templates... 968
Tips for Adjustable Size Templates.. 971
Matrix Formulas (What cell is this?) ... 972
Using the Matrix as a Button .. 973
What Cell Was Clicked?... 973
Buttons Within Matrixes.. 974
Updating the Matrix Display ... 974
A Trick for Updating the Matrix Display Automatically.. 975

Building a Calendar ... 975
Scroll Bars... 983

Scroll Bar “Theory”... 983
Creating Scroll Bar SuperObjects™ .. 984
Scroll Bar Options.. 987

Data.. 987
Min.. 987

Page 24 Panorama Handbook

Max... 988
Page Up/Down ... 988
16 Pixel... 988
Procedure... 988

Creating a Scrolling Matrix... 989
Balloon Help.. 994

Creating Balloon Help Objects... 995
Balloon Help Options ... 1000
Changing the Cursor Shape Over Different Areas .. 1000

Charts...1001
Chart Data... 1001
Creating a New Chart ... 1002

Setting Up Legend and Value Fields ... 1006
Setting Up Additional Value Fields .. 1007
Chart Types ... 1008
Bar Charts.. 1009
Line Charts .. 1011
Area Charts.. 1011
Pie Charts .. 1012
Scatter Diagrams... 1013

Preparing the Database for Drawing a Chart.. 1014
Ranking (Sorting) the Chart Values... 1017
Charts with “Other” .. 1019
Restoring the Original Data ... 1021
Maximum Number of Chart Points... 1022

Dressing Up Chart Appearance .. 1022
Chart Font, Size, and Style.. 1022
Vertical Legends.. 1023
Output Patterns.. 1024
Graphic Attribute Icons .. 1025
Grid .. 1033
Non-Zero Axis OK.. 1034
Tick Mark Spacing ... 1035
Chart Preview .. 1036
Copying a Chart to Another Application... 1037
Graphic Embellishments (Titles, Legends, Drop Shadows, etc.)... 1038
Chart Flash Art... 1040
Using Flash Art for Color or Blends ... 1044
Scatter Diagram Flash Art ... 1046

Connect Dots.. 1050
Printing a Chart.. 1051

Printing Basics ...1055
Printing Different Views... 1055
Printing the Data Sheet... 1055

Printing Data Sheet Headers & Footers .. 1056
Printing a Form ... 1060
Preparing Data For Printing .. 1060
The Page Setup Dialog... 1061

Fractional Fonts ... 1061
The Print Dialog .. 1062
Print Preview... 1063

Page 25

Print One Record .. 1065

Custom Reports ...1067
Working with Tiles... 1068

Creating Additional Tiles.. 1074
Creating A New Tile By Duplicating... 1077

Tiles In Action ... 1081
Data Tiles... 1081

Margins ... 1090
Top Margin Tile .. 1090

Left Margin Tile .. 1092
Right Margin Tile.. 1095
Bottom Margin ... 1096

Headers and Footers .. 1096
Header Tile .. 1096

Creating a Header Tile by Duplicating the Data Tile .. 1100
Footer Tile.. 1105
Page Numbers... 1106
Printing the Current Date and Time... 1109
First Page Header Tile... 1111
BackDrop Tile .. 1113
Designing Headers and Footers For Changing Page Sizes.. 1115

The QuickReport Dialog.. 1117
Printing Multiple Page Records... 1120

Selectively Printing Multiple Pages per Record... 1121
Printing Data that Overflows a Page.. 1122

Variable Height Records ... 1131
Stacking Variable Height Objects .. 1137
The Expand/Shrink Option... 1138
Mixing Variable Height Objects With Other Graphics .. 1139

Printing Multiple Column Reports ... 1140
Across or Down? ... 1142
Table Header and Table Footer Tiles .. 1143
Controlling the Number of Columns... 1147

Spacer Tile ... 1148
Printing Summary Information .. 1149

Summary Tiles... 1151
Printing Summaries Without Data.. 1155
Printing Data Grouped by Month, Quarter or Year .. 1156
Group Headers .. 1159
Group Sidebars.. 1163
Keeping a Group Together on a Column or Page ... 1168
Starting a Group on a New Column or Page ... 1171

Even and Odd Page Layout.. 1172
Special Paper Options .. 1174

Labels ..1177
Label Fundamentals ... 1177
The QuickLabel Dialog.. 1177
Printing Labels on Sheets ... 1180

Printing 3 by 10 1” Labels (Avery 5160) .. 1181
Aligning Labels on the Sheet ... 1181
Printer Inaccuracy and Vertical Creep... 1181

Page 26 Panorama Handbook

Printing Roll Labels ... 1181
Printing on 1-up 1” Roll Labels .. 1181
Printing Non 1” 1-up Labels ... 1182

Using Custom Page Size to Print Labels ... 1182
Using Standard Page Sizes to Print Labels ... 1182
2, 3, and 4-Up Roll Labels.. 1182
4-Up Cheshire Labels... 1183
Selecting Font and Print Quality... 1183

Formulas ..1185
Formulas In Action .. 1185

Displaying/Printing A Formula ... 1186
Storing Formula Results in the Database.. 1188
Using a Formula to Locate/Select Information... 1191
Formulas in Procedures... 1194
Using the Formula Wizard ... 1195

Calculations with Database Fields ... 1196
Changing the Active Database... 1198
Using Fields from Other Databases ... 1199
Saving a Formula for Later Use ... 1200
Operator and Function Help Menus ... 1203
The Function Dialog ... 1205
Configure Your Own Help Menu .. 1207
Special Formula Result Formats .. 1208

Formula Components ... 1211
Formula Grammar ... 1211

Calculation Order and Parentheses ... 1212
Functions.. 1212
Multi-Parameter Functions ... 1213
Zero Parameter Functions.. 1213
Functions Menu.. 1214
Whitespace... 1215
Grammar Errors ... 1216

Values ... 1218
Constants... 1218

Build in Constants: Pi, Carriage Return and Tab ... 1219
Fields ... 1219

Using the Current Field .. 1220
Line Item Fields .. 1220

Variables ... 1221
Variable Names ... 1222
What’s Inside A Variable?.. 1222
The Life Cycle of a Variable... 1222
Creating Variables in a Procedure... 1223

Initializing Variables.. 1224
Variables and Data Types ... 1224
SuperObject Variables... 1224
Variable Name Conflicts .. 1224
Permanent Variable Tips ... 1225

Special Characters.. 1225
Working With Extremely Complex Formulas .. 1227

How Large Should the Buffer Be?.. 1227
Arithmetic Formulas .. 1228

Page 27

Dividing by Zero... 1229
Overflow/Underflow Problems ... 1229
Adding Line Item Fields ... 1230
Basic Numeric Functions ... 1230
Scientific Functions.. 1232
Financial Functions.. 1234

Text Formulas ... 1235
Gluing Strings Together... 1235
Taking Strings Apart (Text Funnels) .. 1236

Numeric Start and End Positions ... 1236
Specifying Numeric Length Instead of Position.. 1237
Start/End Positions by Character Matching.. 1237
Cascading Text Funnels... 1238
Character Matching in Reverse Gear... 1238
Stripping Out Individual Words... 1239
Multiple Matching Characters for Start/End Position.. 1241
Non-Matching Character for Start/End Position ... 1242
Limitations of Text Funnels .. 1244

String Testing Functions .. 1245
String Modification Functions... 1246
Converting Between Numbers and Strings.. 1249
Characters and ASCII Values.. 1251

Working with Character Values .. 1251
Invisible Characters.. 1252
The ASCII Chart Wizard... 1253
Showing Character Ranges with the ASCII Wizard ... 1255

Text Arrays .. 1257
Picking a Separator Character ... 1257
Working With Arrays... 1258

HTML Tag Parsing Functions .. 1262
Tag Parameter Functions... 1264
HTML/URL Conversion Functions.. 1265

Date Arithmetic ... 1266
Today’s Date.. 1266
Converting Between Dates and Text ... 1267
Date Functions... 1268

Calendar Functions .. 1270
Time Arithmetic ... 1273

Converting Between Times and Text... 1273
Time Calculations .. 1274
Calculating Time Intervals Smaller Than One Second.. 1276

SuperDates (combined date and time) ... 1276
Reminders... 1277

Appointments vs. To-Do’s .. 1278
Creating and Modifying a Reminder... 1278
Reminder Functions ... 1280
Alarms .. 1281

True/False Formulas... 1282
Comparison Operators .. 1282

A beginswith B.. 1283
A endswith B .. 1283
A contains B ... 1283
A notcontains B .. 1283

Page 28 Panorama Handbook

A soundslike B.. 1283
A match B... 1284
A matchexact B .. 1285
A notmatch B.. 1285
A notmatchexact B ... 1285
A like B ... 1285

Combining Comparisons ... 1285
A and B... 1285
A or B ... 1286
A xor B.. 1286
not A ... 1286

Equals Comparison vs. Assignment .. 1286
True/False Values.. 1287
The ? Function... 1287

Linking With Another Database .. 1289
The Lookup Wizard.. 1290
Type Mismatch Problems .. 1293
Lookup Variations .. 1294
Looking Up Rates in a Rate Table... 1294
Looking Up Multiple Fields From One Record... 1295
The GrabData Function ... 1297
Looking Up Multiple Values at Once.. 1297
Linking Clairvoyance to the Lookup Key Field... 1299
Looking Up Data in the Current File .. 1300

Zip Code Lookup... 1301
Graphic Co-Ordinates ... 1301

Points... 1302
Rectangles... 1304

Colors.. 1308
Raw Binary Data ... 1310

The RPN Programmer’s Calculator ... 1313
Converting Between Different Bases ... 1313
Calculations with Reverse Polish Notation... 1314
Boolean Operators ... 1316

Disk Files and Folders .. 1317
Resource Files... 1321

Import/Export Functions.. 1325
System and Database Information Functions ... 1326

System Information.. 1326
User Information .. 1329
Variable Information... 1330
Database Information .. 1331
Window, Form and Report Information.. 1336
SQL Database Information .. 1342

Procedures...1345
Programming Isn’t Magic! ... 1345
Introduction to (Panorama) Programming... 1345

Procedures .. 1346
Statements... 1346
A Simple Procedure in Action .. 1347
Creating a Procedure with the Recorder ... 1353

Recording Mouse Clicks... 1356

Page 29

Non Recordable Menus and Tools... 1356
Recording Data Entry ... 1357

Writing a Procedure from Scratch.. 1357
Writing Statements ... 1359
Trying Out a Procedure .. 1360
Checking for Mistakes .. 1362
Mysterious Errors ... 1364
Closing the Window When a Procedure is Finished .. 1364
Re-Opening a Procedure ... 1364
Font and Size ... 1365
Adding a Recording to an Existing Procedure.. 1365

Data Flow.. 1367
Assignment Statements... 1367

Triggering Automatic Calculations.. 1367
The Define Statement .. 1368

Variables.. 1369
Creating a Variable... 1369
Assigning a Value to a Variable ... 1370
Using a Variable in a Formula .. 1370
The Birth and Death of a Local Variable .. 1371
Long Life Variables... 1371
Destroying a Variable ... 1371
Variable Accessibility.. 1372
Accessing “Dormant” Variables.. 1372
“Hidden” Variables and Fields .. 1373
Accessing Variables In Form Objects (Text or Images) ... 1373
Creating Variables with a SuperObject .. 1373
Permanent Variable Tips.. 1375

Control Flow.. 1376
True/False Formulas.. 1376

Equals Comparison vs. Assignment... 1377
True/False Values .. 1377

IF Statements .. 1378
ELSE Statements ... 1378
Nested if Statements .. 1378
Error Handling with if error ... 1379

CASE Statements.. 1380
LOOP Statements.. 1380

Stopping a Loop in the Middle.. 1381
Restarting a Loop in the Middle.. 1382

Subroutines.. 1382
CALL Statement ... 1382
Calling Procedures With Unusual Names .. 1383
Passing Values to a Subroutine (Parameters) ... 1384
Passing Values Back From a Procedure.. 1386
What if the parameters don’t match the procedure? .. 1389
Calling a Subroutine in Another Database ... 1390
Terminating a Subroutine in the Middle.. 1391
Mini Subroutines within a Procedure.. 1391
Subroutines and Local Variables.. 1392
Recursive Subroutines ... 1393

Other Control Flow Statements ... 1394
Jumping to an Another Location in the Program .. 1394

Page 30 Panorama Handbook

Stopping the Program .. 1395
Aborting a Program .. 1395
Controlling the Abort Process... 1396
Doing Nothing for a While .. 1396

Building Subroutines On The Fly (The Execute Statement) .. 1397
Tips for On-The-Fly Program Writing ... 1399
Execute and Local Variables.. 1401
Using Execute to Process Arrays... 1401
Do It Yourself Data Merge.. 1403
On-The-Fly Subroutine Error Checking.. 1404

Catching Program Errors (Especially for Web and other Server Applications)............................ 1405
Program Formatting .. 1406

Notes To Yourself .. 1409
“Commenting Out” Statements... 1409

Suppressing Display of Text and Graphics... 1410
Updating the Display After (or Within) a NoShow Block.. 1410

ShowPage .. 1411
ShowLine.. 1411
ShowFields field,field,…,field ... 1411
ShowColumns field,field,…,field... 1412
ShowVariables var,var,…,var... 1412
ShowRecordCounter .. 1412
ShowOther field,code ... 1413

Disabling the Watch Cursor ... 1413
Hide and Show .. 1413

Debugging a Procedure .. 1414
The Panorama Interactive Debugger... 1417

The Debug Statement .. 1417
Using the Debugger ... 1417
Single Stepping .. 1418
Resuming Full Speed Execution .. 1420
Making Corrections to a Procedure.. 1420
Watching Computations ... 1420
Using the Inspector to Examine Fields, Variables and Formulas....................................... 1422
What Fields or Variables can be Displayed?.. 1425
Displaying Functions .. 1426

Procedure Debug Log.. 1427
The Procedure Log Window... 1427
Recording a New Log... 1428
Decoding Parameters and Assignment Statements... 1432
The LogMessage Statement .. 1433
The Log Menu .. 1434

Cross Referencing .. 1435
Building a Cross Reference Database... 1435

Updating a Cross Reference Database.. 1437
Looking Up References ... 1438

50 Ways to Trigger a Procedure ... 1442
The Action Menu... 1442

Action Menu Options ... 1442
Setting Different Menu Item Styles (Bold, Italic, etc.) ... 1443
Shortcuts/Command Key Equivalents.. 1443
Disabled Menu Items.. 1444
Separator Lines in a Menu ... 1444

Page 31

Renaming the Action Menu .. 1446
Dividing the Action Menu into Multiple Menus.. 1447
“Unlisted” Procedures... 1448

Custom Menus.. 1448
Custom Menu Overview .. 1448
Preparing a Resource File ... 1449

Creating a New Resource File ... 1450
Editing Within a Menu .. 1451
Command Key Equivalents/Shortcuts.. 1457
Adding and Removing Entire Menus.. 1458
Opening and Closing Resource Files... 1459
Saving Resource Files ... 1460

Opening a Resource File in Panorama.. 1460
Sharing A Resource File Between Databases ... 1461

Assigning Custom Menus to a Form.. 1461
The .CustomMenu Procedure.. 1464

Programming the .CustomMenu Procedure... 1464
The info("trigger") Function... 1465
Processing Custom Menus with Simple IF’s .. 1466
Processing Custom Menus with Nested IF’s.. 1467
Splitting the Trigger into Menu/Item Names ... 1467
Menus with Modifier Keys .. 1468

Submenus (Hierarchal Menus) .. 1468
Changing Custom Menus on the Fly ... 1471

Specifying Menus and Menu Items .. 1471
Menu Marks (Checkmarks, etc.) .. 1471
Checkmark On/Off Toggle.. 1472
Checking One Item in a Group... 1472
Groups with Other…... 1473
Disabling Menu Items... 1474
Changing Menu Text on the Fly ... 1475
Rebuilding Entire Menus .. 1476
Reassigning Menus in the Menu Bar ... 1477

Custom Menu Troubleshooting.. 1478
Buttons.. 1478
Hidden Triggers .. 1480

Creating Hidden Trigger Procedures... 1480
.About .. 1481
AutoGrow... 1481
.ClearRecord.. 1482
.CloseWindow.. 1482
.CurrentRecord .. 1483
.CustomMenu .. 1483
.DeleteRecord.. 1483
.DialogKeyDown .. 1483
.Help .. 1484
.Initialize... 1484
.KeyDown .. 1484
.ModifyRecord.. 1485
.NewRecord ... 1486
.OutOfBounds.. 1487
.ZoomFailed... 1488
Data Entry Triggers.. 1488

Page 32 Panorama Handbook

Data Entry Triggers (Part Two).. 1490
Hot Key Procedures... 1490

Universal HotKey Procedure .. 1491
Triggering a Procedure Every Second... 1491

Triggering a Procedure Every Minute... 1493
Event Handler Procedures... 1493

Text Editor SuperObject ..Handler Option.. 1494
Focus Procedure .. 1495
..OpenForm .. 1495
..ActivateForm .. 1495
..CustomAbout.. 1496

Programming Techniques..1497
Accessing Files ... 1497

Files and Folders ... 1497
Combined Folder Location and File Name... 1497
Folder ID’s and Paths... 1499

Locating a File with Standard Dialogs ... 1500
Customizing the Standard File Dialogs .. 1502

Customizing the Open File Dialog... 1502
Customizing the Save File Dialog ... 1503

Opening a Panorama Database .. 1504
Supressing the Default Extension .. 1504
Appending Databases End-to-End... 1504
Eliminating Duplicates in Appended Data .. 1505
Replacing the Data in a Database.. 1505

Saving a Panorama Database... 1505
Closing a Database ... 1506
Shutting Down Panorama.. 1506
Importing Text Files ... 1507

Carriage Returns in the Data.. 1507
Importing a Text File into an Existing Database... 1507
Importing from a Variable ... 1508
Importing HTML Tables.. 1508
Re-Arranging the Order of Imported Data .. 1508
Building the ImportUsing Formula on the Fly ... 1510

Exporting Text Files ... 1511
Exporting Line Items as Separate Records.. 1512
Analyzing Line Items .. 1513
Exporting Array Elements as Separate Records.. 1513

Opening a Document in Another Application... 1514
Smart Merge Synchronization ... 1515

How Smart Merge Synchronization Works... 1515
Adding Smart Merge to Your Database ... 1515
The Modified Field.. 1516
Adding New Records.. 1516
The Smart Merge Procedure.. 1517

Directly Reading and Writing Disk Files... 1519
What’s in a File?... 1519
Reading Data Files... 1520
Writing Data Files ... 1521
Using FileSave and ArrayBuild to Export Data... 1522
Reading and Writing Resource Forks .. 1525

Page 33

Erasing a File ... 1526
Changing a File’s Name ... 1526
Changing a File’s Type and Creator... 1526
Creating a New Folder ... 1526
Getting Information about a File ... 1528
Getting and Setting Additional File Information .. 1529
Building a List of Files or Folders ... 1530
Building a List of Disks (Volumes).. 1531

Working with Resources .. 1532
Opening and Closing Resource Files... 1534
Opening a Resource File in the .Initialization Procedure ... 1534
Reading a Resource... 1535
Reading STR and STR# Resources .. 1535
Writing a Resource... 1536
Deleting a Resource... 1537
Renumbering a Resource .. 1537
Listing Resources... 1537
Working with Multiple Resource Files .. 1539

Accessing the Windows Registry... 1540
Getting Information About Registry Items .. 1540
Modifying Registry Entries.. 1541
Deleting a Registry Entry.. 1542

Monitoring Memory Usage.. 1543
Changing the Scratch Memory Allocation.. 1543

Windows ... 1544
Opening a Window .. 1544
Specifying the New Window Location.. 1545

New Window Options ... 1547
Non Standard Window Styles... 1548
Changing a Window’s Position/Options ... 1549

Changing a Window’s View ... 1550
Changing the Name of a Window... 1550

Scrolling Inside a Form Window .. 1551
Closing a Window.. 1552

Trapping the Close Box.. 1552
Changing The Window Order (Who’s on Top?)... 1553
Temporary “Invisible” Windows ... 1554

Databases Without Windows ... 1554
“Magic” Windows ... 1555
Window Clones.. 1556

Designing A Clone Window Application ... 1557
Alerts... 1562

Supressing Alerts... 1565
Dialogs .. 1566

“Off the Shelf” Dialogs ... 1566
Custom Dialogs ... 1570

Using Custom Dialogs.. 1570
The Custom Dialog Wizard.. 1571

Installing the Dialog Wizard.. 1571
Preparing a Form for Use as a Dialog.. 1571
Customizing the Dialog Code... 1574
Options to the .dialog Procedure.. 1578
Editing Data with a Dialog .. 1580

Page 34 Panorama Handbook

Accessing and Modifying the Database Structure (Fields) ... 1583
Getting Information About Field Structure ... 1583
Modifying Field Structure Directly .. 1584
Working With the Design Sheet... 1585
Updating Database Structure From Another Database... 1586

Transferring Permanent Variables ... 1587
Verifying Database Identity .. 1587

Database Navigation and Editing.. 1588
Moving Up and Down in the Database .. 1588
Moving Left and Right.. 1591

Moving “Left” and “Right” on a Form .. 1592
Moving to an Empty Line Item Field ... 1594

Adding and Deleting Records.. 1595
Modifying the Database One Cell at a Time.. 1598

Accessing and Modifying the Current Cell ... 1598
Accessing and Modifying the Clipboard ... 1599
Triggering Automatic Calculations.. 1599
Triggering Automatic Procedures... 1600
The Set Statement ... 1600
The FormulaCalc Statement .. 1601
Opening the Input Box.. 1601

“Natural” Data Entry... 1603
Natural Data Display .. 1604
Natural Data Entry.. 1606

Validating a Credit Card Number... 1609
Sorting... 1610

Reducing Screen “Flashing” .. 1610
Making Sorts Even Faster ... 1610

Locating Information ... 1611
Finding Information .. 1611

A Handy Universal Find Procedure .. 1612
Find Next .. 1614

Selecting Information ... 1616
Handling Empty Selections .. 1617

Selecting Duplicates .. 1618
Summaries and Outlines... 1619

Summary/Outline Examples .. 1620
Calculating Grand Totals ... 1622
Running Total .. 1624
Running Difference.. 1624

Transforming Big Chunks of Data... 1625
Making Transformations Even Faster.. 1626
Numeric Calculations with FormulaFill... 1626

Suppressing Zero’s .. 1627
Fill vs. FormulaFill .. 1628

Using FormulaFill to Transform Text ... 1630
Date Calculations with Formula Fill ... 1632
The SEQ Function ... 1633
Filling Empty Cells ... 1634
Automatic Numbering .. 1636
Propagate and UnPropagate... 1637
Using UnPropagate to Eliminate Duplicates.. 1637
Change (Find and Replace)... 1637

Page 35

Changing with the Replace(Function .. 1640
Data Style and Color.. 1641

Accessing Style and Color in a Formula .. 1643
Processing/Transforming an Entire Array ... 1644

“Filtering” an Array ... 1644
Stripping Blank Elements From An Array .. 1645
Reversing the Order of an Array.. 1646
Using Regular Text Functions with Arrays... 1646
Sorting an Array... 1646
Removing Duplicate Items from an Array .. 1647
Building an Array from a Database.. 1647
Appending an Array to a Database.. 1648
Copying Between Multiple Variables and an Array.. 1649

Editing an Array using Separate Variables... 1651
Programming Graphic Objects on the Fly... 1652

Basics of Graphic Object Programming... 1652
Selecting an Object by Name .. 1652
Selecting Multiple Objects ... 1652
Getting Information About Individual Objects .. 1653
Modifying Selected Objects ... 1658
Getting Information About Selected Objects.. 1661
Object ID Values.. 1662
Redrawing an Object ... 1662
Dragging a Rectangle .. 1663
Movable Dividers ... 1667
Drag and Drop ... 1670

Program Control of SuperObjects™ ... 1678
The Active SuperObject... 1679
Accessing and Modifying a SuperObject’s Internal Data... 1681

Internal Data Types .. 1681
Text Editor SuperObject Commands... 1682

Text Editor Internal Data .. 1688
Text Display SuperObject Internal Data ... 1689

Word Processor SuperObject Commands... 1690
Word Processor Internal Data .. 1701

Super Flash Art Commands (Including Movie Control) ... 1702
Super Flash Art Internal Data... 1705

Converting Between Image Formats ... 1706
Building Web Like HyperText Systems with Super Flash Art .. 1708

Preparing Pictures with Extractable Text ... 1708
Programming a HyperText Engine ... 1710
Extracting All Text of a Specific Style... 1712
Creating Multi-Page Pictures.. 1713
Push Button Internal Data .. 1714
Flash Art Push Button Internal Data... 1715
Data Button SuperObject Internal Data.. 1715
Flash Art Data Button SuperObject Internal Data .. 1716
Sticky Push Button SuperObject Internal Data... 1717
Pop-Up Menu SuperObject Internal Data... 1718

List SuperObject™ Commands ... 1719
Using Drag and Drop to Change the Order of Items in a List... 1723
List SuperObject Internal Data ... 1724

Auto Grow SuperObject™ Commands (Elastic Forms)... 1725

Page 36 Panorama Handbook

Auto Grow SuperObject Internal Data.. 1725
Super Matrix SuperObject™ Commands .. 1726

Super Matrix SuperObject Internal Data .. 1727
Scroll Bar SuperObject™ Commands ... 1728

Printing.. 1729
Selecting a View for Printing.. 1729
Selecting a Printer ... 1729
Adjusting Page Setup .. 1729
Preparing Data For Printing ... 1729
Printing the Database .. 1729
Printing a Single Record .. 1730
Print Preview.. 1730
Printing Using an Alternate Form... 1731
Printing Data in an Array.. 1732
Form Comments .. 1733

The FormSelect Statement .. 1735
Reading and Modifying Form Comments in a Procedure .. 1736

Cross Platform Databases ...1737
File Type/Creator vs. Extensions .. 1737
Panorama Platform Converter .. 1738

Selecting a Folder.. 1738
Converting a Folder ... 1738
Converting Resources ... 1738
Reverse Conversion (PC to Macintosh) .. 1739
Converting from Panorama 3.x to 4.0 (Macintosh) .. 1739

Sharing Databases Across a Cross Platform Network ... 1739
Cross Platform vs. Older Versions of Panorama.. 1739

Cross Platform Font Usage... 1740
Cross Platform Programming.. 1740

File Name Extensions and the OpenFile Statement.. 1740
Name Extensions and Window Names ... 1741
Flash Art Formulas .. 1741
Using Partial Paths to Reference SubFolders ... 1741
Hard Coded Folder Locations.. 1742
Is It a Mac or a PC?... 1742

AppleScript...1743
Learning Basic AppleScript... 1743
AppleScript and Panorama... 1743
Everything You Really Need to Know… ... 1744

Value of Cell .. 1744
Executing Panorama Programs... 1745
Transferring Data Between AppleScript and a Panorama Program.. 1745
Working with Lists.. 1746
Launching a Script from Panorama ... 1746

AppleScript & Panorama… The Rest of the Story .. 1747
The Required Suite.. 1747
The Core Suite... 1748
The Objects ... 1749

Version 4.0.1... 1753
Automatic Guides when Nudging Graphic Objects.. 1753
Improved Enhanced Image Pack... 1754

Page 37

New Wizard Manager .. 1754
New Search All Fields Wizard ... 1755
New Mini Statistics Wizard .. 1756
Tiling and Stacking Windows... 1757
Personal Use License.. 1758
Setting Exact Window Dimensions.. 1758
Run Automatic Calculations Wizard .. 1758
Hiding Windows... 1759
More Complex Charts.. 1759
Alternate Key for Opening New Windows.. 1759
Using the Esc Key to Cancel Data Entry ... 1759
Using the Esc Key to Toggle Form Modes .. 1759
Using the Option/Alt Key to Zoom Out... 1759
Simulating Panorama Direct and Panorama Engine ... 1759
New Page Numbering for Panorama Reference ... 1759
Documentation Code Sample Corrections .. 1759
New KeyNow Statement Simulates Keystrokes Immediately.. 1759
New info("imagepack") function... 1760
Displaying Images and Icons from Resource Files.. 1760

Version 4.0.. 1761
Cross Platform Compatibility ... 1761
Performance Enhancements ... 1761
Converting from Panorama 3.x to 4.0 (Macintosh) .. 1761
Wizards.. 1762
Font Management across Multiple Computers and Platforms... 1763
Enhanced Image Pack... 1764
View Menu Moved to Menu Bar... 1764

View Wizard ... 1765
Using the View Menu with Custom Menus... 1765

Graphics Mode Keyboard Shortcuts.. 1765
Improved Procedure Editor.. 1765

Status Bar... 1766
Shifting a Block of Text Left or Right .. 1766

On-Line Programming Reference.. 1767
Improved Debugging Tools.. 1768

Displaying Values While Single Stepping... 1768
New Command Key Equivalents (Shortcuts) for Debugging.. 1768
Debug Log.. 1768

Hot Keys .. 1768
Triggering a Procedure Every Minute or Second... 1768
Credit Card Data Entry Validation.. 1769
Calculating Time Intervals Smaller Than One Second.. 1769
Elastic View-As-List Forms.. 1769
New QuickTime Features .. 1769
SuperObject Enhancements.. 1769

Text Display SuperObject... 1770
Flash Art SuperObject .. 1770
List SuperObject ... 1770
SuperMatrix SuperObject ... 1770

Form Preferences Dialog... 1770
Change Command Reports Changes.. 1770
Stop Cursor Flashing ... 1770
Destroy Variables At Any Time.. 1771

Page 38 Panorama Handbook

Improved Resource Editing Tools.. 1771
Opening Documents with Other Applications .. 1771
Windows Registry .. 1771
Memory Allocation on Windows PC Systems.. 1772
Autoload File Set ... 1772
Working with Files.. 1772
New Procedure Statements... 1772
Revised Procedure Statements ... 1773
New Functions ... 1773
Custom Dialog Wizard ... 1773
New Documentation .. 1774
Unsupported Panorama 3.1 Features ... 1775

Version 3.1.5... 1775
Mac OS 8.5 Bug Fix... 1775
Improved Butler/SQL Performance.. 1775
New FileTypeCreator Statement ... 1775

Version 3.1.4... 1775
Version 3.1.3... 1775

Special Keyboard Support ... 1775
Update Server Every Cell Option... 1776
MakeFolder Statement .. 1776
Minimum Window Size (Elastic Forms) ... 1776
AlertMode Statement ... 1776
Info("FreeMemory") Function... 1776
New Action Menus Security Option ... 1776
OS 8 Bug Fixes.. 1776

Version 3.1.2... 1776
Info("Abort") Function .. 1777
Long Window Names... 1777
SetPlugAndRun Statement.. 1777
Disabling Up/Down Arrows in a Form.. 1777
Window Management .. 1777

Version 3.1.1... 1777
Sleep Statement .. 1777

Version 3.1.. 1778
HTML Table Import.. 1778
HTML Tag Parsing Functions .. 1778
HTML/URL Conversion Functions ... 1778
Window Clones.. 1778
Dragging To/From a List .. 1778
Suppressing Display of Text and Graphics.. 1778
Unlisted Procedures .. 1779
Disabling Command-Period... 1779
Text Editor Padding and Grow Box Options.. 1779
Working With Complex Formulas .. 1779
ReplaceMultiple(Function ... 1779
ExportCell(Function .. 1779
OnError Statement... 1779
Customizing the About Panorama Menu Item... 1779
SuperObjectClose Statement .. 1779
Customizing the Open File Dialog and Save File Dialog... 1780
Loading/Saving Multiple Variables... 1780

Version 3.0.. 1781

Page 39

Client/Server .. 1781
SuperObjects™ ... 1781
Word Processing ... 1781
Graphics/Forms ... 1781
Elastic Forms... 1781
Reports .. 1781
Duplicates .. 1781
AppleScript .. 1781
Programming Language .. 1781
Development Tools.. 1783
Import/Export ... 1783
Security.. 1783

Version 2.1.. 1783
Version 2.0.. 1783
Version 1.0, 1.1 and 1.5.. 1783
General Corporate History .. 1783

PolyVUE .. 1783
SuperVUE and DataVUE... 1783
OverVUE.. 1784
Panorama .. 1784
Power Team .. 1784
SurfScout ... 1784
SiteWarrior... 1784

On-Line Resources ... 1785
Signing Up For Panorama News Via E-Mail.. 1786
Signing Up to Join Other Panorama Users On-Line (QNA List) .. 1787

QNA Digest Mode .. 1787
QNA Log Database .. 1788

Technical Support ... 1789
Telephone Support .. 1789
Fax and E-mail Support ... 1789
Getting the Most from Technical Support .. 1789

Panorama Conferences .. 1790
ProVUE 98 Conference ... 1791

Panorama Skills Track ... 1791
Advanced Track ... 1792
Programming Track.. 1792
Internet Track ... 1793
Cross Platform Track.. 1793

ProVUE 99 Conference ... 1794
Web Track .. 1794
Basic Skills Track ... 1795
Intermediate Skills Track .. 1795
Advanced Skills Track .. 1796

Publications... 1797
Panorama Real World Programming Guide .. 1797
Panorama Security Handbook... 1797
Panorama Partner/Server Handbook .. 1797

Consulting Services .. 1797

Page 40 Panorama Handbook

Welcome to Panorama!

Congratulations! You are about to get acquainted with Panorama, a powerful tool for organizing and under-
standing information. With Panorama you can store, retrieve, categorize, summarize, chart, merge and print
your information.

This book explains how to use Panorama. It assumes that you are already familiar with the basics of operat-
ing your computer. You should be familiar with pointing, clicking and dragging with the mouse, copying
files, choosing commands from pull down menus, using scroll bars and editing text. If you are not familiar
with these topics please review the training material that came with your computer.

What is a Database?

The right knowledge at the right time can advance a career, a company, a civilization. Obtaining the right
information at the right time is not often an easy task, especially when you are confronted with large
amounts of data. Data that is arranged randomly (for example a pile of receipts) won’t do you much good.
When a collection of data is organized it is called a database. A computer program for entering and manipu-
lating the information in a database is called a database program or a database management program.

records

fields

Page 42 Panorama Handbook

Every database— whether on paper or in a computer — is composed of records. A record contains a collec-
tion of information about a particular person, company or entity. For example, each record in a mailing list
database would contain the name and address of a particular person, while each record in an invoice data-
base would contain all of the information collected for a single order. To learn more about records see
“Records” on page 321.

Each record is divided into fields. A field contains a single piece of information about the subject of the
record, for example a name, a street address, a phone number, etc. Fields are what make a database more than
a hodgepodge of random information. Each field appears in the same place within every record in the data-
base. To learn more about fields see “Fields” on page 327.

A database program like Panorama helps you design, manage and use data that is structured into records
and fields. Before you begin you must tell the database program how you want the fields to be set up. As you
enter new data Panorama helps make sure that everything goes in the right place and the structure remains
intact. Once data is entered, Panorama can quickly scan the data to find the information you need, or catego-
rize and summarize the information you need for a report. Panorama can also re-organize the data (for exam-
ple, sorting) or even change the database field structure as your needs change — without having to start over
from scratch. Virtually any job that can be done manually with a filing cabinet, card file or paper list can be
done faster and more efficiently with a computerized database program like Panorama.

A Brief History of Database Technology

The need for data organization goes back long before computers. Before computers data was usually orga-
nized with paper forms and filing cabinets. Unfortunately, the information in a row of filing cabinets is hardly
at your fingertips — at best an item might be located in a minute or two, while at worst a misfiled item might
never be found at all.

In the 1960’s and 1970’s disk based database systems revolutionized the collection and storage of data.
Instead of storing the data in a filing cabinet it is stored on a spinning magnetic disk (hard drive). Depending
on how the information is filed an item can be located in as little as a second. Today’s popular database pro-
grams, including Access and FileMaker, are based on this hard drive technology that was originally devel-
oped 30 to 40 years ago.

Page 43

Storing information on a spinning disk is a fantastic improvement over filing cabinets, but it still relies on a
mechanical system. Although disk drives have become faster and faster over the years, the speed of rotation
and the movement of the head over the disk platter are still a bottleneck, just as feet, hands and fingers were
a bottleneck when accessing data in a filing cabinet. Fortunately, there is an alternative. Besides the hard
drive, your computer contains a large internal electronic memory bank (RAM) that allows the computer to
work with large quantities of information at pure electronic speeds. In the past this electronic memory was
too small for large databases, but today’s computers have enough RAM for all but the largest database tasks.

As you have probably guessed by now, Panorama is designed to leapfrog existing disk based database soft-
ware by using your computers electronic memory for ultra fast operation, making Panorama faster, easier to
use, and more powerful than any other database software previously available. Panorama uses the hard
drive only for permanent data storage. Searching, sorting, summarizing and other data processing tasks are
performed entirely in RAM.

What is Panorama?

In addition to its blazing RAM based speed, Panorama includes a number of unique capabilities that set it
apart from other database programs. Panorama is easy to learn and use, is blazingly fast, has powerful tools
for analyzing financial data, and is powerful enough for even the most demanding database jobs.

If you are just getting acquainted with Panorama, be sure to check out the guided tour movie included on the
CD. Just sit back and relax while we show you Panorama’s unique tools for organizing information. All of the
movies are recorded digitally and allow you to pause, back up, or skip ahead to the topics that most interest
you (see “Watching Movies” on page 106).

Page 44 Panorama Handbook

Wizards

Panorama’s Wizard menu contains pre-built databases for automating common tasks and enhancing produc-
tivity when using Panorama (see “Guide to Wizards & Demo Files” on page 109). General productivity wiz-
ards include databases for organizing your contacts, calendar, correspondence and tracking your time.
Panorama also includes wizards for importing and exporting data, arranging windows, locating favorite
files, creating new databases and much more.

Super Fast Searching and Sorting

Panorama’s RAM based speed makes searching and sorting faster and more flexible than ever before (see
“Sorting” on page 425 and “Searching and Selecting” on page 433). Searching is not limited to full word or
begins with matches — you can search for data that contains a word or phrase or even perform formula
based searches (for example “find all names longer than 12 characters” or “find all invoices where shipping is
more than 10% of the order total” (see “Formula Find/Select” on page 447).

Phonetic Searching

Panorama’s “sounds like” option allows you to search for data phonetically (see “The Find/Select Dialog” on
page 435). For example a search for “sounds like Alan” will turn up anyone named Alan, Allan, or Allen.

Page 45

Easy Set-Up

Simple step-by-step dialogs make it easy to define database fields (see “The Setup Menu” on page 328), print
mailing labels (see “Labels” on page 1177), and print custom reports (see “Custom Reports” on page 1067).

Page 46 Panorama Handbook

Crosstabs

Panorama’s crosstab feature allows it to quickly and automatically convert raw data into a tabular summary;
for instance turning raw checkbook data into a monthly budget. Crosstabs are one of the most powerful tools
yet for analyzing financial data (see “Crosstabs” on page 493).

Data Outlines

Panorama’s outlining feature is another powerful tool for analyzing financial data, and goes much further
than ordinary subtotal calculations (see “Summaries and Outlines” on page 453). You can hide and reveal dif-
ferent levels of subtotals, identify problems or opportunities and then zoom in on specific details. You can
also perform further operations or calculations on subtotals as if they were data.

Page 47

Data Entry Shortcuts

Panorama’s data entry shortcuts reduce keying errors and data entry errors (see “Data Entry & Editing” on
page 369). Panorama’s unique Clairvoyance® feature automatically finishes typing for you (see “Clairvoy-
ance®” on page 387). Auto-capitalization, data entry buttons, smart defaults, and optional spelling checker
and zip code lookup save even more time.

Smart Dates™

Panorama understands dates the way you do—as part of weeks, months, quarters, or years (see “Entering
Dates” on page 360). You can easily locate or summarize information by any of these date periods.

Smart Program Recorder

Panorama’s program recorder allows you to record multi-step operations and play them back later with a
single click or keystroke. It’s as easy to use as a cassette recorder—just start the recorder then do your work
(see “Creating a Procedure with the Recorder” on page 1353). The recorder doesn’t just record mouse clicks
and keystrokes as is, but automatically converts them into simple English-like commands that can be edited
later if necessary.

Formulas

Panorama can perform simple and complex calculations on numbers, text, and dates, and includes a wizard
to help you build and test formulas (see “Formulas” on page 1185).

Compact Storage

Panorama uses up to 85% less disk space than other database programs for the same data.

Page 48 Panorama Handbook

Charts

Panorama’s built in charts (bar, line, area, pie, and scatter) can visually reveal trends and relationships that
are often hidden in a conventional report (see “Charts” on page 1001).

Relational Links

Panorama can relate the information in two or more databases, insuring consistency and simplifying com-
plex tasks like order entry, billing, payroll, sales lead tracking, and more (see “Linking With Another Data-
base” on page 1289).

Page 49

Favorite Database Wizard

The Favorite Database Wizard makes it easy to keep all of your databases at your fingertips (see “The Favor-
ite Databases Wizard” on page 191).

Advanced Graphic Tools

Panorama’s graphic capabilities build on standard Macintosh drawing features and add special tools and
dialogs that are designed specifically for creating and modifying tables within forms and reports (see
“Graphic Design” on page 549).

Page 50 Panorama Handbook
Mail Merge and Labels

Panorama’s built-in mail merge can produce all the components of a direct mailing—including custom form
letters, mailing labels, and postcards or envelopes (see “Labels” on page 1177 and “Custom Reports” on
page 1067). Panorama includes a built-in word processing program, reducing both the complexity and time
required to put together a direct mailing (see “Word Processor SuperObject” on page 720).

Page 51
Database Publishing

Panorama can automatically create complex database reports including catalogs, directories, bibliographies,
and more. Reports can include both fixed and variable height elements (including images), and Panorama
can automatically control page and column breaks to eliminate widows and orphans (see “Custom Reports”
on page 1067).

Page 52 Panorama Handbook
View-As-List Forms

Panorama allows you to display forms as separate pages, or as a continuous sheet (see “View-As-List Forms”
on page 917).

Page 53
Elastic Forms

Elastic forms adjust intelligently when the window containing the form is resized or zoomed. When the form
is designed, you decide how the individual elements will expand or shift as the form changes size (see “Elas-
tic Forms” on page 940).

Page 54 Panorama Handbook
Matrix Display

Panorama matrix object makes it easy to create repeating grids including calendars, catalogs and invoices
(see “Super Matrix Objects” on page 958).

Page 55
Images and Movies

A Panorama form can display images and movies from a wide variety of sources (see “Images & Movies” on
page 797). An image may be fixed (for example a logo or background) or variable (changing from record to
record - for example personnel photos or maps associated with individual records). Variable images may be
included in the database or (more commonly) displayed directly from files on the disk. With the optional
enhanced image pack Panorama can display nearly two dozen different image formats, including JPEG, TIFF,
PNG, PCX and TARGA.

Page 56 Panorama Handbook
High Speed Import

Panorama can import data at rates approaching 1000 records per second. Importing data from mainframe or
minicomputer systems is fast and convenient (see “Importing a Text File” on page 223).

Flexible Text Export (including HTML)

Panorama can export text files in tab separated, comma separated or HTML table formats. When exporting
HTML you can choose fonts, colors, column widths and titles (see “Exporting a Text File” on page 245).

Page 57
Data Transformation

Panorama can quickly transform large amounts of data. Examples include re-arranging characters or words,
capitalizing, and transformations based on patterns in the data (see “Transforming Selected Data” on
page 509).

Select/Remove Duplicates

Scan even the largest databases for duplicate information with the Select Duplicates command (see “Select
Duplicates” on page 448). Duplicates can also be removed automatically based on rules set up in advance
(see “Using UnPropagate to Eliminate Duplicates” on page 528).

Client/Server

Panorama introduces a whole new dimension in client/server database management. Instead of a “dumb”
client that simply displays forms and allows data to be edited, our Partner/Server™ system combines the
best of Panorama’s incredibly fast single user RAM based database technology with an industry standard
SQL server for co-ordinating data sharing across multiple computers. (This feature requires an optional SQL
server, sold separately and currently available only for MacOS based networks). The Client/Server system is
documented in the separate Panorama Partner/Server Handbook, which is included with your optional SQL
server software.

before...

Page 58 Panorama Handbook
Complete Programming Language and Development Tools

If Panorama doesn’t have a feature already, you can add it yourself with Panorama’s built in programming
language (see “Writing a Procedure from Scratch” on page 1357). Panorama includes powerful programming
features like variables (both local and global), if-then-else, case switching, loops, subroutines and a built in
interactive debugger.

Page 59
Custom Menus, Buttons, and Dialogs

Panorama gives you the capability to create your own custom menus (see “The Action Menu” on page 1442
and “Custom Menus” on page 1448), buttons (see “Buttons & Widgets” on page 853) and dialogs (see “Dia-
logs” on page 1566), making professional quality custom applications possible.

Page 60 Panorama Handbook
Seamless Cross Platform Operation

Panorama databases are 100% compatible with both the Windows or MacOS platforms and may be trans-
ferred back and forth freely between the two platforms. You can even share databases on a single server
across a cross platform network.

Page 61
Getting Started With Panorama For First Time Users

If you haven’t done so already, start by installing Panorama on your system (see “Installation & Activation”
on page 85).

As a newcomer to Panorama we recommend that you start with the step-by-step tutorials that walk you
through the creation and use of four typical databases — a mailing list, a checkbook, an invoice and a price
list.

Page 62 Panorama Handbook
You can either watch a movie of these tutorials (see “Watching Movies” on page 106) and/or view them in
PDF format (see “Step-by-Step Tutorials” on page 1). We’ve also included finished versions of these data-
bases that you can use for learning and inspiration. As you build and use these databases you’ll acquire the
skills you’ll need to develop custom database applications for your own business, organization, school,
hobby or household.

As you become more involved with Panorama you may want to take advantage of some of the additional
resources available, including technical support (see “Technical Support” on page 1789) and various e-mail
discussion groups (see “On-Line Resources” on page 1785). You may even want to attend one of the periodic
conferences we hold here in Los Angeles (see “Panorama Conferences” on page 1790).

Upgrading to Panorama 4.0 From an Earlier Version

If you haven’t done so already, start by installing Panorama on your system (see “Installation & Activation”
on page 85). The activation/registration process is quite different from previous versions, so you may want to
read this material even though you’ve installed Panorama before. (By the way, you can leave your old ver-
sion of Panorama on your hard drive if you want to — you can even use both the old and new versions at the
same time (not with the same database at the same time, of course)!)

To help you quickly learn about what’s has changed since the version of Panorama you are familiar with we
have prepared a summary of the changes in each version (see “History of Panorama” on page 1753). The
summary has links to the actual topics within the body of the manual so that you can quickly focus on the
new material important to you. (You may want to review the entire manual anyway at some point, because
many topics have been rewritten and expanded to make them clearer than in previous manuals. For example,
the section on the Word Processor SuperObject has been expanded from 3 to 57 pages!)

Switching From Macintosh to Windows

Panorama has been designed to be extremely compatible between Macintosh and Windows PC systems.
Over 99.9% of all databases created on the Macintosh work perfectly on Windows systems without modifica-
tions. If you are transitioning from the Macintosh to a Windows or cross platform environment, we’ve pre-
pared a special supplement to help you. See “Cross Platform Databases” on page 1737 to learn more.

Page 63
Deploying Applications Built With Panorama

ProVUE has two options for affordable deployment of Panorama based applications — Panorama Direct and
Panorama Engine. Panorama Direct is designed to be used as a "run-time" engine that allows the economical
deployment of database applications created with the full version of Panorama. Panorama Direct prices start
at under $100 and is available in economical 3, 6, 12, 25 and 50 packs for as little as $30 per seat. The Pan-
orama Engine allows unlimited royalty free distribution of a Panorama database for a one time fee.

Panorama Direct

Panorama Direct is a limited, low cost version of Panorama that can run any database created with the full
version of Panorama. Database files can be exchanged back and forth between full Panorama and Panorama
Direct with no conversion. The Panorama Direct user can enter and modify data in the database, sort, select,
print and run procedures. The user can even make minor adjustments to forms and reports. However the
user will not be able to examine, create or modify procedures, create or modify SuperObjects within a form,
modify cross tab set up, set up or modify charts, etc. (If desired, the database creator can lock down any data-
base to prevent anyone from modifying forms, reports, procedures, etc., whether they are using Panorama
Direct or a full copy of Panorama.)

Panorama Direct is ideal for distributing pre-built databases either in-house or around the world. Many com-
panies save money by purchasing full copies of Panorama only for users that actually set up and design data-
bases, while purchasing Panorama Direct for data entry positions. Panorama Direct is fully compatible with
the Panorama SQL Server and may be used as a client with other copies of Panorama and/or Panorama
Direct. In addition, a growing number of third-party developers use Panorama Direct to distribute commer-
cial applications developed in Panorama. Panorama Direct makes it possible for developers to price their
products aggressively while retaining all the benefits of rapid application development with Panorama.

Panorama Engine

Panorama is normally sold on a "per-machine" basis. Once you have purchased a copy of Panorama or Pan-
orama Direct, you are free to use it on an unlimited basis on a single machine. On that single machine you can
create as many databases as you like, and change the design of any database any way you like at any time.

The Panorama Engine introduces a new way to purchase Panorama’s outstanding capabilities. Instead of
purchasing unlimited use of Panorama on a single machine, you can now purchase an unlimited "run-time"
distribution license for a single database (or collection of databases). Once you have purchased this unlimited
distribution license you can distribute as many copies of your database (or collection of databases) as you
like, without having to purchase Panorama or Panorama Direct for each machine. The one-time license fee is
very reasonable, and for shareware authors, almost zero!

The Panorama Engine Licensing Process

The first step in the licensing process is to create your database or collection of databases. Once this is com-
plete, contact ProVUE by phone or e-mail to purchase your unlimited distribution license. Once the license is
purchased, you will be instructed to send your files to:

license@provue.com

ProVUE will process your files to add the unlimited distribution license "tag" to each file. This tag enables the
database for unlimited royalty-free distribution. The modified files will be e-mailed back to you.

Distributing Your Databases

A database with the unlimited distribution license "tag" can run on any computer with the Panorama Engine
installed. The Panorama Engine is simply an ordinary copy of Panorama that has not been activated yet (see
“Using Panorama’s “Demo Mode”” on page 104). (Your database will also work with ordinary copies of Pan-
orama.) You can distribute the Panorama Engine yourself, or you can tell your users to download the Pan-
orama Engine from our web page.

Page 64 Panorama Handbook
Panorama Engine Restrictions

When used with a database with the unlimited distribution tag, the Panorama Engine can perform almost all
Panorama operations, including saving and printing. In other words, the Panorama Engine is not a demo -
you can build real working applications. There is absolutely no limit to database size (other than the amount
of RAM available) or limitations on data entry or saving data. However, there are some operations that are
not available when running databases with the Panorama Engine.

If a database does not have the unlimited distribution tag, it will not run in demo mode if the software is not
activated (see “Using Panorama’s “Demo Mode”” on page 104).

New Database Versions

The unlimited distribution license is for one version of your database only. You are allowed to make minor
"bug fix" changes to existing forms and reports (a full copy of Panorama is required to make these changes).
However, if you want to create a completely new version of your database with new features, you will need
to re-license the new version of the database for unlimited distribution. Performing any of the following
modifications to your database will invalidate the unlimited distribution license.

If you make any of these changes to a database, Panorama automatically invalidates the unlimited distribu-
tion tag.

License Fees (Commercial)

For commercial distribution, the license fee depends on the complexity of your database. The base fee is $250
(a database with data sheet only). Additional charges are added as you add forms and procedures.

To calculate the exact charges for any database, use the License Fee Calculator database included on the CD-
ROM (use the Favorite Databases Wizard to locate it). Here is an example of an actual license fee calculation.
(Note: ProVUE reserves the right to change the license fee schedule at any time.)

Cannot create new databases (either with Open dialog or Save As command)

Cannot add fields, remove fields, change field attributes, or make any other database structure changes

Cannot modify forms or open graphics mode

Cannot modify or look at procedures

Cannot connect to SQL server (Partner/Server databases require Panorama or Panorama Direct)

Cannot save an "untitled" database

Cannot import with Open dialog (can import using a pre-defined procedure)

Cannot export with Save as dialog (can export using a pre-defined procedure)

Cannot manually change Save As dialog options

Adding or removing fields

Adding or removing forms

Adding or removing procedures

Adding or removing crosstabs

Page 65
The calculation shown above is for a single database. If your application has multiple files, the total charge is
the sum of the charges for the individual databases.

License Fees (Shareware/Freeware)

For shareware/freeware distribution, the license fee is a flat $25 per database. To qualify as shareware/free-
ware your software must meet the following qualifications.

Panorama Engine vs. Panorama Direct

Panorama developers now have two ways to deploy a Panorama database: Panorama Direct or the Pan-
orama Engine. How do you decide which to use for your project?

If you are planning to distribute your database to hundreds (or thousands) of users, then the unlimited distri-
bution license with the Panorama Engine is the way to go. The Panorama Engine makes it possible to create
low cost mass-market applications using Panorama technology.

If you are planning to distribute your database to a small group of users, Panorama Direct is a better
approach. Panorama Direct is also more appropriate if you plan to change the design of your database fre-
quently, or if your application requires features not included in the Panorama Engine (SQL, graphics mode,
etc.).

You must supply a concise (100 words or less) description of your package.

You must supply complete documentation in an on-line format.

You must agree to allow ProVUE to distribute your shareware/freeware package and documentation via our
web site, bulletin board, CD-ROM's or any other method we find appropriate.

Page 66 Panorama Handbook

Tips for Using This Documentation

This online PDF manual was designed both to be used on screen with the Adobe Acrobat Reader and to be
printed. We’ve taken several steps to help make this manual more on screen friendly. First of all, we
expanded the page size and all fonts by 25% to make everything more readable. With only a couple of excep-
tions, all screen shot illustrations are included at 100% of their original size so all of the details are sharp and
clear at the same magnification used when reading the text. You won’t have to zoom in and out as you often
have to do when reading PDF documents, you can simply leave the magnification at 100% at all times. To
make navigation easier we’ve included an outline and we’ve also enabled Acrobat’s search feature.

Why So Many Pages?

Did you notice that this book has a LOT of pages? There’s really both more and less than meets the eye. The
primary reason why there are so many pages is because this book was designed primarily for on-screen use,
not for printing. When writing a printed book the author always has the final page count in mind. Each page
costs money! So as you write you are constantly thinking — do I really need a more detailed explanation
here? Can I eliminate some or all of these screen shots? Check out the Adobe Photoshop manual — this is a
very visual program and yet there is only one small screen shot every few pages. Keeping the number of
pages affordable (both for printing and shipping) often becomes more important than clarity or comprehen-
sion.

When we started this book we decided not to think that way. Extra pages in a PDF file are essentially free, so
we took full advantage of this new opportunity. There are literally thousands of screen shots, all full size for
maximum clarity. This probably doubles the page count compared to a typical printed manual. We also used
an extra large (14 point) font size for maximum readability, which also increases the page count. Every topic
is covered in depth, often with more than one approach discussed. We’ve included a 900 page reference and a
200 page tutorial. We think the end result is a better experience for you, the end user.

Printing This Book

You may decide that you want to print a portion of the documentation for further study. If you are using a
Macintosh you’ll need to use the Page Setup dialog to set the Scale option to 75%. If you are using a Windows
PC computer this is taken care of for you. Either way, the documentation is designed to be printed on stan-
dard 8 1/2 by 11 inch paper so that it can easily be bound in a standard three ring binder.

Training Movies

Don’t like to read? Join the club. You can get started with Panorama without reading at all! Just sit back and
watch the tutorial movies included on your Panorama CD-ROM (see “Watching Movies” on page 106). Of
course these movies don’t cover every Panorama feature, so you still probably need to do some reading at
some point if you want to get the maximum productivity from your Panorama investment. Nevertheless,
these movies can get you up and running quickly with the primary skills you need.

Page 68 Panorama Handbook
Typographical Conventions

Throughout this manual we’ve used different type styles to indicate special meanings within the text. This
table shows the different styles and their meanings.

Opening the Documentation

To open the documentation locate and double click on the file PanoramaHandbook.pdf.

You can also open the documentation directly from the Panorama Installer (the CD-ROM must be in the
drive).

Example Meaning Description

Page Setup Menu This style indicates the text is a menu command.

OK Button This style indicates the text is the name of a button, usually in a dialog.

Scale Option This style indicates the text is an option, usually in a dialog.

addrecord Code This style indicates the text is part of a program or formula

Company Literal This style indicates the text is a literal value. For example it might be a
field name, a typical data value or a number.

Return Keys This style indicates the text is the name of a key on the keyboard, for
example Return, Enter or Tab.

See “Cross Ref-
erence Links”

on page 72
Link This style indicates the text is a link to another section of the manual. You

can click on the link to jump to the cross referenced topic.

Wizard New Term

This style indicates that a new term is being introduced. If the new term is
a proper name (for example Formula Wizard) we will usually use this
style every time it is used, otherwise it is only used the first few times the
term is being introduced.

Page 69
When you first open the file the first page looks like this.

In the center of the page is a table that allows you to quickly jump to major sections of the documentation. For
example, if you want to start with the introduction to the manual click on Welcome to Panorama!

click here to jump to introduction

Page 70 Panorama Handbook
Finding a Topic

The Panorama Tutorial & Handbook includes several navigation aids to help you find material quickly. The
primary navigation aid is the outline on the left hand side of the window. This outline allows you to quickly
navigate to any spot in the documentation and also shows you the context of what you are viewing at any
time.

A triangle next to the topic name indicates that the topic has one or more subtopics.

outline

current location

these topics contain additional detail

Page 71
Click on the triangle to reveal the subtopics associated with any topic.

To move directly to any topic simply click on the topic name.

Page 72 Panorama Handbook
Cross Reference Links

Where appropriate, the documentation includes cross references to other sections of the manual that explain
material related to the current subject. These cross references look and act much like links in a web page. Just
like most web page links, these cross references appear in blue underlined text.

To jump to the cross reference page simply click on the underlined text, just as you would in a web browser.
(Unfortunately, Adobe Acrobat does not allow you to open the link in a new window. You can only view one
spot in the documentation at a time.) For example, if you click on the link Selecting Multiple Objects at
Once the page describing this selection technique will appear.

If you want to go back to the original spot you can either select the Go Back command from the View menu
or you can press the Go To Previous View icon in the tool bar.

cross reference links

Go To Previous View tool

Page 73
Using the Table of Contents

There are actually two different tables of contents in this manual (three if you count the outline on the left).
The first is the condensed version. This version contains only the highlights in a compact format.

Page 74 Panorama Handbook
To jump to any topic simply click on the topic’s name. All of the topics are links (even though they are not
underlined).

If you want to go back to the table of contents you can either select the Go Back command from the View
menu or you can press the Go To Previous View icon in the tool bar.

Go To Previous View tool

Page 75
After the condensed table of contents there is a full table of contents. This table of contents has a complete list
of every section in the entire manual. Just like the condensed version you can click on any topic to jump to
that topic.

Page 76 Panorama Handbook
Searching the Manual

To search for a word or phrase choose the Query command from the Search submenu in the Edit menu.

Another way to start a search is to click on the query icon in the tool bar.

Either way the Acrobat Search dialog appears.

Type in the word or phrase you want to search for.

query icon

Page 77
A dialog appears. If there is more than one file select Panorama Handbook and press the View button.

When you press the View button the view will instantly jump to the first page where the word or phrase
appears. The word or phrase will be highlighted.

Use the icons to locate additional matches, or go back to previous matches.

previous match
next match

Page 78 Panorama Handbook
Here is the next page that contains the word or phrase. Actually, this page contains two copies of the phrase,
and both of them are highlighted.

You can continue until you have located all of the occurrences of the word or phrase.

What About the Find Command?

In addition to the Query command Acrobat also has a Find command.

Page 79
Just as with the Query command, the Find command allows you to search for a word or phrase.

The Find command, however, has a major drawback — it’s very slow. Instead of finding the word or phrase
instantaneously the Find command can take a long time, as much as a minute. Because of this you’ll probably
want to stick with the Query command described in the previous section.

Display Options

Acrobat has many options for customizing the way a document is displayed. We’ll mention a couple of
options that we have found interesting. Most of these options are found in the General Preferences dialog.

Smooth Text & Images Option

One option you may want to adjust is Smooth Text & Images.

Page 80 Panorama Handbook
The table below shows what the text looks like with this option turned on and turned off. Personally we pre-
fer it turned off, but it’s your call.

Single Page vs. Continuous Option

Another option you may want to consider customizing is Single Page vs. Continuous.

You can also adjust this option by clicking on the icon at the bottom of the window.

Smooth Text & Images OFF Smooth Text & Images ON

Page 81
In the Single Page mode Acrobat will never show more than one page at a time. When the Continuous option
is set Acrobat will scroll the document continuously as if it was a long sheet instead of as separate pages. As
you can see in the illustration below this allows you to see the bottom of one page at the same time as the top
of the next page.

Page 82 Panorama Handbook
Magnification

The Panorama documentation is designed to be viewed at 100%, and automatically opens at that magnifica-
tion. All of the text and graphics are optimized for viewing at that magnification. If for some reason you want
to zoom in or out you can use the pop-up menu at the bottom of the window, or you can simply click and
type in the magnification you want.

click and type magnification here

Page 83
Thumbnails

Acrobat normally displays an outline of the manual on the left hand side of the window. By clicking on the
tab you can change this to a thumbnail view showing miniature pages. You can click on any section of a page
to view that section.

You can also adjust the width of the area reserved for outlines and thumbnails, as shown above. If the area
becomes wide enough then two or more columns of thumbnails will be displayed. Or if you want to com-
pletely hide this area, double click on the icon. Double click again to make it re-appear.

outline

thumbnails

currently visible area

drag this icon adjust width of outline/thumbnail area
double click icon to hide outline/thumbnail area

Page 84 Panorama Handbook

Installation & Activation

Congratulations on your purchase of Panorama for Windows or Power Macintosh. If you are new to Pan-
orama, welcome. If you have used a previous version of Panorama, the installation procedure has changed
significantly.

Getting Organized

Before you begin the installation, make sure you have all of the items you’ll need. Of course you’ll need the
installation CD-ROM. If you are installing the Panorama Engine, that is all you will need, and you can pro-
ceed to the first step.

If you are installing Panorama or Panorama Direct, you’ll need the serial number and product code. These
are printed on the paperwork that came with your order (if you purchased Panorama directly from ProVUE
Development you will also have received an e-mail with these codes). If you are installing Panorama on more
than one machine you’ll need a separate set of serial numbers and product codes for each machine.

You may have additional installation codes, for example for the enhanced image pack, spelling dictionary or
zip code lookup. You’ll need these codes to install these add-on products.

Installing the Software

The first step in the installation process is to insert the CD-ROM into your CD-ROM drive. On Windows
machines this should automatically launch the installer program. (If for any reason it doesn’t, you can manu-
ally launch the installer by choosing Run from the Start Menu, then typing D:\SETUP.EXE and pressing the
Return key [if your CD-ROM drive is not D: you should substitute the letter used by your CD-ROM drive].)

If you are installing on the Macintosh, double click on the Panorama Installer icon to open the installer.

Unlike some other installers, it is not necessary to disable system extensions before using the Panorama
installer.

Page 86 Panorama Handbook
The Main Installer Window

The main installer window not only allows you to install Panorama, but also allows you to view the Pan-
orama documentation and watch video training and demo movies before or after you install Panorama. In
fact, there is a movie showing how to install and activate the software, so you can skip the rest of this chapter
and go right to the movie if you want to! If you don’t have Adobe Acrobat 4.0 or Apple QuickTime 4.0
already installed on your computer you can click on the small icons to install them.

Installation Options

If you are ready to install Panorama press the Install Panorama icon (or anywhere in the first box). The bot-
tom half of the window switches to show the installation options.

Page 87
The checkboxes allow you to customize your Panorama installation. The options you choose will depend on
how you intend to use Panorama and how much free disk space you have available.

The file count and disk space requirements listed above, and may vary slightly depending on the platform
you are using (Windows or Macintosh) and from release to release. The installer will show you the exact fig-
ures as you make your selection.

Option File
Count

Disk
Space Description

Panorama 20 4.0 Mb

This is the minimum set of files necessary to run Pan-
orama. This is the only set you’ll need if you want to
run Panorama databases that have been created by
someone else.

Wizards 28 1.4 Mb

Wizards come in very handy both for general use and
for database development (see “Wizard & Demo File
Quick Reference” on page 110). The wizards appear in
a Wizard menu whenever Panorama is running, and
include a simple contact manager, calendar, corre-
spondence organizer, task timer, two calculators, text
import/export tools, a window organizer and more.

Zip + Spell 2 781 Kb

Install these two files if you want to be able to check
spelling (see “Using the Spelling Checker within a
Cell” on page 423) or look up zip codes (see “Zip Code
Lookup” on page 1301).

Tutorials 5 79 Kb
If you are planning to work through the tutorial les-
sons yourself you should install these files (see “Step-
by-Step Tutorials” on page 1).

Samples 730 20.1 Mb

This option installs over 70 sample databases that you
can use as-is or customize. Examples include invoices,
catalogs, calendars, and many of the examples used in
the Panorama documentation.

On-Line
Programming

Reference
671 6.0 MB

The On-Line Programming Reference contains a
description and examples for every Panorama state-
ment and function (see “Online Reference:” on
page 5000). This searchable reference is an invaluable
aid when developing Panorama programs.

Documentation
(PDF) 40 37.2 MB

This option installs the PDF documentation (that you
are reading now) on your hard drive. This allows you
to use the documentation even if the Panorama CD-
ROM is not mounted in your computer.

Page 88 Panorama Handbook
If you want to see an exact list of the files that will be installed press the View Detailed File List button.

If you want to see where a particular file will be installed just click on it.

The final location of the file will appear for about 3 seconds.

Page 89
Selecting the Installation Location

The installer normally places the software in a folder inside your Program Files folder (Windows) or Applica-
tions folder (Macintosh).

If you want to put this folder somewhere else, you can type in the folder location (even if the folder you
request doesn’t exist). If the folder you want to install into does exist, you can choose it with the Folder but-
ton.

You can either type in the folder location or select it with the mouse.

The installer normally places the Panorama application inside a Panorama folder inside a ProVUE Develop-
ment folder. For example, if you select an installation folder named Database Software, the installer will actu-
ally create a ProVUE Development folder inside the Database Software folder, with a Panorama folder inside
that folder

Default Program Location

Windows C:\Program Files\ProVUE Development\Panorama\

Macintosh (OS 8) <main hard drive>:Applications:ProVUE Development:Panorama:

Macintosh (OS 9, X) <main hard drive>:Applications (Mac OS 9):ProVUE Development:Panorama:

click here to choose installation location

click here to move up one level

folder you selected

subfolders created
automatically by installer

Panorama application

Page 90 Panorama Handbook
Replacing an Existing Copy of Panorama

If you are updating an existing copy of Panorama you should navigate directly to the folder that contains the
copy of Panorama you want to replace. When locate the correct folder a Panorama “cube” icon will appear.

When you select a folder that already contains a copy of Panorama the installer will install the new copy
directly into this folder. In this case it will not create new ProVUE Development and Panorama folders.

Installing the Software

Once the packages and location are selected you are ready to go. Just press the Install button and let the
installer do all the work. If you are installing packages that require authorization codes to install (zip code,
spelling dictionary) you will be prompted for those codes at this time. If you don’t have them handy you can
always go back and install them later.

When the install is finished the window will go back to the main install window.

“cube” icon indicates that this folder already contains a copy of Panorama

Page 91
At that point you can install other packages, read the manual, watch movies or simply Quit. If you Quit the
installer will ask you if you want to activate your software now (see “Activating the Software” on page 90).
You can also view a log to see what was installed where.

Activating the Software

At this point you have installed a demo version of Panorama on your computer. If you haven’t purchased
Panorama yet you can use this demo version to evaluate your potential Panorama purchase (see “Using Pan-
orama’s “Demo Mode”” on page 127).

If you have purchased Panorama or Panorama Direct you’ll want to activate your software as soon as possi-
ble. If you have access to the Internet you can do this in a few minutes at any time of the day or night. (If you
do not have access to the Internet you’ll need to do the activation process during ProVUE business hours.)

To activate the software you need to open the ProVUE Registration database. You can do this automatically
when the installer asks you, or at any time later by opening Panorama or Panorama Direct and choosing the
Registration command. You’ll find this command either in the Setup menu (when one or more databases is
open) or in the File menu (when no databases are open).

Page 92 Panorama Handbook
The first time you open the ProVUE Registration database it displays the window shown below.

Enter your serial number to start the activation process. The format of the serial number is a five digit num-
ber followed by a period and two or three additional characters, for example 12345.aBc. If you purchased
your software directly from ProVUE Development you should have received an e-mail containing the serial
number. If you purchased your software from a third party you should find the serial number somewhere in
the paperwork that was sent to you.

enter the serial number

Page 93
When you press the Submit button the window will briefly switch to a different view, then your web
browser will automatically open. (If your web browser does not automatically open see “What If Your Web
Browser Does Not Open Automatically?” on page 122.)

Page 94 Panorama Handbook
Before continuing, make sure that your computer is connected to the internet, then click No Typing Internet
Activation. (If you can’t connect to the internet on this computer see “Activating Using the Internet on
Another Computer” on page 95 or “Activating Via a Telephone Call” on page 104). After a short delay a web
page similar to this one will appear. (If you have activated this serial number before without deactivating it
an additional warning page will appear. Carefully read and follow the instructions on this page to get your
activation code.)

At this point the entire process can be completed with two keystrokes and two mouse clicks. Simply click in
the text box, press Command-A (Control-A on a PC), press Command-C (Control-C on a PC), then click to
switch back to Panorama. Panorama will do the rest for you.

Page 95
If you have any problems with the instructions above, let me break these steps down in detail. Start by click-
ing anywhere in the text box.

Choose the Select All command from the Edit menu.

click anywhere in the box

Page 96 Panorama Handbook
Choose the Copy command from the Edit menu. Then switch back to Panorama. Panorama will automati-
cally process the activation data.

That’s all there is to it! Your copy of Panorama is ready to use.

Activating Using the Internet on Another Computer

If the specific computer you are using does not have an internet connection it will take a few extra steps to
activate your software. (Note: If you don’t have access to any computer with an internet connection see “Acti-
vating Via a Telephone Call” on page 104. If you are installing a Personal Use License see “Activating a Per-
sonal Use License Without an Internet Connection” on page 111.) The first step is to open the ProVUE

Page 97
Registration database. You can do this automatically when the installer asks you, or at any time later by
opening Panorama or Panorama Direct and choosing the Registration command. You’ll find this command
either in the Setup menu (when one or more databases is open) or in the File menu (when no databases are
open).

The first time you open the ProVUE Registration database it displays the window shown below.

Page 98 Panorama Handbook
Enter your serial number to start the activation process. The format of the serial number is a five digit num-
ber followed by a period and two or three additional characters, for example 12345.aBc. If you purchased
your software directly from ProVUE Development you should have received an e-mail containing the serial
number. If you purchased your software from a third party you should find the serial number somewhere in
the paperwork that was sent to you.

When you press the Submit button the window will briefly switch to a different view, then your web
browser will automatically open. (If your web browser does not automatically open see “What If Your Web
Browser Does Not Open Automatically?” on page 122.)

enter the serial number

Page 99
Next click Internet Activation using another computer. The screen shown below will appear.

Follow the instructions on this window. Go to the computer that is connected to the internet, open the web
browser, and go to this web page

http://www.provue.com/activate.html.

print or write down this code

Page 100 Panorama Handbook
Now enter the Activation Request Code into this form.

Press the Submit Activation Request Code button. After a short delay, your activation code will appear. (If
you have activated this serial number before without deactivating it an additional warning page will appear.
Carefully read and follow the instructions on this page to get your activation code.)

type activation request code here

Page 101
Print out this page or write down the activation code. Now go back to the original computer (the one you are
installing Panorama on) and switch back to Panorama. You should see a window that looks like this.

To continue, press the No Web Access button.

Page 102 Panorama Handbook
If you are installing a Personal Use License see “Activating a Personal Use License Without an Internet Con-
nection” on page 111. Otherwise click on the Single Computer License button.

Page 103
This page repeats the instructions for getting an activation code. Since you have done that already, scroll
down to the box for entering the Activation Code, then type in the code.

type in the activation code you got from the
ProVUE web site

Page 104 Panorama Handbook
Once you have typed in the activation code, press the Submit button. Now you’ll be asked to enter the prod-
uct codes. These codes identify which options you have purchased, and usually start with the letters prvu.

Once you have entered each of the product codes press the Submit button.

Your copy of Panorama is ready to use!

enter the product codes in these boxes

the Product box will fill in automatically
when you press the TAB key

Page 105
Activating Via a Telephone Call

If you do not have an internet connection on any computer it will take a few extra steps to activate your soft-
ware, and you can only complete the process during the business hours of the vendor you purchased Pan-
orama from. (Note: If you are installing a Personal Use License see “Activating a Personal Use License
Without an Internet Connection” on page 111.) The first step is to open the ProVUE Registration database.
You can do this automatically when the installer asks you, or at any time later by opening Panorama or Pan-
orama Direct and choosing the Registration command. You’ll find this command either in the Setup menu
(when one or more databases is open) or in the File menu (when no databases are open).

Page 106 Panorama Handbook
The first time you open the ProVUE Registration database it displays the window shown below.

Enter your serial number to start the activation process. The format of the serial number is a five digit num-
ber followed by a period and two or three additional characters, for example 12345.aBc. If you purchased
your software directly from ProVUE Development you should have received an e-mail containing the serial
number. If you purchased your software from a third party you should find the serial number somewhere in
the paperwork that was sent to you.

enter the serial number

Page 107
When you press the Submit button the window will briefly switch to a different view, then your web
browser will automatically open. (If your web browser does not automatically open see “What If Your Web
Browser Does Not Open Automatically?” on page 122.)

Click Telephone Activation. The screen shown below will appear.

Now you are ready to place a phone call to the vendor you purchased Panorama from. They will ask you for
the Activation Request Code, then give you the corresponding Activation Code.

print or write down this code

Page 108 Panorama Handbook
Now go back to your computer (the one you are installing Panorama on) and switch back to Panorama. You
should see a window that looks like this.

To continue, press the No Web Access button.

Page 109
If you are installing a Personal Use License see “Activating a Personal Use License Without an Internet Con-
nection” on page 111. Otherwise click on the Single Computer License button.

Page 110 Panorama Handbook
This page repeats the instructions for getting an activation code. Since you have done that already, scroll
down to the box for entering the Activation Code, then type in the code.

type in the activation code you got from the
ProVUE web site

Page 111
Once you have typed in the activation code, press the Submit button. Now you’ll be asked to enter the prod-
uct codes. These codes identify which options you have purchased, and usually start with the letters prvu.

Once you have entered each of the product codes press the Submit button.

Your copy of Panorama is ready to use!

enter the product codes in these boxes

the Product box will fill in automatically
when you press the TAB key

Page 112 Panorama Handbook
Activating a Personal Use License Without an Internet Connection

Panorama is normally licensed for use on a single computer. (If a computer is replaced with a new computer
you can transfer the license to the new computer, see “Moving Your Software to Another Computer (Deacti-
vating Your Software)” on page 121.) A personal use license allows a single Panorama serial number to be
used by a single person on multiple computers. The terms of the personal use license require that all of the
computers be owned by the person purchasing the license, and that he or she will be the only person using
Panorama on these computers. A typical example would be a person that owns both a desktop and a laptop
computer. There is no limit to the number of computers covered under this license, as long as all of the com-
puters are owned by the licensor and the licensor is the only person using the software. The personal use
license is available only to individuals, and may not be purchased by an organization.

A Panorama Personal Use License must be purchased directly from our web site, www.provue.com. Before
you can purchase a personal use license you must already own a normal copy of Panorama. To purchase the
license you’ll need to supply your Panorama serial number, your name, e-mail address (must not be a free e-
mail account), your phone number and your credit card number and expiration date. After the personal
license order is processed we’ll e-mail you a personal license code.

If your computer has an internet connection, activating a personal license is just like any other activation (see
“Activating the Software” on page 90). If you don’t have an internet connection the process is a bit more
involved. The first step is to open the ProVUE Registration database. You can do this automatically when the
installer asks you, or at any time later by opening Panorama or Panorama Direct and choosing the Registra-
tion command. You’ll find this command either in the Setup menu (when one or more databases is open) or
in the File menu (when no databases are open).

Page 113
The first time you open the ProVUE Registration database it displays the window shown below.

Enter your serial number to start the activation process. The format of the serial number is a five digit num-
ber followed by a period and two or three additional characters, for example 12345.aBc. If you purchased
your software directly from ProVUE Development you should have received an e-mail containing the serial
number. If you purchased your software from a third party you should find the serial number somewhere in
the paperwork that was sent to you.

enter the serial number

Page 114 Panorama Handbook
When you press the Submit button the window will briefly switch to a different view, then your web
browser will automatically open. (If your web browser does not automatically open see “What If Your Web
Browser Does Not Open Automatically?” on page 122.)

Page 115
To install the personal use license you don’t need any of these options, so simply close this web browser win-
dow and go back to Panorama. You should see a window that looks like this.

To continue, press the No Web Access button.

Page 116 Panorama Handbook
Since you are installing a Personal Use License click on the Personal Use License button. This opens the per-
sonal use license page. Enter all of the information required on this form. It must be entered exactly the same
way it was entered when you purchased your personal use license.

Page 117
When the form is complete press the Submit button. Now you’ll be asked to enter the product codes. These
codes identify which options you have purchased, and usually start with the letters prvu.

Once you have entered each of the product codes press the Submit button.

Your copy of Panorama is ready to use!

enter the product codes in these boxes

the Product box will fill in automatically
when you press the TAB key

Page 118 Panorama Handbook
Using Panorama With a Personal Use License

When using Panorama with the personal use license the About Panorama dialog displays your personal use
license information. The illustration below simulates what the About Panorama dialog on your computer
will look like.

The personal license information is stored in a file named Panorama Personal License.dat. This file is stored
in the same folder as the Panorama application.

If you want to you can copy this file to your other personal computers, or back up this file. The information in
the file is encoded so that it cannot be read without the Panorama application. Of course you should be care-
ful not to give a copy of this file to anyone else.

Setting Up and Using a Personal Use Password

Once you install the personal use license you can optionally set up a password on your copy of Panorama. If
someone attempts to use Panorama without the password Panorama will behave as if it is not registered at
all, and the About Panorama dialog will not display the personal use license information.

Page 119
If you've already set up the personal license information, start by opening the ProVUE Registration database
again using the Registration command. You’ll find this command either in the Setup menu (when one or
more databases is open) or in the File menu (when no databases are open).

This opens a Product Activation Status window. If this copy of Panorama is currently activated with a per-
sonal use license the window will look something like this.

Page 120 Panorama Handbook
To set or change the password, press the Set/Change Password button. This opens the window shown below.

You'll have to type this password each time you open Panorama, so you'll probably want to keep it as short as
possible, and it will be easier if you stick to numbers and lower case letters, as shown in the example below.

After a short delay Panorama will confirm that your password is now installed.

When you press the OK button Panorama will switch back to the Product Activation Status window. There is
no indication in this window that a password has been set.

Page 121
To try out your new password first quit Panorama then re-open it. As Panorama opens it will stop and pause
when the introductory screen appears.

At this point you need to go ahead and type in the password. As soon as you press the last key of the pass-
word Panorama will continue normally. You do not need to press the Return or Enter keys, just the password
itself. Panorama will not display the keys as you type them, so just keep typing until the password is com-
plete.

If you type an incorrect key, click on the mouse or wait more than six seconds without pressing a key Pan-
orama will beep and then continue. However, in this case Panorama will behave as if it has not been acti-
vated. If you attempt to save or print a database with more than 250 records Panorama will "nag" you to
purchase and activate the program (see “Using Panorama’s “Demo Mode”” on page 127), and the personal
license information will not appear in the About dialog. This allows you to prevent someone else from seeing
your personal license information, and also prevents them from using Panorama. If you make a mistake as
you type in the password you'll need to quit Panorama and re-open it to try again.

What To Do If You Forget Your Password

If you forget your password simply delete the Panorama Personal License.dat file and re-activate the soft-
ware from scratch (following the instructions above, see “Activating a Personal Use License Without an Inter-
net Connection” on page 111).

Page 122 Panorama Handbook
What If Your Web Browser Does Not Open Automatically?

When you submit your serial number your systems default web browser should open automatically. In rare
cases this may not work - for example, your system may not have a web browser or it may not be configured
properly. In these cases you can still open your web browser manually. If your web browser doesn’t open
automatically you will see the screen display shown below.

To open the web browser manually, click the Web Browser Did Not Open button.

Page 123
The first step to take is to manually open the web browser you normally use.

Once the web browser is open, switch back to Panorama and press the Display Web Activation Page button.

Page 124 Panorama Handbook
When you press this button the Web Activation page should appear in the web browser.

Page 125
If this page appears in the browser you are ready to continue with the activation process as described earlier
in this chapter. If it doesn’t appear, switch back to Panorama, then click on and copy the URL shown near the
bottom of the page.

Now go back to your web browser and paste the URL into the browser’s address line.

Now press the Return or Enter key to display the page. You can now continue the normal activation process.

paste URL into address line

Page 126 Panorama Handbook

Moving Your Software to Another Computer (Deactivating Your Software)

Unless you are using a personal use license, your ProVUE software may only be activated on one computer at
a time. If you want to transfer this software to a different computer, you must first de-activate the software on
the current computer. Then you can transfer the software to the second computer and activate it. To start the
deactivation process open Panorama and open the ProVUE Registration database the ProVUE Registration
database again using the Registration command. You’ll find this command either in the Setup menu (when
one or more databases is open) or in the File menu (when no databases are open).

Page 127
This opens a Product Activation Status window that will look something like this.

Page 128 Panorama Handbook
Scroll down to the bottom of this window.

Page 129
To deactivate Panorama on this computer press the De-Activate Software button. Before actually deactivat-
ing the software Panorama displays a warning page. You can still back out by scrolling down and pressing
the Cancel button (not visible in the image below).

To go ahead and deactivate, press the Deactivate Now button. Panorama gives you one last chance to back
out.

Page 130 Panorama Handbook
To proceed, press the Yes button. Your web browser will open automatically and this page will appear.

If your computer is connected to the Internet click the No Typing Internet Deactivation button.

Page 131
Now switch back to Panorama and Quit.

Page 132 Panorama Handbook
If you don’t have internet access on this computer but do on another you can submit the deactivation code to
the ProVUE web site manually. Click on Internet Deactivation from Another Computer and follow the
instructions.

If you don’t have internet access on any computer you can submit the deactivation code by telephone. Click
on Telephone Deactivation from and follow the instructions.

Now that the software is de-activated on your old computer you can go ahead and activate it on your new
computer. De-activating does not remove the software from the hard drive of your old computer. Even after
the software is de-activated, you can still run the software in demo mode (see “Using Panorama’s “Demo
Mode”” on page 127).

Page 133
Using Panorama’s “Demo Mode”

Before you purchase and activate Panorama (see “Activating the Software” on page 90) you can use the soft-
ware in “demo mode.” This mode allows you to evaluate Panorama before you purchase it. In this mode you
can create and use databases with up to 250 records.

If you attempt to save or print a database with more than 250 records the following dialog will appear.

Page 134 Panorama Handbook
Before you can actually save or print the database you must click on each of the blue bold characters.
Depending on the size of the database there will be at least three and as many as 14 of these characters.

Once you have clicked on all of the blue bold characters you can press the Continue button to continue with
your work.

Page 135
Watching Movies

You can watch movies either before or after you install Panorama.

Click the movie icon to see a list of movies on the CD-ROM. (QuickTime 4.0 is required to watch the movies.
An installer is included on the CD if you don’t already have it.) The list of available movies displays the
name, running time and a short description of each movie.

Page 136 Panorama Handbook
Click on the movie you want to watch. The beginning of the movie will appear, along with a window with a
list of topics within the window.

Page 137
Use the control panel at the bottom of the movie window to control the movie.

The Movie Bookmarks window displays a table of contents for the movie. It shows where you are within the
movie and allows you to jump directly to any topic within the movie.

When you are done watching a movie you can either close the movie window or press the Back to Movie
Directory button (the Bookmarks window will automatically close in either case).

You can now select a different movie or go back to the main installer movie. As long as the installer is open
Panorama will remember your spot within each movie you have watched. If you go back to a movie you
have opened previously the remove will resume from the spot where you left off.

press to start/pause the movie

current location within movie (can be dragged into a new spot)

step forward/back a few frames
adjust audio volume

ccurrent topic

running time within movie

click on any topic to jump to it

click here when finished watching the movie

Page 138 Panorama Handbook

Guide to Wizards & Demo Files

Panorama includes a number of pre-built databases that you can use as is, modify for your own purposes, or
simply use as learning tools. With only a few exceptions these pre-built databases are completely accessible
so that you can not only use them as is but also take them apart and see how they work. All of these data-
bases can be opened with the Wizards menu, which is just to the left of the Help menu.

Some wizards can also be opened directly from the desktop using either the Start Menu (Windows) or the
Apple Menu (Macintosh).

Page 110 Panorama Handbook
Wizard & Demo File Quick Reference

The wizards and demo files provided with Panorama fall into several categories.

Category Wizard Page Description

Manager Wizard Manager Page 111 Organize and Launch Wizards

General
Productivity

Mini Contacts Page 115 Basic name & address database

Mini Calendar Page 119 Basic calendar/event database

Mini Calculator Page 121 Basic math calculator

Mini Correspondence Page 122 Basic correspondence/mail merge database

Mini Statistics Page 123 Calculate mean, standard deviation, plot distribution.

Stopwatch Page 123 Simple timer

Task Timer Page 124 Keep track of time spent on different tasks

Database
Operation

Arrange Windows Page 128 Tile and stack windows

New Database Wizard Page 129 Helps to design and create new databases

Favorite Databases Wizard Page 129 Helps to keep track of your frequently used databases

Run Automatic Calculations Page 130 Recalculate based on design sheet formulas

Search All Fields Page 130 Search entire database (not one field at a time)

Summaries & Outline Page 132 Categorize and subtotal database information

Text Export Page 132 Export data into text files

Text Import Page 133 Import data from text files

Programming &
Development

ASCII Chart Page 134 Table of ASCII characters

Custom Menu Editor Page 135 Edit custom menu resource files

Debug Log Page 136 Trace internal operation of a program

Font Usage Page 136 Display list of fonts used in forms.

Form Explorer Page 137 Display/edit information about form objects

Formula Wizard Page 137 Workbench for experimenting with formulas

Panorama Handbook Page 137 Opens Panorma Handbook PDF Document

Panorama Movies Page 138 Watch Panorama Training Movies

Platform Converter Page 141 Convert between versions and platforms

Programmer’s Reference Page 142 Searchable reference to all statements and functions

RPN Programmers Calculator Page 143 Calculator for decimal, hex, octal and binary

View Wizard Page 143 Open form and procedure windows

Window Size Page 144 Display size of window

Window Tweak Page 144 Disable window tool palettes and scroll bars

Page 111
Wizard Manager

The first entry in the Wizard menu is the Wizard Manager. This is a special wizard that allows you to orga-
nize all of the other wizards. When you open this wizard a new window appears that lists all of the wizards
available on your system.

Page 112 Panorama Handbook
The left hand column of this window contains a checkmark than can be turned on or off by clicking on it.
Only checked wizards appear in the Wizard menu. In this example only 8 wizards are currently enabled
(note: you cannot disable the Wizard Manager itself).

In addition to enabling and disabling individual wizards you can also enable or disable all wizards at once
with the Select menu.

Choose All to enable all wizards, or None to disable all wizards (except for the Wizard Manager).

The Wizards menu inside the window simply displays another copy of the Wizards menu. You can use this
exactly as you would the regular Wizards menu.

Page 113
Using Disabled Wizards

When a wizard is disabled it cannot be opened from the Wizard menu. There are two ways to open a dis-
abled wizard. One method is simply to enable it, then choose it from the Wizard menu. The second method is
to double click on the disabled wizard in the Wizard Manager. This will open the wizard immediately with-
out enabling it.

double click to open disabled wizard

Page 114 Panorama Handbook
Wizard Sets

The Wizard Manager allows you to save “sets” of wizards that you use together frequently. To create a set,
start by enabling the wizards you want to include in the set, disabling all of the other wizards. Then choose
New Set from the Sets menu.

Panorama will ask you for the name of your new set.

When you press OK your new set is added to the Sets menu (in alphabetical order). To select a set simply
choose it from this menu. Panorama will automatically enable all of the wizards included in the set, while
disabling all others.

To change the contents of a set, start by selecting the set, then enable or disable wizards. When you’ve got the
new configuration set up, choose Update "<setname>" from the menu. To rename a set, choose Rename and
then type in the new name for the set. To delete a set, first select it and then choose Delete.

Page 115
General Productivity Wizards

The databases in this category provide basic tools for organizing personal information. Compared to many
personal information managers (PIMs) that are available these tools are very basic. However, these databases
do illustrate how to create such tools in Panorama, and also have the advantage that you can adapt and cus-
tomize them exactly to your own needs.

Mini Contacts Wizard

The Mini Contacts wizard is a very simple database for storing names, addresses and phone numbers.

To edit any item simply click or drag on the item and begin editing. (The Mini Contacts database uses Text
Editor SuperObjects for editing instead of data cells, so there is no expandable input window. See “Types of
Data Editing Objects” on page 682 for more information). Press the Enter or Tab keys when you are finished
editing an item.

Page 116 Panorama Handbook
To add a new record use the Add New Record tool or the Add New Record command in the Edit menu.

To search for text anywhere within in the database choose the Find command from the Search menu. The
database will ask you what you want to search for.

When you press the OK button Panorama will search all of the fields in the database for the word or phrase
that has been typed in. (To learn how this search was set up see “A Handy Universal Find Procedure” on
page 1612). In this case a record has been found that contains birmingham in the City field.

To find additional occurences of the word or phrase use the Find Next command. You may continue to use
this command until you have located every occurence of the word or phrase in the database.

Page 117
The Mini Contacts form is elastic and can be expanded up to the full screen size. See “Elastic Forms” on
page 940 to learn how to create an elastic form.

Page 118 Panorama Handbook
To open the data sheet use the View menu (see “Switching Between Views” on page 302). If you want the
data sheet to open in its own separate window hold down the Control key (Macintosh) or Alt key (Windows)
while you select from the menu (see “Opening More Than One Window Per Database” on page 303).

You may notice that in the data sheet the name is split up into five separate fields, while in the form the name
appears to be a single field. The database has been set up to make this conversion automatically. When you
enter a name into the form Panorama automatically splits it up into five separate components (Prefix, First,
Middle, Last and Suffix) and when a name is displayed in the form these components are automatically com-
bined together. To learn how this was set up see “Natural Data Entry” on page 1606 and “Natural Data Dis-
play” on page 1604.

Page 119
Mini Calendar Wizard

The Mini Calendar wizard is a very simple database for keeping track of dates and events.

If a day has a black triangle in the upper left hand corner then there is a note attached to that day. Click on the
day to see and/or edit the note.

To add a new note simply click on the day, then click in the note area and begin typing. Press the Enter key
when you are done.

Page 120 Panorama Handbook
To search for a particular item press the Find button or choose Find from the Search menu.

Press OK to locate the word or phrase. Panorama will search the database in date order.

If you think that there might be additional occurences of this word or phrase you can press the Next button or
choose Find Next from the Search menu.

If you’d like to see the data sheet for this database you can use the View menu or you can simply press the
Data Sheet button.

You can use the data sheet to add, edit or delete calendar entries.

Page 121
Mini Calculator Wizard

The Mini Calculator wizard performs basic math calculations. You can enter calculations with either the but-
tons on the form or with keyboard (or both).

As you press each button or key the calculator immediately shows the new result.

You can click on the formula to edit it.

The wizard recalculates the newly edited formula immediately. In this case the new answer is 54.

Page 122 Panorama Handbook
You can use the Format menu to choose the format used to display the calculation result.

The 4 Digits format displays four digits after the decimal point.

You can type in any numeric function supported by Panorama. This example calculates the square root of 54.

To learn more about the numeric functions supported by Panorama see “Arithmetic Formulas” on page 1228.

Mini Correspondence Wizard

The Mini Correspondence database may be used for general correspondence (letters, memos, etc.) and to
create mail merge letters that are customized and sent to a group of recipients. The wizard can be linked to
any database that contains names and addresses to make it easy to create individual or mail-merge letters.

To learn more about this wizard see “Using the Mini Correspondence Wizard” on page 776.

Page 123
Mini Statistics Wizard

The Mini Statistics wizard can calculate the mean (average), median, and standard deviation of a data set. In
addition the wizard can plot a normalized chart showing how the data is distributed around the mean. You
can easily see how this distribution compares with the standard gaussian distribution (the famous bell
shaped curve). Here is an example of an analysis performed by this wizard.

To lean more about this wizard see “The Mini Statistics Wizard” on page 489.

Stopwatch Wizard

The Stopwatch wizard is a simple timer.

Press the Start button to start or re-start the timer. Press the Stop button to stop the timer. Press the Reset but-
ton to reset the timer to 0:00:00.

Page 124 Panorama Handbook
If you need more than one timer you can make a copy of the Stopwatch database file. To make the copy Quit
from Panorama, open the Wizard folder and make one or more copies of the Stopwatch database. When you
re-open Panorama you can start and stop each timer separately.

When a stopwatch is running the display will usually update once every second as long as Panorama is run-
ning and is the frontmost application. However, the display will not update when you are actually editing
text. It also will not update when the you are editing a form or a procedure.

Task Timer Wizard

The Task Timer wizard allows you to keep track of the time you spend at different tasks. You can set up a list
of tasks to track.

When you start a task that you want to time click anywhere on the line for that time. An animated clock will
appear to indicate that you are timing this task.

Page 125
When you are done with the task you can click the line again or click the Stop Timer button at the bottom of
the window. If you are starting a new task you can simply click on the new task to switch the timer. You can
also type notes in the top section of the window. These notes will be included in the time log.

You can close the Task Timer or even quit from Panorama without affecting the timer. When you re-open the
timer you will see that it has continued to keep track of the time of the last task started (if any). The task time
updates when the Task Timer is in front, but not when any other window is in front. The time will update
when you bring the Task Timer window forward.

Click the Time Log button to view a log of the activities you have timed.

Double click to edit the Notes for a time log entry. You can expand the Input Box to show as much text as you
want (see “Expanding the Input Box” on page 377).

Page 126 Panorama Handbook
Use the Crosstabs menu to open a crosstab that summarizes the time log data by day, week, or month.

To edit the list of tasks click on the Edit Task List button. You can type in any tasks you want, in any order.
It’s ok to remove a task that you have been timing — this does not affect any tasks you have already logged.
When you’ve made all of the changes to the task list click the Task Palette button to switch back to the main
timer window.

Page 127
The Task Timer can display the cumulative time for each task for the current day, week, or month. Use the
pop-up menu to select the period you want to use. The display will immediately update to reflect your
choice.

Page 128 Panorama Handbook
Database Operations Wizards

The databases in this category provide tools to make working with Panorama databases easier. You don’t
need to use these wizards, but they can make some common database tasks easier.

Arrange Windows Wizard

The Arrange Windows wizard allows you to arrange all of the open Panorama windows into a regular pat-
tern, either side by side (tiled) or piled on top of each other with a slight offset. This illustration shows an
example of window tiling.

Here is an example of window stacking.

To learn more about this wizard see “Arranging All Open Windows at Once (Tiling and Stacking)” on
page 289.

Page 129
New Database Wizard

The New Database Wizard makes it easy to design and set up the fields for a new database. You simply enter
the names of the fields you want to create and press the Make New Database button. The wizard does the
rest.

To learn more about creating databases with this wizard see “Using the New Database Wizard” on page 203.

Favorite Databases Wizard

The Favorite Databases wizard provides an easy way to organize and keep track of your most frequently
used databases.

See “The Favorite Databases Wizard” on page 191 to learn more about using this wizard.

double click to
open database

Page 130 Panorama Handbook
Run Automatic Calculations Wizard

When you set up an automatic calculation that calculation is automatically applied when new data is entered
or existing data is modified. The calculation is not applied to any existing data. One way to apply a calcula-
tion to existing data is to use the Formula Fill command in the Math menu (see “Filling a Field with a For-
mula” on page 511). Another method is to use the Run Automatic Calculations wizard. This wizard will
perform calculations based on the formulas you have entered into the design sheet (see “Automatic Calcula-
tions” on page 406). You can recalculate all fields with formulas, or just the current field.

To learn more about this wizard see “The Run Automatic Calculations Wizard” on page 418.

Search All Fields Wizard

The Search All Fields wizard makes it easy to search all of the fields in a database at once instead of one field
at a time. Simply enter the word or phrase you want to locate and press either the Find or Select button.

Page 131
The wizard will locate the word or phrase no matter what field it is located in. If you use the Find button you
can jump through the database with the Next button to locate every occurrence of the word or phrase (in this
case Green).

For more information on this wizard see “The Search All Fields Wizard” on page 444.

Page 132 Panorama Handbook
Summaries & Outline Wizard

The Summaries & Outline Wizard automates the process of calculating summaries (see “3-Step Summariz-
ing” on page 453). You can use this wizard to rapidly take pages and pages of information and distill them
down into concise, useful summaries.

To learn more about this wizard see “The Summaries & Outlines Wizard” on page 483.

Text Export Wizard

The Text Export Wizard allows you to export any database as a text file. Usually you’ll do this when you
want to transfer information to another application. The wizard allows you to specify the order of the fields
being exported, and to manipulate the data as it is being exported (converting it to upper case, for example,
or combining several database fields into one export field). The wizard can even be used to convert the data-
base into an HTML table so that it can be published on the web (see “Exporting HTML Tables” on page 259).

To learn more about this wizard see “Exporting with the Text Export Wizard” on page 248.

Page 133
Text Import Wizard

The Text Import Wizard allows you to import almost any text file into a database. You’ll use this wizard to
help transfer data from other applications (Access, FileMaker, etc.) into Panorama. The data can be imported
even if the arrangement of fields in the text file is completely different than the arrangement of fields in the
database itself.

x

To learn more about importing data with this wizard see “Using the Text Import Wizard” on page 234.

Page 134 Panorama Handbook
Programming and Database Development Wizards

The databases in this category provide tools to help with developing complex Panorama applications.

ASCII Chart

The ASCII Chart wizard allows you to displays a matrix showing all 256 ASCII characters. When you click
on a character it types that character into the box at the bottom.

To learn more about this wizard see “The ASCII Chart Wizard” on page 1253.

Page 135
Custom Menu Editor

Custom menus allow you to completely or partially override Panorama’s standard menus (see “Custom
Menus” on page 1448). They also allow you to create submenus, attach icons, checkmarks, and other graphics
to a menu, and to change menus on the fly. To create custom menus you’ll need to create menu resources in a
resource file. One way to do this is with Panorama’s Custom Menu Editor, a database that is installed along
with Panorama.

To learn more about this wizard see “Preparing a Resource File” on page 1449.

Page 136 Panorama Handbook
Debug Log

The procedure debug log was originally developed as an “in house” tool to help debug Panorama itself. It
has proved so useful that we have decided to document and make it available for general use. When the
debug log is in use Panorama records procedure activity in a text file. Later you can review the text file to
trace the actions of your procedure.

To learn more about tracing procedures with this wizard see “Procedure Debug Log” on page 1427.

Font Usage

This wizard displays a list of all fonts used in a database’s forms. All fonts will be listed except for Geneva,
Chicago, New York and Monaco (Macintosh) or Alpine, City, Yankee and Block (Windows).

See “Font” on page 581 to learn how to select the fonts used in a form.

Page 137
Form Explorer

The Form Explorer wizard is an alternative tool for examining and (to some extent) modifying forms. The
wizard displays a list of objects in a form, and displays the attributes for an object when you click on it. It’s a
great tool for exploring a form you are not familiar with to find out things like “what procedure is triggered
by that button” or “what variable is being edited in that box”?

To learn more about this wizard see “Using the Form Explorer Wizard” on page 634.

Formula Wizard

The Formula Wizard can be used as a workbench for working with formulas. You can experiment with for-
mulas here before you actually use them in your database. The formula wizard can handle formulas that use
numeric, text and date calculations (the illustration below shows a text calculation).

To get the complete scoop on this very useful wizard see “Using the Formula Wizard” on page 1195.

Panorama Handbook

This wizard launches Adobe Acrobat and opens the Panorama Handbook (what you are reading right now!).
If you installed the documentation on your hard drive (see “Installation Options” on page 86) the wizard will
open the Handbook directly from the hard drive. If the documentation is not installed it will open the Hand-
book from the CD. If the documentation is not installed and the CD is not in the drive an alert will appear
and Adobe Acrobat will not launch.

Page 138 Panorama Handbook
Panorama Movies

The Panorama Movies wizard allows you to view the QuickTime training movies included on the Panorama
CD. You can also watch these movies using the standard QuickTime MoviePlayer, but if you use the Pan-
orama Movies wizard you will be able to jump directly to any topic.

Page 139
When you open the wizard a list of the available movies will appear. (If the CD is not in the drive an alert will
appear, and the wizard will shut down.)

Click on the movie you want to watch. The beginning of the movie will appear, along with a window with a
list of topics within the window. Use the control panel at the bottom of the movie window to control the
movie.

press to start/pause the movie

current location within movie (can be dragged into a new spot)

step forward/back a few frames
adjust audio volume

Page 140 Panorama Handbook
The Movie Bookmarks window displays a table of contents for the movie. It shows where you are within the
movie and allows you to jump directly to any topic within the movie.

When you are done watching a movie you can either close the movie window or press the Back to Movie
Directory button (the Bookmarks window will automatically close in either case).

You can now select a different movie or go back to the main installer movie. As long as the wizard is open
Panorama will remember your spot within each movie you have watched. If you go back to a movie you
have opened previously the remove will resume from the spot where you left off.

ccurrent topic

running time within movie

click on any topic to jump to it

click here when finished watching the movie

Page 141
Platform Converter

The Platform Converter converts databases between platforms and versions. It doesn’t actually modify the
contents of files, but it does control how databases interact with the operating system. You can use the plat-
form converter to convert Panorama 3.1 databases for use with Panorama 4.0, and also to add the .pan exten-
sion required to use databases on Windows.

For more information about this wizard see “Panorama Platform Converter” on page 1738.

Page 142 Panorama Handbook
Programming Reference

The Programming Reference contains detailed reference information for every statement and function avail-
able in Panorama, as well as introductory information about related topics. Overall there are over 650 topics
and over 900 pages of information. Each topic is cross-linked to other related topics for easy access, and the
database is fully searchable.

For more information on using the Programming Reference see “Panorama Reference” on page 5000, or sim-
ply open the wizard (the first page contains instructions).

Page 143
RPN Programmers Calculator

The RPN Programmer’s Calculator can be used to perform numeric calculations and to convert numbers
between decimal, hexadecimal, octal and binary.

See “The RPN Programmer’s Calculator” on page 1313 to learn more about this wizard.

View Wizard

The View menu works well for most databases, but when a database grows to dozens of forms and hundreds
of procedures it can get a bit unwieldy. For these situations the View Wizard comes in handy. This wizard can
help you locate and open any view within any open database. This illustration shows the wizard being used
to show all of the procedures in the Panorama 3 Megademo database.

To learn more about this wizard see “The View Wizard” on page 307.

Page 144 Panorama Handbook
Window Size

The Window Size wizard measures the size of the curently open window.

To learn more about measuring window size see “Measuring a Window (Window Size Wizard)” on page 285.

Window Tweak

Using the Window Tweak wizard you can enable and disable the tool palette and scroll bars in a form.

To learn all the details see “Turning Window Components On and Off (Window Tweak Wizard)” on
page 283.

Business Demo Files

The demo databases in this category show examples of how Panorama can be used to build common busi-
ness applications. To open these files open the Favorite Databases wizard and select the Business group.

The databases in this category use some fairly advanced Panorama techniques.

Page 145
Books (Product Catalog)

This database demonstrates one way to build a product catalog using Panorama.

The database itself is fairly basic, as you can see if you use the View menu to open the data sheet (see “Open-
ing More Than One Window Per Database” on page 303).

Page 146 Panorama Handbook
Displaying the Book Covers

The database uses Flash Art to display the book covers (see “Flash Art™” on page 806). The images are not
stored in RAM as part of the database but are kept as separate files in a folder named Book Covers (see “Dis-
playing Images Directly From Disk Files” on page 820). Each image has been named according to the ISBN
number of the corresponding book.

The Flash Art SuperObject uses a formula to convert the ISBN number stored in the database into the correct
image name (see “Displaying Images in a Different Folder (Directory)” on page 822).

Navigation with a List SuperObject

One unusual aspect of this database is the use of a List SuperObject (see “List SuperObjects” on page 898) for
navigating within the database. This is a fairly advanced technique that is probably best attempted after you
have some experience with creating Panorama procedures (see “Procedures” on page 1345).

click in list to move to the corresponding record

Page 147
The default for this list is to display the name of every book in the database (see “List Options” on page 902
for more information about this dialog). The list also contains the ISBN number for each book, but the ISBN
number is hidden because it is after the null character (created by the chr(0) function — see ““Hiding” Part
of a List Item” on page 914).

When you click on one of the items in the list the .ListClick procedure is triggered. This procedure in turn
calls a subroutine procedure named .Browse (see “Subroutines” on page 1382).

Page 148 Panorama Handbook
The .Browse procedure uses the array(function (see “Text Arrays” on page 1257) to extract the hidden
ISBN number in the currentBook variable (this variable was set up using the configuration dialog for the list
shown above). It then uses the find statement to locate the record corresponding to the book that was
clicked on (see “Finding Information” on page 1611). The end result is that when you click on a book in the
list, the information for that book appears.

You may have noticed that the .ListClick procedure contains a bunch of additional code. This code allows
you to drag an item from the catalog onto an invoice, and is discussed as part of the Invoice demo file.

Page 149
Catalog “Search Engine”

The catalog database has a “search engine” that makes it easy to locate items within the database. To search,
click in the search area and type in a word or phrase, in this case web.

When you press the Enter key the database will search for books that contain the word or phrase and display
them in the list. The word or phrase may be anywhere in the record - in the title, the description, the author or
publisher’s name, anywhere.

How does this search engine work? The top of the form contains a Text Editor SuperObject (see “Text Editor
SuperObject” on page 689) for you to type the word or phrase into. The word or phrase you type goes into
the variable named bookSearch.

Page 150 Panorama Handbook
When you press the Enter key a procedure named .BookSearch is automatically triggered. Here is the code
for that procedure.

The procedure uses the arraybuild statement to scan the database searching for records that match the
word or phrase in the bookSearch variable (see “Building an Array from a Database” on page 1647). It then
uses the superobject statement to send a command to the list object telling it to re-display itself with the
new list (see “List SuperObject™ Commands” on page 1719). You’ll notice that for this to work the list object
must be named Book List (see “Object Type/Object Name” on page 585).

Page 151
Invoices (Line Items)

This database demonstrates how to create an invoice with line item fields (see “Repeating Fields (Line
Items)” on page 342). You’ve already learned how to create such a file in the Step-by-Step tutorials (see “Les-
son 3: Building an Invoice Database” on page 158).

Page 152 Panorama Handbook
Invoices (Arrays)

This databases demonstrates an alternate technique for handling repeating detail lines in an invoice. Instead
of using line item fields, this database stores repeating detail items in a single field using a text array. To
understand how this database works you’ll definitely need to study text arrays, so you may want to turn to
“Text Arrays” on page 1257 if you are not already familiar with them.

Setting up repeating items with a text array takes more programming than using line item fields. However,
using a text array eliminates the need to determine the maximum number of items in advance. An invoice
may contain one item or one hundred — it doesn’t matter. No matter what the repeating data items are all
stored in a single field.

Page 153
This database works a bit differently than the previous database. Instead of typing in the detail items you
drag them from the Books database.

When you release the mouse the item is added to the invoice.

Page 154 Panorama Handbook
If you want to change the Quantiy ordered of any line, click anywhere on the detail line to access this pop-up
menu and select Change Quantity.

Panorama will ask you for the new quantity.

When you press the OK button the invoice will be updated.

As you can see, all of the totals are recalculated also. As mentioned before, the best feature of this database is
that you can add as many detail lines as you like. As the number of lines grows you can scroll the items and/
or expand the window.

Page 155
How the Detail Lines are Stored

Let’s take a look at the design sheet for this database (on the left) and compare it to the design sheet for the
invoice database created using line item fields (on the right). Our new database stores all of the repeating
data (invoice items) in a single field, Items. As you’ll see, there is no limit to how many items can be stored in
the invoice. The database on the right uses 60 fields to store the repeating data and has a limit of 15 items per
invoice.

Page 156 Panorama Handbook
How does all of this data get stuffed into a single field? Let’s look at the data sheet to see.

Each line in this cell corresponds to a detail line in the invoice (this is a carriage return delimited array, see
“Picking a Separator Character” on page 1257). This particular invoice has two lines, so there are two lines in
the Items field. Since a data cell can contain an unlimited number of lines each invoice can contain an unlim-
ited number of detail lines.

Within each line there are four “pseudo-cells”, each separated by the ~ character. The first pseudo-cell is the
quantity. The second pseudo-cell identifies what is being sold, in this case the ISBN number for the book. Of
course if you’re invoice isn’t for books you’ll need to use some other for of identification, perhaps a catalog
number or simply a description of the item. The third pseudo-cell is the price of the item, and the last is the
quantity times the price.

Displaying the Detail Lines

Obviously no one would want to edit the Items cell in the data sheet manually. Instead, this database uses a
Super Matrix Object to display the detail lines. The result looks like this.

qty isbn number price line total

Page 157
Let’s switch into Graphics Design Mode to see how this works. (You may want to review Super Matrix
Objects before continuing, see “Super Matrix Objects” on page 958). This illustration shows Super Matrix
Object itself and the Frame Object (see “The Matrix Template (and Frame Object)” on page 959). The frame
object contains the template for the data displayed in the matrix. When the database is actually in use the
window is shrunk so that the frame object and the template are invisible.

The actual data is displayed with four text display objects (see “Text Display SuperObjects™” on page 658).
The table below shows the four formulas used by these objects.

You’ll notice that all four of these contain this core in common. This section of the formula calculates the line
number being displayed. In this case ItemScroll is a global variable that is linked to the scroll bar (more on
that later).

(ItemScroll-1)+info("matrixrow")

Actually, all four of these actually contain a larger core in common. This larger core takes the line number and
uses it to extract the appropriate line of data from the Items array.

array(Items, (ItemScroll-1)+info("matrixrow") ,ƒ)

Column Formula

Qty array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ),1,"~")

Item
lookup("Books",ISBN,

array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ),2,"~")
,Title,"",0)

Price array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ),3,"~")

Total array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ),4,"~")

super matrix object

frame object

text display objects

Page 158 Panorama Handbook
If you look closely, you’ll see that there is even a larger commonality between each of these four formulas. A
second array(function (displayed in orange below) extracts the actual cell from within the line of data. The
four formulas aren’t exactly the same because they extract different cells — 1, 2, 3, and 4.

array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ) ,1,"~")

For the Quantity, Price and Total cells that’s it - this is the complete formula. But for the Item we don’t actu-
ally have the description, but just the ISBN number. To get the description we must use this ISBN number
and look up from the Books database using the lookup(function (see “Linking With Another Database” on
page 1289).

lookup("Books",ISBN, array(array(Items,(ItemScroll-1)+info("matrixrow"),ƒ),2,"~") ,
 Title,"",0)

The end result is that the formulas are displayed over and over again by the Super Matrix Object, with the
formula adjusting to display the information for each line.

Scrolling the Detail Lines

An invoice may have more lines of data than will fit on the form. To handle this the database has a Scroll Bar
SuperObject (see “Scroll Bars” on page 983). In this case the scroll bar is linked to a numeric field named Item-
Scroll and to a procedure named .ItemScroll. The scroll bar could be linked to a variable, but by linking it to a
field Panorama will remember how each invoice is scrolled.

Page 159
The procedure is very short and relies on the Matrix SuperObject to do most of the work (see “Super Matrix
SuperObject™ Commands” on page 1726).

Adjusting for Window Size Variations

In addition to the normal elastic form adjustments the scroll bar must be adjusted for the number of visible
invoice lines. To do this the .AutoGrow Proc option is turned on when creating the elastic form.

With this option enabled Panorama will automatically trigger this procedure every time the window dimen-
sions are changed.

The second and third lines determine the number of lines that are currently being displayed (see “Super
Matrix SuperObject™ Commands” on page 1726). The final line sets the scroll bar page height to this number
(see “Scroll Bar SuperObject™ Commands” on page 1728). This adjusts the scroll bar so that clicking in the
page up/down area will cause the invoice items to move up or down one page.

page up

page down

Page 160 Panorama Handbook
Mexican Restauraunt

This database demonstrates another way to create an invoice. The menu items are listed on the left, with the
current order on the right.

Use the Add New Record tool to start a new order.

To add an item to the order, click on the item in the menu.

Page 161
The item will appear in the box on the right.

As items are added to the order the total is updated automatically.

An unusual feature of this database is that you can type in items “off the menu.” Simply click in the box on
the right and type in the item. The cost of the item must be preceded with a dollar sign ($) as shown below.

When you press the Enter key the database will calculate the new total, including the hand-entered “off the
menu” item.

Page 162 Panorama Handbook
Sales Calendar

An unusual feature of this database is the Sales Calendar, which can be opened from the Action menu.

The Sales Calendar shows a summary of sales on each day. You can easily flip back and forth to compare rev-
enues with prior months or years.

To learn more about creating a calendar see “Building a Calendar” on page 975.

Editing the Menu

To change a price or item description choose Edit Menu from the Action menu.

Page 163
This opens a second database that contains all the items on the database.

Once you have edited one or more items click back on the original database and choose Update Menu from
the Action menu. In this case we have increased the price of Hevos A La Mexicana by $1.00.

Page 164 Panorama Handbook
More drastic changes will require editing the menu form. You’ll notice that the menu is divided into several
different categories. Each category is has a Super Matrix object to display the category (see “Super Matrix
Objects” on page 958). The easiest way to create a new category is to make a copy of one of the existing cate-
gories, as shown here (see “Duplicating Objects” on page 612).

The menu category displayed by this object is controlled by the objects name. To change the category choose
the Object Name command from the Edit menu (see “Object Type/Object Name” on page 585).

The current name of this category is Extras.

Page 165
Type in the new category name, for example Drinks, then press OK.

To make this category appear you must switch to Data Access Mode and then add one or more items in this
category to the menu database (see above).

Now switch back to the Food Orders database and use the Update Menu command in the Action menu to
make the new Drinks category appear.

The final step, re-arranging the graphics to make room for the new category, is left up to you!

Page 166 Panorama Handbook
ProVUE Order Entry

This is not a single database but actually six databases that work together as a complete order entry system.
This is actually a modified version of the order entry system we use here at ProVUE, so the design assump-
tions in this system are focused on a software or manufacturing company. However, the design can easily be
adapted for many different types of businesses.

The six database files are shown here.

The Invoice file is the primary file for this system. It contains all of the information for each order.

Page 167
The Customers database contains information and preferences for regular customers. This database is
designed for customers that order regularly (for example dealers or distributors), not one-time or occasional
customers. The system can use the information in this database to automatically give the correct discount to
each order placed by a regular customer.

Page 168 Panorama Handbook
Product descriptions and pricing information are actually split up into three separate databases. The Prod-
ucts database contains the description of each product (the pricing information shown in the windows below
is actually being looked up from the Price List database). Each product must be assigned a product number
that is used to link this database with the Prices database (described below).

This system assumes that each product has a standard list price but also has other prices that are paid by dif-
ferent types of customers — dealers, distributors, educational institutions, etc. The system uses a three letter
code for each price category. These codes are kept in the Price Codes database, along with the standard dis-
counts for each of these categories (as you’ll see later, you can customize these discounts for each individual
product, or even for an individual invoice).

Page 169
The Prices database contains the actual prices for each product in each category. You usually won’t have to
use this database directly because the system has special forms for editing this data.

Your product database may contain hundreds or even thousands of products. The Product Collections data-
base helps organize these products into logical groups. You’ll usually use this to keep the most frequently
ordered products at your fingertips. You can even set up the profile for each regular customer so that when a
regular customer places an order the items they order most frequently automatically appear.

Page 170 Panorama Handbook
Placing an Order from a Regular Customer

When a regular customer places an order, locate that customer in the Customers database and drag their
entry over the Invoice form. In this case we’ve received an order from a dealer named Golden Web.

Page 171
When you release the mouse the system will automatically create a new invoice. Using the information in the
Customers database the system fills in the contact information, discount code, and in this case, the reseller ID
(for sales tax exemption) as well). The system also brings forward the Product Collections window and
selects the collection that is appropriate for this customer (as specify in the Customers database).

reseller ID

discount code
(SDP = Standard Dealer Price)

Page 172 Panorama Handbook
To add a product from this collection to this invoice, simply drag the product onto the invoice form. It doesn’t
matter exactly where you drag the product to on the form, anywhere will do. No matter where you release
the mouse the new product will be added on the next available line.

When the mouse is released the item is added to the invoice (the standard retail price of this book is $32.95,
but the system has automatically filled in the correct dealer price of $23.06).

Page 173
If you want to add a product from another collection, select the collection from the pop-up menu at the top of
the Product Collections window.

Once the new collection is selected you can drag items from it onto the invoice.

Page 174 Panorama Handbook
You can also drag items directly from the Product List onto the invoice.

If you want to change the quantity, click on the number. This makes a dialog appear.

Enter the new quantity and press the OK button to update the invoice.

Page 175
To change the price of an item click on the number. This opens a dialog that allows you to adjust the price.

You can either select from a list of standard prices for this item or type in the exact price you want to use, in
this case $20.00. Press OK or the Enter key to update the invoice.

To complete remove an item from the order drag the item into the trash can.

Page 176 Panorama Handbook
Placing an Order from an Occasional Customer

When a regular customer places an order use the Add New Record tool to create a new invoice.

This creates a new, blank order.

The system assumes that this occasional customer will receive PDP pricing (Public Direct Price). If this is not
the case you should edit this field now.

Discount code
(PDP = Public Direct Price)

Page 177
The next step is to fill in the contact and payment information for this order. Click in the box and then type in
the information.

Press the Enter key to add this information to the database.

The system has actually analyzed this information and split it into separate fields (see “Natural Data Entry”
on page 1606). To see the actual separate database fields press the Detail button. This opens the window
shown here, which allows you to see and edit the individual database fields.

Close the detail window when you are through with it.

Page 178 Panorama Handbook
To add new items to the order drag them from the Product Collections or Products database just as you did
for the previous order.

Page 179
Since this order is outside of California, no sales tax is charged. If the address is changed to a California
address sales tax will be added.

The state for which sales tax is charged is defined in the TaxAndTotal procedure. If your company is in a dif-
ferent state you’ll need to modify this procedure.

Page 180 Panorama Handbook
The sales tax rate itself is defined in the .Initialize procedure.

In the product database you can define an item as non-taxable.

When a non-taxable item is added to the invoice that item is not included in the tax calculation.

tax should not be charged on this item

Page 181
To change the shipping method click on the tiny shipping box. You can select the shipping option from the
list on the left. The system will calculate the price for you or you can manually type it in. If the customer
wants to pay for the shipping directly you can enter the account number on the right.

In some cases you may want to supply an order for no charge. To do this simply click the Free button.

Page 182 Panorama Handbook
Adding Products to a Product Collection

The Product Collections database contains lists of frequently ordered items. To add an item to a collection
simply drag it from the Product database into the collection. (The illustration shows the item being dragged
into an empty spot, but that is not necessary, you can drag anywhere in the form.)

The item is added to the end of the collection.

Page 183
If you open the detail window for a product (by double clicking on the product list) you can add the product
to the collection with a specific price. Simply drag the price category onto the collection, in this case the edu-
cational price.

The educational price of the product is added to the collection.

If this product is dragged onto any invoice the item will appear at the educational price, no matter who the
customer is. In this case the customer’s normal discount level is ignored.

Page 184 Panorama Handbook
To remove an item from a collection simply drag it into the trash can at the top of the window.

Use the pop-up menu to add a completely new collection.

The new collection is initially untitled, but you can type in any name you want.

Page 185
To complete the new collection drag items from the Products database on to it.

Adding a New Product

To add a new product, start by using the Add New Record tool.

Page 186 Panorama Handbook
A new, empty product is added to the bottom of the list.

Double click this empty product to open the detail window.

Enter the name, product family, subfamily, icon and shipping weight (pounds). The product number is
assigned automatically (in this case 235). If the product is non-taxable click the Non-Taxable button.

Page 187
Type in the standard retail price for the new product.

When you press the Enter key, the system asks if you would like it to calculate all of the other prices for you.

Press the Yes button. After a slight delay the other prices will appear. You can use these calculated prices as is
or edit them for your needs.

The system as automatically added the prices to the Prices database for you. You don’t ever need to edit this
database directly.

Page 188 Panorama Handbook
The new product is ready to be used. Simply drag it onto the order form like any other product.

Of course you can also add the new product to the Product Collections database.

Learning More About the ProVUE Order Entry System

To learn more about this order entry system you can purchase our ProVUE 98 and ProVUE 99 CD-sets.

The ProVUE 98 set contains a session showing how this system was built. The ProVUE 99 set shows how to
add an on-line shopping cart to this order entry system, allowing users to enter their orders automatically
over the web. See See “Panorama Conferences” on page 1790 for more infomation on these CD-sets.

Chapter 1: Files and Memory

Panorama databases are permanently stored in files on a disk drive. (In fact, you’ll often find that the words
database and file are used interchangeably.) Each Panorama file contains all the components needed to use
the database.

Files, Icons and the Desktop

Before you begin to use Panorama you should be familiar with the basic operation of your computer.
Whether you are using a Macintosh or a Windows based computer, files appear in a “desktop” environment
that allows them to be located, moved, copied and opened. On the Macintosh this desktop environment is
called the Finder. On Windows computers this is simply called the desktop, which you can view with My
Computer or using the Windows Explorer. Here are two typical views of folders full of files on the desktop.

Page 190 Panorama Handbook
There are three different kinds of Panorama icons: databases, file sets, and the Panorama application itself.

You can manipulate these icons on the desktop any way you like, just like any other files. (However, you
should avoid moving or copying the Panorama application itself. Although your disk may contain many
database files for different tasks, there should only be one copy of the Panorama program itself.)

Opening a Database

Before you can work with a database you have to open it. From the desktop the quickest way to do this is to
simply double click on the file’s icon. Or you can select the icon and choose Open from the desktop’s File
Menu.

If Panorama is already running you can use the Open File command (File Menu) to open the file. Simply
locate the file you want to open and double click on it. Or select the file and press the Open button.

This dialog has several additional buttons for importing, combining and creating new databases. For now
you can simply ignore these options.

This is the icon for a single Panorama database. On Windows
machines, these files have the extension .pan. Double click on this icon
to open the database.

This is the icon for a set of Panorama databases (called a file set). On
Windows machines, these files have the extension .pnz. Double click
on this icon to open the entire set of databases at once.

This is the icon for the Panorama application itself, which is usually
called Panorama (Mac) or Panorama.exe (Windows). You can double
click this application when you want to create a new database without
opening an existing database first.

Chapter 1:Files and Memory Page 191
Databases and RAM

When a database is opened, Panorama copies the information from the disk into the computer’s internal elec-
tronic memory (RAM). Everything you do to a file takes place in RAM; including data entry, sorting, calculat-
ing, and drawing. If you want to store your work permanently, you must save it from RAM back to the disk
using the Save command.

Most database programs don’t take the extra step of copying the database from the disk into RAM before
working with it. Since your computer can access data in RAM hundreds or even thousands of times faster
than data on the disk, bringing the data into RAM makes Panorama much faster than most other database
programs. If you’ve used other database programs you’ll immediately notice how much “zippier” Panorama
is compared to the programs you are used to.

If your computer has enough RAM available, you can open several Panorama databases at the same time. For
more information about working with multiple files see “Opening Multiple Files” on page 216.

The Favorite Databases Wizard

If you use a database frequently you can add it to the Favorite Databases wizard. This wizard shows a list of
your favorite databases on the left, along with information about the selected database on the right. To open a
database simply double click on it. If you hold down the Control key (Mac) or double click with the right
mouse button (Windows PC) Panorama will automatically close the Favorite Databases window after it
opens the selected database.

If Panorama is already open you can use the Wizards menu to open the Favorite Databases wizard.

double click to
open database

Page 192 Panorama Handbook
You can also open the Favorite Databases wizard directly from the desktop using either the Start Menu
(Windows) or the Apple Menu (Macintosh).

Navigating the Favorite Database List with the Keyboard

In addition to using the mouse and scroll bar to locate an item with the Favorate database list you can also
use the keyboard. Start by typing the first letter of the file you want to locate. Continue typing until the file
you want to open is selected. At that point you can press the Enter key to open the database. You can also use
the up and down arrow keys to navigate up and down in the list.

Another navigation option is to use the Search command — see “Searching for a File” on page 199.

type M to move to the first database beginning with M…

type Y to select first database beginning with MY…

press œ to open this database

Chapter 1:Files and Memory Page 193
Adding a Favorite Database

To add a new favorite database you first must open that database using Panorama’s regular Open File dialog
or by double clicking on the file on the desktop (see “Opening a Database” on page 190). Once the file has
been opened, open the Favorite Databases wizard, then click on the File menu inside the Favorite Databases
window.

The menu lists each open database. To add an individual database to the list of favorites, select that database
(for example Add "Sales Tax"). To add all of the open databases to the list of favorites choose the Add All
Open Databases command. In this case all six open databases will be added to the list of favorites.

Removing a Favorite Database

To remove a favorite database from the list simply click once on the name in the list to select it.

select an individual
database to add to
the list of favorites

…or, add all open
databases to the list

Page 194 Panorama Handbook
Once the file is selected an option to remove it will appear in the File menu.

Simply choose this option to remove the file. (The file is only removed from the list of favorites — it is still on
the disk and may still be used by Panorama.)

File Information

When you click on a favorite database Panorama will display information about that file on the right hand
side of the window, including the file’s group (see “Favorite File Groups” on page 195), creation and modifi-
cation dates and the number of records, fields and bytes (size).

The top section can display four different types of file information. In the illustration above the Folder button
is pressed. This shows that the file is on the hard drive named Alaska, in a folder named Accounting.

To see a list of fields or forms in this database click on the appropriate buttons. This database has three fields
(see “Fields” on page 327) and only one form (see “Introduction to Forms” on page 539).

Chapter 1:Files and Memory Page 195
The Notes button allows you to type in your own description or comments about this database.

Double click on the notes to edit them.

Press the Enter key when you have completed editing the notes. Be sure to Save (see “Saving a Database” on
page 212) after you have made the changes.

Favorite File Groups

You have the option of assigning each favorite database into a group. Use the pop-up menu to assign a file
into a group.

double click
to edit notes

Page 196 Panorama Handbook
Use the Group menu (inside the window) to select only a specific group.

When a group is selected, only the databases in that group are visible.

To make all of the favorite databases visible again, choose ALL from the Group menu (the last item).

To modify the list of groups use the Preferences… command in the File menu within the window.

Chapter 1:Files and Memory Page 197
The dialog shows a list of the groups. To add a group, click the + button.

Panorama will prompt you for the name of the new group. Enter the name and press OK.

To remove a group, start by selecting the group.

click + to add a group

click – to delete selected groups

Page 198 Panorama Handbook
Then click on the - button to remove the group.

When you are finished with your changes press the OK button.

Chapter 1:Files and Memory Page 199
Searching for a File

To seach for a file choose Search… from the Group menu. You can also press Command-F (Macintosh) or
Control-F (Windows).

Type in all or part of the file name you want to locate.

The wizard will display the files that match the word or phrase you have selected.

Double click to open one of these files. To display all of the files again, choose All from the Group menu or
press Command-A (Macintosh) or Control-A (Windows).

Page 200 Panorama Handbook
Selecting Multiple Favorite Files

If you hold down the Command key (Macintosh) or Control key (Windows) you can click on and select more
than one favorite database at a time. (You can also use the Select All command in the File menu to select all of
the currently visible databases.)

Once you have multiple files selected you can open all of them at once by double clicking on one of them or
by choosing Open four databases… from the File menu (the number four will change depending on how
many files you have selected).

Another option is to remove all of the selected databases by using the Remove four databases… command
(see above).

open all selected
databases at once

remove all selected
databases

Chapter 1:Files and Memory Page 201
When multiple databases are selected you can use the pop-up menu to move all of them into a different
group.

use pop-up menu to move
both selected databases
from the Accounting group
into the Home group

Page 202 Panorama Handbook
Creating a New Database

To create a new Panorama database choose Open File from the File Menu, then press the New button.

A new database has ten fields and is called Untitled. These fields are named alphabetically: A through J (You
can change the names later). You can start entering data right away or you can change the fields before you
begin (See “Fields” on page 327).

If you are at the desktop, you can create a new file by double clicking on the Panorama program icon. When
you click on the Panorama icon, the Open dialog appears automatically. Press the New button to create the
new file.

click to create new database

Chapter 1:Files and Memory Page 203
Using the New Database Wizard

To help make creating new databases easier Panorama includes “wizard” for creating new databases.

If Panorama is already open you can use the Wizards menu to open the New Database Wizard.

type field names into this box

Page 204 Panorama Handbook
You can also open the New Database Wizard directly from the desktop using either the Start Menu (Win-
dows) or the Apple Menu (Macintosh).

Creating a Database with the Wizard

To create a database simply type in the name of each field, one per line.

To create the database simply press the Make New Database button.

Panorama automatically sets the width of each field. See “Changing the Width of a Field” on page 331 to
learn how to manually adjust the width of a field. Before you continue you should save your new database
(see “Saving a Database” on page 212).

field names

Chapter 1:Files and Memory Page 205
Creating Numeric and Date Fields

In Panorama, all data is not the same. To get the most out of a database, Panorama needs to know what type
of data you intend to store in each field — text, numbers or dates (see “Data Types” on page 351). The New
Database Wizard normally creates fields designed for holding text. Adding #, $ or . at the end of a field name
tells the wizard to create a numeric field (see “Numeric Data” on page 355). A field with a name ending in #
(for example Check#) can hold integer values (for example 1, 23 or 456). A field with a name ending in $ (for
example Price$) can hold numbers with two places after the decimal point (for example 4.87 or 783.98). A
field with a name ending in . (for example Weight.) can hold any floating point value.

Press the Make New Database button to create the new database. Notice that the # and $ suffixes that were
typed into the wizard are not included in the final field names. We’ve typed in one line of data to show the
different types of data stored in each field.

Any field who’s name contains the word Date (for example Date, Start Date or Check Date) will be created as
a field for date values (see “Dates” on page 360). In the example above the second field (Date) is just such a
field.

Default Values

To assign a default value to a field (see “Default Values” on page 399) follow the field name with an = symbol
followed by the default value. For example:

Country=USA

ShipMethod=Federal Express

To repeat the previous value in this field (ditto) use the " symbol.

City="

Date="

To automatically increment a numeric or date field use +, or plus followed by a number (+1, +2, +5, etc.).

Check Number#=+1

Invoice#=+

numeric field (integer)

text fields

date field

numeric field (2 digits)

Page 206 Panorama Handbook
To default to today's date use =today.

Date=today

InvoiceDate=today

In this example three fields have default values.

This shows the result of creating this database and adding several fields.

When a new record is added Panorama will automatically fill in the Check number, Date, and Account.

Automatic Calculations

To assign an automatic calculation to a field (see “Automatic Calculations” on page 406) follow the field
name with an = symbol followed by the formula. The formula must be surrounded by (and) parentheses.
Using the wizard you cannot assign both a default value and a calculation to the same field. Use Panorama's
Design Sheet (see “The Design Sheet” on page 332) if this is necessary. For example:

Total$=(Subtotal+Shipping+Tax)

Amount$=(Qty*Price)

default to previous record plus 1 (1, 2, 3, etc.)
default to today’s date

default to First Global Checking

Chapter 1:Files and Memory Page 207
Line Items (Repeating Fields)

Some databases contain several similar fields repeating within each record. For example, an invoice usually
contains several quantities, product descriptions, product prices, etc. These fields are often called Line Items
because they repeat for each line on the invoice (see “Repeating Fields (Line Items)” on page 342). In Pan-
orama these line item fields are created by adding a numeric suffix to the root field name, for example Qty1 ,
Qty2 , … Qty15 . In the New Database Wizard you don’t have to type in each of these multiple field names.
Instead, you can simply enter the root field name followed by the Ω symbol, for example QtyΩΩΩΩ. If you are
using a Macintosh computer press Option-Z to create the Ω symbol. On a Windows PC press Alt-0166 to cre-
ate the symbol.

Here is an example of a database with a single line item field. You must type in the number of line item fields
that you want to create (in this case 12).

The actual database (created by pressing Make New Database) contains 12 separate Song fields, Song1,
Song2, Song3 etc.

line item field

number of line items

Page 208 Panorama Handbook
Here’s a more complex example that creates an invoice database. This database will have four line item
(repeating) fields, Qty, Item, Price and Amount. Notice that the Ω symbol can be used in a formula (see “Line
Item Fields” on page 1220).

This illustration shows a small portion of the resulting database.

This database is extremely wide and doesn’t work very well in the Data Sheet view. Instead you’ll probably
want to create an invoice form something like this (we’ve cut out the middle to fit it on this page).

To learn how to create a form like this see “Line Items in a Form” on page 716.

Chapter 1:Files and Memory Page 209
Starting with a New Database Template

To help you get started the New Database Wizard includes a number of templates you can access from the
Template menu

When you select a database the wizard automatically sets up all of the field definitions, and also displays
some notes about this database design on the right.

You can use the template as is or modify the field definitions for your application. When the field definitions
are set up the way you want press Make New Database to actually create the database.

Page 210 Panorama Handbook
Creating a Database from a Text File

The New Database Wizard usually creates an empty database, but it can also create a database from a text
file and automatically import the text (see “Importing a Text File” on page 223). To start this process press the
Text File button at the bottom of the window.

The wizard will display a dialog box asking you to select the text file you want to use.

In this case we have selected the file Mailing List Data.csv, a comma separated text file. The wizard displays
the data from the first line of the text file.

Chapter 1:Files and Memory Page 211
Using the data as a template, replace the data with the field names you want to use.

When you press the Make New Database button the wizard automatically creates the new database and
imports the data.

Be sure to save the new database (see “Saving a Database” on page 212) before you continue.

Page 212 Panorama Handbook
Closing Panorama

When you are finished with Panorama, use the Quit command (File Menu) to return to the desktop. If you
have not saved your work, Panorama will display an alert and ask if you would like to save the work now.

Simply press the Save button to permanently save the database on the disk and return to the desktop.

Saving a Database

You can save your work permanently on the disk at any time with the Save, Save As, or Save a Copy As
commands in the File menu. The Save command saves the database permanently on the disk, then allows
you to continue with your work. You should save your work often.

The Save A Copy As command makes a copy of the database under a new name. It leaves the original copy
in memory so you can continue to work on it. This command is like duplicating a sheet of paper and then
continuing to work on the original.

The Save As command also makes a copy of the database under a new name. The Save As command, how-
ever, leaves the new copy in memory—not the original. This command is like duplicating a sheet of paper
and then working on the copy while setting the original aside.

Chapter 1:Files and Memory Page 213
The Save As command allows you to choose the location where you want to save the file, the name of the
new file, and several file options.

On Windows computers all Panorama database names end with .pan. This is called the extension, and it tells
the system that this file is a Panorama database. You should not type the extension into the Save As dialog
box—Panorama will automatically add the extension for you.

You can save the database as a regular Panorama file, as a text only file (see “Exporting a Text File” on
page 245), or create a file set (see “File Sets” on page 217). You can also use the Save As command to turn on
the Save Window Positions, Auto-Save and Keep Backup Copy options described later in this chapter.

Saving Window Positions

If you check the Save Window Positions option, Panorama will save the positions of each open window that
belongs to the file being saved. The next time the file is opened, Panorama will automatically open the same
windows in the same positions. Each time you save the file, Panorama will save the new window positions.

It is also possible to lock in window positions so that they will always be open in the same positions, even if
you move the windows and save again. To do this, first choose Save As and check the Save Window
Positions option. Move the windows into the desired positions and then choose Save from the File Menu.
Now, open the File Privileges dialog and change from Author to User or Custom level. (To open this dialog
on a Macintosh computer, hold down the Command or Option key and choose About Panorama from the
Apple menu. To open this dialog on a Windows system, hold down the Control or Alt key and choose About
Panorama from the Help menu. See “The Privilege Dialog” on page 319 for details on this command.) Close
the dialog, and choose Save again. The window positions are now locked in place. To unlock them, switch
back to Author mode.

Type in name of file

Choose type of file

Page 214 Panorama Handbook
Revert to Saved

The Revert to Saved command (File Menu) recopies the original file from the disk into RAM. This will undo
all the changes made since the last time the file was saved. By all changes we mean all changes: data entry,
sorting, formulas, graphic editing, creating/deleting forms, crosstabs or procedures—every single thing
you’ve done to this database since the last time you saved. Before Panorama actually goes ahead with this
command it asks you to verify that you really want to do this.

Be absolutely sure before you press the Revert button. Any work you have done since the last time you saved
will be gone forever. On the other hand, this command is a great safety net that can let you recover from mis-
takes. Even if you accidentally delete all the data in your entire database, you can easily get it back with this
command. Remember, however, that this safety net only goes back to the last time you have saved. If you
accidentally delete all the records and then Save, you are out of luck (unless you have made some other
backup).

Auto-Save

If you wish, you can ask Panorama to automatically save your file every few minutes. To turn on this feature,
choose Save As, then check the Automatic Save option and enter how often you want Panorama to save the
file. When you are done, press the Save button. (If you are using a Macintosh computer and you have saved
this file before, Panorama will ask you if you want to replace the existing file. Press Yes).

Once you have turned on the Automatic Save option it remains on unless you Save As again and turn it off.

Pitfalls of Auto-Save

If you think you might need to use Revert to Saved, you should not use auto-save. When you are using auto-
save keep in mind that you no longer control when the file will be saved. This lack of control can cause prob-
lems if Panorama saves the file when you didn’t want it to. In particular, if you have deleted items from your
database you won’t be able to get them back using Revert to Saved once the file has been automatically
saved.

Because they can remove large amounts of data from your database, the Remove Unselected and Remove
Detail commands are especially dangerous with auto-save. To help reduce this danger, these commands give
you the option to temporarily suspend auto-save. Once you have suspended auto-save it will remain off until
you manually save the file (with the Save command).

Backup Files

Like most programs, Panorama normally stores only one copy of each database on the disk. If you wish,
however, you can tell Panorama to keep a second copy of a database. This extra backup copy can help protect
you from mistakes.

The backup copy of a database is a copy of what was saved the second to the last time. Having a backup copy
of the database means that if you make a mistake and save when you didn’t mean to, you can still get back to
the previous version of the database.

Chapter 1:Files and Memory Page 215
The backup copy of the file has the same name as the original with.b added. On Macintosh computers the.b is
added at the end of the filename (for example the backup file for Checkbook is Checkbook.b). On Windows
computers the .b is added just before the .pan extension (for example the backup file for Contacts.pan is Con-
tacts.b.pan).

Macintosh computers are limited to 32 character file names. Because of this limitation, the original filename
cannot exceed 29 characters if the Keep Backup option is used. (If the filename is more than 29 characters,
Panorama will ignore the Keep Backup option.)

To tell Panorama to keep a backup copy, use the Save As command to save the file and check the Keep
Backup Copy of Database option. Once this option is checked, Panorama will keep a backup copy whenever
the file is saved.

Opening Backup Files

You can open a backup file by double clicking on it, just like any other Panorama database. On the Macintosh
however, you cannot open backup files with the Open File command, because the backup files are not dis-
played in the dialog.

On the Importance of Backing Up

You’ve heard it before, you’ll hear it again—there’s no substitute for regular backups. Panorama’s automatic
backup file option is great for recovering from your mistakes, but it won’t do you any good if your hard disk
fails, or even gets stolen. Yes, it can happen to you! So be sure to back up your files regularly to a removable
media (floppy disk, Zip or Jazz drive, CD-ROM, tape etc.), perhaps even daily if you are doing a lot of work.
To protect from fire or theft you should keep your backups at a separate location. Any experienced user will
tell you that “Having good backups means never having to say you’re sorry!”

Of course some of you will ignore this advice until it happens to you. We get too many sad calls from people
who have lost thousands of records due to a hardware failure. Don’t take a chance on being one of them.

Page 216 Panorama Handbook
Working with Multiple Databases

Panorama can work with several databases at the same time. The databases can be independent, or they may
contain related information.

As you use Panorama, you’ll probably encounter many tasks that require working with several databases at
once. For example, when you are working with an invoice database, you may need to have the customer and
price list databases available. As you are working with a checkbook database, you may need to access infor-
mation in vendor and accounts payable databases. When you are working with a class scheduling database,
you may also need the course catalog and student registration databases. Panorama can handle all these
tasks.

Opening Multiple Files

You can open multiple files all at once using the desktop (Explorer), or one at a time after Panorama is open.
From the desktop, first select the files and then double click on one of them. (To select several files, either hold
down the Shift key as you click on each file, or drag the mouse around the files.)

select the files you want to open and then double click on one of them

Chapter 1:Files and Memory Page 217
Panorama will open all of the databases you have selected.

To open an additional file from inside Panorama, use the Open File command in the File Menu. You can con-
tinue to open files until you run out of memory. (You are also limited to 32 open windows.)

File Sets

If you plan to use a group of files together, you can create a special document that represents the entire group.
This special document is called a File Set. File Sets have their own unique icon.

When you double click on a file set icon, Panorama will automatically open all the files included by the set.
For example, you could create an Order Entry file set that automatically opens three databases—Invoice,
Customer List, and Price List. A file set can also be opened with the Open File dialog.

Page 218 Panorama Handbook
To create a file set, first open the databases you want to include in the set. (Make sure that no other files that
you don’t want included in the set are open. Every open file will be included in the set. If you are not sure
what files are currently open you can use the Memory Usage command to find out — see “Monitoring Mem-
ory Usage” on page 267.) Then use the Save As command in the File menu. Type in the name of the file set. If
you are using a Macintosh computer check the Set radio button.

If you are using a Windows PC computer use the combo box to choose the Panorama File Set {*.pnz} option

Press the Save button to create the file set document.

All the databases in a file set must be in the same folder as the file set itself. The files will be opened in the
same order that they were originally opened when you created the set. If you want to make sure that the files
open in a certain order, you should open the files manually (with the Open File command) in that order
before saving the file set.

A file set cannot be edited or changed once it is created. To change a file set, you must use Save As to create it
over again.

Chapter 1:Files and Memory Page 219
Tip: It’s important to realize that the file set document does not contain the actual databases themselves—the
databases are still in separate files. If you copy the file set to another folder or disk, you also need to copy the
actual database files.

Tip: You cannot save the window positions associated with a file set. Instead, you must save the window
positions of each individual database within the set. See “Saving Window Positions” on page 213 for more
information on saving window positions.

The AutoLoad File Set

Panorama allows you to create a special file set that loads automatically when Panorama is launched. This
file set must be called either AutoLoad (Macintosh) or AutoLoad.pnz (Windows PC) and must be in the same
folder as the Panorama application itself. However, this file set only loads automatically if no other database
is opened. In other words, if you double click on the Panorama application itself, the AutoLoad file set will
open, but if you double click on a Panorama database or file set, the AutoLoad file set will not open. The
AutoLoad file set will also open automatically if Panorama is launched automatically (for example from the
Startup Items folder, an AppleScript or by configuring a CD to automatically run Panorama from the CD
when the disk is entered).

The AutoLoad file set must be in the same folder as Panorama. If that is not possible, you can create an alias
(Mac) or shortcut (Windows PC) to the AutoLoad file set and move the alias into the Panorama folder. The
alias/shortcut must be named AutoLoad, not AutoLoad alias or any other name.

Saving Multiple Files

The Save command only saves one file at a time—the file associated with the top window. To save all the
open files, use the Save All command. (Note: Only databases that have actually been changed will be saved.)

When you use the Quit command, Panorama will check each open database to see if it has been modified.
Panorama will ask you if you want to save your changes before shutting down Panorama.

Appending One Database to Another

To append a database to the end of the current database, use the Append To Current Database option in the
Open File dialog.

When you press the Open button the data in the selected file is appended to the end of the current file. (Only
the data is appended, not the forms, procedures, crosstabs, or Flash Art.)

Page 220 Panorama Handbook
If the Match Fields by Name option is checked Panorama will examine the two databases and look for fields
with the same names. Only the data in these fields will be appended. For example if both databases contain
fields named Address, City, State and Zip then the information in these fields will be appended. However if
one database has a field named Zip and the other has a field called PostalCode, the data in these fields will
not be appended. The field names must match exactly — Company and COMPANY will not match.

If the Match Fields by Name option is not checked Panorama will append fields according to their order. In
other words, the first field of the second database will be appended to the first field of the current database,
the second field to the second field, etc. Usually appending two databases this way makes sense only if both
databases have the same fields in the same order. If they don’t, you can open the second database, re-arrange
the fields and then append (see below).

If the Match Fields by Name option is not checked and the database being appended has more fields than the
current database, the extra fields will be ignored. If the data types in the two files are incompatible, some data
may be lost. For example, data will be lost if you try to append text into a numeric field. Panorama will alert
you if this happens, but it cannot tell you exactly what data has been lost.

After the append is finished, Panorama positions the database at the first new record. All the records above
this position are part of the original file. All the records at and below this position are part of the new
appended data.

Appending an Open Database

Panorama can append a database that is already open. Panorama will append the copy of the database that is
open in memory, not the original on disk. This is handy if you want to modify a file before you append it.

Panorama can also append a database to itself. In this case Panorama will append the original copy of the
database on disk. For example if you open a database with 1,000 records, delete 500 records without saving,
and then append the database to itself, you will wind up with 1,500 records.

Appending Imported Data

By checking the OverVUE or Import radio buttons in the Open File dialog, you can import data and append
it to the current database in a single step. Either tab or comma delimited TEXT files can be appended. The
data being imported should contain the same fields in the same order as the current database. If the fields do
not match, some data may be lost. For a complete discussion of importing data into Panorama, see “Import-
ing a Text File” on page 223.

original data

new appended data

Chapter 1:Files and Memory Page 221
Replacing Obsolete Data

Another Open File dialog option is Replace Current Database.

This option allows you to completely replace the data in the current database with the data in another data-
base. This is useful if the current database contains obsolete data, but has forms or procedure you want to
use.

Depending on whether or not the Match Fields by Name option is checked the new data should either have
the same field names as the old database or it should have the same fields in the same order as the current
database. If the fields do not match, some data may be lost. The Replace Current Database option works
exactly like the Append option, except that Panorama removes all the data in the current database before
appending the data.

You can also replace the current data with imported data—just check the Replace Current Database option
along with OverVUE or Import. The data being imported should contain the same fields in the same order as
the current database. If the fields do not match, some data may be lost.

Page 222 Panorama Handbook
Importing and Exporting Data

Panorama allows you to freely exchange information between it and other applications. The common terms
for these exchanges are importing and exporting.

Importing means to transfer information from another program or computer into a Panorama file. The data
can then be manipulated using Panorama’s menu commands and tools. Panorama’s import capabilities allow
you to take advantage of databases that have already been keyed in or databases on other computers (for
instance, on minicomputers or electronic bulletin boards). See “Importing a Text File” on page 223.

Exporting is the exact opposite of importing. To export data from Panorama means to take data from a Pan-
orama file and make it accessible to another “foreign” program. For example, Panorama data can be exported
to Excel so that it can be included in a spreadsheet. See “Exporting a Text File” on page 245.

In addition to the manual techniques described in this chapter it is also possible to set up a procedure to auto-
matically import or export data. To learn more about this see “Importing Text Files” on page 1507 and
“Exporting Text Files” on page 1511.

Working with Text Files

Panorama cannot directly access information in database or spreadsheet files created by other programs.
Exchanging data between Panorama and another program requires an intermediate text file. A text file is
very basic because it contains just the data—no forms, procedures, graphics, or anything else. Because text
files are so simple, they provide a common interchange format for different programs. Virtually all database,
spreadsheet, and word processing programs can read and write text files. This makes transferring data
between Panorama and another program a two step process. Let’s take Excel as an example. To transfer data
from Panorama to Excel you first must export the data from Panorama as a text file. Then you go into Excel
and import the text file. To transfer data from Excel to Panorama you start by exporting the data from Excel as
a text file. Once the text file has been created you can go into Panorama and import the data from the text file.

In addition to importing and exporting text files you can also edit them directly. On the Macintosh the Sim-
pleText application is provided free with every computer. Here’s what a typical text file looks like in this
application.

Chapter 1:Files and Memory Page 223
On PC systems text files can be edited with the Notepad or WordPad applications.

On PC systems text files often have a three letter filename extension of .txt, for example My Data.txt. How-
ever, text files may use other extensions as well, such as the .csv (short for comma separated values) file
shown above. Panorama can work with text files with any extension.

On Macintosh systems no extension is required. However we recommend adding .txt to the end of the file-
name anyway. This makes it easier to remember what kind of data is in the file and also improves compatibil-
ity in case the file is ever transferred to a PC system.

Importing a Text File

The first step in importing a text file is to prepare the text file. You can create it manually using a text editor
like SimpleText or Notepad, but usually the text file is created by exporting from another database or spread-
sheet program.

Macintosh PC

Page 224 Panorama Handbook
Once the text file is prepared go into Panorama and choose Open File from the File menu. This is the same
dialog that is used for opening Panorama databases. On the Macintosh, click on the Import radio button to
see a list of text files that can be imported.

If you are using a Windows PC computer then use the combo box to choose Text files {*.txt}.

combo box

Chapter 1:Files and Memory Page 225
When you choose this option the dialog will list all of the .txt files available to be imported.

If you want to import a text file that does not use the .txt extension then use the combo box to choose All files
{*.*}. This causes all files to be listed. In this illustration the All files option is being used to allow a .csv file to
be selected for import.

Page 226 Panorama Handbook
Once the text file you want to import is visible simply click on it and press the Open button. Panorama will
create a new database and fill it with the data from the text file. Panorama automatically examines the text file
to decide whether the data is tab or comma separated and then creates the number of columns required to
hold the data.

The new database is initially assigned the name Untitled (or if that is taken, Untitled 2, Untitled 3, etc.). The
first time you Save the database Panorama will ask you to assign the actual name to the file.

The columns in the new database are initially assigned the names A, B, C, etc. To assign real names to these
columns you can use the Field Properties dialog (see “Field Properties” on page 330) or the Design Sheet (see
“The Design Sheet” on page 332)

Chapter 1:Files and Memory Page 227
Importing into an Existing Database

When you import a text file Panorama normally creates a brand new database, as described in the previous
section. However, it is also possible to import data into an existing database. To do this you must check either
the Append to Current Database or the Replace Current Database option in the Open File dialog.

The data being imported should have the same fields in the same order as the current database. If the fields
are not in the same order you should use the Text Import Wizard (see “Using the Text Import Wizard” on
page 234) to import the text. Otherwise some data may be lost.

If the Append to Current Database option is checked, the imported data will be appended to the end of the
current database. Use this option to add new data to an existing database.

If the Replace Current Database option is checked, the imported data will completely replace the current
data. The old data will be erased, then replaced with the new imported data. Use this option to update a data-
base with the latest information, while leaving all the forms, reports, crosstabs, and procedures intact.

Page 228 Panorama Handbook
Importing HTML Tables

Panorama can automatically import tables from a text file that contains HTML with the <table> tag. As an
example consider the HTML page shown below.

To import the data on this page you must first save the page as a text file. Consult the documentation for your
browser to learn how to do this. A sample HTML file named Aspen Hotels.html is supplied with your copy
of Panorama — locate this file now if you want to follow along.

Chapter 1:Files and Memory Page 229
If you examine this file with a text editor you should see the <table> tag followed by the data and finished
up with the </table> tag.

You can import this file just like any other text file. Panorama will scan the file and notice the <table> tag.
When it finds this tag it switches gears and goes into HTML table import mode. It automatically analyzes the
tags and extracts the data in the table. Voila!

Page 230 Panorama Handbook
If the .html file contains more than one <table> tag Panorama will only import the first one. You may need
to manually edit the file before you import to make sure that the data you want to import is the first table in
the file.

In some cases you may need to do further work to clean up the data after it is imported. Consider the table
shown here.

In this case the html is much more complex, and each data cell contains tags for setting the font.

Chapter 1:Files and Memory Page 231
When the data is imported, these tags are also imported.

If you wish you can use the Change command to get rid of these extra tags (see “Change (Find and Replace)”
on page 530). Start by replacing with nothing.

Page 232 Panorama Handbook
The command removes this tag from the first column.

Repeat this process for each additional column. (This is an excellent potential application for automation
with a procedure — see “Procedures” on page 1345.)

As you can see we’ve also adjusted the column widths. See “Changing the Width of a Field” on page 331 to
learn how to do this.

Chapter 1:Files and Memory Page 233
Now we need to go back to the first column and replace with nothing.

The first column is now pretty much cleaned up.

Repeating the process for the other columns.

Cleaning up this data was a fair amount of work but was much easier than typing in the data all over again,
and less prone to errors.

Page 234 Panorama Handbook
Importing OverVUE Files

OverVUE was ProVUE’s first database program and the predecessor to Panorama. To import an OverVUE
file, choose Open File from the File menu and click the OverVUE button at the bottom of the dialog. Once
this button is checked, only OverVUE files will appear in the file directory. Find the OverVUE file you want
to import, then click on the name to import the data. The data and column names from the OverVUE file will
appear in a new Panorama data sheet window. Only the data and column names will be imported. Imported
OverVUE data comes into Panorama as text, and some data may need to be converted to numeric, date, or
choices. Report templates, macros, and chart templates in the OverVUE file cannot be imported and must be
re-created.

Re-Arranging Imported Data

Sometimes the data you want to import is not set up the way you want. Perhaps the fields are in the wrong
order, or the data is not split into fields correctly. The easiest way to handle this is to use the Text Import Wiz-
ard (see “Using the Text Import Wizard” on page 234). If you don’t want to use the wizard, Panorama has lots
of great tools for transforming the imported data after it is imported.

If the fields are simply in the wrong order, you can use the Design Sheet to re-arrange them. See “Re-Arrang-
ing Fields” on page 339 for details on re-arranging the field order.

If the data is not split into fields properly using tabs or commas, you can use the Formula Fill command to
massage the data into shape. See “Filling a Field with a Formula” on page 511 to learn more about this com-
mand.

Using the Text Import Wizard

The Text Import Wizard makes it easy to import a text file into an existing database, even if the fields in the
text file are not in the same order as the database fields. Usually you’ll start the process by opening the data-
base you want to import the data into. To illustrate this wizard we’ll use a very simple mailing list file.

To start the import process open the Text Import Wizard from the Wizard menu. As you can see the right
hand side of the window shows that we are going to import into the Mailing List file, and lists the five fields
in this database.

Chapter 1:Files and Memory Page 235
The next step is to select the text file you want to import into this database. To do this choose Select Text
File… from the File menu inside the window.

Use the dialog to select the text file you want to import.

Page 236 Panorama Handbook
After you have selected the text file the wizard will display the name of the file (in this example Mailing List
Data.csv) and contents of the first line.

To set up the import configuration you’ll need to drag from the left hand side onto the right hand side.

When you release the mouse the wizard will update the import configuration.

Chapter 1:Files and Memory Page 237
You’ll need to drag each field you want to import across from the left to the right.

Sometimes the data you want to import doesn’t match the fields in the database. In this case the database has
only a single Name field, but the import data contains separate first and last names. Somehow these separate
fields will need to be combined as the data is imported. The import wizard allows you to do this with a for-
mula (see “Formulas” on page 1185). To edit the formula for a field click anywhere on the field’s line.

A dialog appears allowing you to edit the formula.

Page 238 Panorama Handbook
Within this formula you can include any import field by typing the field number in between « and » charac-
ters (see “Special Characters” on page 1225). To “glue” two text items together you can use the + symbol (see
“Gluing Strings Together” on page 1235). To include constant text in the formula put the text inside quotes
(see “Constants” on page 1218). The illustration below shows a formula that combines the first and last name
into a single field (with a space in between).

Press the OK button to preview the result of this formula.

If you want to you can use the small arrows to preview additional lines in the imported data (not just the first
line).

resultformula

move forward one line

move back one line

Chapter 1:Files and Memory Page 239
When all the fields you want to import are set up choose Import Data from the File menu inside the window.
(Before you do you should make sure that the Append or Replace option you want is selected. Append will
append the new data to whatever data is already in the database, while Replace will erase and replace the
existing data.)

The wizard imports the data into the original database.

Common Import Formulas

Using a formula you can combine import fields, split import fields, convert to upper case or lower case, and
much much more. You’ve already learned how to combine two or more import fields together with the +
symbol like this (see “Gluing Strings Together” on page 1235).

«1»+" "+«2»

«2»+", "+«1»

To pick out a single word (for example a first or last name) you can use the array(function (see “Text
Arrays” on page 1257). Here is a formula for picking the first name from a combined name field (assumed to
be the first field, «1», and using the format First Last, for example John Smith).

array(«1»,1," ")

Page 240 Panorama Handbook
This formula extracts the last name.

array(«1»,2," ")

To convert text to upper case use the upper(function (see “String Modification Functions” on page 1246).
This formula extracts the last name and converts it to upper case.

upper(array(«1»,2," "))

To extract only a limited number of characters use a text funnel (see “Taking Strings Apart (Text Funnels)” on
page 1236). This formula extracts the first five characters from a zip code.

«6»[1,5]

Here is an example that uses several of these techniques.

To learn more about Panorama formulas see “Formulas” on page 1185.

Chapter 1:Files and Memory Page 241
Import Templates

If you think you’ll need to use an import configuration more than once you can save it as a template. The first
step is to set up the configuration (as described in the previous section). Once the configuration is set up you
can save it with the Save Template or Save Template As… commands in the File menu.

The wizard will prompt you to type in a name for the new template (the default is the name of the text file
being imported).

Page 242 Panorama Handbook
Once a template has been saved you can open it again by selecting it from the File menu. (Note: The template
is actually stored in the database being imported into (in this case Mailing List). The template is only avail-
able when that database is being imported into. Each database may contain its own separate set of templates,
which makes sense since the import configuration used with one database is not likely to work with any
other database.)

The wizard loads the entire import configuration, ready to go.

You can use the configuration as is or modify it before you actually import the data.

Chapter 1:Files and Memory Page 243
If you want to delete or rename a template choose the Rename/Delete Templates… command from the File
menu inside the window.

To rename a template first click on it and then press the Rename button. A dialog appears allowing you to
type in a new name. To delete a template press the Delete button.

When you are done press the OK button.

Choosing a Database to Import Into

The Text Import Wizard normally imports into database that was active when the wizard was opened. How-
ever, you can use the Database menu to choose to import into any open database.

Simply choose the database you want to import into and then set up the configuration.

Page 244 Panorama Handbook
Converting an Import Configuration into a Procedure

To convert the current import configuration into a procedure choose the Copy Procedure to Clipboard com-
mand.

Now create a procedure (see “Writing a Procedure from Scratch” on page 1357) and Paste the automatically
generated procedure into it.

For more information on creating and using procedures see “Procedures” on page 1345.

Chapter 1:Files and Memory Page 245
Exporting a Text File

To export the selected records (see “Select” on page 440) in the current database into a text file, use the Save
As command in the File menu. The standard save dialog will appear on the screen. If you are using a Macin-
tosh computer select the folder and name of the text file and click the Text Only radio button. (The name must
be different from the database name.)

If you are using a Windows PC computer use the combo box to choose the Text file (Export) {*.txt} option.

Page 246 Panorama Handbook
Once the name and text only option are set up, click the Save button. This opens a second dialog that allows
you to specify which fields to include in the exported data and what format to use.

Only the fields you select will be included in the text file. To select a field, click the mouse on the field name.
To select additional fields, click on them also. To un-select a field, click on the field again. If you want to
export all the fields in the database, you can quickly select them all with the Select All button.

The four radio buttons—Commas, Tabs, Tabs w/o quotes, and Word Perfect—let you pick how the text file is
formatted.

Option Description Example

Commas

Exported file will have commas between
each field and a carriage return at the end of
each line. If a data cell contains a comma, it

will be surrounded by quotes (").

Tabs

Exported file will have an invisible tab char-
acter between each field and a carriage

return (Mac) or carriage-return/line feed
(Windows) at the end of each line. If a data

cell contains a comma, it will be surrounded
by quotes (").

Tabs w/o quotes

Exported file will have an invisible tab char-
acter between each field and a carriage

return (Mac) or carriage-return/line feed
(Windows) at the end of each line. No quotes
are added even if the data contains commas.

Chapter 1:Files and Memory Page 247
The Field Names checkbox lets you choose whether you want the first record of the text file to list the field
names. If this button is checked, an extra line will be added to the top of the text file. This extra line will con-
tain the names of each field.

The Output Patterns checkbox controls whether the data is exported using the output patterns set up for each
field (see “Numeric Output Patterns” on page 356 and “Date Output Patterns” on page 361), or in the stan-
dard numeric and date formats. Checking this box will cause numeric and date columns to be exported in
using the output patterns you have set up for each field.

Once you have selected the fields you want exported and checked the appropriate buttons and boxes, press-
ing the OK button will export the data to a text file on the disk.

The Save As command exports only the selected records in the database. If you don’t want to export the
entire database, use the Find/Select command to choose just the records you want (see “Select” on page 440)
before using the Save As command. Only the selected records will be exported.

Word Perfect

Exported file will use Word Perfect’s unique
mail merge format, which requires a Con-
trol-R/Carriage Return between each field
and a Control-E/Carriage Return between

each record.

Option Description Example

Page 248 Panorama Handbook
Exporting with the Text Export Wizard

The Save As dialog gives you limited control over the format of the text you are exporting. For more control
you can use the Text Export Wizard. This wizard allows you to specify the order of the fields being exported,
and to manipulate the data as it is being exported (converting it to upper case, for example, or combining sev-
eral database fields into one export field). The wizard can even be used to convert the database into an HTML
table. To illustrate this wizard we will use this database of national parks.

To begin the export process choose Text Export Wizard from the Wizard menu.

pop-up menu of fields
titles for exported fields

formulas for exported fields

width and align used only for exporting HTML tables

forward/back

export preview

format

Chapter 1:Files and Memory Page 249
To set up a field to be exported simply choose that field using the pop-up menu

When you make your choice the wizard will fill in one line of the configuration.

Repeat the process to select all of the fields you want to export. If a numeric field is selected the wizard will
use the pattern(function (see “Converting Between Numbers and Strings” on page 1249) to convert the
number into text, as shown below. If a date field is selected the datepattern(function will be used to per-
form the conversion (see “Converting Between Dates and Text” on page 1267).

click triangle to select field
from pop-up menu

Page 250 Panorama Handbook
Once the configuration is set up select the Export Text File command to actually export the data.

This command will ask you to select a folder for the exported file, and to type in a file name.

When you press the Save button the file will be exported. Here’s what the resulting text file looks like when it
is opened with a word processor (in this case ClarisWorks™). We’ve set the tab stops to make it easier to see
how the data has been exported as separate, tab separated columns.

Chapter 1:Files and Memory Page 251
The first line of this exported file contains the title of each column (Park, Phone Number, Fee). You can edit a
title simply by clicking on it.

When you are done press the Enter key. If you re-export the data and examine it you will see the new title.

If you want to leave out the first line of titles simply un-check the Title option.

Page 252 Panorama Handbook
With this option turned off the exported data starts right on the first line, with no titles at all.

Editing the Export Configuration

To edit the title, formula, width or alignment simply click on the item you want to edit. A pop-up editing
window will appear (see “The Input Box” on page 376).

If necessary you can expand the input box by dragging on the bottom right hand corner (see “Expanding the
Input Box” on page 377).

Press the Enter key when you have completed editing the item.

Chapter 1:Files and Memory Page 253
To insert a new item in the middle choose Insert Line… from the File menu inside the window.

The wizard will ask you where you want the new line inserted.

When you press OK the new line is inserted.

new blank line

Page 254 Panorama Handbook
To delete an item use the Delete Line… command in the File menu inside the window.

The wizard will ask you which line you want to delete.

Enter the line number and press OK to delete the line.

Chapter 1:Files and Memory Page 255
Common Export Formulas

The Text Export Wizard allows you to use any valid Panorama formula (see “Formulas” on page 1185) to cre-
ate each item. The example below contains several formulas.

The second export field, Location, combines two database fields, City and State (see “Gluing Strings
Together” on page 1235). The fourth export field, Web Site, uses a text funnel to remove http:// and / from
each URL (see “Taking Strings Apart (Text Funnels)” on page 1236).The final export field, Fee, uses the ?(
function to check for parks where the access fee is zero. If the fee is zero then the word FREE is exported
instead of $0.00 (see “The ? Function” on page 1287). This formula also uses the pattern(function (see
“Converting Between Numbers and Strings” on page 1249). See “Using Formulas to Display Text” on
page 671 for more examples of formulas that are useful for exporting data.

The right hand side of the window displays a sample of the exported data for the current record in the data-
base. This preview can be very handy for checking the result of your formulas. Using the small arrows you
can move back and forth to preview other records in the database.

previous record next record

Page 256 Panorama Handbook
Export Templates

If you think you’ll need to use an export configuration more than once you can save it as a template. The first
step is to set up the configuration (as described in the previous section). Once the configuration is set up you
can save it with the Save Template or Save Template As… commands in the File menu.

The wizard will prompt you to type in a name for the new template (the default is the name of the text file
being imported).

Chapter 1:Files and Memory Page 257
Once a template has been saved you can open it again by selecting it from the File menu. (Note: The template
is actually stored in the database being imported into (in this case National Parks). The template is only avail-
able when that database is being exported from. Each database may contain its own separate set of templates,
which makes sense since the export configuration used with one database is not likely to work with any other
database.)

The wizard loads the entire export configuration, ready to go. You can use the configuration as is or modify it
before you actually import the data.

If you want to delete or rename a template choose the Rename/Delete Templates… command from the File
menu inside the window.

Page 258 Panorama Handbook
To rename a template first click on it and then press the Rename button. A dialog appears allowing you to
type in a new name. To delete a template press the Delete button.

When you are done press the OK button.

Choosing a Database to Export From

The Text Import Wizard normally exports from database that was active when the wizard was opened. How-
ever, you can use the Database menu to choose to export from any open database.

Simply choose the database you want to export from and then set up the configuration.

Chapter 1:Files and Memory Page 259
Exporting HTML Tables

To export a database as an HTML table all you have to do is check the HTML option and choose Export Text
File… from the File menu.

When the wizard prompts you for the name of the file to be exported, use .html as the suffix.

When viewed in a text editor you can see that the wizard has included all of the tags necessary to display a
table in your web browser.

HTML option

Page 260 Panorama Handbook
Here’s what the same page looks like when previewed in a web browser.

Using the Generated HTML Page

Just like any other HTML file created with a web authoring tool the file you have created may be copied onto
a web server and used as part of a web site. The Text Export Wizard creates fixed “static” pages that represent
a “snapshot” of the database at a certain point in time. If you want use a Panorama database to create
“dynamic” web pages (for example searching a database on the web or allowing a database to be updated via
the web) you must use our optional PanSTAR web server plug-in. Contact ProVUE Development for details
about this plug-in.

Chapter 1:Files and Memory Page 261
HTML Table Options

As you can see the wizard is capable of making a fairly nice table right out of the box. However if you have
some basic knowledge of HTML you can also customize the generation of the table. Most of the customiza-
tion options are accessible from the HTML Table Options dialog, which can be opened by selecting it from
the File menu or by double clicking on the HTML checkbox.

The dialog allows you to specify about a dozen options for the generated HTML page.

select from menu or double click the checkbox

Page 262 Panorama Handbook
The top third of the dialog controls how HTML is generated for each cell, row, and for the overall page.

Here is an example of customized table options. Consult an HTML reference to learn about the different tag
options you can use when building a table.

Here’s what this table looks like when generated (use Export Text File in the File menu to generate the page).

Option Examples Description

Page Title My Database Page

This is the title for the page. Whatever you type here will appear in the title
bar of the browser, like this.

Page HTML <table border=1><data></table>

This is the template for the overall HTML of the body of the page (the wizard
will create the header and footer automatically. At a minimum it should
include the tags <table><data></table>. The wizard will automatically
replace the <data> tag with the body of table generated from the database.

Row HTML <tr valign=center><data></tr>

This is the template for each line in the table. At a minimum it should include
the tags <tr><data></tr>. The wizard will automatically replace the <data>
tag with the body of the line (which has been built up from individual cells,
see the next entry).

Cell HTML <td><data></td>

This is the template for each cell in the table. At a minimum it should include
the tags <td><data></td>. The wizard will automatically replace the <data>
tag with the data (an individual cell) from the database. As it does so the
wizard will automatically prepare the data for HTML display, for example,
converting non 7-bit characters to the appropriate HTML entity wherever
possible.

Title HTML <th><data></th>

This is the template for each title in the table. At a minimum it should
include the tags <th><data></th> or <td><data></td>. The wizard will
automatically replace the <data> tag with the column title as specified in the
wizard.

small blue text

extra space around cells
red titles

Chapter 1:Files and Memory Page 263
The bottom section of the dialog controls the colors used in the generated page. You can set a page back-
ground color, a default text color, and up to nine table background colors. When multiple table background
colors are defined you can set up a table with an alternating pattern of background colors. To specify a color
you can either type in a six character HTML color (for example #CC0033 or #6699FF) or you can drag a color
from the matrix of “safe” colors on the right.

When you release the mouse the color appears in the box you have selected, along with a preview.

Repeat the process for each background color you want to use.

Here’s what this table looks like when generated (use Export Text File in the File menu to generate the page).

Page 264 Panorama Handbook
By revising the Color Pattern you can change the pattern the wizard uses for alternating the background
color. In the example below the pattern has been revised to use the first color three times and then switch to
the second color for one line. We’ve also revised the Title HTML to make the title appear with a light gray
background.

Here’s what the revised table looks like in a browser.

light gray background for title row
custom color pattern

Chapter 1:Files and Memory Page 265
If you don’t assign any column widths the browser will try to assign appropriate widths for you. If you don’t
like the widths the browser has picked you can specify the widths to be used. The widths are specified in pix-
els. Be forewarned, however, that sometimes a browser may sometimes ignore the widths you specify and go
ahead and use whatever widths it wants!

Here is the revised page as seen in the browser.

You can also set the alignment of each column.

The width and alignment are only used when exporting HTML tables — they are ignored when exporting tab
or comma delimited text.

Page 266 Panorama Handbook
You can customize the formula for a column to generate HTML directly, for example to insert a link tag.

The wizard will use the formula to generate links automatically.

Just click on a link to jump to the corresponding web page!

Chapter 1:Files and Memory Page 267
Monitoring Memory Usage

Each database you open with Panorama is copied into the RAM memory of your computer. For most typical
databases you’ll have plenty of RAM available. You can use the Memory Usage command in the File Menu to
see how much memory is in use and how much is available for expansion or for opening additional data-
bases. This command opens a statistics window that displays the current memory usage of every open data-
base, along with overall memory usage statistics.

At the top of the memory statistics data sheet, each open file is listed with the amount of memory used by
that file (in bytes and as a percentage of the total memory). The Memory In Use line shows the total amount
of memory used by all of the open databases (in this case just under 2 megabytes for 7 databases). The Free
Memory line shows the amount of free memory available for database expansion or for loading more data-
bases (in this case over 32 megabytes). The Total Database Memory line shows the total amount of memory
available for Panorama databases, including the memory that is already in use.

At the bottom of the statistics window the Scratch Memory line shows the size of the scratch memory. The
scratch memory is used on Macintosh computers when Panorama has temporary memory needs for fonts,
pictures, menus, and other system needs. Panorama does not use scratch memory on Windows computers,
which is why that line is blank in the illustration above. On Macintosh systems the Total Size (bytes) column
shows the total amount of memory dedicated to scratch memory (“Changing Scratch Memory Size (Macin-
tosh)” on page 273). The Total Size (percent) column shows the percentage of this scratch memory actually in
use when the statistics window was opened. This is usually a very low percentage (under 10%) because
scratch memory is mostly heavily used at other times.

The memory statistics window has four columns. The first column shows the name of each memory area. The
second column contains the actual number of bytes used by each area, while the third column displays each
area’s memory size as a percentage of the total database memory. The fourth column, Average Size, will be
explained later.

When you are done with the memory statistics window, you can put it away by pressing the close box.

Page 268 Panorama Handbook
Memory Usage Details

The memory statistics window shown above doesn’t show much detail—only the overall memory usage for
each file. You can use Panorama’s outline tools (see “Expanding and Collapsing Specific Details” on
page 473) to expand to greater levels of detail. To see more detail about a particular file, click on that file and
choose the Expand tool.

The database statistics for this file are now divided into five subdivisions: Data Sheet, Forms, Procedures,
Cross Tabs, and Flash Art Scrapbook. (Note: The yellow highlight in the window above is for illustration pur-
poses only, it does not appear in the real window.)

The Data Sheet portion of the file contains the actual data itself. This line shows the number of records in the
database, the total amount of data occupied by the data itself, and the average character length of each record
in the database. In this case the database contains 25 records that are an average of 556 bytes long.

The Data Sheet line can be expanded further to show the amount of memory used by each field in the data-
base, as shown below.

Each line shows the total amount of memory used by one field of the database, and the average size of one
cell. For example, the Contact field (Name) is an average of 16 characters long, while the Company field is an
average of 21 characters long.

Click on the database you want to examine and press the Expand tool

Chapter 1:Files and Memory Page 269
The Forms, Procedures, and Cross Tabs lines can be expanded to show the actual amount of memory used by
each individual form, procedure, and crosstab within the database. The Flash Art Scrapbook line can be
expanded to show the size of each picture in the Flash Art Scrapbook. You usually won’t need this kind of
detail, but it can be useful if a file seems unusually large and you need to find out why.

Multiple Memory Statistic Windows

The memory statistics window displays a snapshot of Panorama’s memory usage at a single point in time.
The window will not be updated as memory usage changes. However, it is possible to take another snapshot
to see how usage has changed. In fact, you can open over a dozen memory usage snapshot windows on the
screen at one time, so that they can easily be compared with each other.

As an example, suppose you wanted to see how much memory is saved by converting the City field in a
mailing list database from text to choice data type. (Using the choice type will save memory by storing the
actual name only once, no matter how many times it is used in the database.) Start by taking a Memory
Usage snapshot to see the original size of the City field. Then use the design sheet to convert the field from
text to choice. Use the Automatic Choices command to create the list of cities (See “Generating a List of
Choices Automatically” on page 366). Finally, choose Memory Usage from the File Menu again to take
another memory snapshot. You can compare the two memory snapshots to see the actual effect of the change
(in this example, 3,474 bytes saved).

before conversion

after conversion

Page 270 Panorama Handbook
Adjusting Panorama’s Memory Allocation (Windows)

As shipped from the factory, Panorama normally allocates 32 megabytes of memory for databases. For most
applications this is more than enough. However, if you wish to use extremely large databases you may need
to increase this allocation. To do this, locate the PanoramaPC.ini file. As shown in the illustration below,
this file is normally located in the C:\Program Files\ProVUE Development\Panorama folder.

Double click this file to open it in the Notepad. (Note: Be sure you open PanoramaPC.ini and not
Panorama.ini . If you open the wrong file, don’t worry, just close it and open the correct file.) The file
should look something like this:

The databasememory line controls the amount of memory allocated by Panorama for databases. You may set
this to any value from 3M to 999M. (Don’t forget the M!). However, if you set this value to larger than the
physical amount of memory available on your computer, you may reduce the amount of virtual memory
available for other applications. We do not recommend opening databases that are larger than the physical
memory size of your computer. Panorama will open the file and operate correctly, but it’s performance may
be severely degraded. Once you have set the new value save and close the window, then relaunch Panorama
if necessary.

Chapter 1:Files and Memory Page 271
Adjusting Panorama’s Memory Allocation (Macintosh)

As shipped from the factory, Panorama normally allocates 15 megabytes of memory on Macintosh comput-
ers. Not all of this memory is available for database use—about 2.5 megabytes are used by Panorama itself,
plus another half megabyte for scratch memory (described below). That leaves about 12 megabytes for data-
bases. This number may be increased (to allow you to open larger databases) or reduced (which allows other
programs more memory to operate, but reduces the size of databases that you can work with).

To adjust Panorama’s memory allocation, locate the Panorama application. If you haven’t moved it, you
should be able to find it inside the Applications folder, as shown below. Make sure you have located the
application itself, and not an alias to the application.

Click once on the Panorama icon, then choose Get Info from the File menu.

Page 272 Panorama Handbook
You should see a window that looks like this:

If the Kind is not application program, you don’t have the right file. Go back and find the correct file. If
you’ve got the correct file, click on the pop-up menu to select the Memory panel.

Chapter 1:Files and Memory Page 273
Now you can set the new Preferred Size for Panorama. Increase it to allow larger databases, or decrease it if
you are running short of memory for other applications.

When you have changed the value simply close the window and re-launch Panorama.

Changing Scratch Memory Size (Macintosh)

Panorama normally reserves 650,000 bytes (650K) for scratch memory. Panorama uses scratch memory as
temporary memory for fonts, pictures, sorting, printing, desk accessories, etc. Usually 650k of scratch mem-
ory is sufficient, but some applications require more scratch memory. Remember, however, that increasing
the scratch memory decreases the amount of memory available for working with databases.

Color Pictures—If your database uses medium to large color pictures, the scratch memory will have to be
expanded. A full size 8 bit color picture can be up to 300k. Scratch memory should be at least 100k larger than
the largest picture you want to draw. If you are using a compressed image format like JPEG you’ll need even
more memory - enough for an uncompressed copy of the image (up to 8 times larger than the disk file).

Large Variables—Panorama’s programming language uses scratch memory to hold variables. If you want to
use extremely large variable values, you may need to increase the scratch memory allocation.

Unusual Printers—Some unusual printers (like the GCC laser printer and the HP DeskJet) may require more
scratch memory.

To change the amount of scratch memory, hold down the Shift key and choose Memory Usage from the File
Menu. Panorama will display the current scratch memory size, and allow you to enter a new size. Enter the
new size and press Ok.

Panorama memory allocation

Page 274 Panorama Handbook
When you press Ok, Panorama will attempt to change the scratch memory immediately. Sometimes this may
not be possible. If the scratch memory cannot be changed immediately, Panorama will ask you to quit and re-
open Panorama. You do not need to reboot the entire machine. Simply re-opening Panorama will be suffi-
cient. You may also want to increase Panorama’s overall memory allocation (See “Adjusting Panorama’s
Memory Allocation (Macintosh)” on page 271).

It’s also possible to set up a procedure to automatically modify the scratch memory allocation. See “Changing
the Scratch Memory Allocation” on page 1543 to learn how to do this.

Chapter 2: Windows

As you use Panorama most of the action takes place inside windows. Panorama uses standard windows with
a few unique touches, including a tool palette with pop-up help on the left side of each window. Panorama
also has an enhanced zoom box that lets you zoom a window to a specific position. This chapter covers both
the standard and enhanced window features.

Window Components

Each Panorama window has about a dozen components for configuring and controlling the window. Each of
these components is activated by clicking or dragging with the mouse. Here’s what a typical Panorama win-
dow looks like on a PC system.

On the Macintosh windows look very similar, except that the close box is on the left and the title is centered.

grow box

scroll bar

scroll bar
info palette

close box

zoom box (maximize)
minimize (inactive)

title

tool palette

drag bar

Page 276 Panorama Handbook
Tool Palette

The left side of each window contains a tool palette. To help you learn and remember the function of each
tool, the tool palette displays a pop-up caption whenever you click on a tool. The caption will remain visible
as long as you hold the mouse down over the tool.

Unlike most tool palettes that perform a function when you click on a tool, Panorama’s tool palette doesn’t
perform the function until you release the mouse. This allows you to look at the caption before you activate
the tool. (Of course, you don’t have to hold down the mouse and look at the caption. Once you have memo-
rized the tool icons you can simply click on the tool you want—just like your favorite graphics or page layout
program.)

You can scan through the tool captions by dragging the mouse up or down the palette (just as you would
scan across the menu bar). The caption for each tool pops up as the mouse is dragged across it. You can stop
at any time and release the mouse to activate a tool.

Remember, to activate a tool you must release the mouse over the tool itself—not over the pop-up caption.
The pop-up caption is not a menu.

press on any tool to see caption
release to activate tool

Chapter 2:Windows Page 277
Scrolling the Tool Palette

What if all the tools don’t fit in the window? You can scroll the tools by pressing on any tool and then drag-
ging to the top or bottom of the palette. When you reach the edge of the palette the tools will scroll. You can
also scroll the tools by clicking on one of the small arrows at the bottom of the palette. Each click scrolls by
one tool.

Close Box

Clicking on the close box makes the window go away. If you hold down the option key (Mac) or alt key (PC)
while you click the close box, Panorama will close the current file along with all of its windows.

Drag Bar

The drag bar allows you to move the window to a new position. When you press the drag bar a dotted out-
line of the window appears. Drag the outline to the new position, then release the mouse. Moving the win-
dow does not change the contents of the window. (You can also move the window by zooming into a spot—
see below.)

Title

The window title displays the name of the database and information about the view being displayed in the
window (form name, magnification, etc.).

Zoom Box (Maximize)

Clicking on the zoom (maximize) box allows you to quickly zoom the window to cover the entire screen.
Clicking the zoom box again pops the window back into its original position. The zoom box is very handy
when you want to temporarily concentrate on a specific window.

The zoom box can also be used to move a window to a specific spot on the screen. See “Zooming Into a Box”
on page 281.

Grow Box

The grow box adjusts the size of the window. When you press on the grow box a dotted outline of the win-
dow appears. Drag the bottom right hand corner of this outline and then release to set the new window size.
(You can also set the size of a window by zooming into a spot—see above.) On PC systems you can also
adjust the size of a window by dragging any side of the window.

scroll downscroll up

press and drag to scroll

Page 278 Panorama Handbook
Scroll Bars

The scroll bars are used to shift the information or graphics displayed in the window. The vertical scroll bar
(on the right edge of the window) shifts the display up and down, while the horizontal scroll bar (on the bot-
tom edge of the window) shifts the display left and right. The sliding box inside each scroll bar shows the
current position of the display.

Splitting a Window

Some Panorama windows can be split into two side by side panes. Each pane displays a different area of the
database. The two panes are locked together vertically, but each pane has its own horizontal scroll bar.

To split a window, drag the splitter to the right. (The splitter is the small black rectangle to the left of the hor-
izontal scroll bar.)

To remove the split, drag the splitter back to the left edge. To adjust the split location, drag the splitter into
position.

press and drag to split window

each pane may be scrolled separately

drag to adjust split

Chapter 2:Windows Page 279
Info Palette

Many Panorama windows display an Info Palette along the bottom left corner of the window. In windows
that are used for displaying and editing data (data sheet, forms, crosstabs), the info palette displays the cur-
rent number of database records in the bottom left corner of each window. Panorama displays both the total
number of records and the number of visible (selected) records.

If the window is less than 3 inches wide, the record count will not appear. You can also turn the record count
on or off with the Show Record Count command in the Setup menu.

Clicking anywhere in the record count opens the Find/Select dialog. This dialog allows you to locate infor-
mation within the database. See “The Find/Select Dialog” on page 435 for details on this dialog.

When a form window is switched into Graphic Display Mode the Info Palette displays a graphic control
strip. This strip displays the graphic attributes of the currently selected object (or objects), and allows you to
change the attributes with pop-up menus.
.

See “The Graphic Control Strip” on page 562, for more information on the graphic control strip.

Procedure windows also display status information along the bottom of the window. When writing a proce-
dure Panorama displays error messages here. When single stepping through a procedure Panorama displays
the results of any assignments into fields or variables in this area (see “The Panorama Interactive Debugger”
on page 1417).

total number of records in database
number of records in currently visible subset

object type and IDobject dimensionsobject font and size

object color
line width

line pattern
fill pattern

Page 280 Panorama Handbook
Bringing a Window to the Front

Each new window you open appears on top of the other windows. To bring another window to the front,
simply click anywhere on the window. If the window is hidden you can bring it to the front with the Arrange
Windows sub-menu in the File Menu.

Another way to bring a window to the front is to use the Arrange Windows wizard (see “Bringing Windows
to the Front” on page 295).

Hiding Windows

The Hide This Window command (in the File:Arrange Windows submenu) temporarily hides the current
window. The window becomes invisible, but can be made to re-appear by selecting it from the Arrange Win-
dows submenu.

The Hide Other Windows command (in the File:Arrange Windows submenu) temporarily hides all Pan-
orama windows except for the current window.

The Show All Windows command (in the File:Arrange Windows submenu) makes all invisible windows vis-
ible again.

open windows

Chapter 2:Windows Page 281
Zooming Into a Box

The zoom box can also be used to zoom the window into a pre-defined box on the screen. This allows you to
move and resize the window in one step.

To zoom a window to a specific spot you must hold down a special key while you click on the zoom box. On
Windows (PC) systems this is the Control key, on Macintosh systems this is the Command key. When you
click on the zoom box while holding down this key the window options dialog will appear.

Drag the mouse across this dialog to define the new location for the window. When you press Ok, the win-
dow will “hop” into the new location.

Saving Window Positions

If you check the Save Window Positions option in the Save As dialog, Panorama will remember the position
of each open window in the file being saved. The next time the file is opened, Panorama will open the same
windows in the same positions.

drag mouse across
fake screen to define
new window position

original window position
other windows

Page 282 Panorama Handbook
Note: The Save Window Positions option is only available when you save an individual file. You cannot save
window positions as part of a file set. If you want the files in a file set to open with predetermined window
positions, you must save each individual file with the Save Window Positions option enabled.

Saving with No Windows

If you check the No Windows option the database will open without any open windows at all. Why would
you want a database without any windows? It could be used as an invisible reference to store information
that is needed by other databases but never (or rarely) changes, for example a tax or shipping rate table (see
“Linking With Another Database” on page 1289). A database with no windows can also be referenced by a
procedure using “secret windows” (see “Temporary “Invisible” Windows” on page 1554).

If you want to open a window in a database that has been saved with the No Windows option you can use
the View Wizard. See “The View Wizard” on page 307 to learn how to open windows in any database. You
can also open a window in an invisible database with a procedure. See “Databases Without Windows” on
page 1554 to learn how to bring back windows using this technique.

As an alternative to saving a database with the No Windows option you can instead open the database with a
procedure using the opensecret statement (see “OPENSECRET” on page 5579). This statement opens the
database without any windows.

Chapter 2:Windows Page 283
Turning Window Components On and Off (Window Tweak Wizard)

Using the Window Tweak command in the Wizard menu you can enable and disable the tool palette and
scroll bars in a form. Start with a normal form window.

When you choose Window Tweak the wizard will remove the tool palette and scroll bars from the window.

Choose Window Tweak again to bring the tool palette and scroll bars back again.

Page 284 Panorama Handbook
In addition to “tweaking” the current window the Window Tweak wizard also opens a small window.

When this window is open you can quickly tweak any form window. Simply bring the form window to the
front, then click on the big round Tweak button.

You can also use this window to control which window components get “tweaked.” Normally both scroll
bars and the tool palette get tweaked. However, you can disabled some of these options. A disabled option
doesn’t get tweaked. For example, if the Tool Palette option is disabled then the tool palette will not be
removed. Here is a window with both scroll bars “tweaked” but the tool palette has been left alone.

When you press the Tweak button again the scroll bars will re-appear.

Chapter 2:Windows Page 285
Measuring a Window (Window Size Wizard)

Sometimes you may need to measure the height and width of a window (for example if you want to write a
procedure to re-open the window the same size, see “Specifying the New Window Location” on page 1545).
It’s easy to measure a window with the Window Size wizard. First bring the window you want to measure to
the front, then select Window Size from the wizard menu.

The wizard will cover the window and show the dimensions of the window.

Page 286 Panorama Handbook
Don’t worry, your original window is still there. It’s just hidden behind the Window Size wizard, as you can
see by dragging the wizard to the side.

You can drag and resize the window anywhere you like. Or you can simply click on a window and select
Window Size from the Wizard menu and the size window will jump to cover the window you have selected.
When you’re done with the window you can simply close it.

Setting Exact Window Dimensions

In addition to displaying the current window dimensions the Window Size wizard can also be used to pre-
cisely set new dimensions. Start by opening the wizard, as described in the previous section. Then choose the
Set Size command from the WindowSize menu.

This command displays a dialog that shows the current window dimensions.

Chapter 2:Windows Page 287
Use this dialog to type in the new dimensions you want.

When you press the OK button Panorama will adjust the size of the wizard’s window to the new dimensions.

Page 288 Panorama Handbook
When you close the wizard’s window (or move it to the side) you will see that the original window has also
been adjusted to the new dimensions.

Chapter 2:Windows Page 289
Arranging All Open Windows at Once (Tiling and Stacking)

Normally you manipulate one window at a time. The Arrange Windows wizard allows you to arrange all of
the open Panorama windows into a regular pattern, either side by side (tiled) or piled on top of each other
with a slight offset.

To illustrate the operation of this wizard, let’s suppose that there are currently six Panorama windows open
in more or less random locations, like this.

The first step is to choose Arrange Windows from the Wizard menu. This displays the Arrange Windows
options.

Page 290 Panorama Handbook
To arrange the windows in a grid (like floor tiles) press the Tile button.

If you decide you don’t like this new arrangement you can revert to the original window positions by press-
ing the Restore button.

To make all the windows the same size, arranged in a staggered pattern, press the Stack button.

Chapter 2:Windows Page 291
When Panorama stacks or tiles the windows it checks the attributes of each window. It won’t make any win-
dow smaller than it’s minimum size or larger than it’s maximum size. Sometimes this can prevent the tile or
stack patterns from aligning perfectly. For example, suppose you start with the windows shown here.

Because of restrictions on the minimum and maximum window dimensions these windows cannot fit per-
fectly in the tile pattern. Panorama will leave some gaps and some overlaps.

limited to
max width

limited to
min heightlimited to

max width

limited to
max height & width

Page 292 Panorama Handbook
Saving and Restoring Window Positions

The Arrange Windows wizard automatically saves window positions each time you Tile or Stack the win-
dows, allowing you to go back to the original window configuration. You can also ask the wizard to save the
current window positions at any time.

Later you can restore the original window positions by choosing Restore Window Positions. Please note,
however, that this only affects the windows that were open when the window positions were saved. If a win-
dow has since been closed, Restore Window Positions will not re-open it. Conversely, if additional windows
have been opened since the window positions were saved these new windows will not be affected by the
Restore Window Positions command.

Choosing Tile Configurations

The Arrange Windows wizard allows you to choose pattern used for tiling windows. For example, suppose
you have ten windows. Should the tiles be 4 by 3, or 5 by 2, or 2 by 5 or some other design? We’ve supplied a
default arrangement, but you can open the Tile Configurations window to change the design at any time.
When you open this window it shows you the current configuration for the current number of windows. In
this example there are currently 10 windows open, and they will be tiled into a 4 high by 3 wide grid. Any
empty slots are displayed in light green.

Chapter 2:Windows Page 293
To change the configuration simply press the mouse anywhere on the grid. A pop-up menu listing possible
arrangements will appear.

Page 294 Panorama Handbook
Select the arrangement you want from the pop-up menu. After you make your selection the grid will be
updated to reflect your choice.

Chapter 2:Windows Page 295
You can use the list on the left side of the window to set up the configuration for any number of windows (up
to Panorama’s maximum of 32 windows).

When you are done simply close the Tile Configuration window and press the Tile button.

Bringing Windows to the Front

The Arrange Windows wizard also provides an alternative method for bringing a window to the front. To
bring any window to the front, click on the arrow button.

When you press on this button a menu listing all the open windows will appear. Simply select the window
you want to bring to the front.

Of course you can also bring a window to the front by clicking on it or using the Arrange submenu in the File
menu (see “Bringing a Window to the Front” on page 280).

click here for window menu

Page 296 Panorama Handbook

Chapter 3: Views

A Panorama database can have up to six elements: data sheet, forms, design sheet, procedures, crosstabs, and
flash art. Each window shows a view of one of these elements.

The View menu is just to the right of the Edit menu.

Use this menu to pick which view you want to see in the window. Choosing different views from this menu is
like pointing a camera in different directions.

Types of Panorama Views

Panorama has six different kinds of views. Each type of view gives you access to a different element of the
database or gives you a different perspective on your data (for example, form vs. data sheet).

Forms

Crosstabs

Procedures

Page 298 Panorama Handbook
A new database starts with a data sheet, design sheet, and an empty flash art scrapbook. Views for forms,
procedures, and crosstabs can be added if desired.

Data Sheet and Form Views

The most important views are the data sheet and forms. These views give you access to the actual data. Use
the data sheet view when you want to display the database as a sheet of rows and columns. The data sheet
view has a fixed format very much like a spreadsheet, as shown below. Although you can make minor alter-
ations like changing the font size or the width of a column, you cannot add graphics or change the overall
arrangement of the data sheet view.

Chapter 3:Views Page 299
Use a form view when you want complete control over the arrangement and appearance of your data.
Instead of appearing in a fixed row and column grid, the data can be arranged any way you want. Graphics
can be added for clarity or to simulate an actual paper form. The form view is much more flexible than the
data sheet view, but it is also more work to set up. Here is a typical example of a form. Notice that the win-
dow name shows the database name, Checkbook, followed by the form name, Plain Checks.

Every Panorama database has a single data sheet view, but can have any number of form views. A simple
database might not have any form views, while a complex database may have dozens. You create as many
forms as you need. Each form is identified by a unique name.

Since the data sheet and form views are based on the same underlying data, any action or change made to the
data in one of these views will immediately appear in the other views. Of course you’ll only notice this when
several windows are open at once.

Other Views

In addition to the data sheet and form views Panorama has four other kinds of views. Instead of accessing the
actual data, these views let you access the other components of a Panorama file.

The design sheet view is the DNA or blueprint of the database. It contains the actual structure of the database
fields. You can add and remove fields and make other minor modifications to the database structure without
using the design sheet, but the design sheet provides the ultimate control over the structure of your database.
See “The Design Sheet” on page 332 to learn more.

Page 300 Panorama Handbook
The flash art scrapbook view contains a catalog of pictures that can be displayed in a form or report. Using
the flash art scrapbook can sometimes save a significant amount of memory over pasting pictures directly
into the database, and it can be easier too. To learn more about the flash art scrapbook see “The Flash Art
Scrapbook (Gallery)” on page 816.

Crosstab views display a special 2-way summarization of the information in a database. Crosstabs display
the relationships between data in different fields, exposing trends that might be invisible in the normal data-
base views (data sheet and forms). Like form views, a database can contain any number of crosstab views—it
may have none or several, and each crosstab has a name. The window name shows the database name (for
example Checkbook), followed by XTABS, followed by the crosstab name (for example Spending by Month).
To learn more about crosstabs see “Crosstabs” on page 493.

Chapter 3:Views Page 301
Procedure views contain sequences of instructions for Panorama to follow. You don’t have to remember each
step—Panorama will remember for you. Once a procedure is set up, it can be activated several different
ways. You can choose the procedure from a menu, press a button, or use a Command key combination (Mac-
intosh) or Control key shortcut (PC). Procedures can even be activated automatically when special events
occur. Like form and crosstab views, a database can contain any number of procedure views. Each procedure
has its own name, which is shown in the window title. To learn more about procedures see “Procedures” on
page 1345.

Page 302 Panorama Handbook
Switching Between Views

The View Menu lists all the views in a database. The pre-defined views appear at the top—data sheet, design
sheet, and flash art scrapbook. Next come the views you’ve created—forms, crosstabs, and procedures. The
View Menu also contains commands for creating your own new views—new form, new crosstab, and new
procedure.

To switch to a different view within the same window, simply choose the view from the menu and release the
mouse. You can flip back and forth between views at any time.

Forms

Crosstabs

Procedures

Chapter 3:Views Page 303
Opening More Than One Window Per Database

You can also use the view menu to open a new window, allowing you to see two views of the database at
once. To open a second window the same size as the current window, hold down the Alt key while you select
from the View Menu. (If you are using a Macintosh, hold down the Control key or the Option key.) The new
window will appear slightly below and to the right of the original window.

1) Start with one window

2) While holding down the Alt key (PC) or the Control key (Mac), make a
selection from the View menu. On the Mac you can also use the Option key.

3) The new window appears sightly below and to the right...

Page 304 Panorama Handbook
The new window will track the original window. In fact, all windows associated with a database will track
each other automatically. Any changes made in one window automatically appear in all other windows, and
when any navigation is done in one window (moving up or down within the database) all of the other win-
dows will follow along.

Another technique allows you to control the exact size and position of the new window in advance. (Of
course you can always drag and resize it after it has been opened.) To use this technique, hold down the
Control key while you select from the View Menu. (If you are using a Macintosh, hold down the Command
key.) After you choose the view you want to open, the Window Options dialog will appear shown below.
This dialog shows a miniature view of the entire computer screen, along with the positions of every window.

Chapter 3:Views Page 305
To define the position and size of the new window, simply drag a rectangle across the miniature screen, as
shown in the illustration above. If you don’t get the position quite right, simply drag again. (Of course you
can also adjust the position and size later.) When you press the Ok button the new window will open in the
location you have specified.

New window

Original window

Page 306 Panorama Handbook
Window Options

The Options button in the Window Options dialog allows you to selectively eliminate up to four components
from a new window—the tool palette, scroll bars, and drag bar (you can also turn these components on and
off with the Window Tweak wizard, see “Turning Window Components On and Off (Window Tweak Wiz-
ard)” on page 283). This illustration shows a form with the scroll bars removed.

Some views will not work properly if components are eliminated—for example, you should not eliminate the
vertical scroll bar from a data sheet. Be very careful if you remove the drag bar. If the drag bar is removed, the
window cannot be manually moved, resized, or closed. (It can be closed by programming a procedure to
close the window.)

Chapter 3:Views Page 307
The View Wizard

The View menu works well for most databases, but when a database grows to dozens of forms and hundreds
of procedures it can get a bit unwieldy. For these situations the View Wizard comes in handy. This is a data-
base that comes with Panorama that can help you locate and open any view. When you first open the View
Wizard database it displays a list of all the forms or procedures in the currently open Panorama database.
(Whether it initially displays forms or procedures depends on what type of window was open before the wiz-
ard was activated.) For example, suppose the Panorama 3 MegaDemo™ file is open.

When the View Wizard opens it displays a list of the forms in this database (Panorama 3 MegaDemo).

Page 308 Panorama Handbook
Double click to open a form or procedure.

By pressing one of the three buttons at the top of the window you can list forms, procedures or crosstabs.

forms procedures crosstabs

Chapter 3:Views Page 309
In addition to double clicking you can also open a view by typing its name. Thanks to Panorama’s Clairvoy-
ance™ feature (see “Clairvoyance®” on page 387) you only have to type in the first few characters. When you
have typed in enough characters to uniquely identify the form, procedure or crosstab you can simply press
the Enter key to open the window.

Use the Special menu to open the data sheet or the design sheet.

type .Bi to select .BibleArea

then press Enter to open the window

Page 310 Panorama Handbook
Use the Database menu to view forms, procedures or crosstabs in a different open database.

View Wizard Window Size and Options

The controls at the bottom of the View Wizard window allow you to control the size and options of the new
window. You can type in the height and width, or select them from pop-up menus.

type in height and width

or select
from pop-up menu

Chapter 3:Views Page 311
If you are opening a form view you can also use the three checkboxes to control whether or not the tool pal-
ette, scroll bars and drag bar appear in the new window. (These checkboxes are ignored when opening other
kinds of windows.) In this example the tool palette and both scroll bars have been turned off.

You can adjust a form window’s size and options after you have opened it. Simply double click the form
name again to update the form with the new size and options. (You can also adjust the options with the Win-
dow Tweak wizard, see “Turning Window Components On and Off (Window Tweak Wizard)” on page 283.)

no horizontal scroll bar

no tool palette

no vertical scroll bar

Page 312 Panorama Handbook
Searching All Procedures

The View Wizard has the capability of searching the text of all procedures in a database. Simply click next to
the word Search and type in the word or phrase you want to search for.

When you press the Enter key the wizard will display a list of the procedures that contain the word or phrase
you have typed in, in this case shopping.

click here and type in word or phrase
you want to search for

Chapter 3:Views Page 313
When you double click on one of these procedures the wizard will open the procedure window and automat-
ically locate the first occurrence of the word or phrase.

Choose Find Next from the Search menu to find the next occurrence of this word or phrase within the proce-
dure (if any).

Page 314 Panorama Handbook
You can repeat using the Find Next command until you have located every occurrence of the word or phrase
in this procedure. At that point you’ll need to go back to the View Wizard to continue with the next proce-
dure.

You can continue this process until you have located every occurrence of the word or phrase in the database.

Chapter 3:Views Page 315
Form Modes: Data Access vs. Graphic Design

Unlike other views, the Form View operates in two distinct modes—data access and graphic design. Data
access mode (also called “data mode”) is the default mode. In this mode you can view and display data, and
navigate through the database.

Graphic design mode (also called “graphics mode”) functions like an electronic drafting table. In this mode
you design the form by drawing lines, boxes, and other graphic elements. This mode is very similar to many
drawing and page layout programs. Graphic design mode is easily recognized by the rulers that appear at
the top and left edges of the windows.

To switch between data access and graphic design modes, click on the tool. Each click on this tool toggles
the window between the two modes.

Toggle graphic/data modes

Display/Edit

Navigation Controls

Toggle graphic/data modes

Graphic tools

Movable graphics and textRulers

Page 316 Panorama Handbook
Form Operation: Individual Pages vs.View-As-List

Panorama allows you to set up blank forms as individual pages or as a continuous sheet (view-as-list). When
forms are set up as individual pages you see one record at a time. You can flip through the records just as you
would shuffle through a stack of paper forms. All of the examples of forms you’ve seen so far are individual
page forms.

A view-as-list form displays data as a continuous sheet, as shown below.Instead of flipping from record to
record, you scroll up and down through the data in a manner similar to the data sheet. However, unlike the
data sheet, a view-as-list form allows you to arrange the data any way you like, and even include graphics in
the display. On the other hand, view-as-list forms are slower than the data sheet (because of the overhead in
displaying the graphics) and they are much more work to set up.

Unless you tell it otherwise, Panorama sets up a new form as individual pages. To convert the form to a con-
tinuous sheet you must use the Form Preferences command (Setup menu) to set the View-as-List option. You
will also have to define the boundaries of the form by setting up a data tile (and optional header tile). For
more information about setting up view-as-list forms see “View-As-List Forms” on page 917.

Chapter 3:Views Page 317
Creating a New Form, Crosstab or Procedure

To create a new view, choose New Form, New Crosstab, or New Procedure from the View Menu. A dialog
box will appear asking you to name the new view. A view name may be up to 25 characters long and can con-
tain any letter, number or punctuation.

When you create a new view, it is usually added to the end of the appropriate section in the View Menu. For
example, a new form usually becomes the last form in the View Menu. If you wish, you can insert the new
view into the middle of the View Menu. To do this, check the Insert before button and use the pop-up menu
directly below the Insert before button to specify the position of the new view. You can also re-arrange the
order of the views using the Re-Arrange command in the Setup menu.

Page 318 Panorama Handbook
Renaming a Form, Crosstab or Procedure

To rename the currently visible form, crosstab or procedure choose Rename Form, Rename Crosstab, or
Rename Procedure from the Setup Menu. Type in the new name (limit 25 characters) and press Ok.

Deleting a Form, Crosstab or Procedure

To delete a form, crosstab, or procedure choose Delete Form, Delete Crosstab, or Delete Procedure from the
Setup Menu. Since you cannot undo after you delete a view, Panorama will ask you if you are sure before it
actually deletes the view. Note: If only one view is open and you remove it, Panorama will close the entire
file. To avoid this, open an extra window before you delete a view.

You can also delete views with the Re-Arrange command in the Setup menu (described in the next section).
The Re-Arrange command is the fastest way to remove several views at once (see below).

Changing the Order of Forms, Crosstabs or Procedures

The Re-Arrange Forms, Re-Arrange Crosstabs, and Re-Arrange Procedures commands in the Setup menu
change the order of the items listed in the View Menu. Each of these commands displays a dialog box listing
the current view order on the left and the new view order on the right.

Chapter 3:Views Page 319
This dialog is like a puzzle—the object is to move the views from the left to the right in the order you want. To
move a view to the other side, either double-click on it or press the >>Move>> button. To insert a view into
the middle of the list on the right, first select the spot where you want to insert and then press the >>Insert>>
button. When all the views have been moved to the right hand side, press the Ok button to rearrange the
views.

You can also use this dialog to delete views. To delete one or more views, press the Delete button instead of
moving the view to the right. Warning: You cannot delete an open view using the Re-Arrange command.
First close the view (form, crosstab or procedure) and then delete the view.

The Privilege Dialog

The View menu normally gives you complete freedom to access any view in your database. If other people
are going to be using your database you may want to prevent them from switching to unauthorized views.

To restrict user access to the View menu, use the Privilege dialog (shown below). To open this dialog on a
Macintosh computer, hold down the Command or Option key and choose About Panorama from the Apple
menu. To open this dialog on a Windows system, hold down the Control or Alt key and choose About Pan-
orama from the Help menu. This dialog allows you to choose one of three possible user levels for the current
database: Author, User, and Custom.

Page 320 Panorama Handbook
The Author level places no restrictions on the user—he or she can change the database design, draw graphics,
open and close windows, and generally perform any Panorama operation described in this manual.

The User level allows the user to perform data entry and analysis, but prevents the user from changing the
database design or changing the graphics in a form. User level disables the View menu, so the user cannot
choose which view he or she wants to use. They can only use views that are opened automatically when the
database is opened or views that are opened with procedures set up in advance.

The Custom level is even more restrictive. All of the tools in the tool palette disappear, along with all of the
menus except for the File, Edit and Action menus. When the database is locked to the custom level, the user
can perform data entry and predefined programs (procedures)—and that’s it. Everything else is forbidden.

To prevent unauthorized users from changing the user level, the Privilege dialog can be protected with a
password. Once the password is set, you cannot open the Privilege dialog unless you know the password.

User Levels vs. Save Window Positions

If the user level is set to User or Custom the Save command will not save the new window positions—even if
the Save Window Positions option is turned on. The window positions are only saved when the file is at the
Author level. This allows the database author to reliably set up the initial views and window positions.

Hiding Sensitive Data

Since the User and Custom levels prevent the user from using the View menu, it is possible to hide fields con-
taining sensitive information from most users of a database. To do this:

1) Create a form that shows only the non-sensitive data.
2) Close all of the other windows associated with this database.
3) Save the database with the Save Window Positions option checked.
4) Set the user level to User or Custom (you will probably want to set a password at this time also)
5) Save the file again.

The next time this database is opened, only the form displaying the non-sensitive data will appear. Since the
database is locked, the user cannot open any of the views that contain sensitive information. Users who know
the password can use the Privileges dialog to switch to Author level, or you can set up a procedure that
switches views if the user knows the correct password.

Chapter 4: Records

The heart of a database is, naturally, the data stored in it. Since storing and organizing data is Panorama’s pri-
mary task, it has special rules and procedures for handling data.

Data Organization

Inside each Panorama database the information is organized into records and fields. A record consists of a
group of related information. In a personnel database, for example, each record would contain all the infor-
mation about a single employee. Most databases have anywhere from several dozen to several thousand
individual records. The example database shown below has 102 records, 17 of which are currently visible in
the window.

The database is also divided into fields. Each field contains a specific item of information—a street address, a
phone number, a birthdate, etc. Most databases have somewhere between five and one-hundred fields (Pan-
orama allows up to 65,000 fields per database).

records

fields

Page 322 Panorama Handbook
Every record in a database contains exactly the same fields. If certain records don’t use a particular field it can
be left empty, but the field itself still exists for every record. For example, notice that in the illustration above
some of the Title and Company entries are empty. (However, you can create a form that does not display all
of the fields. See “Displaying and Editing Text” on page 637.)

As you work with a database, you will constantly be adding new records, revising and removing old records,
and rearranging (sorting, etc.) existing records. Fields can also be added, revised, and removed, but you will
do this much less often. Once the fields are set up, you will usually leave them alone.

Tables vs. Individual Pages

Panorama can display any database either as a table of records or as an individual page for each record. In the
table format each line corresponds to a record, and each column corresponds to a field. Common examples
include phone directories and price lists. In the individual page format each page corresponds to a single
record. Each item on the page corresponds to a field. Common examples include invoices, tax returns, and
report cards.

Panorama doesn‘t care whether the database is displayed as a table or as individual pages. As you can see,
the same information is displayed and edited either way. Use the method that seems natural for the database
you are working with.

Special Records

Most database programs treat every record the same way. Panorama, however, distinguishes between three
different types of records: data records, summary records, and invisible records. Most of the work you do
will be with ordinary data records. Summary and invisible records, however, are the keys to some of Pan-
orama’s unique capabilities.

Data Records

Ordinary records used for data storage are called data records. You can create new data records one at a time
by keying in information, or you can add many new data records at once by importing data.

Chapter 4:Records Page 323
Summary Records

Summary records are temporary records used for calculating totals, subtotals, and other summary informa-
tion. Panorama’s Group commands automatically create summary records for you. When viewing the data-
base as a sheet you can identify summary records by the small plus sign on the left, and by the fact that they
are usually displayed in bold.

Summary records may appear in one of seven levels, from 1 to 7. Each higher level is used for a higher level
of subtotal. Each summary level can be identified by the size of the + sign in front of the record, as shown
here. This database has been grouped into three summary levels.

summary records

level 1 (company)

level 2 (category)

level 3 (grand total)

Page 324 Panorama Handbook
Panorama allows you to treat summary records as a collapsible outline. You can use the Outline Level com-
mand to collapse the outline to show only high level summaries, then use the Expand, Expand All, and Col-
lapse tools to expose the detail you need to see. For more about Panorama’s outline capability, see
“Summaries and Outlines” on page 453.

Summary records are designed to have a very short lifetime—usually only a few minutes. When you want to
calculate subtotals or other summaries you‘ll create new summary records. After you’ve examined (and pos-
sibly printed) the summaries, you’ll use the Remove Summaries command to remove them so you can get
back to regular work with your database. For more information about summary records, see “3-Step Summa-
rizing” on page 453.

Invisible Records

Invisible records are ordinary data or summary records that have been made temporarily invisible. For
instance right now you might be interested only in sales made in California, transactions over $250,000, or
invoices over 45 days old. Panorama’s Find/Select commands allow you to choose the data you want to see
and make the rest temporarily invisible. This allows you to see just the information you are interested in
without the other data getting in the way.

The following illustrations show a typical example. The original database started out with 102 records. We
can use the Find/Select command to make 92 of these records temporarily invisible.

Expand All
Collapse

Expand

Chapter 4:Records Page 325
When the Select button is pressed, only records in Texas remain visible. All other records become temporarily
invisible.

At any time you can make all records visible again with the Select All command. You can also make a new
selection at any time. For more information about invisible records, see “Finding vs. Selecting” on page 433.

Page 326 Panorama Handbook

Chapter 5: Fields

The information stored in a database is organized into records and fields. Each field contains a specific cate-
gory of information—names, phone numbers, birthdates, etc. Your first task after creating a new database is
to decide how many and what fields are needed to get the job done. It’s somewhat like designing a house—
you have to decide what the best configuration is. How many bedrooms you need? How many baths? Will
you need an office? And just like architecture, there are sometimes trade-offs that have to be made in design-
ing a database.

For some database jobs it is extremely obvious how the fields should be set up. But usually you have more
flexibility than you might think. Take a simple name and address list, probably one of the most basic database
applications. How should the name be stored? All in one field? Or should there be separate fields for first and
last names? What about Mr./Ms./Mrs., should that be in a separate field? There are no hard and fast
answers—it depends on how you want to use the database. For this example (names), data entry will proba-
bly be easier if you use a single field. On the other hand, you’ll have more options for organizing and format-
ting if you split the name into several fields. The choice is up to you.

One thing to keep in mind is that if you make a mistake, it is much easier to combine two fields together than
it is to split a single field into two. For example, it is quite easy to take separate first and last name fields and
combine them, but if you type the names into a single field it could be quite difficult to later split them apart.
If you have any doubt, it is better to err on the side of separating the data into more fields.

You can add new fields, remove fields, or change the properties of fields at any time, even after you’ve filled
the database with data. Once you start entering data, however, it can be more work to re-arrange the fields.
Some extra planning before you start entering data can pay big dividends in the long run.

Page 328 Panorama Handbook
The Setup Menu

The simple way to add or remove fields is to use the Add Field and Delete Field commands in the Setup
Menu. You can also change most of the properties of a field (name, type of data, display format etc.) with the
Field Properties command. These commands are available at any time when you are using the data sheet,
and are also available when you are designing a form (graphic design mode).

In the data sheet you can also open the Field Properties dialog by double clicking on a field name.

double click column title to open field properties dialog

Chapter 5:Fields Page 329
Add Field

To add a new field, use the Add Field command in the Setup Menu.

You can add the new field at the end (the right edge of the data sheet) or you can insert the new field in the
middle of the database. In addition to the field name, you can use pop-up menus to set up the properties of
the new field. The Type pop-up tells Panorama what kind of data you expect to store in the field—text,
numeric, etc. See “Setting Up a Field’s Data Type” on page 352 for a full explanation of data types and the
number of digits. The Alignment pop-up controls how the field is aligned in the data sheet—left, center, or
right flush. The Auto Capitalize, Duplicates, and Clairvoyance pop-up menus turn on various data entry
options—see “Data Entry Accelerators” on page 384 for more information.

Use the Patterns dialog to set up the display format for numbers and dates. Output patterns are discussed in
detail in “Numeric Output Patterns” on page 356 and “Date Output Patterns” on page 361.

Page 330 Panorama Handbook
Use the Data Entry dialog to set up the Input Pattern, Default Value, Range, and Space Bar Tab. These options
are described in detail in Chapter 7, Data Entry & Editing.

Field Properties

To change the properties of an existing field first select a cell in that field and then choose Field Properties
from the Setup Menu. (If you are using the data sheet, you can also open the dialog by double clicking on a
column name.) This dialog is almost identical to the Add Field dialog, and allows you to change the field
name, data type, etc.

Delete Field

To delete a field from the database, select a cell in the field and choose Delete Field from the Setup Menu. (If
you are using the data sheet, you can also press Command-Delete (Mac) or Control-Delete (Windows) to
delete a field.) This not only deletes the field, it also deletes any data in the field. If the field contains data,
Panorama will warn you that it is about to delete the field. You must confirm that you really want to delete
the field before Panorama will proceed. You cannot Undo this operation, so be careful!

Chapter 5:Fields Page 331
Changing the Width of a Field

To change the width of a field in the data sheet, move the mouse over the column name. When you move the
mouse over the column name, the cursor will turn into a double headed arrow. When you press the mouse, a
gray box appears around the column. Drag the mouse left or right to expand or shrink the column width,
then release the mouse when the field is the correct width.

When the mouse is released the column width is adjusted.

press on column title and drag left or right

Page 332 Panorama Handbook
The Design Sheet

The Setup Menu provides an easy way to add or remove a few fields at a time. The disadvantage of the Setup
Menu is that it only allows you to see a little piece of the database structure at a time. To get a more compre-
hensive view you’ll need to open the actual blueprints of the database—the design sheet. Like other parts of
the database, the design sheet is accessible from the View Menu.

The design sheet shows all the fields and their properties. Like DNA, the design sheet contains all the infor-
mation about how the database is organized.

Database “Generations”

When DNA mutates, the change doesn’t take effect until the next generation. Panorama’s design sheet works
the same way. The changes you make to the design sheet don’t immediately change the database. Instead,
Panorama waits for you to tell it to create a “new generation” of the database. This allows you to make multi-
ple changes to the design sheet, check the changes for accuracy, and then apply all of the changes at once to
the actual database structure.

There are three ways to tell Panorama to create a new generation.

Notice that you don’t have to close the design sheet window to create a new generation. If you wish, you can
even leave the design sheet open as you work with the database. This allows you to make a change to the
design sheet, then quickly test the change and make further changes if necessary.

1. Click the New Generation tool.

2. Switch the window to a different view (using the
View Menu).

3. Close the design sheet window.

Chapter 5:Fields Page 333
Once you have created a new generation, you cannot go back to the old generation with the Undo command.
However, you can go back to the last generation saved on the disk with the Revert to Saved command (See
“Revert to Saved” on page 214).

Typical Design Sheet Operation

Once you get the hang of it, the data sheet is very simple to use. As an example, we’ll show how to add two
new fields to a Contacts database using the design sheet. We’ll add fields for a prefix (Mr./Ms./Mrs.) and for
a middle name.

The first step is to open the design sheet using the View Menu.

If you hold down the Control key (Mac) or Alt key (Windows) the design sheet will open in a separate win-
dow, allowing you to see both the data sheet and the design sheet at the same time (see “Opening More Than
One Window Per Database” on page 303). In the illustration below we’ve dragged the design sheet window
down and to the right so that we can se both windows at once.

Page 334 Panorama Handbook
Now we’ll add the two new fields to the design sheet. We use the Insert New Record tool to insert the new
lines, then type in the field names.

Once the fields are selected, click on the New Generation tool to update the database itself.

new fields

new fields

New Generation tool

Chapter 5:Fields Page 335
The new fields are ready to use—you can bring the data sheet forward and start entering data in them right
away. It’s not necessary to close the design sheet first—you can leave it open in case you need to make further
modifications to the fields. It’s usually a good idea, however, to close the design sheet when you are not
going to be using it again for a while.

Wait just one minute! There’s one final step you don’t want to forget. When you’re sure you’ve got the struc-
ture you want, make sure you Save the database to make your changes permanent (See “Saving a Database”
on page 212)!

Field Properties

Each row in the design sheet contains all the properties for a single field in the database. The design sheet
contains 19 columns—one column for each field property.

Field Name The field name identifies the field. It helps you remember what is in the field, and is also
used to identify the field in formulas. Panorama does not place any restrictions on your
choice of field names, but there are some ramifications to using an unusual name (see “Rules
for Field Names” on page 339).

Type This column specifies the type of data stored in each field: text, numeric, date, choices, or
picture. See “Data Types” on page 351 for more information.

Digits This column specifies the number of digits to be used after the decimal point with numeric
data: 0, 1, 2, 3, 4, Float or Money. See “Numeric Data” on page 355 for more information.

Align This column specifies how the field should be aligned in the data sheet: left, center, or right
flush. Usually left flush is used for everything except numbers, which are displayed right
flush.

Output Pattern The output pattern allows you to specify the display format for numbers or dates. See
“Numeric Output Patterns” on page 356 and see “Date Output Patterns” on page 361 for
more information.

Input Pattern The input pattern forces data into a specific pattern as it is entered, for example phone num-
bers or social security numbers. See “Input Patterns” on page 393 for more information.

Range This column allows you to restrict the characters that can be entered in a field. For example,
you can restrict a field to only allow alphabetic or numeric entry. See “Restricting Character
Types” on page 396 for more information.

Choices This column allows you to specify a list of choices that are valid for this field; for instance
Yes/No, Gold/Silver/Bronze or Regular/Unleaded. The list of choices is used by the
Choices data type (see “Choices” on page 364) and is also used by the Choice Palette (see
“The Choice Palette” on page 419).

Link This column allows you to link this field with a field in another database. Only Clairvoy-
ance® is affected by this link. You can set up this field with the Clairvoyance Link command.
For more information see “Clairvoyance® Across Multiple Files” on page 389.

Clairvoyance® This column controls Panorama’s Clairvoyance feature. This feature tries to anticipate what
you are about to type, then types it for you. See “Clairvoyance®” on page 387 for the straight
scoop.

Tabs This column controls the Space Bar Tab feature. This feature makes the Space Bar work just
like the Tab key, saving wear and tear on your left pinky. See “Tabbing with the Space Bar”
on page 383 for details.

Caps Use this column to tell Panorama to automatically capitalize data entry in a field. Panorama
can automatically capitalize everything, or just the first letter of each word or sentence. See
“Automatic Capitalization” on page 385.

Dups This column specifies whether or not you want to allow duplicate entries in this field. You
can also specify that you want to require duplicate entries (no unique values). See “Checking
for Duplicate Data” on page 386.

Default Value This column allows you to specify a default value for the field when a new record is created.
See “Default Values” on page 399.

Page 336 Panorama Handbook
Adding New Fields Using the Design Sheet

In addition to changing the properties of existing fields, the design sheet can be used to add new fields or to
delete existing fields. The design sheet is especially handy when you need to add a lot of new fields at once.

Since each line in the design sheet corresponds to a field, you can add new fields simply by adding new lines
to the design sheet. The design sheet works the same way as the data sheet—you can add new lines using the
Add New Record tool, the Insert New Record tool, or by pressing the Return key. (Keep in mind that each
record in the design sheet corresponds to a field in the database, so adding or inserting a record here is equiv-
alent to adding or inserting a field in the database itself.)

Remember that adding a line to the design sheet does not immediately create the new field. When you are
ready to actually add the new field(s) to the database, tell Panorama to create a new generation (See “Data-
base “Generations”” on page 332).

Equation This column allows you to specify one or more calculations to be performed whenever the
information in this field changes or is confirmed. For example, an invoice can be set up so
that all totals are calculated whenever a quantity or price is entered or changed. See “Auto-
matic Calculations” on page 406.

Read This attribute is used to control the security level for displaying (reading) the data in this
field. The value in this field may be from 0 (anyone can see this data) to 255 (only users with
the highest possible security level can see this data). For more information on security levels
see the Panorama Security Handbook, available separately.

Write This attribute is used to control the security level for modifying (writing) the data in this
field. The value in this field may be from 0 (anyone can modify this data) to 255 (only users
with the highest possible security level can modify this data). For more information on secu-
rity levels see the Panorama Security Handbook, available separately.

Width This contains the approximate width (in characters) of the field in the data sheet. For exam-
ple, a width of 20 means that the column is about 20 characters wide (the actual width
depends on the font and size). Although you can use the design sheet to set the column
width, it is easier and more exact to set the width by dragging on the column name (See
“Changing the Width of a Field” on page 331).

Notes You can use this field to keep notes about the field. If a database contains dozens or hun-
dreds of fields, it may be difficult to remember what each field is for. You can use this field to
store reminders to yourself about the purpose and use of each field. Panorama ignores the
contents of this column.

Chapter 5:Fields Page 337
When you add a new line to the design sheet, you may notice that your new line does not have a small trian-
gle to the left of it. This triangle only appears to the left of fields that already exist. It serves as a reminder of
the new fields you have created.

As soon as you create a new generation, the triangle will appear next to any new fields. On the other hand, if
you close the design sheet without creating a new generation, the new fields will not be created.

Removing Fields Using the Design Sheet

To remove a field from the database simply remove the corresponding line from the design sheet and then tell
Panorama to create a new generation. You can delete a field using the Cut Field tool or by pressing the Delete
key (Mac) or the Backspace key (PC).

When you remove a field, all the data in that field is lost forever (unless of course, you have another copy on
the disk). Remember, you cannot go back to an old generation with the Undo command. Therefore, you’ll
want to be very sure that you really don’t need a field anymore before you remove it.

Making a Copy of a Field

You can create a copy of a field, including all the data in the field, by copying the corresponding line in the
design sheet. Use the Copy Field tool to copy the line into the clipboard, then use the Paste Field tool to make
a copy of the line in the design sheet. You’ll probably want to rename the new field. (You must use the clip-
board to create the copy—you cannot simply type in a copy of the line.) When you create a new generation
the database will contain a copy of the field, including the data in the field.

For example, let’s suppose we want to create a DateCleared field for a Checkbook database, starting with the
data already in the Date field. Start by selecting the Date field and copying it into the clipboard.

new field

Page 338 Panorama Handbook
Now select the position for the new field and paste it in.

Rename the new field to DateCleared. Notice that the “new” field already has a triangle next to it, because it
is not really a new field, but a copy of an existing field.

Use the View Menu to switch to the data sheet. When Panorama asks you if you want a New Generation,
press the Yes button. As you can see, Panorama has created the new field with a copy of the data in the old
field.

Note: You can only use this technique to copy fields within a single database. You cannot copy a field from
one database and paste it into another database.

By the way, this technique is not the only way to copy a field. You can also use the Formula Fill command to
copy a field at any time, not just when it is created (See “Filling a Field with a Formula” on page 511.)

new field

Chapter 5:Fields Page 339
Re-Arranging Fields

The design sheet can also be used to re-arrange the order of the fields. It’s a two step process—first re-arrange
the lines in the design sheet, then create a new generation.

To move a field up one line in the design sheet, press Command-Up Arrow (Mac) or Control-Up Arrow (PC).
To move a field down one line in the design sheet, press Command-Down Arrow (Mac) or Control-Down
Arrow (PC). Keep pressing until the field reaches the desired position.

Another way to move a field is with the Cut Field and Paste Field tools. This method may be faster if you
need to move a field a long distance.

When the fields are in the correct order, tell Panorama to create a new generation.

Rules for Field Names

Each field in a Panorama database is identified by a field name. Field names serve several purposes: they
remind you what the field is for (i.e. the Dates field probably contains dates, the Name field probably con-
tains names, etc.), they appear at the top of each column in the data sheet, and they are used to identify fields
in formulas and procedures (for example Amount=Qty*Price).

Page 340 Panorama Handbook
Panorama doesn’t place any restrictions on the field names you choose. Field names may be as long as you
want, and they may contain any character that can be typed from the keyboard. Field names may be split
over two or more lines (see below). You can even have two or more fields with the same name (but we recom-
mend that you avoid this, see the next paragraph).

However, if you are planning to use a field in a formula or procedure, you may want to avoid some of these
unusual possibilities. If you have two or more fields with the same name, only the first field will be accessible
to a formula. Field names containing blanks or punctuation (for instance P/E Ratio) are more difficult to use
in a formula. To use such a field in a formula, you must surround the field name with « and » (for example
«P/E Ratio». See “Fields” on page 1219). (If you left out the «», Panorama would think you were trying to
divide P by E, with Ratio left over.) You may want to avoid field names like Date, Seconds, And, Or, and
Sum. These names can be confusing when used in a formula because Panorama has functions with the same
names.

Multiple Line Field Names

It is possible split a field name over two or more lines. The main reason for doing this is to create a multiple
line title for the data sheet. Simply type in a Return between each line.

In the data sheet this field name will appear on two lines, like this.

Chapter 5:Fields Page 341
If you use one of these fields in a formula, the Return’s should be represented as spaces, as shown here. The
formula on the left is correct, the formula on the right is wrong.

Correct Wrong

«Zip Code»=92365 «Zip
 Code»=92365

Page 342 Panorama Handbook
Repeating Fields (Line Items)

Some databases contain several similar fields repeating within each record. For example, an invoice usually
contains several quantities, product descriptions, product prices, etc. These fields are often called Line Items
because they repeat for each line on the invoice. In Panorama these line item fields are created by adding a
numeric suffix to the root field name, for example Qty1 , Qty2 , … Qty15 . This illustration shows part of a
form that contains line items arranged into 15 rows by 4 columns.

In the design sheet these line item fields are simply 60 individual fields.

Right about now you are probably groaning at the thought of typing in all those fields. Don’t panic yet —
we’ve got you covered (keep reading)!

Quantity1

Quantity2

Quantity3

Description4

Description5

Description6

Price7

Price8

Price9

Total13

Total14

Total15

Chapter 5:Fields Page 343
Creating Line Item Fields

You can create line item fields the same way you create ordinary fields, using the Add Field command (see
“Add Field” on page 329) or the design sheet (see “Adding New Fields Using the Design Sheet” on page 336).
Just make sure to add the numeric suffix to the end of each name (with no space), and remember to spell the
base name the same way each time, including capitalization.

The design sheet has a shortcut for creating multiple line items in a hurry—the Create Line Items dialog in
the Special menu. To use this dialog start by positioning the cursor just above the spot where you want the
line items inserted. In the illustration below, the line items will be inserted between the Zip and Subtotal
fields.

Once the cursor is in the correct spot choose Create Line Items from the Special menu.

The dialog allows you to enter up to eight root line item names (for example Qty, Item, Price, etc.). You can
also specify the starting and ending numeric suffixes (for example 1 through 9).

OK Not OK

Qty1 Q1

Qty2 Qty2

Qty3 QTY3

Qty4 Qty4

new line items will be inserted here

Page 344 Panorama Handbook
When you press OK Panorama will automatically insert the line items into the design sheet. The line items
are inserted below the currently selected field.

The new line item fields are actually added to the database when a new generation is created (see “Database
“Generations”” on page 332).

Chapter 5:Fields Page 345
Modifying Line Item Fields

When you modify the properties of a line item field, you usually want to make the same change to all the cor-
responding fields. For example, if you change Qty1 to numeric, you probably also want to change Qty2,
Qty3,Qty4…Qty15 to numeric also. The design sheet can do this for you. Whenever you change any of the
properties of a particular line item field, Panorama will ask you if you would like to make the same change to
all of the other corresponding line item fields. To illustrate this, let’s go ahead and change Qty1 to numeric.

When you press the Enter key you will be presented with a choice.

Page 346 Panorama Handbook
If you press Yes (or the Enter key), Panorama will go ahead and change all of the Qty fields to numeric.

Chapter 5:Fields Page 347
This auto-repeat feature works for any column in the design sheet (except the Field Name). For example, we
could type a formula into the Total4 field.

When you press Enter Panorama can automatically repeat this formula to all the other Total fields.

To learn more about creating formulas for line items (and those funny Ω characters) see “Line Item Fields” on
page 1220.

If you press Yes, and don’t ask me again or No, and don’t ask me again Panorama will remember your
choice for as long as the design sheet is open. If you close the design sheet and then re-open it later, however,
Panorama will start asking you again (until you tell it not to again!).

Page 348 Panorama Handbook
Adding More Line Item Fields

If necessary you can use the Create Line Items dialog to add new line items at any time. For example, sup-
pose we wanted to add three more line items to the five we created earlier. Start by placing the cursor on the
last line item.

Now open the Create Line Items dialog and type in the field name roots again. Set the numbering to start just
past the previously created line items (in this case 6).

Chapter 5:Fields Page 349
Panorama adds the new line items.

These new items do not have any of the modifications you may have made to the existing line items (type,
equation, etc.) To update the new items simply edit open and close the appropriate data cells in one of the
line items that are already set up and let Panorama copy the changes into the new line items (see “Modifying
Line Item Fields” on page 345).

Learn More About Line Items

Line items get special treatment in the design sheet, in formulas, and in form layout. To learn about set up
formulas for calculating line items see “Line Item Fields” on page 1220 and “Adding Line Item Fields” on
page 1230. You’ll also find some examples of line item calculations in “Automatic Calculations” on page 406.
To learn how to automatically create rows and columns of line item cells in a form see “Line Items in a Form”
on page 716. To learn how to adjust the width of an entire column of line item cells in a form see “Cluster
Resize” on page 593. To learn how to change the font size of a table of line item cells see “Adjusting Spacing
Between Multiple Objects” on page 608.

Page 350 Panorama Handbook

Chapter 6: Data Types

In Panorama, all data is not the same. Just as Eskimos distinguish between 16 types of snow, Panorama dis-
tinguishes between five types of data—text, numeric, date, choices, and pictures. To get the most out of a
database, Panorama needs to know what type of data you intend to store in each field. This lets Panorama
store the data efficiently and check for data entry errors. It also tells Panorama how to compare different val-
ues (numbers, text, and dates are all compared differently) which is important for sorting and selecting data.
The data type also tells Panorama how to format some kinds of data (numbers and dates).

As mentioned above, Panorama databases can contain five different types of data. When you create the data-
base, you specify what type of data will be stored in each field.

The text data type is used for storing ordinary text—names, addresses, descriptions, etc. Panorama cannot
perform mathematical calculations (add, subtract, etc.) on data that is stored as text.

The numeric data type is used for storing numbers—prices, quantities, etc. Use the numeric data type for any
field you want to use in a calculation. The numeric data type has several variations that are discussed later in
this chapter.

It’s not always necessary to store numbers in numeric fields. For example, zip codes and phone numbers are
usually stored in text fields, not numeric fields. This allows the use of nine digit zip codes (for example 92867-
3482) and foreign postal codes and phone numbers. In general, use a numeric field if you want to perform
numeric calculations (addition, multiplication, etc.) and/or if you want to select or sort the information in
numeric order (1, 2, 3, … 10, 20, 30, … etc.)

The date data type is self explanatory—it is used for storing dates (for instance March 1, 1994). Panorama
understands the properties of dates—it knows that May 1st follows April 30th and that there are six days
between May 28th and June 3rd. Dates are discussed in more detail later in this chapter. Panorama can han-
dle dates from 100 A.D. to well past the year 20,000 A.D.

The choices data type is used for storing data that has only a few possible values—for instance yes/no, gold/
silver/bronze, or coach/first class. The choices data type saves space by storing a special code instead of the
entire text. The procedure for setting up a field using the choices data type is described at the end of this
chapter.

 Data Type Uses Examples

Text Names, Addresses, Descriptions, etc. John, 234 Peach Avenue

Numeric Prices, Quantities, etc. 4, 78.23, 4.9e-2

Date Dates. 9/18/2002

Choices Multiple Choice Options Yes/No, Gold/Silver/Bronze

Picture
(Obsolete)

Photographs, Drawings n/a

Page 352 Panorama Handbook
The picture data type is used for storing-you guessed it-pictures! This data type allows you to paste graphics
from other Macintosh programs into your Panorama database. However, in general we do not recommend
storing pictures within the database using the picture data type. Instead, you should store images in separate
files and display them using Panorama’s Flash Art feature (See “Flash Art™” on page 806).

Data Types and Memory Usage

When we started writing Panorama in 1986, a typical personal computer had about 1 megabyte of memory.
Because Panorama loads the entire database into RAM, it was critical to store the data as efficiently as possi-
ble. To do this we created a variety of data types, allowing you to pick the data type that was most efficient
for each field (for example, there are 6 different numeric data types).

Nowadays a typical computer has 32 megabytes, 64 megabytes, or even more RAM. For most applications it
is no longer necessary to be hypervigilant about choosing the most efficient data type. For example, for num-
bers, it’s usually fine to simply use the most flexible floating point option, even though this consumes a little
bit more memory. It’s also rarely necessary to use the choice data type—you can simply use the text data type
instead. Throughout the rest of this chapter you’ll find a lot of discussion about picking the most efficient
data type for each field. If you are working with small to moderate size databases (from 10 to 20,000 records)
you probably don’t need to worry about picking the most efficient data types. You can simply stick with three
basic data types—text, floating point numbers, and dates. That being said, you can probably skip over most
of the material in the rest of this chapter!

Setting Up a Field’s Data Type

The data type of a field can be specified with either the Setup Menu or the Design Sheet. The simplest method
is using the Field Properties command in the Setup Menu. The Field Properties dialog box contains a pop-
up menu for selecting the data type. Tip: You can also open the Field Properties dialog box by double clicking
on the name of the field on the data sheet.

Chapter 6:Data Types Page 353
An alternate way to specify the data type is using the Design Sheet. The second column of the design sheet
contains the data type of each field in the database. Using the design sheet allows you to quickly modify
many fields at a time. See “The Design Sheet” on page 332 for more information on opening and using the
design sheet.

Data Type Conversion Problems

When you change the data type of an existing field it is possible that you may lose some of the data in that
field. For example, if you convert a field from text to numeric, any letters or punctuation will be lost in the
conversion. Panorama will warn you if this situation occurs.

The alert gives you three options:

OK — Pressing this button tells Panorama to complete the conversion. Any data that cannot be converted
will be removed. For example, if you are converting a field from text to numeric any non-numeric data will be
lost in the conversion.

Cancel — Pressing this button cancels the conversion

Select Problem Data Pressing this button tells Panorama to cancel the conversion and show you the data that
is causing the problem. This option lets you look at the data that is causing the problem and decide what to
do next. If necessary, you can make manual adjustments to the data, or you may decide that you don’t want
to change the data type after all.

double click on any cell in this column to change the field type

Page 354 Panorama Handbook
For example, suppose you wanted to change the Zip code field in the database below to numeric.

When you attempted to make the conversion, Panorama would display the conversion warning alert. Press
Select Problem Data to see what is causing the problem.

Aha! The problem is the Canadian postal codes, which have letters instead of numbers. At this point you
would probably want to rethink the idea of converting the Zip Code field to numeric.

If you did decide to go ahead with the conversion, Panorama would strip the letters from the Canadian
postal codes.

When you are done looking at the problem data, choose the Select All command (Search Menu) to make all
the data visible again. (See “Finding vs. Selecting” on page 433 for more information on selecting and the
Select All command.)

Chapter 6:Data Types Page 355
Numeric Data

Numeric data can be stored in either fixed point or floating point format. If you choose fixed point you have
a choice of 0, 1, 2, 3, or 4 digits after the decimal point.

You may wonder why there are so many choices for storing numeric data. After all, a number is a number—
right? Not quite. By choosing different numeric storage formats you are making a trade-off between space,
speed, accuracy, and range.

Storing numbers using floating point gives you the most accuracy and numeric range. Floating point allows
you to store extremely large or small values with up to 16 digits of accuracy. If you are in doubt, go ahead and
pick floating point format.

Fixed point storage is more limited. The accuracy is only about 9 digits. The largest number that can be stored
is about 2 billion (2•109) while the smallest fixed point number is 0.0001 (10-4). Trying to store larger or
smaller values using fixed point storage will result in errors.

On the other hand the space required for fixed point storage is up to 8 times smaller than floating point for
the same number, and Panorama can perform fixed point arithmetic much faster than floating point. You
should use fixed point numeric storage whenever possible. Check the table above to see if the numbers you
will be using fit in one of the fixed point numeric ranges.

You can set the number of digits via a pop-up menu in the Field Properties dialog box.

Number of
Digits After

Decimal Point
Example Largest Value Smallest Value Typical Uses

0 93842 2,100,000,000 1 Quantities, Part Numbers

1 73.1 210,000,000 0.1 Rarely Used

2 253.22 21,000,000 0.01 Money (Dollars, Pounds, etc.)

3 0.447 2,100,000 0.001 Rarely Used

4 929.1123 210,000 0.0001 Rarely Used

Float 1.46e-12 1.7•10308 2.3•10-308 Scientific Data

Page 356 Panorama Handbook
You can also set the number of digits using the Digits column in the design sheet.

Money

Usually the best way to store monetary values is using either 2-digit fixed point or Panorama’s special Money
format. The money format is the same as 2-digit fixed point but automatically enters the decimal point for
you during data entry. This table below shows how Panorama interprets data you enter into a money field.

Both the 2-digit and money formats allow you to store monetary values up to 21 million dollars, pounds,
francs, etc. (If your business deals with values greater than 21 million you should use floating point numeric
storage.)

Numeric Output Patterns

Output patterns allow you to control the way a number is displayed. In the design sheet, output patterns can
be used to control how numbers are displayed in the data sheet. Output patterns can also be used in a for-
mula (See “Converting Between Numbers and Strings” on page 1249).

Below are some ways the same number may be displayed using different output patterns. Remember, the
way a number is displayed does not change its internal value. All the numbers listed below have the value
2654.

2654
2,654
$2,654.00
002654
2.654e+3
26-54
Two thousand six hundred fifty four

When you
enter… it becomes

87204 872.04

3267 32.67

14 0.14

2 0.02

42. 42.00

15.4 15.40

156.78 156.78

double click on any cell in this column to change the number of digits

Chapter 6:Data Types Page 357
Numeric output patterns consist of a string of characters containing one or more # symbols. The # symbol
tells Panorama how and where to print the number.

The overall output pattern for a field can be set using the Pattern button in the Field Properties dialog box or
the Output Pattern column in the design sheet.

When you press the Pattern button a new dialog appears. You can either type the pattern into the box at the
top or you can select the display options you want and let Panorama create the output pattern for you.

If you are using the design sheet to set up the pattern, simply type the pattern into the Output Pattern col-
umn. See “The Design Sheet” on page 332 for more information on opening and using the design sheet.

type pattern here, or…

use controls
to set up pattern

type the pattern into the Output Pattern column

Page 358 Panorama Handbook
Fixed Decimal Point Patterns

The table below shows how the output pattern can be used to display numbers with a specified number of
digits after the decimal point. These output patterns force a fixed point display even if you are displaying
floating point numbers. They also allow you to override the natural display of fixed point numbers. For
example, a money field can be set up to display only dollars, while still keeping track of cents for calculation
purposes.

Notice that if the number of # symbols after the decimal point is less than the number of digits in the number,
Panorama will round the number rather than truncating it.

Numbers with Commas, Punctuation, and Measurement Units

If a comma is added to the pattern, the number will be printed with a comma every third digit. Other charac-
ters can also be added to the beginning or end and will be displayed unchanged. For example, you can add a
currency symbol or measurement unit to the pattern, as shown below:

Scientific Notation

If an E or e is added at the end of the output pattern, the number will be displayed using scientific notation.
Any number may be displayed in scientific notation, including fixed point numbers.

Number Pattern Display

1234.56 1234.56

1234.56 # 1235

1234.56 #.# 1234.6

1234.56 #.## 1234.56

1234.56 #.#### 1234.5600

Number Pattern Display

1234.56 #,.## 1,234.56

1234.56 $#,.## $1,234.56

1234.56 #,.## kg 1,234.56 kg

Number Pattern Display

1234.56 #e 1e+3

1234.56 #.#E 1.2e+3

1234.56 #.##e 1.23e+3

1234.56 #.###E 1.235e+3

1234.56 #.####E 1.2346e+3

1234.56 #.#####E 1.23456e+3

1234.56 #.######E 1.234560e+3

1234.56 #.#E kg 1.2e+3 kg

Chapter 6:Data Types Page 359
Special Patterns for Negative Numbers

Negative numbers are usually displayed with a minus sign in the front of the number. This can be changed to
a trailing minus sign or to enclosing parentheses.

Leading Zeros

You can use an output pattern to force Panorama to display leading zeros. To do this, put several # symbols
in a row without a decimal point.

Tip: If you are storing US Zip codes in a numeric field, use ##### as the output pattern. This pattern makes
sure that all 5 zip code digits are displayed, even if the first digit is zero.

If your database also contains Canadian postal codes, the zip codes must be stored in a text field. In that case
no output pattern is necessary.

Numbers with Multiple Components

An output pattern can be used to split a number into multiple components. To split up a number, spread the
characters through the output pattern, one # symbol for each digit you want to print. The examples below
show how this feature can be used for social security numbers, phone numbers, and combination locks.

Using output patterns this way can save a lot of memory. For instance, storing the combination L24 R10 L18
as text requires 11 bytes per combination. Storing the same combination as a number requires only 3 bytes per
combination. If your database contains 10,000 combinations this represents a savings of 80k of memory.
(Sure, in the new millennium 80k isn’t much! But if your database contains one million records using an out-
put pattern would save 8 megabytes.)

Phone Numbers

We recommend storing phone numbers in text fields. However, using multiple component output patterns it
is possible to store phone numbers as numbers. For local phone numbers you can use the output pattern
###-#### and store the numbers as fixed point with zero digits. This results in a savings of 5 bytes per
phone number (3 bytes vs. 8 bytes). On the other hand, who ever heard of a 7 digit phone number in this day
of area code splits every other week?

Number Pattern Display

-1234.56 #.## -1234.56

1234.56 #.## 1234.56

-1234.56 #.##- 1234.56-

1234.56 #.##- 1234.56

-1234.56 (#.##) (1234.56)

1234.56 (#.##) 1234.56

Number Pattern Display

123 ##### 00123

1234 ##### 01234

12345 ##### 12345

Number Pattern Display

219304349 ###-##-#### 219-20-4349

5293672 ###-#### 529-3672

241018 L## R## L## L24 R10 L18

Page 360 Panorama Handbook
A long distance phone number requires more accuracy than is available in a fixed point number, so you‘ll
have to use the floating point data type. The output pattern is (###) ###-#### . This results in a savings of
6 bytes per phone number (8 bytes vs. 14 bytes).

If your phone numbers are stored as numbers you should only enter the digits. For example to enter the
number (800) 432-4567 type 8004324567 .

We recommend storing phone numbers in a text field. Although this takes more memory, it is more flexible,
allowing you to add extensions or other notes (for example 329-9583 ext 241). If you do use a text field, you
can use an input pattern to enter the (,) , and - characters for you. See “Input Patterns” on page 393 for more
information on this technique.

Plural Suffixes

If a pattern contains measurement units you may want to properly pluralize the units depending on the
value being displayed. Use the ~ symbol to do this.

Displaying Numbers as Words

If you wish, numbers can be displayed as words instead of digits. To do this, use the § symbol instead of the
symbol. Only one § symbol should be used. To make the § symbol on a Macintosh, press Option-6. On the
PC, press Alt-0167. Only the integer part of the number will be displayed—any fractional part will be
ignored.

If you are displaying money, you’ll probably want to display the fractional part (cents) as well as the integer
part. You can do this with the ¢ (cents) symbol. On the Macintosh, press Option-4 to create the ¢ symbol. On
the PC, press Alt-0162. Use one ¢ for each digit you want display (usually 2).

Dates

Panorama has a special data type for storing dates. When you use the date type to store your dates, Pan-
orama can sort your dates in the correct order, check your dates for validity as they are entered, and calculate
the number of days between two dates. Dates are quite compact; almost any date in the 20th or 21st century
will take only two bytes of storage.

Entering Dates

Panorama is very flexible about how you type dates. We call this feature “smart dates.” You can enter dates
numerically (for instance 04/09/02 or 4/9/2) or you can spell out the date (for instance April 9th, 1997 or Apr 9
97). You can use any character as a separator between numeric dates, for example 4-9-01 or even 4.9.01.

To enter today’s date, simply type today. You can also enter yesterday or tomorrow. Panorama will automat-
ically convert these entries to the correct month, day and year.

If the date is in the current week, you can simply type in the name of the day, for example saturday or tue. To
specify a day in the previous or upcoming weeks add the words last or next, for example next tuesday or last
saturday.

Number Pattern Display

1 # mile~ 1 mile

5 # mile~ 5 miles

Number Pattern Display

312 § Three hundred twelve

42.29 § dollar~ and ¢¢/100 Forty two dollars and 29/100

Chapter 6:Data Types Page 361
When a date is edited, Panorama normally displays the date in the format mm/dd/yy . However, if you have
set up an output pattern that Panorama understands for data entry, it will use that pattern instead. Patterns
that can be used for data entry include Month dd, yyyy , Mon dd yy , and mm/dd/yyyy .

If you are using an international system and you enter the date as numbers you must use the format dd/mm/
yy . Panorama does not understand the format 7-Aug-1998. (However you may use any delimiter character
you want, for example 7/8/98 or 7-8-98 or even 7.8.98.)

Default Year and Century

When you enter a date, you can leave the year off and let Panorama figure it out for you. Panorama will auto-
matically round the date to the nearest year. For instance, if today’s date is 3/9/02 and you enter the date 4/1
then Panorama will assume you mean 4/1/02. But if you enter 12/1 (or December 1) Panorama will assume
you mean 12/1/01, not 12/1/02, because 12/1/01 is closer to 3/9/02 than 12/1/02 is.

Panorama also rounds dates to the current century. If the current year is 2002 (or even 1992) and you enter the
date 7/2/23 Panorama will assume you mean 7/2/2023. If you want to enter a date more than 50 years from
the current date you must enter the full date, for example 7/2/1923

Date Output Patterns

Output patterns allow you to control the format Panorama uses to display dates. A date output pattern con-
sists of a number of individual components (month, day, year, etc.) that are strung together. For example, the
pattern mm/dd/yy contains three components and will display in the format 3/11/04.

The overall output pattern for a field can be set using the Pattern button in the Field Properties dialog box or
using the Output Pattern column in the design sheet.

When you press the Pattern, button a new dialog appears. You can either type the pattern into the box at the
top or you can select the pattern you want using the radio buttons.

type pattern here, or…

use controls
to select pattern

Page 362 Panorama Handbook
If you are using the design sheet to set up the pattern, simply type the pattern into the Output Pattern col-
umn. See “The Design Sheet” on page 332 for more information on opening and using the design sheet.

Date Pattern Components

There are 15 different basic components that can be used as part of a date pattern. A date pattern is built up
by combining these components together with punctuation to build a complete pattern. (See “Common Date
Output Patterns” on page 363 for examples of complete, ready-to-use date patterns.)

Component Example Description

yy 02 Year (within century)

yyyy 2002 Year (including century)

qq 2 Quarter (numeric)

qtr 2nd Quarter (abbreviated)

quarter second Quarter (spelled out)

mm 9 Month (numeric)

MM 09 Month (with leading zero)

mon sep Month (abbreviated)

month september Month (spelled out)

ww 46 Week (within year)

dd 5 Day (numeric)

DD 05 Day (with leading zero)

day tue Day Of Week (abbreviated)

dayofweek tuesday Day Of Week (spelled out)

dow 3 Day Of Week (0[sun]-6[sat])

type the pattern into the Output Pattern column

Chapter 6:Data Types Page 363
Some of these components (qtr , quarter , mon, month , day , and dayofweek) can be either upper or lower
case. The table below shows how a component can be displayed in all lower case, initial caps, or all upper
case.

Common Date Output Patterns

A date output pattern is assembled from the basic components listed in the previous section along with any
punctuation or text that is needed between the components. The table below lists several common date pat-
terns.

If you need to include the words qtr, quarter, mon, month, or day in your date, you must quote them so that
they are not treated as components, as shown in several of the examples in the table above. The quote key is
just to the left of the Return key. Be sure to use regular quotes, not smart quotes (" not).

As shown in several of the examples, you can add the suffix nth to the mm, ww, or dd components, Panorama
automatically adds the correct suffix depending on the number displayed.

Pattern Display

month september

Month September

MONTH SEPTEMBER

dayofweek friday

DayOfWeek Friday

DAYOFWEEK FRIDAY

Date Pattern Display

3/9/2002 mm/dd/yy 3/9/02

3/9/2002 MM/DD/YY 03/09/02

3/9/2002 mm-dd-yyyy 3-9-2002

3/9/2002 dd-MON-yy 9-MAR-02

3/9/2002 dd-Month-yy 9-March-02

3/9/2002 Month dd, yyyy March 9, 2002

3/9/2002 Month ddnth, yyyy March 9th, 2002

3/9/2002 DayOfWeek, Month ddnth, yyyy Saturday, March 9th, 2002

3/9/2002 qqqyy 1q02

3/9/2002 Week ww of yyyy Week 11 of 2002

5/23/2002 Quarter "Quarter" yyyy Second Quarter 2002

7/11/2004 Qtr "Qtr" yyyy 3rd Qtr 2004

3/9/2002 "Day" dd, "Month" mm Day 9, Month 3

3/1/2002 ddnth "day of" Month, yyyy 1st day of March, 2002

3/2/2002 ddnth "day of" Month, yyyy 2nd day of March, 2002

3/9/2002 ddnth "day of" Month, yyyy 9th day of March, 2002

3/1/1867 mmnth "month of" yyyy 3rd month of 1867

3/9/1978 wwnth week of yyyy 3rd week of 1978

Page 364 Panorama Handbook
Choices

The choices data type is used for storing data that has only a few possible values. Some typical examples of
this type of data are listed below. (Notice that in the case of choices that contain spaces, like US Mail and East-
man Kodak, the space is represented by an underscore, for example US_Mail and Eastman_Kodak .) Of
course you can use the text data type to store this kind of information, but using the choices type can speed
up data entry, reduce keying errors, and reduce storage space.

The choices data type works by keeping a list of the possible choices for each field. In the database Panorama
stores a choice number instead of storing the actual data—for example 1 for yes and 2 for no. The list of
choices is used to decode the number whenever Panorama needs to display or use the data. The number itself
is never visible.

Choice Data Entry (Choice Palette)

The choices data type is treated differently than other data types for data entry. Instead of entering the data
from the keyboard, you pick a selection from a choice palette containing radio buttons for each choice.

If the choice list allows for exceptions, there will also be a box allowing you to type in the exceptions. See
“The Choice Palette” on page 419 for more information on using the choice palette.

In addition to picking from the list of radio buttons, you can also pick an item from the choice palette by typ-
ing in the first few letters of the item. For example, if the choice palette contains the buttons Gold, Silver and
Bronze you can pick Gold by pressing the G key. If two or more buttons start with the same letter, keep typ-
ing until you reach a letter that is different.

Type of Data Typical Choices

Questionnaire Yes No

Video Format VHS DVD

Gasoline Regular Supreme Diesel

Shipping Carrier UPS US_Mail FedEx Airborne DHL

Film ASA Speeds 25 64 100 200 400 800 1000

Film Manufacturers Agfa-Gevaert Eastman_Kodak Fuji_Photo 3M

Credit Terms Net_10 Net_30 COD Pre_Pay

Operating System Windows MacOS Linux

Medals Gold Silver Bronze

Chapter 6:Data Types Page 365
If the choice list has many items, the choice palette may become too large. In that case you may want to turn
off the choice palette and use normal data entry via the keyboard. To suppress the choice palette but continue
using the choices data type, set the Number of Digits column in the design sheet to 1 instead of 0. The data
will still be compressed via the choice list, but you will be able to enter your choice via the keyboard instead
of from the choice palette.

Creating the List of Choices

Panorama keeps the list of choices in the Choices column of the design sheet. (See “The Design Sheet” on
page 332 if you are not familiar with the design sheet.) To create a list of choices, simply type the choices into
the appropriate cell in the Choices column, separating each choice with a space. If a choice contains a space
(US Mail), type an underscore instead (US_Mail). You can type an underscore by pressing Shift-Underscore.
(The Underscore key is just to the right of the 0 key.)

Exceptions

You can use the choices data type even if you cannot anticipate all of the possible choices in advance. For
example, you may usually ship via UPS and Federal Express, but occasionally you use a variety of other ship-
pers. In this situation you need to allow exceptions to the choice list. To allow exceptions, type in a line of
underscores at the end of the list.

type the list of choices into the Choices column

to allow exceptions, type in a line of underscores

Page 366 Panorama Handbook
In the data sheet, this line of underscores will appear as a text entry box where any value may be typed in.
The number of underscores determines the size of the exception box in the choice palette. For a larger box,
add more underscores.

When a value is entered into the database that is not one of the choices in the list, the value is stored as an
exception. Panorama must store the entire value instead of an internal number. As long as the number of
exceptions is small the choices data type is still useful. However, if there are too many exceptions, you should
stick to the normal text and numeric data types. In the worst case, if all the values are exceptions, the data-
base will actually take more memory than it would if you simply stored the data as text.

Generating a List of Choices Automatically

If your database already contains data, Panorama can examine the database and automatically generate a list
of choices for you. To do this you must use the Automatic Choices command (Special Menu) available in the
design sheet. Select the field (by clicking on the corresponding row in the design sheet), then choose Auto-
matic Choices from the Special Menu.

type exceptions in this box

Chapter 6:Data Types Page 367
Before Panorama can generate the choice list you must specify an exception threshold.

This value tells Panorama how many times a choice must appear in the database to be included in the choice
list. Any value that appears fewer times than the threshold will become an exception. Any value that appears
that many times or more will be included in the choice list. When you press Ok, Panorama will scan the data-
base and create a choice list containing all the choices that occur the same number or more times than the
number specified by the exception threshold.

How do you decide what value to use for the exception threshold? There is no hard and fast answer. For
larger databases you will probably want to use a larger value. Experiment with different values to see the
effect on the choice list, then choose a value that includes the common choices on the list, while leaving out
the values that only occur occasionally

Updating the Choice List

As a database grows, the choices list may need to change over time. Choices that were once exceptions can
become common, while once popular choices become obsolete. If this occurs, you can update the choice list—
either manually or with the Automatic Choices command.

Using Math Operations with Choices

Sorry, no can do. If you need to perform any kind of math calculations (Total, Average, etc.) you must store
the information using the numeric data type. However, you can Count a choice type field.

Sorting Choices

Data stored using the choices data type is sorted according to the order of the choice list. Therefore, if you
want the choices to be sorted alphabetically, you must make sure that the choice list is in alphabetical (A-Z)
order. The Automatic Choices command does this for you.

Sometimes you may wish to sort the choices in a different order. For example, Olympic medals should be
sorted in the order Gold, Silver, Bronze instead of alphabetically (Bronze, Gold, Silver). If you need the
choices to sort non-alphabetically simply set up the choice list in the order you want.

Warning: If your choice list is in non-alphabetic order the sort order of exceptions is ambiguous. For example
if the choice list is Gold, Silver, Bronze where does the exception Copper go? The final order is not predict-
able. You should only use a non-alphabetic choice list if there are no exceptions allowed.

Page 368 Panorama Handbook

Chapter 7: Data Entry & Editing

Before you can organize, analyze, or report anything, you have to get your data into the computer. Usually
this means using the keyboard to type it in. Panorama has been designed to help make this task fast and accu-
rate.

Of course, if the information is already stored on a computer, you may be able to access it without re-typing.
Panorama can exchange data with most Macintosh software packages, and with many PC and mainframe
packages as well. See “Importing a Text File” on page 223.

Editing Records

A new database starts out with just one lonely record. Over its lifetime hundreds or even thousands of
records will be added to a typical database. In addition, many records will become obsolete and be deleted.
Both inserting and deleting records are easy tasks with Panorama.

Moving From Record to Record

Unless your database is very small, only a small part of it will be visible at a time. You can shift the data
within the window to work with different parts of the database. To shift the data you either scroll (data sheet)
or flip from page to page (form).

Use the vertical scroll bar to scroll a data sheet to any record in the database. Click on the scroll bar arrows to
move up or down one record at a time. Click in the scroll bar’s gray area to move up or down one window at
a time. Drag the scroll bar thumb to move directly to any position in the database.

down one line

up one line

up one page

down one page

drag up or down

Page 370 Panorama Handbook
When you are using a form window, the vertical scroll bar works differently. Instead of scrolling to another
record, the scroll bar shifts the position of the form within the window. This allows you to get at every corner
of a large form even if you are using a small window. To move from record to record, use the First Record,
Previous Record, Next Record, and Last Record tools in the tool palette. The First Record tool brings you to
the very first visible record in the database—the top line of the data sheet. The Last Record tool takes you to
the end of the database—the bottom line of the data sheet. The Previous Record and Next Record tools move
one record at a time. You can also move up or down one record at a time by pressing the Up Arrow or Down
Arrow keys.

If the database has more than two open windows (for example a form and a data sheet), the position of both
windows will always remain synchronized. In other words, if you scroll the data sheet the form will follow
and vice versa.

In addition to manually moving from record to record, you can let Panorama search for the information you
want to look at or modify. The Find/Select command (Search Menu) can use a variety of criteria to locate the
information you need. See “The Find/Select Dialog” on page 435, for more information on this command.

use scroll bars to navigate within the form

previous record

first record

next record

last record

Chapter 7:Data Entry & Editing Page 371
Moving from Field to Field

Within a data sheet, you can move to another field by clicking anywhere the field’s column (if it is visible) or
by clicking on the horizontal scroll bar. (See “Splitting a Window” on page 278 for information on how to
split a window into two separately scrollable “panes.”)

You can also use the Fields menu to move to a specific field. This menu contains a list of all of the fields in the
current database. The fields are listed in the order that they appear in the data sheet. To move to a field, sim-
ply select it from the menu. The Fields menu makes it easier to select a specific field when the database has
dozens (or even hundreds) of fields.

click anywhere in a column to select a field

or use the scroll bar

Page 372 Panorama Handbook
Adding a New Record

To add a new record to the end (bottom) of the database, either click on the Add New Record tool or choose
Add New Record from the Edit Menu.

You can also add a new record by tabbing from the end of the bottom line of the data sheet.

Inserting a New Record

When you are working in the data sheet, you can insert a new record either above or below the current
record. (In a form you can only add new records at the end of the database.) To insert a new record after the
current record press the Return key.

before Add New Record after Add New Record

before Return after Return

new blank record

new blank record

Chapter 7:Data Entry & Editing Page 373
To insert a new record before the current record, click on the Insert Record tool.

Usually new records are completely blank, ready for your input (as shown in the examples above). You can,
however, ask Panorama to automatically fill in one or more cells whenever a new record is created. A field
can default to a fixed value (like yes or no, or taxable, or today’s date), an automatically incrementing number
(1, 2, 3, …), or a copy of the data in a previous record. See “Default Values” on page 399 for more information.

Deleting a Record

To delete an entire record, click on the Cut Record tool.

before Insert Record after Insert Record

before Cut Record after Cut Record

new blank record

Page 374 Panorama Handbook
If you are using the data sheet, you can also delete a record by pressing the Delete or Backspace key (upper
right hand corner of the keyboard, above Return). Panorama will display an alert asking you to confirm that
you really want to delete the record. (Mac only tip: If you want to skip the alert, hold down the Option key
while you delete the record.)

If you delete a line accidentally, you can use Undo to restore the line. You can also get the line back with the
Paste Record tool.

Tip: A Panorama database must have at least one visible record—it cannot have zero records. If your database
has only one record, Panorama will not allow you to delete it.

Deleting Multiple Records

Sometimes you may need to systematically delete large numbers of records. For example, you might need to
delete all invoices previous to 1987 or all students with below passing grades. Instead of deleting these
records one-by-one you can let Panorama do most of the work for you. First use the Find/Select command to
select the records you want to keep. Then use the Remove Unselected command to delete everything else.
Remember, however, that you cannot delete every record—you must leave at least one record in the database
at all times. See “The Find/Select Dialog” on page 435 and “Permanently Removing Unselected Data” on
page 443 for more information on these commands.

Delete All

To delete all the data in the database, use the Delete All command in the Edit Menu. This command deletes
all the data, leaving just one blank record. Before it performs this dastardly deed, Panorama asks you to con-
firm that you really know what you are doing. Keep in mind that there is no Undo after Delete All. (How-
ever, if you saved a copy of your database, you can Revert to Saved. See “Revert to Saved” on page 214.)

You can use the Delete All command to set up a clone of an existing database. First open the original data-
base, then use Save As to save it under a new name (See “Saving a Database” on page 212). Finally use
Delete All to empty the new database. The new “cloned” database will contain all of the forms, crosstabs and
procedures of the original database, but no data.

Chapter 7:Data Entry & Editing Page 375
Duplicating a Record

In the data sheet you can easily make one or more copies of a record. Use the Copy Record tool to copy the
current line into the clipboard, then use the Paste Record tool to paste the line back into the database. The
Paste Record tool inserts a new line just above the current line and then pastes the contents of the clipboard
into the new line. You can paste the record back into the database as many times as you like. In this illustra-
tion the Paste Record tool has already made six copies of the line, and is about to create a seventh.

The Clipboard Window

If you would like to see the contents of the clipboard use the Show Clipboard command (Edit Menu) to open
the Clipboard window. You can watch the clipboard change each time you cut or copy something. Here’s
what the clipboard looks like as we are copying the records in the example above.

Close the clipboard window when you are finished using it.

Moving a Record

Sometimes you may wish to move a record from one spot to another. You can do this using the data sheet. To
move a record use the Delete or Backspace key or the Cut Record tool to remove the line, then use the Paste
Record tool to insert the line in its new position.

Page 376 Panorama Handbook
Editing Data Within a Cell

Data cells are the smallest unit of information handled by Panorama. Each data cell contains a single piece of
information—a person’s name, a phone number, an account balance.

The currently selected cell is called the active cell. Only one cell can be active at a time. You can activate a cell
by clicking on it, or by scrolling to it with the scroll bars. You can also move the active cell with the arrow
keys.

The Input Box

Every data cell has a pop-up Input Box that is used to edit the text within the cell. The Input Box acts like a
temporary window that pops up on top of the data cell for data entry and editing.

typical data cells

active data cell

double click cell to open Input Box for editing contents of cell

Chapter 7:Data Entry & Editing Page 377
You can open the Input Box by double clicking on the cell, or by making the cell active and starting to type.
Once the Input Box is open, you can edit the text within the cell using the usual mouse editing (word process-
ing) techniques. Specifically, you can click the mouse to select an insertion point, drag the mouse to select a
range of characters, cut, copy or paste selected text using the clipboard, or use the keyboard to type charac-
ters at the insertion point. (If you are not familiar with these techniques you should review the operating sys-
tem documentation that came with your computer.)

When you have finished editing the text within the cell, press the Enter key. This closes the Input Box and
updates the data cell with your changes. The Input Box closes automatically (and updates the data) if you
click on any other data cell or window. Tip: Clicking anywhere outside of the Input Box is the same as press-
ing the Enter key.

If the Input Box is only one line high pressing the Return key will close the Input Box and update the data
cell. If the Input Box is more than one line high the Return key adds a new line to the data cell (see the next
section).

If you would like to close the Input Box without updating the data cell, press Command-Period (Mac) or
Control-Period (Windows). Pressing the Esc key also closes the Input Box without updating the data cell. Or
you can use the Undo command to restore the original text, then press the Enter key.

Expanding the Input Box

One of the most powerful features of the Input Box is that it can be expanded to accommodate large amounts
of data. To expand the Input Box, move the mouse to the lower right corner of the box. When you reach the
corner, the arrow will flip over. In the illustration below, you see the normal arrow cursor as you approach
the corner. The arrow flips over when it reaches the corner of the Input Box. (The arrow doesn’t actually
change color as shown here, the color is simply to make the illustration more clear.)

Once you see the upside down arrow, press the mouse and drag the corner of the box to its new location.

When you release the mouse Panorama will change the size of the box.

Page 378 Panorama Handbook
Now you can type additional lines into the Input Box. Press Return to start a new line.

Once you change the size of the Input Box, Panorama remembers the size permanently. In the data sheet, the
Input Box size is remembered separately for each column, while in a form the size is remembered for each
individual data cell object. (Of course Panorama will forget the sizes if you Close or Quit without saving the
database.)

If you make the Input Box more than one inch high, a scroll bar is added on the right hand side of the box.
The scroll bar allows you to enter and edit up to 32,767 characters per data cell.

Tip: The scroll bar is actually outside the Input Box. To change the size of the Input Box you must click in the
bottom corner of the box itself, just to the left of the scroll bar (as shown above). Do not try to drag the corner
of the scroll bar.

Expanding a Right Justified Input Box

If you are editing a right flush data cell, move the mouse to the lower left corner of the box instead of the
lower right hand corner.

Once the mouse is over the lower left hand corner you can expand down and/or to the left.

Chapter 7:Data Entry & Editing Page 379
Now you can edit the text in the expanded input Box. Press Enter when you are finished.

Editing Cells Within a Form

All of the previous examples have shown editing cells within the data sheet. However, a form may contain
data cells also. Unlike the data sheet, the cells on a form may be arranged any way you like. They can also be
more than one line high.

Just as in the data sheet, you double click on a cell to edit it.

Page 380 Panorama Handbook
You can also move the mouse over the corner of the cell and drag to expand the Input Box.

See “Working with Data Cell Objects” on page 685 to learn how to create a form with data cells.

As an alternative to data cells, a form may be designed with Text Editor SuperObjects. Text Editor SuperOb-
jects allow you to edit text right in the form window—no double click is required. You can simply click or
drag on the text to begin editing. Press Enter when you are finished. The illustration below shows the effect
of double clicking on the word Harmony. As you can see, instead of opening an Input Box this selects the
word for editing.

Since the Text Editor SuperObject doesn’t use an Input Box, you cannot expand the size of the editing area
“on-the-fly” the same way you can with data cells. The editing area must be defined in advance. On the other
hand, the Text Editor SuperObject doesn’t require the extra double click, and works more like other standard
applications you may be used to. See “Text Editor SuperObject” on page 689 to learn how to create a form
with Text Editor SuperObjects.

Tabbing from Cell to Cell

To make it easier to enter several cells in a row, Panorama allows you to use the Tab key to move from cell to
cell as you enter data. In the data sheet you normally move from left to right, in a form from top to bottom. If
you want to move backwards press Shift-Tab.

Chapter 7:Data Entry & Editing Page 381
Tab Down

In the data sheet the Tab key normally moves from left to right. Sometimes it may be more convenient to key
a column from top to bottom instead of across a row from left to right. For instance, you may find it easier to
key in a dozen names, then a dozen addresses, then a dozen cities, instead of keying in each record sepa-
rately.

Click on the Tab Down tool to change the tab direction from across to down. Click the tool again to change
back to normal tab operation. Panorama indicates that tab down is active by changing the arrow direction in
the Tab Down tool.

Tab down can also be used in forms when the view-as-list option is enabled. See “View-As-List Forms” on
page 917 for more information on the view-as-list option.

Tab Order in Forms

Panorama has three tab order options for forms—data sheet order, back to front order, and natural order.
Use the Form Preferences command (Setup Menu) to specify the tab order option you want to use. (The form
must be in graphic design mode. See “Form Modes: Data Access vs. Graphic Design” on page 543 if you are
not already familiar with using graphic design mode.)

Data sheet order is exactly that—the Tab key moves from cell to cell in the same order as it would in the data
sheet. However, data sheet order will not work if your form contains one or more variables in addition to
fields to be edited (See “Text Editor Options” on page 692).

tab across

tab down

Page 382 Panorama Handbook
Natural order causes the Tab key to move from left to right, then from top to bottom.

This usually works well (and is the default option), but in some cases isn’t really what you want. This is espe-
cially true in forms with side by side columns of data.

To fix this you can alter the natural order by grouping data cells together–the Tab key will move through all
the cells in the group of objects (in natural order) before it moves to the next cell. In this case the data cells
need to be brought together into two groups using the Group command (see “Grouping Objects Together”
on page 588 for more information on grouping graphic objects.)

group 1 group 2

Chapter 7:Data Entry & Editing Page 383
Now that the cells have been grouped together the tab order will tab through all of the cells in the left hand
column before moving to the right hand column.

Back to Front order gives you the most control, but also takes the most work to set up. When this option is
enabled the tab order depends on the back to front layering of the data cell objects in the graphic design
mode. Use Send to Back to bring a data cell to the start of the tab order, and Bring to Front to send it to the
end of the tab order. See “Changing the Stacking Order” on page 620 for more information on these com-
mands.

For example, suppose your form contained three fields A, B, and C and you wanted to tab from field to field
in the order B › A › C. To set up this order click on field B and use Bring to Front (the form must be in graphic
design mode). Then click on field A and use Bring to Front. Finally click on field C and use Bring to Front.

Tabbing with the Space Bar

Using the Tab key is a great timesaver when entering lots of data, but it sure is tough on your left pinky. You
can use Panorama’s Space Bar Tab option to give your pinky a rest. When you are using this option, pressing
the Space Bar bar once or twice tells Panorama to skip to the next cell, just like the Tab key.

The Space Bar Tab option can be configured separately for each field in the database. If a field never contains
a space (for example state, zip code, or price) you can use the 1 Space option. This option makes pressing the
Space Bar skip to the next cell.

If a field sometimes contains blanks (for example name, address, or description) you can use the 2 Space
option. When this option is active, you can press the Space Bar twice in a row to skip to the next cell. (This
option does not usually work well with Clairvoyance.)

Page 384 Panorama Handbook
To set up the Space Bar Tab option, use the Field Properties Data Entry Options sub-dialog (open the Field
Properties dialog and press the Data Entry button).

You can also set up the Space Bar Tab option with the Tabs column in the design sheet. (See “The Design
Sheet” on page 332 if you are not familiar with the design sheet.)

The Space Bar Tab option may not sound very exciting on paper. You may wonder if it is worth the bother.
This option really does make it easier to enter lots of data without cramping your fingers, especially the left
pinky. Give it a shot!

Data Entry Accelerators

Data entry is probably the most tedious task you’ll face while using your computer. Let’s face it, no one
enjoys keying in data. The best way is to get someone else to do it! But since that usually isn’t possible, Pan-
orama includes a number of features that help accelerate data entry. You don’t have to use any of these fea-
tures, but when you do, you’ll find that ugly data entry tasks are finished faster and more accurately.

Chapter 7:Data Entry & Editing Page 385
Automatic Capitalization

Panorama has four options for automatic capitalization: off, all, word, and sentence. You can set up automatic
capitalization with the Field Properties dialog or with the Caps column in the design sheet.

The All option tells Panorama to capitalize every letter entered into the field. Use this option for fields con-
taining abbreviations—CA, NY, etc.

The Word option tells Panorama to capitalize the first letter of each word. Use this option for fields contain-
ing names, addresses, etc.

Sometimes you may need to override Panorama’s automatic word capitalization. If you need an extra capital
letter simply press the Shift key (for instance McDonald). If you want the first letter of a word to be lower
case type the letter twice (Bank Oof America), then delete the upper case letter (Bank of America).

The Sentence option tells Panorama to capitalize the first letter of each sentence. Use this option for fields
containing paragraphs of text—for instance catalog descriptions or correspondence.

Changing Capitalization of Existing Data

Automatic capitalization only applies to new data as it is typed into the database. It does not change data that
has already been entered. It also does not automatically capitalize imported data or data pasted into the data-
base.

If you want to change the capitalization of existing data, you must use the Formula Fill command with a for-
mula containing the upper(), lower(), or upperword() function. This is best explained with an example. Sup-
pose you wanted to convert the last names in the database below to all upper case. Start by clicking anywhere
in the Last column.

Page 386 Panorama Handbook
Now choose Formula Fill from the Math Menu, and type in the formula upper(Last) .

When you press the OK button, the field will be converted to all upper case.

See “Filling a Field with a Formula” on page 511 for further details about the Formula Fill command.

Note: If the field name in the previous example had contained a space or punctuation mark, you would have
needed to enclose the field name in chevrons, for example upper(«Last Name»). Alternately, you can sim-
ply use the formula upper(«») which will always refer to the current field. See “Formulas” on page 1185 for
more information about designing formulas.

Checking for Duplicate Data

Panorama usually does not care if you enter duplicate information into a database. However, if you wish you
can ask Panorama to check for duplicate data every time you enter or edit a data cell in a given field.

Chapter 7:Data Entry & Editing Page 387
Panorama has three options for checking duplicate data—Yes, No Duplicates and No Unique. You can set up
duplicate checking with the Field Properties dialog or with the Dups column in the design sheet.

The Yes option simply tells Panorama to allow duplicates. This is the default.

Use the No Duplicates option to make sure that a value is not entered more than once. For instance, a check-
book database should never have duplicate check numbers.

The No Unique option tells Panorama to warn you if you attempt to enter a value that is not already in the
database. For instance if a field contains only Yes/No values, this option would warn you if you attempted to
enter True or False.

When Panorama encounters a duplicate or unique value (depending on the option), it warns you. However,
it does not prevent you from entering the value. You are given the option of entering the data even though it
conflicts with the existing data—it’s up to you.

Checking for Duplicates in Existing Data

Checking for duplicates only happens when new data is typed into the database. Panorama does not check
data that has already been entered, and it does not check data that is imported or pasted into the database.

There are several techniques for checking for duplicates in existing data. See “Select Duplicates” on page 448
to learn how to use the Select Duplicates command. Another method is to sort the data and then use the
UnPropagate command to identify the duplicates (by searching for blank cells). See “Using UnPropagate to
Eliminate Duplicates” on page 528 for details on the UnPropagate command and this technique.

Clairvoyance®

Many databases contain fields where the same information is repeated over and over. For instance, a check-
book will contain the same bills month after month—rent, phone, utilities, charge cards. Another example is
an inventory database that contains many items from each vendor, with the vendor name repeated over and
over. Panorama’s Clairvoyance feature anticipates when you are about to enter data that has been entered
before, and completes the entry for you. This can save you a lot of typing, and helps improve consistency as
well.

Page 388 Panorama Handbook
How Clairvoyance® Works

How can Panorama anticipate what you are about to type? The secret lies in Panorama’s ability to scan the
database in a fraction of a second. When you are using Clairvoyance, Panorama scans the entire database
each time you enter a character. As it scans the database, it checks the characters you have typed against the
data already in the database. When there is only one possible match, Clairvoyance guesses that you are about
to repeat yourself and completes the word or phrase for you.

Of course, Clairvoyance can only be helpful when you are repeating a word or phrase that is already in the
database. If you are entering a new word or phrase, Clairvoyance cannot help you—but it won’t get in your
way, either. As you type in a new word or phrase Clairvoyance may guess that you are entering an old word
or phrase. Just keep typing, and Clairvoyance will automatically erase its guess when it no longer matches
what you have typed.

type n

e
w
p

type n

e

w

p

o

r

t

space

n

e

w

s

Chapter 7:Data Entry & Editing Page 389
Turning Clairvoyance® On or Off

Clairvoyance can be turned on or off with the Field Properties dialog box (Setup Menu) or with the
Clairvoyance column in the design sheet.

Clairvoyance® Helps Insure Data Consistency

One problem when building large databases is making sure that information always gets entered the same
way, especially when more than one person is keying in the data. For example, a single company could be
entered in your inventory database many ways—

Fuji
Fuji, Inc
Fuji USA
Fuji Photo, Inc
Fuji Photo Film USA
Fuji USA, Inc.

Clairvoyance helps solve this problem by accurately repeating the information time after time. You may find
that Clairvoyance’s ability to insure data consistency is more important than the keystroke savings.

Using Clairvoyance® With Dates

We do not recommend using Clairvoyance with date fields. Although Clairvoyance will work with dates, it is
not very useful since dates only contain up to six characters anyway. Using Clairvoyance with a date field can
be annoying, because scanning a date field takes much longer than for regular text fields. This can make the
data entry seem somewhat sluggish.

Clairvoyance® Across Multiple Files

Clairvoyance normally works only with the data you have already typed into the current database. But if you
have already typed this information into another database, you can specify that Clairvoyance should be
linked to that database instead of the current one. For example, you could link an invoice with your price list,
allowing you to type in only a few letters to bring up a product description. This is called linking clairvoy-
ance to another field.

There are two reasons for linking clairvoyance to another field. Clairvoyance cannot anticipate values until
they have been typed in at least once. If all the possible values have already been entered into another data-
base, Clairvoyance can start working immediately by looking into the other database.

Another advantage is speed. If your price list contains 200 records and your invoice database contains 2000
records, Clairvoyance can scan the price list 10 times faster. As your database gets larger, this speed difference
may become noticeable.

Page 390 Panorama Handbook
To illustrate setting up a clairvoyance link to another field we’ll use the invoice and catalog databases shown
below. We’ll link the Item field in the Catalog database to the Description field in the Invoices database.

To set up the link open the Invoices design sheet. Click on the name of the field you want to set up, in this
case Description1.

Once the field is selected choose Set Up Link from the Special menu, which opens the dialog shown below.
On the left hand side of the dialog is a list of open databases. Select the database containing the field you
want to link to, in this case Catalog. Once the database is selected a list of fields in that database appears on
the right. Select the field you want to link to, in this case Item.

Chapter 7:Data Entry & Editing Page 391
Once the database and field are selected press OK to enter the link into the design sheet. You can see the new
link definition in the Link column.

As you can see the link definition is simply the name of the database followed by a colon (:) followed by the
field name. You can type in a link definition manually if you want instead of using the Set Up Link dialog.

In this example Description1 is a line item field (see “Repeating Fields (Line Items)” on page 342) you will
probably want to set up the same link for all of the other line items (Description2, Description3, etc.). The
easy way to do this is to simply double click on the Link cell, like this.

When you press Enter Panorama will ask you if you want to copy this data to all of the other line items (see
“Modifying Line Item Fields” on page 345).

Page 392 Panorama Handbook
Press Yes and Panorama will make the changes.

Like all other design sheet options, the link does not actually take effect until you tell Panorama to create a
new generation (see “Database “Generations”” on page 332).

When you are editing data within a field that has a clairvoyance link set up, Clairvoyance checks the charac-
ters you type against the data in the second database. When it finds a possible match, it enters the rest of the
value for you.

In this example Clairvoyance has been linked to a field in another database. However you can also link Clair-
voyance to a field in the same database.

Chapter 7:Data Entry & Editing Page 393
Clairrows

When you hold down the Command key (Mac) or Control key (Windows), the up and down arrows on the
keyboard become clairvoyant arrows, or “clairrows.” With the key held down you can use the arrows to scan
through the values that are already in the database. Each time you press Command/Control-Down Arrow
the next value appears, while each time you press Command/Control-Up Arrow the previous value appears.
You can scan through the values until you find the information you are looking for, then press the Enter key
to enter the value.

To give the clairrows a head start you can type in the first few letters of the information you are looking for.
For example, suppose that you are looking through a travel database for a particular Best Western Hotel.
Start by typing Best, then press Command/Control-Down Arrow. The first hotel with a name beginning with
Best will appear. Each time you press Command/Control-Down Arrow the name of next hotel (alphabeti-
cally) will appear—for example Best Western Aspenalt Lodge, Best Western Bar X Motel, Best Western Boul-
der Inn, etc. Press Command/Control-Up Arrow to move backwards through the hotel names. Continue
until the hotel you are looking for appears, then press Enter.

This technique also works when Clairvoyance has been linked to a field in another database (see “Clairvoy-
ance® Across Multiple Files” on page 389).

Input Patterns

Sometimes you may wish to force the data being entered into a specific pattern. For instance in the United
States and Canada long distance phone numbers almost always use the pattern (999) 999-9999. Panorama’s
Input Pattern can take care of entering the pattern for you. Once the pattern is set up, you only type the
actual data (in this case the digits of the phone number). Panorama combines the data you enter with the pat-
tern to produce the actual data. For example, combining the input pattern (_ _ _) _ _ _-_ _ _ _ with
3124562468 produces the data (312) 456-2468.

type b

e

s

t

Cmd/Ctl-Down Arrow

Cmd/Ctl-Down Arrow

Cmd/Ctl-Down Arrow

Cmd/Ctl-Down Arrow

Cmd/Ctl-Up Arrow

Enter

Page 394 Panorama Handbook
An input pattern consists of a string of characters with an underscore in each spot where actual data will be
entered. The input pattern is just like fill in the blanks, but instead of filling in the blanks you fill in the under-
scores. (Press Shift-Dash to enter the underscore character. The dash key is in the top row of the keyboard,
just to the right of the 0 key.) The table below lists some common input patterns.

You can set up the input pattern with the Field Properties Data Entry Options sub-dialog (open the Field
Properties dialog and press the Data Entry button).

Type of Data Input Pattern Example

Phone Number (_ _ _) _ _ _-_ _ _ (312) 456-2469

Social Security Number _ _ _ - _ _ - _ _ _ _ 234-54-5476

License Plate _ _ _ _ _ _ AGB 287

Date _ _ / _ _ / _ _ 03/24/05

Time _ _ : _ _ : _ _ _ _ 11:24:36 PM

Choose from a pop-up menu of common input patterns, or…

type the input pattern into the box

Chapter 7:Data Entry & Editing Page 395
You can also set up the pattern with the Input Pattern column of the design sheet. (See “The Design Sheet” on
page 332 if you are not already familiar with using the design sheet.)

Tip: Input patterns should not be used with numeric fields. If you want to add a pattern to a numeric value,
you should use an output pattern (See “Numeric Output Patterns” on page 356).

Entering Data with an Input Pattern

This illustration shows an example of entering a phone number with an input pattern.

The input pattern is only active when you are adding new characters at the end of the text. It does not adjust
the data when you are inserting text in the middle of the cell. For example, it does not prevent you from cre-
ating a four digit area code, like this:

Using Input Patterns with Dates

The purpose of input patterns is to save keystrokes in data entry by inserting constantly occurring dashes,
colons, parentheses, or other punctuation. When it comes to date fields, you must decide how you like to
enter dates. Using the input pattern _ _ /_ _ /_ _ removes the need to type /’s (or some other separator)
between the month, day and year. However, using the pattern requires that you type leading zeros in front of

type 3

1

2

4

5

6

2

4

6

8

click in middle of text

type 4

Page 396 Panorama Handbook
single digit months and days. For instance, to enter January 1st you must type 0101. Without the pattern you
can enter a single digit, for example 1/1. (Keep in mind that Panorama allows any non-numeric character as
the separator, so you could also type 1.1 on a numeric keypad—very fast.) It’s up to you which method you
prefer.

One other point to keep in mind—the input pattern can interfere with Panorama’s Smart Date feature
(“Entering Dates” on page 360). For example, with a pattern if you attempt to enter yesterday you will get
ye/st/erday, and if you enter tuesday you will get tu/es/day. You can go back and edit out the /’s, but if you
are going to use Smart Dates frequently you might want to forego the input pattern.

An input pattern can be used to override Panorama’s century rounding feature. If you want to enter all dates
in the 20th century you can use the pattern _ _ /_ _ /19_ _ . If you are using this pattern then Panorama will
treat 030423 as 3/4/1923, not 3/4/2023. (Remember, Panorama normally rounds the year to the nearest cen-
tury (within 50 years) if you do not specify all four digits of the year.)

Restricting Character Types

Panorama normally allows you to enter any character that can be typed from the keyboard. If necessary you
can restrict the kinds of characters that can be entered into each field. Panorama has five different character
restriction levels—Any, Alphabetic, Numeric, AlphaNumeric, and Custom.

You can set up character entry restrictions with the Field Properties Data Entry Options sub-dialog (open the
Field Properties dialog and press the Data Entry button).

Choose a standard range, or…
design your own custom range (see text)

Chapter 7:Data Entry & Editing Page 397
You can also set up the character range with the Range column of the design sheet. (See “The Design Sheet”
on page 332 if you are not already familiar with using the design sheet.)

The Any “restriction” really isn’t a restriction at all—it allows any kind of text—letters, numbers, spaces, or
punctuation. Panorama lets you type in anything you want with no restrictions. This is the default option.

The Alphabetic restriction allows only letters (A-Z and a-z) and spaces. The letters may be either upper or
lower case. If you attempt to type in a non-alphabetic character (a number, for example) Panorama will beep
and ignore the character.

The Numeric restriction allows only digits (0…9), periods, minus sign, and the letter E (for scientific nota-
tion).

The AlphaNumeric restriction allows both letters and numbers, as well as spaces.

Custom Character Restrictions

The Custom option allows you to exactly specify the characters you want to allow and disallow in this field.
The actual characters allowed are defined by one or more pairs of characters. Each pair specifies a range of
characters that are allowed. For example the pair 09 would allow all characters in the range 0…9, while the
pair az would allow all lower case letters. You can combine several pairs to create a more complex range, for
example az09 for all lower case letters or numbers. A pair may specify a single character as both the begin-
ning and end of the range, for instance %% (only the percent symbol allowed), or 09%% (numerals and the
percent symbol, but not the decimal point). If you wish to allow spaces, one of the pairs should be a pair of
spaces, for instance AZ az09. To preview the effect of a character range you can use the ASCII Chart wizard
— see “Showing Character Ranges with the ASCII Wizard” on page 1255.

The table below shows some common examples of custom character restrictions. For each range a sample of
Ok data and bad data is shown, with the disallowed characters shown in red.

Custom Range Ok Data Bad Data Comments

09 936 923.77 Only digits, no decimal point, spaces or
other punctuation allowed.

09.. 156.23 1,294.48 Basic fixed point numbers

09..%% 67.82% 67.82 % Percentages (no spaces)

09// 5/23/02 March 1st Numeric format dates

09:: 1:24:83 1:24 PM Time

09 ::AAaaMMmmPPpp 5:32 PM 5:32 DL Time (am/pm)

Page 398 Panorama Handbook
If you are using the Field Properties Data Entry Options sub-dialog, you can set up a custom restriction by
selecting characters from the scrolling list. Only selected characters will be allowed. This dialog will automat-
ically set up the character pairs as specified in the last paragraph.

When you press the OK button Panorama will convert the list into a series of character ranges as described in
the previous section. If you want to see what the custom range you have created looks like, open the design
sheet.

AZ SEATTLE Seattle Upper case letters only—no punctuation or
lower case letters

Azaz John John Smith Letters but no spaces

AZaz@@.. sue@my.net sue$my.net Handy for email addresses

09 (())-- (213) 444-1234 342-3982 ext 12 Basic US phone numbers

!~ Check# El Niño Everything ok except spaces, international
characters and special symbols

! Niño El Niño Everything ok except spaces

Custom Range Ok Data Bad Data Comments

allowed

not allowed

Chapter 7:Data Entry & Editing Page 399
Default Values

When a new record is added to a database, it is usually completely empty. You can, however, set up a default
value for each field. One way to set up default values is with the Field Properties Data Entry Options sub-dia-
log (open the Field Properties dialog and press the Data Entry button). The dialog below is for a State field
which defaults to CA (California).

You can also set up the default with the Value column of the design sheet. (See “The Design Sheet” on
page 332 if you are not already familiar with using the design sheet.)

Page 400 Panorama Handbook
The simplest default is a fixed value, as shown in the example above. For example you might want the Coun-
try field to default to your home country, a shipping field to default to your preferred shipper. Once defaults
are set up, they are automatically entered whenever a new record is created.

Default to Today’s Date

To default to today’s date use the default value today.

If you are using the Data Entry Options dialog, you can simply click on the Today’s Date radio button.

Note: The today default only works for fields that use the date data type. If you use the default value today
with a text field you will simply get the word today. See “Dates” on page 360 for more information on the
date data type.

new record with default values

Chapter 7:Data Entry & Editing Page 401
“Ditto” Defaults Based on the Previous Record

Instead of being fixed, a default value can be based on the data in the previous record. You can produce this
type of “ditto” default by using the default value " . This is the quote character, which is produced by holding
down the Shift key and pressing the " key (just to the right of the semicolon key). (Some people mistakenly
call this the double-quote character.)

When you create a new record, the fields using the ditto default will contain the same values as the previous
record. In this illustration a new record has been added with four default values, two fixed and two “ditto.”

“ditto” defaults for City and Zip

fixed defaults for State and Country

Page 402 Panorama Handbook
Automatically Incrementing Defaults (1, 2, 3, …) Based on the Previous Record

For a numeric field you can specify a default that is created by adding to the previous value in the field. To do
this, use a default of +nn, where nn is the amount to add to the previous value. For example +1 causes the
value to increment by one for each new record.

You can use any number, even a negative number like +-5. This default would cause Panorama to add nega-
tive 5 (same as subtracting 5) to the value each time a new record is created. If the numeric type allows it, you
can even use non-integer values like 2.5 or 0.1.

As new records are added to the database, they are numbered automatically, like this.

automatically incrementing check numbers

this field set up to default to today’s date

Chapter 7:Data Entry & Editing Page 403
Be sure to keep in mind that an incrementing default like +1 is based on the previous record, not on the larg-
est value in the entire database. So if you insert a record in the middle of the database, the incremented value
will be based on the value just above it, not on the value at the end of the database.

If you want to generate a unique incrementing number for use as a record ID (for instance an invoice number
or check number), use the technique described in the next section.

Creating a Unique Record Number

Many databases applications require that each record contain a unique number that can be used to identify
the record. Common examples include invoice numbers, batch ID's, employee numbers, etc. Panorama can
automatically assign a unique number to each new record as it is created, even if several people are using the
database simultaneously over a network.

The field containing the record number must be a numeric field. To specify that this field should contain a
unique record number, the default should be + . Do not specify any increment value, just use a single + char-
acter.

Each database contains a counter for keeping track of the next record number. Every time a new record is cre-
ated the counter is incremented by one. Even if the record is later deleted, the number will never be re-used
(unless you Quit Panorama or close the database without saving your changes, or unless you reset the
counter manually as described below).

records inserted in the middle have incorrect numbers

Page 404 Panorama Handbook
Manually Changing the Record Number Counter

You can manually change the record number counter using the Privileges dialog. (See “The Privilege Dialog”
on page 319 if you don’t know how to open this dialog.) Simply type in any integer value for the Next Record
ID# option.

It is also possible to access and modify this ID number in a procedure. (See “GETAUTONUMBER” on
page 5287 and “SETAUTONUMBER” on page 5735.) To access the next record ID # use the GetAutoNumber
statement. Here is a simple procedure that displays the next record ID number.

local id
GetAutoNumber id
message "The next record number will be "+str(id)+"."

This one line procedure uses the SetAutoNumber statement to reset the record ID number to 1000.

SetAutoNumber 1000

Automatic Time/Date Stamping

Using the design sheet you can designate a field as a time stamp field. Once a field has been designated as a
time stamp field, Panorama will automatically copy the current date and time into this field every time any
other field in the record is modified. Setting up a time stamp field allows you to reliably track when each
record in the database was last modified.

Chapter 7:Data Entry & Editing Page 405
To set up a time stamp field you must have the design sheet open. Choose the Time Stamp Field command
from the Setup menu, then use the pop-up menu to select the field that will become the time stamp field. This
field must be an integer (numeric 0 digits) field and it must already exist in the data sheet. (Just adding a new
field to the design sheet isn’t enough to make it appear in the Time Stamp dialog’s pop-up menu. You must
also make a new generation.)

Once the time stamp field is set up, Panorama will automatically update the time and date every time any
cell in that database is modified. The value stored in the cell is actually the number of seconds since midnight,
January 1, 1904. This combination of date and time into a single number is called a SuperDate. See “Super-
Dates (combined date and time)” on page 1276 for more information about SuperDates.

As you can see, it’s pretty difficult to look at a SuperDate and make much sense of it. Fortunately, you can
convert a SuperDate into a regular Panorama date with the regulardate(function, and into a regular time
(seconds since midnight) with the regulartime(function. Here is a formula that converts a SuperDate in
the field LastModified into a readable date and time.

datepattern(regulardate(LastModified),"mm/dd/yy")+" @ "+
timepattern(regulartime(LastModified),"hh:mm:ss am/pm")

time stamp field must be Numeric 0 Digits

Page 406 Panorama Handbook
This formula may be used in an auto-wrap text object (see “Displaying Formulas in Auto-Wrap Text” on
page 652) or Text Display SuperObject (see “Text Display SuperObjects™” on page 658) to display the modi-
fication date in a format like this: 11/27/03 @ 4:37:22 PM.

Automatic Calculations

The Equation column in the design sheet allows you to set up a formula for calculating the value of a field
based on the values in other fields (see “The Design Sheet” on page 332 if you are not already familiar with
using the design sheet).

In the following sections you’ll learn how to perform calculations within the current record as data is entered.
To learn how to calculate an entire column of data at once see “Filling a Field with a Formula” on page 511
and “Storing Formula Results in the Database” on page 1188. To learn how to display the result of a calcula-
tion without storing it in the database see “Displaying Formulas in Auto-Wrap Text” on page 652, “Text Dis-
play SuperObjects™” on page 658 and “Displaying/Printing A Formula” on page 1186.

Spreadsheet Mode Calculations

If you’ve ever used a spreadsheet you’ll be very comfortable with Panorama’s default Spreadsheet Mode for
automatic calculations (see “Procedure Mode Calculations” on page 413 for an alternative calculation mode).
In this mode you simply place the formula for calculating a field into the Equation column of the design sheet
for that field. To illustrate this we’ll use this simple database with four numeric fields for data entry (A, B, C
and D) and two fields that we will be calculated (Total and Avg).

To automatically calculate the total and average simply enter the formulas in the appropriate rows of the
Equation column in the design sheet.

formula to calculate total
formula to calculate average

Chapter 7:Data Entry & Editing Page 407
To activate these formulas you need to create a new generation for this database (see “Database “Genera-
tions”” on page 332). Once you’ve done this you can start entering or updating information. In this illustra-
tion a new record has been added (Diamond Bar) and the first number typed in (but not entered into the
database yet).

As soon as the data is entered by pressing the Tab (or Enter) keys the formulas update the Total and Avg
fields.

As more data is entered the Total and Avg fields are updated instantaneously.

The Total and Avg fields will be updated any time the A, B, C or D fields are modified.

formulas in design sheet update fields as data is entered

Page 408 Panorama Handbook
Next we’ll look at a simple invoice that shows some more realistic examples of automatic calculations in
action. Here are the calculations needed as data is entered.

This table explains each of these formulas. Several of these formulas reference line item fields using the Ω
character, see “Line Item Fields” on page 1220 to learn how these fields can be used in a formula.

Formula Explanation

city(Zip)

Using Panorama’s optional zip code lookup database (see “Zip Code
Lookup” on page 1301) this formula looks up the name of the city
when the zip code is entered. For example, if 92548 is entered this for-
mula will calculate that the city name is Huntington Beach.

state(Zip)

Using Panorama’s optional zip code lookup database (see “Zip Code
Lookup” on page 1301) this formula looks up the name of the state
when the zip code is entered. For example, if 92548 is entered this for-
mula will calculate that the state is CA.

zeroblank(lookup("Catalog",Item,
Description Ω,Price,0)

When an item is entered this formula looks up the price from a catalog
database (see “Linking With Another Database” on page 1289). Here’s
what the catalog database, which must be open, looks like.

Panorama’s Clairvoyance Link option has been used to help make sure
that the Description always matches an item in the catalog database.
See “Clairvoyance® Across Multiple Files” on page 389 to learn how
to set up this option.

city(Zip) state(Zip)

zeroblank(lookup("Catalog",Item,DescriptionΩ,PriceΩ,0))

zeroblank(QuantityΩ*PriceΩ)

Total1+Total2+Total3+ ... +Total13+Total14+Total15

Subtotal*0.05

Subtotal+Tax

Chapter 7:Data Entry & Editing Page 409

zeroblank(Quantity

Ω

*Price

Ω

)

This formula calculates the total for a each line item row (see “Line
Item Fields” on page 1220). The zeroblank(function (also used in the
previous formula) suppresses zero values to make sure that the empty
items really look empty (see “ZEROBLANK(” on page 5912).

Total1+Total2+Total3+ ...
Total13+Total14+Total15

This formula calculates the sum of all the line item totals. The sum(
function (see “Adding Line Item Fields” on page 1230) cannot be used
because it is not compatible with Spreadsheet Mode. If this calculation
is being performed in Procedure Mode (see “Procedure Mode Calcula-
tions” on page 413) this formula can be replaced with the much sim-
pler formula sum("Total

Ω

").

Suttotal*0.05

This formula calculates the sales tax at 5%. To calculate the sales tax
for a non-integer rate (for example 7.75%) using 2 digit numeric fields
the formula must be rewritten as (Subtotal*7.75)/100 to avoid numeric
overflow problems (see “Overflow/Underflow Problems” on
page 1229). If you are using floating point fields the formula can sim-
ply be Subtotal*0.0775.

Subtotal+Tax

This formula calculates the grand total.

Formula Explanation

Page 410 Panorama Handbook

Each of these formulas must be set up in the Equation column of the design sheet. The Price and Total line
item formulas only need to be entered once. Panorama will automatically copy them to the other line item
fields (see “Modifying Line Item Fields” on page 345).

Once the formulas have been typed in you need to create a new generation for this database (see “Database
“Generations”” on page 332). Once you’ve done this you can start entering or updating information. For
example you can enter the zip code 95689.

Chapter 7:Data Entry & Editing Page 411

If the optional Zip Code dictionary is installed the formula will “calculate” the city and state. Yes, there really
is a place named Volcano, California.

When you enter a quantity Panorama calculates the line item total. Since the price hasn’t been entered yet, the
total is zero, which is suppressed by the

zeroblank(

 function (see “ZEROBLANK(” on page 5912).

When a description is entered Panorama kicks into high gear. The automatic calculations look up the price
from the catalog database, multiply the price by the quantity for the line item total, calculate the subtotal, the
tax, and the grand total.

Page 412 Panorama Handbook

One potential problem appears if a calculation is “circular,” in other words, if the result of the calculation is
part of the calculation itself. In this database the formula for calculating the Price field actually contains the
Price field.

zeroblank(lookup("Catalog",Item,Description

Ω

,Price,Price

Ω

,0)

If you attempt to edit a price, this will trigger the calculation, which modifies the price. Let’s suppose you
decide to give the customer a 50 cent discount on their flat car.

When you press the

Enter

 key Panorama performs the calculations. But in this case part of the calculation is
to look up the price from the catalog database. This resets the price back to $4.25.

The solution is to edit the description so that it no longer matches any entry in the catalog database. In this
case we’ve added the word (Discount) after the item name. Once the description has been modified you can
go ahead and mark down the price.

For another solution to this “circular” calculation problem see the next section.

Chapter 7:Data Entry & Editing Page 413

Procedure Mode Calculations

An alternate mode for performing calculations is called

Procedure Mode

. In this mode little “mini-proce-
dures” are triggered when data is entered into a cell. Each mini-procedure can contain one or more assign-
ment statements (see “Assignment Statements” on page 1367). A mini-procedure can also trigger a real
procedure (see “Automatically Triggering a Procedure” on page 416).

To use procedure mode you must turn it on. This is done with the

Special

 menu in the design sheet.

Note: New databases default to

Spreadsheet Mode

. However, if a database was created with Panorama 2.1
or earlier it will default to Procedure Mode for compatibility with these earlier versions of Panorama. Either
way you can easily switch back and forth between the modes using the

Special

 menu. However, you will

have to re-create any formulas in the Equation column when you make the switch.

When procedure mode is used the assignment statements go along with the field(s) where the data entry is
done, not where the answer is placed. This usually means that you’ll have to repeat the assignment state-
ments to place them in each column where the data is entered. Use the

Copy

 and Paste commands to dupli-
cate the assignment statements into each field.

when data is entered in this field these assignment statements are triggered

no formulas in the fields where the results are stored

Page 414 Panorama Handbook

Once these assignment statements are entered and the new generation has been created(see “Database “Gen-
erations”” on page 332) the automatic calculations will be performed when data entry is performed, just as it
was when Spreadsheet Mode was used.

data entered here

assignment statements calculate these values

Chapter 7:Data Entry & Editing Page 415

Here is the design sheet for a revised version of our simple invoice example. This version is designed to use
Procedure Mode calculations. We’ve opened the Equation cell for Description3 so that you can see all five
assignment statements that are performed when data is triggered in this field. As you can see these are basi-
cally the same formulas that we used in Spreadsheet Mode, but re-arranged into a single cell. In addition, we
also used the sum(function (see “SUM(” on page 5813), which works just fine in Procedure Mode.

Page 416 Panorama Handbook

Using Procedure Mode gives you precise control over what calculations are performed. In this example that
means that an item’s price can be modified without Panorama trying to re-lookup the price from the catalog
database (as it did in the previous section in Spreadsheet Mode).

As you can see we have been able to discount the price without having to modify the description. This pre-
cise control over exactly what calculations are performed is one of the advantages of Procedure Mode, and
sometimes makes it worth the extra effort.

Automatically Triggering a Procedure

When Procedure Mode is used data entry can trigger a real procedure in addition to performing calculations.
To trigger a procedure simply enter the name of the procedure in the Equation column of the design sheet
(the procedure name may not contain any spaces). If the procedure name is combined with any assignment
statements the procedure name must come last. Here is an example that triggers the .PaymentDialog proce-
dure whenever the Payment Method field is edited.

Chapter 7:Data Entry & Editing Page 417

This procedure makes a dialog appear whenever the Payment Method field is modified (in this case by click-
ing on radio buttons). The exact dialog that appears depends on which radio button was clicked.

If you are using Spreadsheet Mode there is no way to trigger a procedure from the design sheet. However,
you can still create a .ModifyRecord procedure that will be triggered whenever any field is modified. See
“.ModifyRecord” on page 1485 to learn more about this special procedure.

Pros and Cons of Spreadsheet vs. Procedure Mode

How do you decide which mode to use? The table below summarizes the advantages of each mode.

For most applications Spreadsheet Mode works fine and is easier to use.

Spreadsheet
Mode

Procedure
Mode

• Easier to use (less typing)

• Easier to modify

• Less chance of errors

• More familiar to spreadsheet
users

• More precise control

• Can trigger a procedure

• Works with sum(function

• Slightly faster execution

Page 418 Panorama Handbook

The Run Automatic Calculations Wizard

When you set up an automatic calculation that calculation is automatically applied when new data is entered
or existing data is modified. The calculation is not applied to any existing data. One way to apply a calcula-
tion to existing data is to use the Formula Fill command in the Math menu (see “Filling a Field with a For-
mula” on page 511). Another method is to use the Run Automatic Calculations wizard. This wizard will
perform calculations based on the formulas you have entered into the design sheet (see “Automatic Calcula-
tions” on page 406). For example, consider this sample database.

Looking at the design sheet we can see that calculations have been set up for the Total and Avg fields.

When new data is entered into this database the Total and Avg fields are calculated automatically. However,
they are not calculated for the existing data. To perform this calculation, open the Run Automatic Calcula-
tions wizard.

To calculate the values for all fields that have calculations set up (in this case Total and Avg) press the All
Fields button. The wizard will perform the calculations and fill in the fields. (Note: This wizard only works
with Spreadsheet mode formulas, it does not work if the database uses Procedure mode.)

If you only want to perform the calculation for the current field press the Current Field button. (If the current
field doesn’t have a calculation set up an alert message will appear.)

Chapter 7:Data Entry & Editing Page 419

The Choice Palette

The choice palette provides a completely different way to use the Input Box. Instead of entering the data with
the keyboard, you pick the value from a list of buttons.

The choice palette can be used with any data type except pictures. All you have to do is create a list of choices
(see below).

Changing the Shape of the Choice Palette

Panorama automatically arranges the buttons in the choice palette for the best fit in the Input Box. By chang-
ing the size and shape of the Input Box you can arrange the buttons vertically, horizontally, or in a grid of
rows and columns.

Creating the List of Choices

The list of choices (if any) for each field is kept in the Choices column of the design sheet. (See “The Design
Sheet” on page 332 if you are not familiar with the design sheet.) You can key in the list manually or you can
use the Automatic Choices command to create the list for you (See “Creating the List of Choices” on
page 365).

If you key in the list of choices manually, you must separate each choice with a space. If a choice contains a
space (US Mail) you must represent the space with an underscore character (US_Mail).

Page 420 Panorama Handbook

Exceptions

An option for any choice palette is an exception box. The exception box lets you type any value into the data
cell, even if the choice palette doesn’t contain a button for it. Use the exception box when you have a few
common choices, but cannot anticipate every value in advance. To create an exception box, simply type in a
line of underscores at the end of the choice list.

The exception box is always one line high. The width of the exception box is controlled by the number of
underscores.

To make the exception box wider, add more underscores.

The Choice Palette vs. the Choices Data Type

If you’ve already read about the choices data type (See “Choices” on page 364), you may be wondering how
the choice palette relates to the choices data type.

The choice palette is a way to enter data. It provides a way to enter or edit data by picking from a list of
choices instead of typing from the keyboard. Using the choice palette does not affect how that data is stored,
however. The data can be stored as text, as a number, a date, or using the choices data type.

The choices data type is a way to store data. This data type is efficient (saves memory) for storing data that
has only a few possible values.

The choices data type can be used with a choice palette (and it usually is), but you can also use regular key-
board editing to enter choice values. A choice data type field will use regular keyboard editing (instead of the
choice palette) if you set the number of digits to 1.

Editing Tools within a Data Cell

Most data cells contain no more than a few words or phrases. Some applications, however, require that each
data cell contain several paragraphs or even an entire page of information. Panorama’s search, replace, and
spelling checker tools can help you accurately create catalogs, letters, glossaries, bibliographies, etc.

Chapter 7:Data Entry & Editing Page 421
Searching for Text Within the Input Box

To locate a word or phrase within the Input Box use the Find in Cell command in the Edit Menu. Make sure
you use the Find in Cell command in the Edit Menu, not the Find/Select command in the Search Menu.

Enter the word or phrase you want to search for into the dialog box, then press the Find button or the Return
key.

Page 422 Panorama Handbook
Panorama will move the insertion point to the first occurrence of the word or phrase within the text in the
cell.

If you want to look for more occurrences of the word or phrase, use the Find Next in Cell command in the
Edit menu (not the Find Next command in the Search Menu).

The Find in Cell dialog has two options, Case Sensitive and Words Only. Use the Case Sensitive option if you
want the Find in Cell command to only locate words or phrases that exactly match the capitalization of the
text you are searching for. For example, when searching for the word Panorama, the Find in Cell command
would normally also locate panorama and PANORAMA. However, if the Case Sensitive option is checked
only Panorama will be located—the other two versions would be skipped.

Use the Words Only option when you only want to locate occurrences of the text that are complete words, not
part of a larger word. For example, if you search for the word head, the Find in Cell command will also
locate the words header, headline, subhead, etc. However, if the Words Only option is checked, these addi-
tional variations will be skipped.

To find additional occurrences of the word or phrase within the Input Box, use the Find Next in Cell com-
mand in the Edit menu (not the Search menu).

The Find in Cell command in the Edit menu searches only through the text in the Input Box. If you wish to
search the entire database you must use the Find/Select command in the Search menu (see “The Find/Select
Dialog” on page 435).

Replacing Words or Phrases Within a Cell

To replace a word or phrase within the Input Box use the Change in Cell command in the Edit Menu.

Chapter 7:Data Entry & Editing Page 423
Make sure you use the Change in Cell command in the Edit Menu, not the Change command in the Search
Menu. Enter the word or phrase you want to replace and the new word or phrase into the dialog box. Press
the Change button or the Enter key to change all occurrences of the word or phrase within the Input Box.

The Change in Cell dialog has the same Case Sensitive and Words Only options that appear in the Find in
Cell dialog. These options work exactly the same way as described in the previous section.

Using the Spelling Checker within a Cell

If you have purchased Panorama’s optional spelling dictionary, you can use the Check Spelling command
(Edit Menu) to check the spelling of the text in the Input Box.

Starting from the currently selected spot in the text, the Check Spelling will scan the Input Box looking for
spelling errors. If it finds a spelling error, Panorama will stop and highlight the misspelled word.

Page 424 Panorama Handbook
If the word is actually misspelled, you can correct the error. In the example above, geeky is probably correct,
but is not in Panorama’s dictionary. To resume scanning for more spelling errors, choose Check Spelling
again from the Edit Menu.

Chapter 8: Sorting

Most data is more useful when it is in some kind of order. Panorama’s Sort Menu has several commands that
can quickly sort your data into order.

Basic Sorting

Before sorting, you must choose the field to be sorted. For example, you might want to sort a mailing list
database by name, city, state, or zip code. To choose the field you want to sort, just click on it. In a data sheet
or view-as-list window, you can click on any cell in the column. If you are using a regular form (individual
pages), click on the field you want to sort. (You must click on a data cell, not on an auto-wrap text object con-
taining the field.)

Page 426 Panorama Handbook
To sort in ascending order (A to Z) use the Sort Up command. To sort in descending order (Z to A) use the
Sort Down command. The Sort Down command is especially useful with numeric data if you want to rank
the numbers from largest to smallest.

When the database is sorted, all the records are re-arranged. However the current record remains in the same
spot in the window. For example, if you click on the name Zabriskie and then sort, the record containing
Zabriskie will remain on the screen. The record will not be in the same spot in the file, however, because it is
now near the end of the file with the other Z’s. In this case the current record was Keith Baker, which is still
the current record. However the database is now sorted from A to Z within the Last name field.

Sorting By More Than One Field

It is often necessary to sort by more than one field at a time. For example, you may need to sort both first and
last names, or cities and states. After you have sorted the database once, you can use the Sort Up Within (or
Sort Down Within) commands to sort by additional fields.

Chapter 8:Sorting Page 427
For example to sort by city and state, first sort by the state.

As you can see, the records are now sorted by state. However, the cities are not sorted within each state. For
example, Davis, CA should appear before San Francisco, CA, but it doesn’t. In fact, within each state the
records aren’t sorted at all, they are still in the order they were in before they were sorted.

Page 428 Panorama Handbook
To complete our two column sort, click on the City field and use Sort Up Within to sort the cities. The Sort
Up Within command leaves the states in order but sorts the cities within each state.

As you can see, the cities are now sorted within California and Connecticut (and within all of the other states
with more than one record as well).

The Sort Within commands can be used over and over again to sort 3, 4, or more fields within each other.
Always start with the regular Sort Up or Sort Down commands, then use Sort Up Within or Sort Down
Within to sort each of the additional fields. For example, if you look closely you will notice that the three San
Francisco records in the window above are not sorted by zip code. If you wanted them to be, you could sim-
ply click on the Zip field and then choose Sort Up Within again. The records will still be sorted by state and
by city within state, but now they will also be sorted by zip code within city as well.

Chapter 8:Sorting Page 429
Note: There is an alternate way to sort multiple fields. This alternate method does not use the Sort Within
command. Instead of sorting within, sort the fields in reverse order using the regular Sort Up or Sort Down
commands. For example to sort by city within state, first click on the City field, then Sort Up, then click on the
State field, and finally Sort Up again.

Sorting By Color

Usually the database is sorted according to the data in a field, but you can use the Sort by Color command to
sort by the color of each cell in the field. Sorting by color can be useful if you have set up your database so
that each color has a meaning. The sort order for colors is black, red, green, blue, cyan, magenta, yellow. See
“Data Style and Color” on page 532 for details on how to assign a color to a cell.

Here is a database where each name has been assigned a color.

Page 430 Panorama Handbook
After Sort By Color the records are grouped together by color.

Undo Sorting

The Undo command will undo the effect of the last Sort or Sort Within command, putting the database back
into the original order. Remember that only the last sort can be undone. Once you sort again the original
order cannot be restored (unless you have saved the file on the disk in the original order, then you can use
Revert to Saved to restore the order.)

Sorting Numbers and Dates

It is important to store numbers using the numeric data type, and dates using the date type. If you store num-
bers and dates using the text data type they will not sort correctly, as shown in this table.

If your numbers or dates are not sorting correctly, make sure they are stored using the correct data type. See
“Numeric Data” on page 355 for more information on the numeric data type. See “Dates” on page 360 for
more information on the date data type.

Stored

as Numeric

(correct)

Stored

as Text

(incorrect)

9 6000

80 700

700 80

6000 9

Chapter 8:Sorting Page 431
Sorting Right Justified Text

If your text is right justified, it will sort like a numeric field. In other words, 2 will sort before 10, and B will
sort before AA. The actual sorting rules for right justified text are—1) short data sorts before longer data (B
before AA) and 2) if two data items are the same length, they will be sorted in alphabetical order (AA before
BA).

Sorting Selected Data

Sorting is not affected by the Find/Select command. The sort commands always sort the entire database—not
just the selected records. When the invisible data is selected again you will see that it is sorted properly
within the rest of the data.

Sorting Within Groups

Later you’ll learn how Panorama can organize a database into groups, with summaries for each group. (See
“3-Step Summarizing” on page 453.) If you attempt to sort your database after it has been grouped, Pan-
orama will automatically sort the data within the groups instead of sorting the entire database. If you want to
sort the entire database you must remove the groups with the Remove Summaries command (Sort Menu).

Sorting Choices

Data stored using the choices data type is sorted according to the order of the choice list in the design sheet. If
you want the choices to be sorted alphabetically, you must make sure that the choice list is in alphabetical (A-
Z) order. The Automatic Choices command does this for you.

Sometimes you may wish to sort the choices in a different order. For example, Olympic medals should be
sorted in the order Gold, Silver, Bronze instead of alphabetically (Bronze, Gold, Silver). If you need the
choices to sort non-alphabetically, simply set up the choice list in the order you want.

Warning: If you use a non-alphabetic choice order, Panorama cannot correctly sort exceptions. Panorama will
attempt to place the exceptions in alphabetical order, but if the choice list is not in alphabetical order that may
be impossible. The final order is not predictable. If the choice list allows exceptions it should be in alphabeti-
cal order.

See “Choices” on page 364 for more information on the choice list and the choice data type.

Page 432 Panorama Handbook

Chapter 9: Searching and Selecting

A Panorama database may contain dozens, hundreds, or even thousands of records. Finding a particular
piece of information could be like locating a needle in a haystack. Fortunately Panorama can easily locate
information for you.

Finding vs. Selecting

Panorama has two ways of locating information, finding and selecting. Finding is much like looking up a
name in a phone book—Panorama points out the location of the information you are looking for. For exam-
ple, you might ask Panorama to find a phone number or a price in a catalog. Panorama will locate the infor-
mation, and position the database to that spot. In this example we’ve asked Panorama to find Blue Cross.

find Blue Cross

Page 434 Panorama Handbook
Selecting is like creating a whole new phone book containing only the information you are looking for. All the
selected data remains visible, while everything else temporarily vanishes. For example, you might ask Pan-
orama to select all customers that have purchased from you in the last six months, or all transactions over
$250,000.

Deciding whether to find or select is your choice. Usually find is used when you want to locate a specific item
like an address or price, while select is used when you want to locate a set of information. You can also com-
bine the two techniques—for example, first select a subset of the database, then find a specific item within
that subset.

Note: Some other database programs have a “Find” command that actually does the same thing as Pan-
orama’s Select command (for example FileMaker). These programs do not have a true find capability like
Panorama.

select Blue Cross

Chapter 9:Searching and Selecting Page 435
The Find/Select Dialog

Panorama locates information by scanning through the entire database looking for data that matches your
criteria. The Find/Select dialog (Search Menu) allows you to specify three criteria for locating information—
the field containing the data, the kind of match you want (exact match, greater than, etc.) and the match value
(the data you are looking for).

Tip: You can also open the Find/Select dialog by clicking on the record count displayed in the lower left hand
corner of the window.

Here is what the Find/Select dialog looks like when you first open it.

click in this box to open Find/Select dialog

Page 436 Panorama Handbook
The pop-up menu on the left side of the dialog tells Panorama what field contains the data you are looking
for. For example, if you are looking for a company, you would tell Panorama to look in the Company field.
The Find/Select dialog initially assumes that you want to locate information in the current column.

Type the data you are looking for into the box on the right side of the dialog. This data is called the match
value. For example if you are looking for a person, that person’s name would be the match value. If you are
looking for transactions over $250,000 the match value would be 250000.

If you press the Select button (or the Enter key) Panorama will select all records with a company name con-
taining Lumber.

Chapter 9:Searching and Selecting Page 437
The pop-up menu in the middle of the dialog controls how Panorama looks for a match. There are ten differ-
ent choices for identifying a match.

Contains — Any data cell that contains the match value will be identified as a match. For example, if you ask
Panorama to locate cities containing an, it will locate cities like Anaheim, Lansing, Los Angeles, and San Jose
since they all contain an. Notice that capitalization is ignored, so an, An, AN, and aN are all acceptable
matches.

Not Contains — Any data cell that does not contain the match value will be identified as a match. For exam-
ple, if you ask Panorama to locate phone numbers not containingcontaining (714) it will locate phone num-
bers in other area codes. Capitalization is ignored, so an, An, AN, and aN are all equivalent as far as this
option is concerned.

Begins With — Any data cell that begins with the match value will be identified as a match. For example, if
you ask Panorama to locate states beginning with co, it will locate states like Colorado and Connecticut. Cap-
italization is ignored, so co, Co, CO, and cO are all acceptable matches.

Ends With — Any data cell that ends with the match value will be identified as a match. For example, if you
ask Panorama to locate baseball teams ending with sox it will locate both Red Sox and White Sox. Capitaliza-
tion is ignored, so sox, Sox, SOX, and sOx are all acceptable matches.

Equal (=) — Any data cell that exactly matches the match value will be identified as a match. An exact match
means just that. The spelling, punctuation, and capitalization must be exactly the same—for example red will
not match RED or Red.

Not Equal (≠) — Any data cell that does not exactly match the match value will be identified as a match.

Less Than (<) — Any data cell that is less than the value in the box on the right will be identified as a match.

Greater Than (>) — Any data cell that is greater than the match value will be identified as a match.

Less Than or Equal (≤) — Any data cell that is less than or equal to the match value will be identified as a
match.

Greater Than or Equal (≥) — Any data cell that is greater than or equal to the match value will be identified
as a match.

Sounds Like — Any data cell that “sounds like” the match value will be identified as a match. Panorama
uses a special algorithm to determine which values sound like the match value. This algorithm is not perfect,
but it does work pretty well. For example, if you are looking for someone named Luboviski but you are not
sure if it is spelled with an i, ie, or y, the sounds like match will save the day.

Page 438 Panorama Handbook
The sounds like match can be used with more than one word at a time. For example, if you are searching
through a video rental database for the movie Escape from New York, the sounds like algorithm will find it
even if it is misspelled Escapade from New York. If any word in the match value sounds like any word in the
data cell, the data will be identified as a match.

Note: If two words do not start with the same letter, the sounds like algorithm will not think they sound alike.
For example, sounds like does not think that Chris and Kris sound alike.

Match— This option allows you to create a “pattern” for comparing data. The pattern allows you to set up
very flexible “wildcard” matches where some characters must match but others don’t have to. The pattern
must contain one or more “normal” characters (letters, numbers, punctuation, etc.) and also may contain one
or more of the wildcard characters ? (question mark) and * (asterisk). The ? wildcard character will match
any character in this position. The * wildcard character will match any number of characters in this position.

A few examples should help to make the operation of the wildcard characters within the pattern clear. Sup-
pose you want to find all records where the first three digits of the zip code are 926, and you don’t care what
the last three digits are. The pattern will be 926?? . This pattern will match any five digit zip code that begins
with 926. It will not match if there are less than or more than 5 characters in the zip code.

If the pattern is changed to 926* , Panorama will match with any zip code that begins with 926, no matter
what the length is. It could be three digits long or thirty — Panorama doesn’t care and will say that it matches
as long as it starts with 926.

By changing the pattern to 926??* we tell Panorama to match any zip code that starts with 926 and is at least
five characters long. The zip code could be 5, 6, 7, or 70 characters long, but will not match if it is only 3 or 4
characters long.

If you wanted to select only 9 digit zip codes we could use the pattern ?????-???? . This will match any 10
character long string with a - (dash) in the sixth position.

Suppose that you wanted to find everyone in your database with the last name Johnson and the first initial J.
Assuming that the first and last names are stored in a single field, you could use the pattern j*johnson to
locate the person (or persons) you are looking for. The match option doesn’t care about upper or lower case,
so this pattern would match Jerry Johnson, jim johnson, or JOHN JOHNSON. (It will also match weird data
like j346ujohnson or j@#opcjohnson, so take care to watch for unexpected matches.) If you want upper and
lower case treated as different characters use the matchexact option (see below).

MatchExact— This option is the same as the match option (see above), except that any letters in the data must
exactly match the pattern, including upper vs. lower case. For example, if the pattern is J*Johnson , names
like Jerry Johnson will match, but JERRY JOHNSON will not match.

Locating Dates by Month, Quarter, or Year

The Find/Select dialog allows you to specify dates by day, month, quarter, or year. These options only work if
the dates are stored using the date data type, not text. (See “Dates” on page 360.)

To specify an individual day, simply type the date in the format mm/dd/yy or mm/dd. If you leave off the
year, Panorama will round the date to the nearest year.

Chapter 9:Searching and Selecting Page 439
To specify a month, you must enter the month in the format MONTH YY or MON YY (for example Septem-
ber 1998 or Aug 01). You cannot specify a month using the format mm/yy, because Panorama cannot distin-
guish this from mm/dd.

To specify a quarter, use the format QqYY (for example 1q99 or 3Q2006).

To specify an entire year, use the format YY or YYYY (for example 90 or 1994).

If you specify a month, quarter, or year, you must use the Equals (=) type of match.

Find and Find Next

Once you have specified what you are looking for, you can either find or select the information (See “Finding
vs. Selecting” on page 433). Press the Find button to find the information.

When you press the Find button, Panorama will go to the top of the database and start scanning. When Pan-
orama finds a data cell that matches what you are looking for, it stops scanning and displays the information
it has found.

Page 440 Panorama Handbook
To resume scanning for additional matches, use the Find Next command. If there aren’t any more matches,
Panorama will beep.

You can use the Undo command to move backwards through the items you have already found. You are not
limited to just one Undo. You can keep undoing until you reach the first matching item in the file.

find Office Supplies

find next

Chapter 9:Searching and Selecting Page 441
Select

To select a subset of the database, press the Select button. Panorama will scan through the entire database
and select the records that match the criteria you have specified. The selected records remain visible, while
the records that do not match temporarily vanish. Panorama displays the number of selected records in the
lower left hand corner of the window.

To restore the invisible records, choose the Select All command from the Search Menu.

To make a different selection, simply use Find/Select again. The original selection will vanish and the new
selection will become visible. (You do not need to choose Select All before selecting another subset.)

Note: If your database is large and you have selected only a few records, you may find that Panorama seems
sluggish. Remember, Panorama may be skipping over hundreds of invisible records that are between the vis-
ible records on the screen. When you use Select All, Panorama’s normal blazing speed will return.

Note: After you have selected a subset of the data, you may find that you cannot move the data sheet scroll
bar to the very top or very bottom. This will happen if the first or last record is not one of the selected (visible)
records.

Multiple Find/Select Criteria

The Find/Select dialog can be expanded to allow up to six concurrent match criteria. For example, you can
select all names in Oregon or Idaho or Montana, or you could select all transactions that are greater than
$10,000 and less than $25,000. (However you cannot combine both and and or at the same time with the Find/
Select dialog, to do that you must use the Formula Find/Select dialog — see “Formula Find/Select” on
page 447).

select Blue Cross

current selection (11 records contain Blue Cross)

Page 442 Panorama Handbook
To expand the Find/Select dialog, click the pink arrow.

Once the dialog is expanded, you can specify up to six different criteria for identifying a match. (Note: You
can click on the arrow again to shrink the Find/Select dialog back to its original size.)

The six separate match criteria can be combined with and or or. To toggle between and and or, click on the
word and or or on the left edge of the dialog.

click here to toggle between and and or

Chapter 9:Searching and Selecting Page 443
When the criteria are combined with and, everything must match. For example, the dialog shown below
could be used to select all presidents of lumber companies within California.

When the criteria are combined with or, Panorama will declare a winner if anything matches. For example,
the dialog shown below tells Panorama to locate anyone with the words President, Manager, or Agent in his
or her title.

The Find/Select dialog does not let you mix and and or within a single selection. See “Formula Find/Select”
on page 447 if you need to mix and and or within a single selection.

Select Within

The Select Within button allows you to select a subset of the currently selected records (The normal Select
button selects a subset of the entire database.) For example, if you have already selected transactions over
$5,000, you can use Select Within to select only those transactions in California. The result would be the sub-
set containing all California transactions over $5,000.

Of course, you could obtain the same effect by combining multiple criteria (and) in the first place (see the pre-
vious section). But you don’t always know in advance exactly what you are looking for. The Select Within
button allows you to whittle your data down gradually until you’ve extracted just the nugget of information
you really need.

Select Additional

The Select Additional button allows you to select a superset of the currently selected records. For example, if
you have already selected names in Ohio, you could use Select Additional to also select names in Illinois.
The result would be the subset containing all names in either Ohio or Illinois.

Of course you could obtain the same effect by combining multiple criteria (or) in the first place (see above).
But you don’t always know in advance exactly what you are looking for. The Select Additional button lets
you assemble the pieces of information you need piece by piece.

Page 444 Panorama Handbook
Select Reverse

The Select Reverse command reverses selected and deselected records. For instance, if you have selected all
transactions greater than $600, the Select Reverse command will select all transactions less than or equal to
$600.

Undo Select

The Undo command can reverse the effects of the last 16 select operations, including Select, Select Within,
Select Additional, and Select Reverse. As long as you do not use any other commands or tools, you can use
the Undo command up to 16 times in a row.

The quickest way to select the entire database is the Select All command.

Permanently Removing Unselected Data

Unselected data is hidden, but it is still part of the database. You can restore the invisible data with the Select
All command. Sometimes, however, you may wish to free the memory occupied by the hidden records. The
Remove Unselected command in the Search Menu permanently removes the unselected records from the
database.

Before Remove Unselected actually erases the unselected data, it asks you to confirm that you really want to
proceed. Panorama doesn’t want you to accidentally delete hundreds or thousands of records. Be careful,
because the Remove Unselected command cannot be reversed with the Undo command.

If you have saved a copy of the data on disk prior to using Remove Unselected, you can still recover the data
with the Revert to Saved command (until you save again). Since saving the file after using Remove Unse-
lected eliminates your ability to recover the data, you may not want to use the Auto-Save option when you
are using the Remove Unselected command. If Auto-Save is on and you use Remove Unselected, Panorama
will ask if you would like to temporarily disable Auto-Save. If you do disable Auto-Save, it will remain dis-
abled until you manually save the file with the Save command. (See “Auto-Save” on page 214.)

Chapter 9:Searching and Selecting Page 445
The Search All Fields Wizard

If you want to search all the fields in a database an easy way to do so is to use the Search All Fields wizard.
Start by opening the database you want to search. To illustrate the operation of this wizard we’ll use a mail-
ing list database.

Use the Wizard menu to open the Search All Fields wizard. The wizard will open in the upper right hand
corner of the screen. Notice that the window name displays the name of the database that will be searched.

Enter the word or phrase you want to search for. For our example we’ll search for green.

To search for the word or phrase, press the Enter key, the Return key, the Find button or select Find from the
Search menu. The wizard will locate the first occurrence of the word or phrase within this database.

To find the next occurrence of the word green you can either press the Next button or select Find from the
Search menu. Notice that the next occurrence may be in a different field than the first occurrence.

Page 446 Panorama Handbook
You can continue to skip to through the database until you have located every occurrence of the word or
phrase in any field. When you have reached the last occurrence the wizard will beep.

The Find and Next commands are designed to be used with the data sheet. If the data sheet is not open the
wizard will ask you if would like to open it.

Chapter 9:Searching and Selecting Page 447
Selecting From All Fields

The Search All Fields wizard can select in addition to finding data (see “Finding vs. Selecting” on page 433).
Open the wizard, type in the word or phrase, then press the Select button or choose Select from the Search
menu.

The wizard will select all records that contain the word or phrase, no matter what field.

Searching All Fields In Another Database

To search all fields in a different database, bring that database to the front and then choose Search All Fields
from the Wizard menu. This resets the wizard and prepares it to search in the new database. The wizard
always shows the name of the database that will be searched in the window title.

Simply clicking on the wizard window is not enough to switch the database being searched, you must choose
the wizard from the Wizard menu.

Page 448 Panorama Handbook
Formula Find/Select

The Find/Select dialog is a quick and powerful way to locate data, but it does have limitations—data can
only be located based on six fixed values. Another restriction is that and and or cannot be mixed. The For-
mula Find/Select dialog removes these restrictions by using a formula to locate information.

Although it is more work to set up, the Formula Find/Select dialog allows you to locate virtually anything
that can be described by Panorama’s powerful formulas.

The Formula Find/Select dialog relies on the ability of a formula to make comparisons and true-false deci-
sions. See “True/False Formulas” on page 1282 for a detailed explanation of true-false logic.

If you locate information with the Find/Select dialog and then open the Formula Find/Select dialog, the dia-
log will contain a formula equivalent to the criteria specified with the Find/Select dialog. This can be a good
way to learn how to build your own formulas.

One advantage of the Formula Find/Select dialog is that it allows you to mix and and or operations. For
example, the formula

(State="CA" or State="NY") and Amount>100

allows you to locate all transactions over $100 in either California or New York. The parentheses allow you to
force the correct order for combining the comparisons.

Another advantage of the Formula Find/Select dialog is that it allows you to select data based on calculations
or comparisons between two fields. For example, the formula

Price/Cost > 2

allows you to quickly locate items with high profit margins.

The formula can also manipulate the data before using it. For example, this formula uses text funnels to strip
off the first three characters of the name, allowing us to quickly locate all doctors in the database.

Name[1,3] = "Dr."

See “Taking Strings Apart (Text Funnels)” on page 1236 for more information on text funnels.

The SEQ Function

When combined with the Formula Find/Select command, the seq(function allows you to select records
based on their position in the database. The seq(function returns a unique number for each record in the
database. The sequence number starts from the top of the database: 1, 2, 3, etc.

For example, to select the first 10 records in the database use the formula—

seq() ≤10

Chapter 9:Searching and Selecting Page 449
You can combine the seq(function with the info("Records") function, which returns the total number of
records in the database. This formula selects the last 20% of the database—

seq()>=0.8*info("Records")

See “SEQ(” on page 5724 for more information on the seq(function.

The Select Summaries Command

The Select Summaries command (Search menu) selects all of the summary records in the database, and
makes all the data records invisible. At the same time, it converts the summary records into data records.

You can use the Select Summaries command to select random records within your database. First pick the
records you want to select by turning them into summary records. (To turn a record into a summary record,
click on the left edge of the record in the data sheet. See “Manually Creating and Removing Summary
Records” on page 462.) To actually select the summaries, choose Select Summaries from the Search menu.
Remember, this will convert all your summary records into data records.

Warning: If you use the Select Summaries command to select random records, you can’t use summary
records for their regular job—calculating subtotals. If you need to use summary records for calculating subto-
tals, don’t use the Select Summaries command! Instead, create an extra field for specifying the records you
want to select. See “3-Step Summarizing” on page 453 for more information on the regular uses of summary
records.

Select Duplicates

The Select Duplicates command (in the Search Menu) provides a fast and easy way to locate duplicate infor-
mation in a database. The Select Duplicates command does not remove the duplicates, it simply selects them
so you can examine them. You can then decide what to do about each duplicate on a case-by-case basis. You
may select duplicates based on a single field (for example, all duplicate company names), on multiple fields
(for example, all records with duplicate address, city, and state), or on a formula that may combine fields or
use partial fields (for example, all records containing duplicate area codes).

To select duplicates based on a single field, start by using the Sort Up command to sort the database by that
field. If the database is not sorted, the Select Duplicates command will warn you. For example, here is a con-
ference registration database that may contain duplicate company information. It has been sorted into alpha-
betically order by company.

Page 450 Panorama Handbook
After the database is sorted, choose the Select Duplicates command from the Search Menu (Make sure you
have clicked on the field you want to check for duplicates before selecting the command.) This command
opens a dialog box. Leave the dialog box empty and press the OK button. Panorama will select the records
that contain duplicate information (if any), making everything else invisible.

As you can see, there are two possible duplicates in this database.

The Select Duplicates command allows you to examine duplicate records. See “Using UnPropagate to Elim-
inate Duplicates” on page 528 if you simply want to delete all but the first duplicate entry automatically.

Select Duplicates Using a Formula

To select duplicates based on multiple and/or partial fields, you’ll need to use a formula. The formula tells
Panorama exactly what data should be checked for duplicates. For example, suppose a database contains
separate fields for first and last names. This formula could be used to check for duplicate names:

FirstName+LastName

If you wanted to check for duplicates using the first initial and the last name, you would use this formula:

FirstName[1,1]+LastName

Chapter 9:Searching and Selecting Page 451
This formula would tell Panorama to treat John Doe, Joan Doe, and Jeff Doe as duplicates because they all
have the same first initial and last name. Let’s search for duplicates in our conference registration file. Start by
sorting up by Last Name.

Now sort up within by first name.

Now choose the Select Duplicates command, and type in the formula:

Page 452 Panorama Handbook
Here is the final result. There are two R Jacobsen’s, two J Jones, two R Knights, and two J South’s.

Note: The formula must produce a text result. If you want to include numeric fields, they must be converted
to text with the str(or pattern(functions (see “Converting Between Numbers and Strings” on
page 1249). Date fields must be converted to text with the datepattern(function (see “Converting
Between Dates and Text” on page 1267).

Warning: When you are using a formula to check for duplicates, only the first 300 characters from the for-
mula result are actually used for duplicate checking. If the first 300 characters are the same, Panorama will
treat these records as duplicates. Normally, this isn’t a problem when you are check for duplicate names,
addresses, etc., which are much shorter than 300 characters.

Chapter 10: Summaries and Outlines

It is very difficult to look at a database containing thousands of records and make much sense of it. There’s
simply too much information to cope with. To make the information more understandable, it needs to be
summarized. Panorama can rapidly summarize a database according to the criteria you specify.

Panorama has two methods for summarizing a database. The first method, which is discussed in this chapter,
is to create an outline using summary records. See “Crosstabs” on page 493 to learn about the second method,
crosstabs.

3-Step Summarizing

Summarizing a database is a three step process—group, calculate, and outline. Before diving into all the
details and options, let’s take a look at a basic overview of these three steps.

Page 454 Panorama Handbook
The first step is always the raw data. For this example we’ll use a checkbook database, which we will summa-
rize by category. Notice that the categories start out in more or less random order.

Chapter 10:Summaries and Outlines Page 455
Step 1 is group, so we’ll start with the Group Up command (Sort menu) to divide the database into groups by
spending category (advertising, purchases, rent, etc.). As you can see, the database is now sorted in order by
category. In addition, Panorama has added several new records to the database. These are called summary
records and can be identified by the small plus sign on the left edge of the window and by the fact that they
are displayed in bold.

summary records

Page 456 Panorama Handbook
Step 2 is calculate, which we’ll do with the Total command (Math menu). This command scans the database
and calculates the subtotal for each category, as well as an overall total at the bottom of the database (not vis-
ible in this illustration).

subtotals

Chapter 10:Summaries and Outlines Page 457
Step 3 is outline, which allows us to hide unnecessary detail so that we can focus on just the numbers that are
important to us. For our example we’ll use the Outline Level dialog (Sort menu) to collapse the database so
that only the summary information is visible. In addition to the subtotals you can also now see the grand
total at the bottom. Notice that the + sign (on the left) for the grand total is slightly larger than the others.

grand total

Page 458 Panorama Handbook
Using the Expand and Collapse tools (in the tool palette) the summaries can be expanded or collapsed to
show more or less detail. Here we’ve used the Expand tool to examine the maintenance detail.

When you are finished with the summary, use the Remove Summaries command (Sort menu) to remove the
subtotals and totals, leaving only the original data. You can then continue with normal operations on your
database (data entry, sorting, searching, etc.).

Tip: The 3-Step summary process is an ideal candidate for automation with procedures. See “Procedures” on
page 1345 for information on recording and using a procedure. Panorama also comes with a special wizard to
help automate the summary process, see “The Summaries & Outlines Wizard” on page 483.

Now that you’ve seen the basic three step summary process, let’s look at each step in detail.

expand

collapse

Chapter 10:Summaries and Outlines Page 459
STEP 1 - GROUP

The first step in summarizing a database is to divide the database into groups or categories. For example, a
checkbook database could be arranged into groups by month (Jan, Feb, Mar, etc.), by budget category (rent,
food, transportation, etc.), or by payee (Evian Apartments, Lakeman’s Market, Unocal, etc.).

To divide a database into groups, first click anywhere in the field you want to group. Then use either the
Group Up or Group Down command (Sort menu) to divide the database. The Group Up command arranges
the data into ascending order—A’s first, Z’s last. The Group Down command arranges the data in descend-
ing order, Z to A.

The Group Up and Group Down commands add a special summary record at the end of each group. Sum-
mary records are temporary records used for calculating and displaying summary information. On the data
sheet you can easily identify summary records by the small plus sign on the left edge of the window, and by
the fact that they are usually displayed in bold.

Subgroups

Groups can be sub-divided into even smaller subgroups. For example if you had arranged a mailing list into
groups by state, you could further divide each state into subgroups by city. You can continue subdividing the
groups up to six times (up to seven levels of groups within groups).

To subdivide groups into smaller groups, first click on the field you want to sub-group, then use the Group
Up or Group Down command again.

When you are looking at the data sheet, you can identify the subgroup level by the size of the plus sign to the
left of the summary record. The lowest level subgroups have the smallest plus signs; the higher level groups
have larger plus signs. The grand-total record has the largest plus sign (see illustration above).

Grand Total

When you arrange a database into groups, Panorama automatically creates an additional summary record at
the bottom of the database. This summary record is for the largest group of all, the entire database. When
totals or other summary calculations are performed (see “STEP 2 - CALCULATE” on page 463), this sum-
mary record holds the overall grand total (or average, count, etc.) for all of the selected records in the entire
database.

size of + symbol indicates summary level

Page 460 Panorama Handbook
If all you need is a grand total (or average, count, etc.), you can skip Step 1 and go directly to Step 2, Calcu-
late. When a summary calculation is performed on a database that doesn’t have any summary records, Pan-
orama automatically appends a single summary record to the end of the database. It then calculates the grand
total (or average, count, whatever) in this summary record. The illustration below shows the result after the
Total command has been used without first grouping the database.

The Group Command

Unlike Group Up and Group Down, the Group command does not sort the database. The Group command
is useful when you want to add summary records to a database that is already arranged in the proper order.

Grouping by Week, Month, Quarter, or Year

When a group command is used on a field containing dates, Panorama will ask you how long each group
should be—a week, month, quarter, or year.

Select the period and press Group to arrange the data into groups. Note: The dates must be stored using the
date data type, not text. See “Dates” on page 360, for more information about the date data type.

You can group dates more than once—for instance first by year, then by month. This produces subgroups (in
this case by month) within the larger groups (by year).

Chapter 10:Summaries and Outlines Page 461
Grouping a database by month, quarter, or year does not change the way the dates are displayed. You may
want to change the output pattern for the date field so that only the month, quarter, or year is displayed,
instead of the entire date. The output pattern is specified as part of the design sheet. To display only the
month and year, use an output pattern like Mon-yy or mm-yy. To display only the quarter and year, the pat-
tern could be qqqyy or Qtr Qtr yy . To display the year only, the pattern could simply be yy or yyyy . See
“Date Output Patterns” on page 361 for more information about date output patterns and how to set them
up.

If you print a database that is grouped by month, quarter, or year, you can use different summary tiles to for-
mat the dates properly. See “Printing Data Grouped by Month, Quarter or Year” on page 1156.

Group by Color

The Group by Color command groups the database by the color of the data cells in the field. The database
can be divided into as many as seven groups—black, red, green, blue, cyan, magenta, and yellow. See “Data
Style and Color” on page 532 for details on how to assign colors to data cells.

Propagating Data into Summary Records

The Group commands create summary records but leaves most fields blank. The Propagate command can be
used to copy additional information into the newly created summary records. In the illustration below the
database has been Grouped by City.

Next we’ll fill in the State field for each summary record by choosing Propagate from the Math menu.

summaries filled in with Propagate

Page 462 Panorama Handbook
See “Propagate” on page 523 for more information on the Propagate command.

Manually Creating and Removing Summary Records

Summary records are normally created automatically with one of the three Group commands, and removed
with the Remove Summaries command (described later in this chapter). You can also manually turn any nor-
mal data record into a summary record and vice versa, although this should rarely be necessary. In fact, we
actively discourage the use of this feature.

To turn a normal data record into a summary record, click along the left edge of the record in the data sheet,
right where the plus sign of the summary record would appear. Each time you click the record will toggle
between normal and summary.

Clicking on the left edge of the data sheet allows you to create the lowest level of summary records, corre-
sponding to the smallest subgroup. If you want to create higher level summary records (for instance for
grand totals) hold down the Option key (Mac) or Alt key (PC) while you click on the left edge of the data
sheet. As long as you hold down the Option/Alt key, each click will increase the summary level of the
record. You can continue increasing the level until you get to the maximum level (seven). You can see the plus
sign enlarge as the level increases.

There is no way to go down one level at a time, but by releasing the Option/Alt key and clicking at the left
edge, the line will turn back into an ordinary data record and you can start over.

If you want to select the summary records you have manually created, use the Select Summaries command.
See “The Select Summaries Command” on page 448 for details on this command.

click here to toggle summary

Chapter 10:Summaries and Outlines Page 463
STEP 2 - CALCULATE

Once the database has been arranged into groups, the next step is to calculate the summary information. Pan-
orama’s Math menu has 7 different kinds of summary calculations).

To perform a calculation, first pick the field you want to calculate by clicking on it. Then choose the command
(Total, Average, etc.) from the Math menu. Panorama will calculate the summaries for each sub-group,
group, and for the entire database.

Total

The Total command adds up the data in the current field. It calculates subtotals for each group and the grand
total for the entire database. The Total command can only be used with numeric fields. If you attempt to total
a text, date, or choice field, Panorama will display a warning message.

Count

The Count command counts the number of non-empty data cells in the current field. If the database is
arranged into groups, it will also count the number of non-empty data cells in each group. Empty data cells
will not be counted. You can count any field containing either text or numbers, but dates cannot be counted.
(Date fields cannot be counted because Panorama would be unable to correctly display the result.)

Average

The Average command averages the data in the current field, calculating sub averages for each group and the
overall average for the entire database. Averages can only be computed for numeric and date fields. If you
attempt to average a non-numeric field Panorama will display a warning message.

Minimum

The Minimum command finds the smallest value in the current field. If the database is arranged into groups,
it will find the smallest value in each group and sub-group. The Minimum command can be used with text,
numeric or date fields.

Maximum

The Maximum command finds the largest value in the current field. If the database is arranged into groups, it
will find the largest value in each group and sub-group. The Maximum command can be used with text,
numeric or date fields.

Page 464 Panorama Handbook
Recalculating Summaries

Summaries are not re-calculated automatically when the database changes. If the information in the database
changes, you must go back and use the Math menu to re-calculate. If the summary records have been deleted,
or if the categories have changed, you must remove the summary records and re-group the database before
you can re-calculate the new summary values.

Running Total

Running Total is a special computation. Unlike the other summary calculations, Running Total modifies
every data cell in the active field, not just the summary records. Like the Total computation, Running Total
starts at the top of the database and adds up each data cell as it moves down the column. Running Total,
however, replaces each data cell with the current total. The result is a field which contains the cumulative
total at each point in the database. This is very useful for computing checking account balances, sales year to
date, and other cumulative statistics.

If you use the Running Total command on your raw data, the raw data will be destroyed in the process of
calculating the running total. We recommend that you avoid this problem by creating an extra field to hold
the running total. You can use the Formula Fill command to copy the data into the field, and then use the
Running Total command without disturbing the original raw data.

Using Running Total to Balance a Checkbook

Let’s take a look at how to balance a checkbook using the Running Total command. Start with an empty Bal-
ance field.

Chapter 10:Summaries and Outlines Page 465
Use the Formula Fill command to calculate the how much the balance changes for each line. The formula is
Credit-Debit .

Press the OK button to calculate the formula.

Page 466 Panorama Handbook
Now choose the Running Total command from the Math menu to calculate the balance after each transac-
tion.

You’ll need to repeat these steps when new transactions are added, or existing transactions changed. This
process can be automated with a procedure.

field Balance
formulafill Credit-Debit
runningtotal

See “Procedures” on page 1345 for more information on creating procedures.

Running Difference

Running Difference is the opposite of Running Total. Running Difference fills each data cell with the dif-
ference between the cell and the cell above it. Use Running Difference when you want to compute the
spread or interval between consecutive values, for example odometer readings or dates.

If you use the Running Difference command on your raw data, the raw data will be destroyed in the process
of calculating the running difference. We recommend that you avoid this problem by creating an extra field to
hold the running difference. You can use the Formula Fill command to copy the data into the field, and then
use the Running Difference command without disturbing the original raw data.

Chapter 10:Summaries and Outlines Page 467
Using Running Difference to Calculate Gas Mileage

Let’s take a look at how to balance a checkbook using the Running Difference command. Start with empty
Range and MPG fields.

Use the Formula Fill command to copy the Odometer field into the Range field. The formula is simply
Odometer .

Press OK to copy the field.

Page 468 Panorama Handbook
Now use the Running Difference command to convert the odometer readings into the distance between fil-
lups.

Now we’ll calculate the actual miles per gallon. Move to the MPG field and use the Formula Fill command to
calculate the formula Range/Gallons .

Press OK and presto, the miles per gallon between each fill-up is calculated.

Chapter 10:Summaries and Outlines Page 469
You’ll need to repeat these steps periodically as you continue to drive. This process can be automated with a
procedure.

field Range
formulafill Odometer
runningdifference
field MPG
formulafill Range/Gallons

See “Procedures” on page 1345 for more information on creating procedures.

STEP 3 - OUTLINE

Outlines are a way of organizing information into groups within groups. Panorama’s group commands re-
arrange your database into an outline structure. Tip: Unlike most outlines which start from the top, Pan-
orama’s outline is upside-down…it starts from the bottom.

Unlike a paper outline, a Panorama outline can be expanded or collapsed to show more or less detail. This
makes it easy to spot overall trends in your data, and then zero in on the details behind those trends.

The Outline Level

The Outline Level dialog (in the Sort menu) can be used to hide the database detail, leaving only the sum-
mary information visible. The Outline Level dialog displays a diagram of the database outline structure as it
is currently grouped. The diagram shows each level of the database, where it came from, and how much data
it contains.

Like the Find/Select command (see “The Find/Select Dialog” on page 435), the Outline Level dialog makes
part of the database temporarily vanish. The Outline Level dialog allows you to hide all data below a certain
summary level, leaving only the higher summary levels. The numbered buttons on the left side of the dialog
allow you to choose how much detail you want to see. Low numbers display more detail, higher numbers
display less detail. Press the Data button to make everything visible.

Page 470 Panorama Handbook
Some examples will help make the operation of this dialog clear. We’ll start with a checkbook database that
has been grouped by Category and by PayTo name.

Chapter 10:Summaries and Outlines Page 471
Now open the Outline Level dialog…

Press 1 to collapse the database so that none of the raw data is visible, only summary records.

Page 472 Panorama Handbook
Now open the Outline Level dialog again to collapse further…

Press 2 to collapse the database so that only the category subtotals and grand totals are visible.

If you want to collapse the database completely so that only the Grand Total is visible, press 3. Or you can go
back to showing all of the data by pressing the Data button.

Collapsing vs. Selecting

Collapsing and selecting are very similar in one way—both hide data from view. In spite of this similarity,
collapsing and selecting are independent of each other. Data that is selected can be invisible because it is col-
lapsed, and data that is expanded can be invisible because it is not selected. Data is only visible when it is
both selected and expanded.

Chapter 10:Summaries and Outlines Page 473
This distinction can sometimes be confusing, since you can’t always tell at a glance why data is invisible. Sup-
pose you select a subset of the database, and then collapse the database outline. Some of the data is invisible
because it is de-selected. Some of the data is invisible because it is collapsed.

To make sure that all the data is visible, you must use both the Outline Level command to expand all the data
and the Select All command to select all the data.

Expanding and Collapsing Specific Details

The Outline Level dialog expands and collapses the entire database. You can use the Expand, Expand All,
and Collapse tools to expand or collapse a specific area of the database. These tools automatically appear
when summary records are added to your database, and disappear when they are removed.

collapse
expand all
expand

Page 474 Panorama Handbook
To expand a specific summary, click on the summary record you want to expand and then press the Expand
tool. This tool expands the next level of detail for that summary record only. To illustrate this we’ll use our
checkbook database which has been grouped by Category and PayTo (see “STEP 1 - GROUP” on page 459),
and collapsed to show only the Category subtotals (see “The Outline Level” on page 469). To expand a spe-
cific category, click on the line and press the Expand tool.

Chapter 10:Summaries and Outlines Page 475
Now you can see all of the subtotals for each PayTo within the Purchases category.

Page 476 Panorama Handbook
In this example you can expand further. You can always expand until you get to the raw data. Simply click on
the subtotal line and press the Expand tool.

Chapter 10:Summaries and Outlines Page 477
The Expand All tool expands a single summary record all the way to the raw data. It shows you all of the
data that went into calculating that summary. In our checkbook example, using Expand All on Shipping
would reveal every check written for shipping, no matter what carrier was used.

Page 478 Panorama Handbook
The Collapse tool hides the detail associated with a specific summary record. For example, if you collapsed
Federal Express, the four checks written to Federal Express would disappear.

Sorting by Summary Value

Once summary information has been calculated, you can sort the database so that the data is ranked in order
by the summary values. For example, the information in an invoice database can be summarized by customer
and then rearranged to rank each customer by sales volume. Once the data is ranked you can see who your
top customers are at a glance. The ability to rank summary information is a unique feature of Panorama.

The first step in sorting summary information is to calculate the summary information. To do this use the
group (see “STEP 1 - GROUP” on page 459) and summary calculation (see “STEP 2 - CALCULATE” on
page 463) commands already covered in this chapter.

The second step is to collapse the outline. Use the Outline Level command to collapse the database to the
level you want to sort (see “The Outline Level” on page 469).

Once the database is collapsed, the final step is to sort the database by summary value. Click on the field con-
taining the summary values and then choose Sort Up or Sort Down. Sort Down is the usual choice because it
ranks the summaries from highest to lowest.

collapse tool

Chapter 10:Summaries and Outlines Page 479
To illustrate this technique, we started by grouping and totalling the checkbook database by category.

As you can see, the subtotals are listed in alphabetical order. Use the Sort Down command to sort the subto-
tals so that they are listed in order from highest to lowest amount.

Page 480 Panorama Handbook
After the database has been sorted, you can re-expand some or all of the outline if you wish. The detail infor-
mation for each summary follows the summary as it is sorted. (In other words, when the database is grouped
the sort commands sort the groups, not the individual records.)

Chapter 10:Summaries and Outlines Page 481
The real power of this technique appears when the database is grouped by multiple levels. For example, sup-
pose the checkbook database is grouped by month and by category, then collapsed to show the monthly
totals for each category. This is shown in the window on the left. On the right is the same database, but now
the Sort Down command has been used to sort the subtotals. The subtotals have been sorted within each
month. Now we can easily see that Purchases was the top spending category in January, March, and April,
but Advertising was tops in February (with Purchases dropping to number 3).

This technique is very powerful any time you need to rank summary information. You can quickly answer
questions like “Who are our top customers?” “What products had the most service problems last year?” or
“Which SKU’s are the best sellers in different seasons of the year?”

before Sort Down… after Sort Down

Page 482 Panorama Handbook
Sorting Within Groups

If you sort your database without collapsing it, Panorama will sort the data within each group instead of sort-
ing the entire database. If you want to sort the summary values themselves, you must use the Outline Level
dialog to collapse the outline, as described in the previous section.

Getting Rid of Summary Records

When you are done with summary records, you can get rid of them with the Remove Summaries dialog
(Sort menu). This command can either remove all the summaries, or it can selectively remove certain sum-
mary levels.

The Remove Summaries dialog displays a diagram of the database outline structure. The diagram shows
each summary level, how it was created, and the number of records in the level. If you want to get rid of all
the summary records, press the button with the highest number or the Remove All Summaries button.

If you press one of the lower numbered buttons, only some of the summaries will be removed. For example if
you press 1, only the lowest summary level will be removed (the smallest subgroups). The remaining sum-
mary records will each drop down to the next lowest level.

You can also remove individual summary records with the Cut Record tool or the Delete or Backspace key
(see “Deleting a Record” on page 373).

Getting Rid of Detail

Occasionally you may want to completely remove the raw data, leaving only the summary information. The
Remove Detail dialog (Sort menu) does this for you. You can remove just the data, or you can remove the
data along with some of the lower levels of summary information. Warning: This command is extremely dan-
gerous, since it effectively deletes most of your database. Handle with care!

The Remove Detail dialog displays a diagram of the database outline structure. The diagram shows each
summary level, how it was created, and the number of records in the level. Press one of the buttons on the left
to choose the level of detail to remove. If you press the Data button, only the raw data will be removed. The
level 1 summary records will be converted into data records, and all other summary records will drop down
to the next lower level.

If you press one of the numbered buttons (1 through 6) Panorama will remove the summary records up to
and including that level as well as the data records. The remaining summary records will be adjusted so that
the lowest remaining summary level becomes the new data records, etc.

Chapter 10:Summaries and Outlines Page 483
Printing Reports with Summary Information

You’ll often want to print reports with the summary information you have generated. In Panorama reports
are printed using forms and report tiles (see “Custom Reports” on page 1067). In addition to the standard
report tools Panorama also has special features for printing summary information. You can print special
headers and footers for each group, and can control how groups break across columns and pages. See “Print-
ing Summary Information” on page 1149 to learn more about how to use these features. You can also use the
Summaries & Outline Wizard to help print summaries — see “Printing the Summary Results” on page 488.

The Summaries & Outlines Wizard

The Summaries & Outlines Wizard can automate the process of calculating summaries. In fact, once a tem-
plate has been set up you can perform all three summary steps (Group/Calculate/Outline) with a single
mouse click. To use the Summaries & Outlines Wizard start with the database you want to summarize and
select the wizard from the Wizard menu.

When the wizard first opens it automatically remembers the settings used to summarize this database the last
time the wizard was used with this database. (Of course if this is the first time the wizard has been used with
this database all of the settings will be blank).

Page 484 Panorama Handbook
To repeat the previous summarization all you have to do is click on the Summarize button.

The wizard window is divided into three sections that correspond to the three steps in the summary process.
The top section allows you to group the database by up to three fields (see “STEP 1 - GROUP” on page 459).
The middle section allows you to calculate totals, averages, counts, etc. for up to three fields (see “STEP 2 -
CALCULATE” on page 463). The bottom section allows you to decide what summary level to show after the
calculations are complete (see “STEP 3 - OUTLINE” on page 469).

select up to three Group by fields

select up to three Calculation fields

select type of
calculation for
each field

select Outline Level

Chapter 10:Summaries and Outlines Page 485
After you change one or more options press the Summarize button to see the new results. It’s not necessary
to remove the old summaries before calculating the new summaries — the wizard will do it for you. In the
illustration below two options have been changed.

When you’re done with the summaries press the Raw Data button to remove the summary records and get
the original raw data back (see “Getting Rid of Summary Records” on page 482).

modified options

Page 486 Panorama Handbook
Using Summary/Outline Templates

Once you’ve set up a configuration for summarizing a database you can save that configuration as a template
so that it can be re-used at any time. To save a new template use the Save As command in the Template menu.

The wizard will prompt you to type in a name for your new template (and will make a suggestion based on
the fields being grouped).

Type in the name and press OK. The new template is added to the Template menu and may be selected any
time this database is open.

new template

mark indicates current template

Chapter 10:Summaries and Outlines Page 487
If you want to rename or delete a template choose Rename/Delete Templates… from the Template menu.
This opens a dialog listing all the templates in the current database.

To rename a template click on it and then click the Rename button. The wizard will prompt you to type in the
new name for the template. To delete a template click on the name and then press the Delete button. In either
case the changes won’t take effect until you press the OK button, giving you one last chance to back out with
the Cancel button.

Converting a Template into a Procedure

If you wish you can convert a template into a procedure (see “Procedures” on page 1345) using the Copy Pro-
cedure to Clipboard command in the Template menu. This allows you to calculate this summary without
needing to open the Summary & Outline Wizard. This command will take the current settings and writes a
procedure for you, placing the text of the procedure on the clipboard.

See “Writing a Procedure from Scratch” on page 1357 to learn how to create a new procedure within the data-
base. Once the procedure is created you can simply use the Paste command to copy the text created by the
Copy Procedure to Clipboard command into the new procedure.

Page 488 Panorama Handbook
Printing the Summary Results

The Summary & Outline Wizard can automatically open a form and print the results. The form can be set up
with report tiles to allow you to customize the way the report is printed (see “Printing Summary Informa-
tion” on page 1149). To set this up choose the form using the pop-up menu.

Once the form is selected you can press the Summarize/Print button.

The wizard will summarize the database, open the form, print the database (stopping to let you set print
options) and then close the form.

Chapter 10:Summaries and Outlines Page 489
The Mini Statistics Wizard

In addition to the summary & outline tools described previously in this chapter Panorama also has a special
wizard to help with statistical analysis. This wizard can calculate the mean (average), median, and standard
deviation of a data set. In addition the wizard can plot a normalized chart showing how the data is distrib-
uted around the mean. You can easily see how this distribution compares with the standard gaussian distri-
bution (the famous bell shaped curve).

To use this wizard you’ll need a database that contains one or more numeric fields. To illustrate we’ll use a
database that contains medical data.

To analyze the data, open the Mini Statistics wizard.

Page 490 Panorama Handbook
To set up the statistical analysis, start by selecting the database you want to use, in this case Diabetes Log.

Now choose the field that contains the data you want to analyze, in this case BBLevel. (Note: The Field menu
only lists numeric fields — text, date and picture fields are not listed.)

Chapter 10:Summaries and Outlines Page 491
After a couple of seconds the analysis will appear.

For these data points the mean (average) value is 121.6154. The standard deviation (∂) is 9.0405. The data set
contains 91 values, the median is 122, and the variance is 81.7312. The blue bars show how the data is clus-
tered around the mean, while the red line shows the normal gaussian “bell shaped curve” distribution.

If the original data changes you may want to update the analysis. You can either select the field again from
the Fields menu, or simply click on the chart.

Saving a Statistical Snapshot

Once you’ve performed a statistical analysis on a set of data you can save a snapshot of that analysis for later
review. To save a snapshot of the current analysis choose New Snapshot from the Snapshot menu.

Page 492 Panorama Handbook
Enter a name for the new snapshot. (If you enter the name of an existing snapshot it will overwrite the old
snapshot.

When you press the OK button the new snapshot is listed in the Snapshot menu.

To see a snapshot you have recorded before simply select it from the menu.

Note: Snapshots are actually stored in a permanent variable in the database that contains the original data (in
this case Diabetes Log). This means that you will only see the snapshots for the currently selected database. It
also means that the snapshots are not permanently saved to disk until you save the original database to disk.

Renaming and Deleting Snapshots

The Rename/Delete Snapshots command opens a dialog.

To rename a snapshot, click on it, press the Rename button, then type in the new name. To delete a snapshot,
click on it and then press the Delete button.

Printing a Statistical Analysis

To print a statistical analysis use the Print menu inside the window.

Chapter 11: Crosstabs

This chapter describes Panorama’s most powerful tool for analyzing and summarizing data—crosstabs. A
crosstab is simply a table with categories across the top and down the left, with numbers in the middle and
totals across the bottom and down the right.

The word crosstab is short for cross tabulation, referring to the criss-cross way that totals are tabulated both
across and down. Probably the most common example of a crosstab is a budget, with months or years across
the top, and spending categories down the left.

Before Panorama became available, crosstabs were usually created using a spreadsheet. Spreadsheets are per-
fect for totalling the rows and columns in the crosstab table. Unfortunately, spreadsheets cannot help with the
really tedious part of creating a crosstab table—taking the raw data, categorizing it, and converting it into the
crosstab table format. With a spreadsheet, this tedious number crunching must be done by hand.

Panorama automates the entire crosstab process from start to finish. Starting with raw data (a checkbook
database, for example), Panorama divides the data into categories and automatically creates and calculates
the entire crosstab table. When the raw data changes, the entire process can be repeated with a single mouse
click. A simple dialog sets up the whole process.

Panorama can also work a crosstab backwards, allowing you to locate the raw data associated with any
crosstab value. For example, if the crosstab table shows that July’s advertising expenditures seem a bit high,
simply click on that value and press the Select Original Data tool. The individual data records for July adver-
tising will appear.

Page 494 Panorama Handbook
Panorama does not limit you to one crosstab table per database. Each crosstab table appears in its own win-
dow, and you can have as many different crosstabs as you need. Crosstab tables are created and opened with
the View menu.

Although each crosstab table gets its raw data from the main database, it is otherwise independent. Setting
up and calculating a crosstab table does not change the main database in any way.

list of crosstabs

create new crosstab

Chapter 11:Crosstabs Page 495
Category and Tabulation Fields

A crosstab is based on three fields in the main database. Two of these fields are called category fields, and the
third is called the tabulation field. The two category fields are the fields that criss-cross across the top and left
sides of the crosstab table. The tabulation field holds the raw data that is counted or totalled in the center of
the crosstab table. In the example crosstab shown below, Date and Category are the category fields while
Debit is the tabulation field.

Page 496 Panorama Handbook
Creating and Setting Up a New Crosstab View

New crosstab views are created using the View menu. Choose New Crosstab from the menu. Then you must
give the new crosstab view a name (up to 25 characters) and press Ok to create the new view.

When a new crosstab view is created, the Crosstab Design dialog box automatically appears. This dialog
allows you to specify the category and tabulation fields (see previous section) and to specify what type of cal-
culation (total or count) to use.

To use the Crosstab Design dialog you copy fields from the list on the left over to the list on the right. The left
side lists all the fields in the database. The right side lists the fields in the crosstab. The first two fields copied
to the right become the two category fields. The third field becomes the tabulation field. As you build the
crosstab, a miniature schematic diagram of the crosstab appears in the lower right hand corner of the dialog.

Chapter 11:Crosstabs Page 497
Let’s walk through the creation of a crosstab like the one shown at the beginning of this chapter. First, click on
the Date field and copy it to the right. (Hint: To copy the field either press the »Copy» button or double click
on the field name.

As you can see, the Date field now appears in the list of CrossTab fields. It also appears in the mini-diagram
of the final crosstab, showing that the Date will appear across the top of the crosstab.

Since we want the date to be grouped by month, select Month from the Date Period pop-up menu. (If you for-
get to do this now you can always go back and change it later.)

mini-diagram

Page 498 Panorama Handbook
Next, copy the Category field into the crosstab. It will appear in the list and on the left side of the mini-dia-
gram, showing that the category will appear on the left side of the crosstab.

Now copy the Debit field into the crosstab. You’ll also need to click on the Total radio button, since we want
to calculate sums of the checks, not counts of the checks.

Chapter 11:Crosstabs Page 499
Once you’ve specified the category and tabulation fields, press Ok to actually calculate the crosstab. Depend-
ing on the complexity of the database, there may be a delay of seconds or even minutes as the crosstab is cal-
culated. When the calculations are finished, the new crosstab table will appear. It will look something like
this.

You can use now adjust the window size, font, and column widths as you like.

Page 500 Panorama Handbook
Crosstabs by Day, Month, Quarter or Year

If one of the category fields contains dates, you must tell Panorama what period to group by. The Date Period
pop-up menu has five choices: day, week, month, quarter, and year. You can also specify a pattern for dis-
playing the date in the crosstab. For example, months can be displayed as 1-04, Jan-04, or January 2004.

Panorama supplies a default pattern when you choose from the Date Period pop-up menu. You can use this
predefined pattern, or you can type in any pattern you want. See “Date Output Patterns” on page 361 for
more information about date patterns.

Changing the Crosstab Design

The crosstab design can be changed at any time by pressing the Crosstab Design tool. This brings up the
same dialog box you used to originally set up the crosstab.

To erase the entire crosstab design and start over, select all the fields in the CrossTab Fields list and press the
Remove button. (You can select all the fields by dragging the mouse over the list.)

If you want to change just one field, select both the old field from the CrossTab Fields list and the new field
from the Database Fields list. Then press the »Copy» button to change the field.

date pattern

crosstab design tool

Chapter 11:Crosstabs Page 501
Re-Calculating a Crosstab

Crosstabs do not automatically update when the main database changes. This is because of the time it takes
to recalculate the crosstab. If you change the main database and want to re-calculate a crosstab, press the Cal-
culate Crosstab tool.

Adjusting Crosstab Column Widths

When a new crosstab is created, Panorama tries to assign an appropriate width for each column. You can
adjust these column widths the same way you would adjust the column widths in the data sheet. Move the
cursor over the column titles and drag left or right to adjust the width.

Whenever the crosstab is recalculated, Panorama automatically resets the width of every column except for
the first two. The third, fourth, fifth and all additional columns are all set to the same width as the second col-
umn.

Crosstab Font and Size

You can change the font and size of the crosstab with the Text Menu.

Selecting Original Data

Using the Select Original Data tool, Panorama can locate the raw data behind any value in the crosstab table.
To do this you must have a regular database window open in addition to the crosstab window, usually the
data sheet window.

calculate crosstab tool

select original data tool

Page 502 Panorama Handbook
To select the original data, first click on the crosstab value you are interested in. Then click on the Select Orig-
inal Data tool, The original data is selected and will appear in the data sheet or other database window. For
example, you could click on the Mar 99 Office Supplies cell, then choose Select Original Data.

In the data sheet the raw data backing up this crosstab cell will be selected - in this case the seven checks writ-
ten for Office Supplies in March of 1999.

Chapter 11:Crosstabs Page 503
You can select the original data for any value in the crosstab. If you click on a cell in the first or last column of
the crosstab, the Select Original Data tool will select all the data associated with the entire row. For example,
you could click on the Fixed Assets cell.

When you choose the Select Original Data tool, the data sheet will show all of the checks written for Fixed
Assets in every month.

Page 504 Panorama Handbook
If you click on a cell in the bottom row of the crosstab, the Select Original Data tool will select all of the data
for the entire column. For example, you could click on the total for April 99.

When you choose the Select Original Data tool, the data sheet will show all of the checks written for April 99
in every category.

If you click on the grand total value in the lower right hand corner of the crosstab, the Select Original Data
tool will select the entire database.

To re-select the entire original database, activate a data sheet or form window, then choose the Select All
command from the Search Menu. Be sure to re-select the entire database before you re-calculate the crosstab.

Warning: If the database has been edited since the crosstab was calculated, the Select Original Data tool may
not be able to locate the original data. If the database contained invisible (unselected) data when the crosstab
was calculated, the Select Original Data tool may select this unselected data. If this is a problem, use the
Remove Unselected command before calculating the crosstab (see “Permanently Removing Unselected
Data” on page 443). Make sure you have a backup copy of your data on disk before you use this command.

Chapter 11:Crosstabs Page 505
Crosstabs Based On Selected Data

To build a crosstab summary based on a subset of the database, use the Find/Select dialog before calculating
the crosstab. For example, you can include this year’s checks in a crosstab summary while excluding previ-
ous years. Be sure you select the data before you calculate the crosstab. (If you forget, just go back and select
the data, then recalculate the crosstab).

Crosstabs Containing Outlines

Most crosstabs have just two category fields—one across the top and one down the left side. It is possible,
however, to create a crosstab with two (or more) category fields down the left side of the crosstab. In that case
the category fields will be combined in an outline structure down the left side of the crosstab. You can use
Panorama’s outline tools to expand and collapse the crosstab to show more or less detail. See “STEP 3 - OUT-
LINE” on page 469 for more information on these outline tools.

To set up a crosstab with more than one category field down the left, you must copy additional fields into the
Crosstab Fields list. The first field is always the top category field, while the last field is always the tabulation
field. The fields in the middle are the left category fields. Here is on example of what the dialog should look
like when set up for a two level outline crosstab.

Page 506 Panorama Handbook
This crosstab breaks down spending per month not just for each category, but also for each vendor within
each category.

Using the Outline Level command in the Sort Menu you can collapse the outline to show just the category
summaries (see “The Outline Level” on page 469).

The collapsed outline looks kind of like our original, one-level crosstab.

Chapter 11:Crosstabs Page 507
There’s a big difference, however. We can use the Outline tools to selectively expand and/or collapse sections
of the crosstab (see “Expanding and Collapsing Specific Details” on page 473).

Don’t forget, you can click on any cell in any cell, including a summary cell, and use Select Original Data to
see the raw data that went into the cell.

Sorting a Crosstab

Crosstabs are automatically sorted by category. Use the Sort Up and Sort Down commands to sort the
crosstab by other columns.

Removing and Renaming Crosstab Tables

To remove a crosstab table, choose Delete Crosstab from the Setup Menu (“Deleting a Form, Crosstab or Pro-
cedure” on page 318). To rename a crosstab, choose Rename Crosstab from the Setup Menu (see “Renaming
a Form, Crosstab or Procedure” on page 318). A crosstab name may be up to 25 characters long. You can also
change the order of the crosstabs within the view menu using the Re-Arrange Crosstabs dialog (see “Chang-
ing the Order of Forms, Crosstabs or Procedures” on page 318).

Page 508 Panorama Handbook
Exporting a Crosstab Table

Use the Save As command to export the data in a crosstab table. Type in a file name and choose the Text Only
option.

This brings up a second dialog allowing you to choose the columns you want to export and the export format
(tab delimited, comma delimited, etc.).

Press the Select All button to select all the columns, then press Ok to export the data. See “Exporting a Text
File” on page 245 for more information on the export dialog.

Once the crosstab data is exported, you can import it into another program or back into another Panorama
database for further manipulation.

Chapter 12: Data Processing

This chapter describes some of the most powerful commands in Panorama. These commands allow you to
automatically transform and modify large amounts of existing data. Many different kinds of transformations
are possible, including mathematical calculations, re-arranging characters or words, transforming individual
characters (for example converting from lower to upper case), and transformations based on patterns in the
data.

The commands described in this chapter are very powerful. In a few seconds you may be able to make
changes to your data that would otherwise require tedious hours of manual data entry. Like any power tool,
these commands should be treated with respect. For insurance, you should Save your database before you
begin trying to transform it (see “Saving a Database” on page 212). If you mangle your data, you can always
get it back with the Revert to Saved command (see “Revert to Saved” on page 214).

Most of the commands in this chapter are found in the Math Menu. However, this doesn’t mean that only
numbers can be transformed. Unless specified otherwise, these commands can transform all kinds of data,
including text, numeric, dates, and choices.

Transforming Selected Data

The transformation commands described in this chapter may be used on an entire database, or on a selected
subset. The Find/Select (or Formula Find/Select) command is used to select the data you want to transform,
then the commands described in this chapter are used to transform the data. Only the selected data will be
transformed—the invisible data will be left untouched. See “The Find/Select Dialog” on page 435 for more
information on selecting a subset of the database.

The same rules apply to data that has been collapsed with the outline tools. If data is invisible because it has
been collapsed, it will not be transformed. Only data that is both selected and expanded will be transformed.
See “Summaries and Outlines” on page 453 for more information on outlines.

Page 510 Panorama Handbook
Filling a Field with a Fixed Value

The Fill command fills all the selected cells in the current field with a single value. Any data already in the
field is destroyed (although you can get it back with Undo). To use the Fill command, just click on the field
you want to fill and choose Fill from the Math Menu. Type in the value you want to fill the field with and
then press the Ok button. For example, suppose you wanted to fill every cell in the Posted column in the
database below with the text Cleared. Start by clicking on the Posted column and choosing the Fill command.

Now type Cleared into the dialog box.

Chapter 12:Data Processing Page 511
When you press OK, every selected cell in this field will be replaced with Cleared. In this case all of the cells
are empty, but they will be replaced whether they are empty or not. (See “Filling Empty Cells” on page 521 if
you don’t want to disturb cells that already have data in them.)

The new data must be compatible with the field that is being filled. For example, you cannot fill a numeric
field with n/a because n/a is not a numeric value. Panorama will warn you if you attempt to fill a field with
an incompatible value.

Filling a Field with a Formula

The Formula Fill command fills all the selected cells in the current field with the result of a formula. Any data
already in the field is destroyed (although you can get it back with Undo). See “Formulas” on page 1185 for
more information on formulas.

The formula must match the data type of the field being filled. For example, a numeric formula can only be
used if the current field contains numeric data. Panorama will display an error message if you use a formula
that results in an incorrect data type.

Use the Formula Fill command when you need to perform a calculation on every selected record in the data-
base. See “Automatic Calculations” on page 406 if you need to calculate a value immediately when data is
entered.

Page 512 Panorama Handbook
Numeric Calculations With Formula Fill

Use Formula Fill to perform calculations using the existing data. Use this command to calculate totals within
a record, discounts, percentages, etc. For our example we’ll use a database with two price fields: ListPrice and
OurPrice. We’ll use the Formula Fill command to calculate OurPrice based on a 25% discount from the list
price. Start by clicking on the OurPrice field and choosing Formula Fill from the Math menu.

Now enter the formula to calculate the discount.

Chapter 12:Data Processing Page 513
When you press OK Panorama will calculate the prices.

As a further example, suppose that through a special contract you are able to offer a 40% discount on books
published by O’Reilly & Associates. To change the discount for these books, start by using the Find/Select
command to select only the books for this publisher (See “The Find/Select Dialog” on page 435).

Page 514 Panorama Handbook
Now click on the OurPrice field, and use the Formula Fill command again to calculate the new discount for
these books. The new formula is ListPrice *0.6 .

When you Select All you’ll see that all the other books have kept their 25% discount. Formula Fill (and in
fact all of the commands described in this chapter) does not touch unselected records.

If you wanted to do this calculation often you will probably want to create a procedure to automate the pro-
cess. You can record the procedure (see “Creating a Procedure with the Recorder” on page 1353) or type it in
yourself (see “Writing a Procedure from Scratch” on page 1357). Here is the procedure.

field OurPrice
formulafill ListPrice*0.75
select Publisher="O’Reilly & Associates"
formulafill ListPrice*0.60
selectall

In this case it would also be possible to get the same effect in a single formula using the ?(function (see “The
? Function” on page 1287), without using the Find/Select command. Here is the simplified form of the proce-
dure.

field OurPrice
formulafill ListPrice*?(Publisher="O’Reilly & Associates",0.60,0.75)

Chapter 12:Data Processing Page 515
Remember that if you use Formula Fill to calculate numeric values, you must be filling a numeric field. (If
you need to Formula Fill a text field with numeric values, use the str(or pattern(functions to convert
the numbers to text. For example, the formula str(Price-Cost) can be used to fill a text field.) See “Con-
verting Between Numbers and Strings” on page 1249 for more information.

Using Formula Fill to Transform Characters

Using the Formula Fill command you can combine multiple fields, split a field apart, re-arrange words or
phrases, and translate characters (for example, converting uppercase to lower case). Use the + operator to join
(concatenate) text fields together.

For example the formula First+" "+Last will combine the first and last names (with a space in between)
into a single field. We’ll start by inserting a blank Name field into our Contacts database (See “Add Field” on
page 329).

Now select the Formula Fill command from the Math Menu and type in the formula First+" "+Last .

When you press OK the Name field will be filled in.

Page 516 Panorama Handbook
By using a different formula we can change the results. For example, if you wanted the last name first, you
would use the formula Last+", "+First (see “Gluing Strings Together” on page 1235). Here’s the result.

Use the upper(, lower(, and upperword(functions to convert text between upper and lower case (see
“String Modification Functions” on page 1246). For example, if you wanted the last names in all upper case
the formula FirstName+" "+upper(LastName) would be used. Here is the result.

Use text funnels to split a field apart or to re-arrange words or phrases. Text funnels allow a formula to
extract part of a cell based on a fixed character position within the cell, or based on patterns and context
within the cell. See “Taking Strings Apart (Text Funnels)” on page 1236 for a complete explanation of text fun-
nels. In this example we’ll use the formula FirstName[1,1]+". "+LastName to fill the field with the first
initial and the last name. Here is the result.

Chapter 12:Data Processing Page 517
Date Calculations with Formula Fill

Use the Formula Fill command to calculate the difference between dates, or to adjust dates. See “Date Arith-
metic” on page 1266 for details on performing calculations with dates.

A typical use for date arithmetic is aging of an accounts receivable database.

To calculate the age of an invoice based on the current date, use the Formula Fill command with the formula
shown here:

(Notice the chevrons (« and ») around the field name. These are necessary because of the space in the field
name. You can simply let Panorama type the field name in for you by choosing from the Field menu.)

Page 518 Panorama Handbook
Press OK to calculate the age of each invoice.

If you want to calculate ages rounded to the nearest 30 day interval use the formula below instead.

Chapter 12:Data Processing Page 519
Press OK to calculate the age of each invoice rounded to the nearest 30 days.

For more information on the today(and round(functions see “TODAY(” on page 5859 and “ROUND(” on
page 5679.

The SEQ Function

The seq(function is a special function for use with the Formula Fill command. This function returns a
unique number for each selected record, starting with 1 at the top of the database. Use this function if you
need a unique record number in a formula. Here is an example that fills a column with the words One, Two,
Three, Four, etc.

Page 520 Panorama Handbook
When you press OK the field is filled in (see “Displaying Numbers as Words” on page 360 for more informa-
tion on this output pattern.)

Here is another example that uses the seq(function to assign medals to the first three finishers in the race.

The first three finishers are assigned gold, silver, and bronze medals, with all of the other records left blank.

See “Text Arrays” on page 1257 for more information on the array(function used in this example.

Chapter 12:Data Processing Page 521
Filling Empty Cells

The Empty Fill command is very similar to the Fill command (see “Filling a Field with a Fixed Value” on
page 510). However, the Empty Fill command will not destroy the data already in the field. In fact, Empty
Fill will only fill cells that are completely empty. Here is a database where some of the name prefixes have
been left blank.

Using the Empty Fill command these empty cells can quickly be filled with Mr.

Page 522 Panorama Handbook
Here’s the finished result.

Automatic Numbering

The Sequence command fills the current field with a numeric sequence (for example 1, 2, 3 or 100, 110, 120).
The Sequence command only works with numeric fields, you cannot sequence a text, date, or choice field.

To use the Sequence command, first click on the field you want to fill, then choose the Sequence command
from the Math Menu. Type the first value in the sequence, then a space, then the increment value.

Chapter 12:Data Processing Page 523
For example, type 1000 10 if you want to fill the field with the sequence 1000, 1010, 1020, etc. Press OK to
actually fill the field. In this example the sequence number starts at 1000 and increments by one.

The sequence can start with any number and increase by any value, including non-integer values or negative
values. The table below shows four examples of starting and increment values.

If the database contains summary records, the sequence count will reset to one after each summary record. If
you want to sequence the current field without restarting at summary records, use the Formula Fill com-
mand with the formula seq() . See “Summaries and Outlines” on page 453 for more information on sum-
mary records. See “Filling a Field with a Formula” on page 511 for more information on the Formula Fill
command.

Propagate

Like Empty Fill, the Propagate command fills all the empty cells in the current field. However, instead of fill-
ing the empty cells with a fixed value, the Propagate command propagates filled data cells into the empty
data cells (if any) below them.

1 1 5 5 1 0.1 100 -1

1 5 1.0 100

2 10 1.1 99

3 15 1.2 98

4 20 1.3 97

5 25 1.4 96

Page 524 Panorama Handbook
To illustrate, here is a database where the date was only entered for the first check written each day. For
example, checks 1907, 1908 and 1909 were all written on January 8th, but the date has only been filled in for
check 1907.

The Propagate command will fill in the empty cells, as shown by the arrows in this illustration.

Here is the actual result after the Propagate has completed.

Chapter 12:Data Processing Page 525
The Propagate Up command performs the same operation upside down, propagating filled data cells into the
empty data cells above them.

The Propagate command can be used to copy information into newly created summary records. The Group
Up command creates summary records but leaves all but one field blank. (see “STEP 1 - GROUP” on
page 459 for more information on the Group Up command.) Use the Propagate command to copy other
fields from the data records into the summary records. In this example the database has been grouped by city,
but not by state. This means that the State field in each summary record is blank.

Page 526 Panorama Handbook
To fill in the state, click on the state field and choose the Propagate command.

You could repeat this process to fill in the zip code. (However, this may not generate the results you want
since some cities have multiple zip codes, as shown by Cambridge and Chicago in this example.)

Chapter 12:Data Processing Page 527
UnPropagate

This command performs the exact inverse of the Propagate command. If the same value appears in two or
more consecutive data cells, the Unpropagate command empties the second and subsequent data cells. Here
is a database that has been sorted by city.

The Unpropagate command eliminates all but the first entry for each city.

Page 528 Panorama Handbook
The Unpropagate Up command performs the same operation upside down, leaving the last of several dupli-
cate values while clearing the others.

Using UnPropagate to Eliminate Duplicates

The UnPropagate command can be used to eliminate duplicate values in a database. The first step is to click
on the field that contains the potentially duplicate values, for example Name or Company. If you want to
eliminate duplicates over multiple fields (for example an entire address) you must create a new field and use
the Formula Fill command to combine the data into a single field.

The next step is SortUp the database. This brings all the duplicate values together. For example, there are two
Bayshore Typesetting entries in this database.

Chapter 12:Data Processing Page 529
The next step is the UnPropagate command. Wherever a duplicate value appears in the data cell, the
UnPropagate command clears the cell.

Now use the Find/Select command to select the non-empty data cells. Just pick Not Equal from the pop-up
menu.

All of the duplicate records will disappear when you press the Select button. In this database there were two
duplicate companies, so there are now 120 selected (non-duplicate) records.

The final step is to permanently remove the duplicate records with the Remove Unselected command.

Page 530 Panorama Handbook
It’s possible to create a procedure that will automatically perform all of these steps for you. This procedure
will remove all of the duplicate entries in the current field.

sortup
unpropagate
select «» <> ""
removeunselected

Tip: One possible problem with this technique is that all cells that start out empty will be removed. For exam-
ple if you are removing duplicate company names but some records don’t contain company names, the
records without company names will be removed. To fix this problem, use the Empty Fill command to fill the
empty names with a unique value like n/a before you start, then use Find/Select to select all values not equal
(≠≠≠≠ or <>) to n/a. Then perform the rest of the steps listed above. Here is a revised version of the procedure
that takes care of this problem.

emptyfill "!empty!"
select «» <> "!empty!"
sortup
unpropagate
select «» <> ""
removeunselected
formulafill ?(«» = "!empty!" , "" , «»

Warning: Keep in mind that all of these techniques will blindly remove all but the first duplicate entry. In this
example, there were two entries for Bayshore Typesetting. However, they were probably not really dupli-
cates, since one was in Washington, DC and the other in San Rafael, CA. There is no way for an automatic
technique like this to know which of these is really correct, or even if they are really duplicates at all. If you
want to manually examine duplicate records instead of blindly deleting them, use the Select Duplicates com-
mand in the Search Menu. See “Select Duplicates” on page 448 for more information on this command.

Change (Find and Replace)

The Change command (in the Search menu) finds and replaces a word or phrase in the current field. For
example, you can use the Change command to replace every occurrence of Inc. to Incorporated, or every
occurrence of Purchase Order to P.O.

The Change dialog allows you to specify the original (From) and the new (To) word or phrase.

The Adjust Capitalization option allows you to specify whether you want capitalization to be adjusted as the
word or phrase is replaced. If you check this option, Panorama will automatically adjust the capitalization of
the new word or phrase as it is inserted into the database. If you leave this option off, capitalization is not
adjusted. In fact, if the Adjust Capitalization option is off, only words or phrases that exactly match the capi-
talization typed into the dialog will be replaced. The table below shows the result of replacing Inc. with Incor-
porated with Adjust Capitalization both off and on.

Chapter 12:Data Processing Page 531
The Replace Entire Words Only option tells Panorama to replace only entire words, not sections of words. For
example, if you ask Panorama to change is to was, it will also change this to thwas. This is, of course, wrong.
To prevent this, just check the Replace Entire Words Only option.

Changing with the Replace(Function

The Change command is not the only way to replace words or phrases. You can also use the Formula Fill
command and the replace(or replacemultiple(functions (see “String Modification Functions” on
page 1246). This technique is especially handy if you need to replace several words or phrases at once. For
example, consider the addresses in the database below.

Suppose you wanted to expand the abbreviations in these addresses: St. to Street, Dr. to Drive, etc. You could
do this by using the Change command over and over again. Or you can simply use the replacemultiple(
function to replace all of the abbreviations in one fell swoop.

Original Adjust Capitalization OFF Adjust Capitalization ON

 Inc. Incorporated Incorporated

INC. INC. INCORPORATED

inc. inc. incorporated

Page 532 Panorama Handbook
Press OK to replace all of the abbreviations at once:

See “Filling a Field with a Formula” on page 511 for more information on Formula Fill.

Data Style and Color

In addition to the data stored in each cell, Panorama also keeps track of the style (plain, bold, italic, etc.) and
(to a limited extent) color (red, green, etc.) of each cell. Use the Style & Color command (Math menu) to
change the style or color of one or more data cells.

The Style & Color dialog allows you to specify what cells to change and what style or color to use.

Choose Cell to change the style or color of the current cell, Record to change the style or color of all the cells
in the current record, Field to change the style or color of all the selected cells in the current field, or All to
change the style or color of every selected data cell in every field.

Chapter 12:Data Processing Page 533
Let’s see how to underline an individual cell. Start by clicking on the cell you want to underline.

Now choose the Style & Color command, and click on Cell and Underline.

When you press OK, the cell will be underlined.

It’s easier to see the underline if you click on another cell.

Page 534 Panorama Handbook
Using an almost identical process we can make an entire line bold. In the Style & Color dialog, choose
Record and Bold.

Press OK to make the record bold.

By choosing Field, Blue and Italic we can make all Phone Numbers appear in italic blue, as shown here.

Notice that the italic blue has overridden the bold applied in the previous example.

Chapter 12:Data Processing Page 535
For our final example we will go to a checkbook database and mark all insurance payments in green. Start by
selecting Insurance from the Category field. (See “Select” on page 440 for more information on the Find/
Select command.)

Now click on the Debit field, and choose the Style & Color command. Click on All and Green.

Page 536 Panorama Handbook
When you press OK everything visible will turn green.

Use the Select All command to see all of the records. The green insurance records are mixed in with the oth-
ers.

Chapter 12:Data Processing Page 537
A cell retains its style and color until the data is modified. Any data modification (editing, formula fill, etc.)
will cause the cell to revert to plain black.

Every data cell that is not plain black takes up an extra byte of storage. For example a database with 10 fields
and 500 records will expand by 5K bytes if you change every data cell to blue or italic (or both).

Displaying Data Style and Color in Forms

Panorama always keeps track of the style and color of every data cell. However, Panorama does not always
display a cell using its style and color! Why not? In a form, you can specify the permanent style and color of
any object using the Text and Graphics Menus. This permanent style and color usually overrides the style
and color of individual data cells.

If you want the style and color of data cells to override the permanent style and color, open the Form Prefer-
ences dialog (Setup Menu) and check the Use Data Style/Color. When this option is checked, the style and
color of the each data cell overrides the permanent style and color specified in graphic design mode. Note:
This option works only with data cells, it does not work with Text Editor SuperObjects. (See “Text Editor
SuperObject” on page 689 for more information on Text Editor SuperObjects.)

When you are using the data sheet, Panorama always displays the style and color of each individual data cell.

Accessing Style and Color in a Formula

Panorama formulas can use the fieldstyle(function to access both the style and color of individual data
cells. When combined with the Formula Find/Select command, these functions allows you to select data
based on its style or color. (See “Formula Find/Select” on page 447 for more information on this command.)

The basic syntax for the fieldstyle(function is:

fieldstyle(fieldname)

This function returns the style and color of a data cell— bold, italic, etc. The fieldname parameter is a string,
so it should usually be in quotes—for example fieldstyle("Price")="bold" . If the data cell has more
than one style or color, this function will return all of them, for example red bold italic. Use the contains
operator (see “String Testing Functions” on page 1245) to check for a specific style or color, for example

select fieldstyle("Name") contains "italic"

To check if a cell is plain, use a formula like this

fieldstyle("Address")=""

For more information on this function see “FIELDSTYLE(” on page 5218.

Page 538 Panorama Handbook

Chapter 13: Introduction to Forms

Panorama has two interfaces for displaying and editing data — the data sheet and forms. So far most of this
manual has concentrated on using the data sheet. Starting with this chapter we’ll introduce a much more flex-
ible way to display and edit data: the form.

A single database only has one data sheet but it may contain many forms. You can design each form for a spe-
cific purpose, for example entering data, printing a mailing label, or printing a report.

The data sheet displays a fixed format of rows and columns. You can change the text font and the width of the
columns, but beyond that you don’t have any control over the data sheet’s appearance. Each form, on the
other hand, is completely customizable. You can (and in fact must) set up the placement of each item on the
form, including data, text and artwork. The form view is much more flexible than the data sheet view, but it is
also more work to set up. Here is a typical example of a form. Notice that the window name shows the data-
base name, Checkbook, followed by the form name, Plain Checks.

Page 540 Panorama Handbook
Opening a Form

The View Menu lists all the views in a database, including forms. The pre-defined views appear at the top—
data sheet, design sheet, and flash art scrapbook. Next come the views you’ve created—forms, crosstabs, and
procedures. The View Menu also contains commands for creating your own new views—new form, new
crosstab, and new procedures.

To open a form within the current window, simply choose the form from the menu. You can flip back and
forth between different forms (or other views, like the data sheet) at any time.

Forms

Crosstabs

Procedures

Chapter 13:Introduction to Forms Page 541
Opening A Form in a New Window

If you wish, you can open a form in a new window, allowing you to see two different views of the database at
once. To open a form in a second window the same size as the current window, hold down the Alt key while
you select from the View Menu. (If you are using a Macintosh, hold down the Control key.) The new window
will appear slightly below and to the right of the original window.

The new window will track the original window. Any changes made in this new window automatically
appear in all other windows, and when any navigation is done in one window (moving up or down within
the database) all of the other windows will follow along.

1) Start with one window

2) While holding down the Alt key (PC) or the Control key (Mac), make a
selection from the View menu.

3) The new window appears sightly below and to the right...

Page 542 Panorama Handbook
Another technique allows you to control the exact size and position of the new window in advance. To use
this technique, hold down the Control key while you select from the View Menu. (If you are using a Macin-
tosh, hold down the Command key.) After you choose the view you want to open, the Window Options dia-
log will appear shown below. This dialog shows a miniature view of the entire computer screen, along with
the positions of every window.

The Options button in the Window Options dialog allows you to selectively eliminate up to four components
from a new window—the tool palette, scroll bars, and drag bar. See “Window Options” on page 306 for more
information about eliminating these components.

To define the position and size of the new window, simply drag a rectangle across the miniature screen, as
shown above. If you don’t get the position quite right, simply drag again. When you press the Ok button the
new window will open in the location you have specified.

New window

Original window

Chapter 13:Introduction to Forms Page 543
Form Modes: Data Access vs. Graphic Design

Unlike other views, the Form View operates in two distinct modes—data access and graphic design. Data
access mode (also called “data mode”) is the default mode. In this mode you can view and display data, and
navigate through the database.

Graphic design mode (also called “graphics mode”) functions like an electronic drafting table. In this mode
you design the form by drawing lines, boxes, and other graphic elements. This mode is very similar to many
drawing and page layout programs. Graphic design mode is easily recognized by the rulers that appear at
the top and left edges of the windows.

To switch between data access and graphic design modes, click on the tool. Each click on this tool toggles
the window between the two modes.

Toggle graphic/data modes

Display/Edit

Navigation Controls

Toggle graphic/data modes

Graphic tools

Movable graphics and textRulers

Graphic control strip

Page 544 Panorama Handbook
Form Operation: Individual Pages vs.View-As-List

Panorama allows you to set up blank forms as individual pages or as a continuous sheet (view-as-list). When
forms are set up as individual pages you see one record at a time. You can flip through the records just as you
would shuffle through a stack of paper forms. All of the examples of forms you’ve seen so far are individual
page forms.

A view-as-list form displays data as a continuous sheet, as shown below. Instead of flipping from record to
record, you scroll up and down through the data in a manner similar to the data sheet. However, unlike the
data sheet, a view-as-list form allows you to arrange the data any way you like, and even include graphics in
the display. On the other hand, view-as-list forms are slower than the data sheet (because of the overhead in
displaying the graphics) and they are much more work to set up.

Unless you tell it otherwise, Panorama sets up a new form as individual pages. To convert the form to a con-
tinuous sheet you must use the Form Preferences command (Setup menu) to set the View-as-List option. You
will also have to define the boundaries of the form by setting up a data tile (and optional header tile, see
“Adding a View-As-List Header” on page 927). For more information about setting up view-as-list forms see
“Creating a View-As-List Form” on page 920.

Chapter 13:Introduction to Forms Page 545
Creating a New Form

To create a new view, choose New Form from the View Menu. A dialog box will appear asking you to name
the new form. A form name may be up to 25 characters long and can contain any letter, number or punctua-
tion.

When you create a new form, it usually becomes the last form in the View Menu. If you wish, you can insert
the new view into the middle of the View Menu. To do this, check the Insert before button and use the pop-
up menu directly below the Insert before button to specify the position of the new view. You can also re-
arrange the order of the forms using the Re-Arrange Forms command in the Setup menu. See “Changing the
Order of Forms, Crosstabs or Procedures” on page 318 for more information on this process.

Page 546 Panorama Handbook
Renaming a Form

To rename the currently visible form choose Rename Form from the Setup Menu. Type in the new name
(limit 25 characters) and press Ok.

Deleting a Form

To delete a form choose Delete Form from the Setup Menu. Since you cannot undo after you delete a view,
Panorama will ask you if you are sure before it actually deletes the form. Note: If the form is the only window
open for this database, Panorama will close the entire file when it deletes the form. To avoid this, open an
additional window (the data sheet or another form) before you delete the form.

You can also delete forms with the Re-Arrange Forms command in the Setup menu. This is the fastest way to
remove several forms at once. See “Changing the Order of Forms, Crosstabs or Procedures” on page 318 for
more information on this process.

Browsing the Database With a Form

When working with a normal form (as opposed to a view-as-list form) Panorama displays one record at a
time. You can navigate from record to record using the VCR style buttons in the tool palette.

If the form is taller and/or wider than the current window, you can use the scroll bars on the bottom and
right to slide the form around within the window. The form can also slide automatically as you tab from cell
to cell within the form.

First Record
Previous Record

Next Record
Last Record
Add Record

Delete Record

Scroll within form

Chapter 13:Introduction to Forms Page 547
Browsing the Database With a View-As-List Form

When working with a view-as-list form, Panorama display several records at a time — one row per record.
You can click on any visible record to make it active, or use the vertical scroll bar to move to any record
within the database (just like the vertical scroll bar in the design sheet). You can also use the up and down
arrow keys to move up or down one record at a time.

If the form is wider than the window, you can use the horizontal scroll bar at the bottom of the window to
slide the form left or right within the window. See “View-As-List Forms” on page 917 to learn how to create
view-as-list forms.

Current cell or

Scroll left or right within form

Scroll from
record to record

record is reversed.

Page 548 Panorama Handbook

Chapter 14: Graphic Design

Panorama has a built in graphic editor for creating and modifying the layout of forms and reports. If you’ve
used an object oriented graphic editor before you will find many familiar features.

Graphic Objects

Panorama forms are built with graphic objects (also called simply objects). Each object is treated as a unit
(rather than as a collection of dots), and each object has a specific shape, position, size, and color. You can eas-
ily modify an object without disturbing the other objects—for instance sliding a rectangle to a new position or
changing the diameter of a circle. Most of the next few chapters deals with techniques and shortcuts for
arranging graphic objects on the surface of the form.

Types of Graphic Objects

Panorama has over two dozen different types of graphic objects. Objects fall into five classes: Shapes, Text,
Multi-Media, Buttons, and Layout. Each type of object has its own characteristics and appearance, as shown
in the following table.

Class Samples Object Tool Description

Shapes

Line Simple line at any angle.

Rectangle Simple rectangle, may be filled or
transparent.

Round Rectangle Rectangle with curved corners.

Oval Oval (or circle), may be filled or
transparent.

Page 550 Panorama Handbook
Text

Click Text Displays simple text captions.

Auto Wrap Text
Displays one or more paragraphs
of text. May contain fields or vari-

ables merged within the text.

Text Display

Displays text based on a formula.
The text can scroll within the

object, may be aligned in 9 different
positions within the object, and can
scale based on the size of the form.

Data Cell

Used for editing fields. When dou-
ble clicked, an expandable pop-up

editing box appears (similar to
editing in the data sheet).

Text Editor

Used for editing fields or variables.
Unlike the Data Cell, there is no
pop-up editing box (more like
other software applications).

Word Processor

Used for editing a field or variable
containing stylized text. The text
may contain different fonts, sizes,

styles, margins and tab stops.

Multi-
Media

Picture none Displays a fixed image. May be
used for backgrounds, logos, etc.

Flash Art

Displays changing images (PICT
format) based on a formula. Images

may be part of the database or
stored as separate files on the disk.

Super Flash Art

Displays images or QuickTime
movies with advanced features like

scroll bars, advanced alignment
and scaling, and hypertext.

Chart Displays column, bar, line, area,
scatter and pie charts.

Flash Sound Automatically plays sound
(Macintosh only).

Class Samples Object Tool Description

Chapter 14:Graphic Design Page 551
Buttons

Button

Generic button tool for creating
push buttons, radio buttons and

checkboxes (fields only). (For new
applications we recommend the
new button tools listed below.)

Push Button 2 and 3 dimensional push buttons
in a variety of styles.

Data Button

2 and 3 dimensional checkboxes
and radio buttons in a variety of

styles. These buttons may be tied to
a field or a variable.

Sticky Push Button
2 and 3 dimensional buttons that
look like push buttons but act like

checkboxes or radio buttons.

Pop-Up Menu
Pop-up menu tied to a field or vari-

able. May use any font, text size,
color, or number of columns.

List Scrollable list.

Flash Art Push Button Push button with custom artwork.

Flash Art Data Button Checkbox or radio button with cus-
tom artwork.

Scroll Bar Standalone scroll bar.

Layout

Tile Used for report and view-as-list
layout.

Super Matrix

Display a repeating matrix that
may contain graphics and data.

Options include grid lines and the
number of rows and columns.

Auto Grow
Adjusts other objects as window
size changes, making the form

“elastic.”

Class Samples Object Tool Description

Page 552 Panorama Handbook
Creating a Graphic Object

To create a new graphic object, first click on the appropriate tool in the tool palette. For example, to draw an
oval you would click on the Oval tool.

Then move the cursor onto the form and drag the mouse across the surface of the form to define the location
and size of the new object (the dragging motion is shown by the dashed arrow in the illustration below). A
gray outline of the new object will follow the mouse.

Chapter 14:Graphic Design Page 553
When you release the mouse, the new object will appear.

Each time you drag across the form you will create a new shape. When you are finished creating shapes, click
on the Pointer tool.

Don’t forget to click on the Pointer tool when you are done! If you don’t, the next time you click you will
create another graphic object.

The procedure for creating more complex objects is the same as for simple objects: 1) select the tool, 2) drag
the mouse across the form. However, when you release the mouse after creating a more complex object a dia-
log will appear allowing you to configure the new object. Each type of complex object has its own dialog. For
example, here is the dialog for creating a push button.

Rather than describing the dialog for each type of item here, each will be described in detail later along with
the corresponding objects.

Page 554 Panorama Handbook
Creating Perfect Squares, Circles and Lines

If you press the Shift key while you create a rectangle or oval, Panorama will automatically force the new
shape to be a perfect square or circle. The Shift key was used to create the illustration below.

If you press the Shift key while creating a line Panorama will force the alignment of the new line to a multi-
ple of 45 degrees (0°, 45°, 90°, 135°, etc.).

Customizing the Tool Palette

There are a total of 29 graphic tools available for use in Panorama. Many computer screens are not large
enough to handle this complete palette of tools (and we expect the number of tools to increase in future ver-
sions). To get around this problem, Panorama allows you to customize the graphic tool palette on the fly. You
can configure the palette to contain only the tools that you need right now in any order you want. If your
needs change later, you can simply reconfigure the palette at any time.

To customize the graphics tool palette, choose Tool Palette from the Setup menu.

Chapter 14:Graphic Design Page 555
Tip: You can also open his dialog by holding down the Command key (Macintosh) or Control key (Win-
dows) and clicking anywhere in the graphic tool palette.

The Configure Tool Palette dialog contains two lists of tools. On the left is a list of all tools available.

On the right is a list of the tools you currently have installed. If this list is empty, Panorama will use the
default tool palette. To move a tool from the left to the right, double click on the tool in the left. Or you can
select the tool (or tools) and press the Move or Insert button. To move all the standard tools to the right hand
list, press the Standard button. To delete one or more tools from the right hand list, select the tool(s) and press
the Delete button. You can also delete a tool from the right hand list by double clicking on it. The Delete All
button clears the list on the right so you can start over or go back to using the default tool palette.

Click anywhere in the tool palette
while holding down the
Command key (Macintosh)
or Control key (Windows)

Page 556 Panorama Handbook
Here is an example of a custom palette configuration:

When you press the OK button the new palette configuration will become active, like this.

If you need to change the tool palette again later, just open the dialog again and make the necessary adjust-
ments.

custom tool palette

Chapter 14:Graphic Design Page 557
Using the Keyboard to Select Common Tools

Usually you will use the mouse to select the tool you want to use. The most common tools, however, can also
be activated with the keyboard. This saves you a trip to the tool palette each time you want to select one of
these tools. The table below lists the tools that can be selected with the keyboard. Note that these keys are
pressed by themselves — not in combination with any other key.

SuperObjects

The astute observer will notice that the list of tools in the configuration dialog is divided into two groups -
gray tools and blue tools. The blue tools are actually not built in to Panorama, but are special plug-ins called
SuperObjects. Because they are written as plug-in tools, ProVUE can develop new SuperObjects faster and
with more capabilities than for standard objects. You can expect to see many more SuperObjects added to
Panorama in the future. You may also notice that some SuperObjects perform functions similar to regular
objects, but with more features. However, as far as you, the user, are concerned, you don’t really have to
worry about whether an object is a SuperObject or not. The techniques for creating and modifying SuperOb-
jects and regular objects are the same.

Modifying Objects

Once an object is created it is far from being cast in stone. At any time you can go back and move, resize,
change the color, change the alignment, or make virtually any other change. You can change objects one at a
time or in groups. About the only change you cannot make is changing an object into another type of object
(for example, you cannot change a square into a circle or change a rectangle into a pop-up menu).

Tool Key Notes

Press the Escape key to toggle between Graphics Mode
and Data Access Mode (disabled if tool palette has been disabled)

P Press the P key to select the Pointer tool
(except when typing or editing text with the T tool).

œ Press the Enter key to select the Pointer tool
(at any time, even when typing or editing text with the T tool).

= Press the= key to toggle the crosshair cursor on/off
(See “Nudging to the Crosshair Cursor” on page 570)

T Press the T key to select the Text tool

L Press the L key to select the Line tool

R Press the R key to select the Rectangle tool

O Press the O key to select the Oval tool

Page 558 Panorama Handbook
Selecting a Single Object

Before you can modify an object (change its size, color, pattern, etc.) you must select the object. Selecting an
object (or objects) tells Panorama that you want to work with that object. The Pointer tool is used for selecting
objects. If the Pointer tool is not highlighted, click on it before you try to select an object. One of the most
common mistakes made by new users is to try to select an object when a tool other than the Pointer tool is
highlighted.

There are two ways to select an object. The simplest is to click on the object. When an object is selected, han-
dles appear at the corners of the object. The handles let you know the object is selected and waiting for you to
do something with it.

If an object is hollow (transparent, or filled with NONE) you must click on the border of the object to select it.
Objects with thin borders may be difficult to click on. If you find it too difficult, remember that you can also
select an object by dragging a selection marquee around it (see the next section).

It’s possible for one object to be hidden behind another object, making it impossible to click on. See “Selecting
a Completely Hidden Object” on page 621 to learn how to select hidden objects.

Make sure Pointer
is highlighted

Click in object
to select it Handles at corners

indicate that this object
is selected

These objects are
not selected,
so they do not
have handles

Click on the edge...

Not in the hollow center

Chapter 14:Graphic Design Page 559
Selecting Multiple Objects at Once

Sometimes you may want to modify several objects at a time. You can select multiple objects by clicking on
each object while holding down the Shift key, or by dragging a selection marquee around the objects. (You
can also unselect an object that is already selected by holding down the Shift key and clicking on it.)

The selection marquee is simply a dotted line that appears when you drag the pointer across the surface of a
form. The marquee is like a lasso—it selects any object that is completely enclosed within it. In this example
the marquee is used to select two objects while leaving a third unselected.

When you release the mouse the two rectangles will be selected.

Start on empty spot
and drag marquee around objects

Page 560 Panorama Handbook
To drag a marquee you normally need to start on an empty spot on the form. If an empty spot isn’t conve-
nient, just hold down the Space Bar and drag the marquee. Holding down the Space Bar removes the stem
from the cursor arrow and disables clicking on objects, allowing you to drag a marquee anywhere.Either way,
drag the marquee all the way around the objects you want to select. Only objects that are completely inside
the marquee will be selected. In this example we’ll select the three smaller objects but not the large orange
rectangle.

When you release the mouse, the three objects inside are selected. The large orange rectangle is not selected
and has not moved.

Hold down Space Bar
and click anywhere to
start dragging,
even on top of an object

When the Space Bar is pressed,
the cursor arrow loses it’s tail

Chapter 14:Graphic Design Page 561
Of course this is not the only way to select these three objects. You could hold down the Shift key while you
clicked on each object, or in this case you could start dragging from the empty area at the bottom or right, like
this.

Double-clicking is another shortcut for selecting multiple objects. Double-clicking on an object selects all the
objects inside the object as well as the object itself.

There’s one more way to select multiple objects. The Select All Objects command in the Edit menu will select
every object in the form. (To unselect all objects, click on an empty spot within the form.)

Double click anywhere within an object to select the object
and any objects within the object

These objects
are not within
the double
clicked object,
so they are
not selected

Page 562 Panorama Handbook
The Graphic Control Strip

When a Panorama form window is in graphic design mode, a graphic control strip usually appears along the
bottom of the window. The graphic control strip occupies some of the space that is normally used by the hor-
izontal scroll bar. (If the window is too narrow for both the horizontal scroll bar and the graphic control strip,
the control strip will disappear.)

The graphic control strip displays information about the currently selected object or objects (if any), and also
allows you to easily change some of the properties of the currently selected objects with pop-up menus and
dialogs. The complete graphic control strip has eleven elements.

If the window is not wide enough for all seven of these elements, the control strip will automatically adjust to
show fewer elements. When this happens, an extra triangle icon appears at the end of the control strip. Click-
ing on this icon cycles through the Font/Text Size, Dimension, and Object Type/Object Name control strip
elements (the first four elements are always visible unless the window is extremely narrow).

Graphic Control Strip

Color

Line Width

Line Pattern

Fill Pattern

Text Size

Font

Location

Height
Width

Object Name

Object Type

Chapter 14:Graphic Design Page 563
Rulers

The graphic editor always displays rulers along the top and left sides of the graphic window. The rulers
always start from zero in the upper left hand corner of the entire form (not the window). An indicator in each
ruler follows the mouse as you move it across the form. These indicators help you measure objects. Note: The
rulers do not represent where an object will be printed on a piece of paper. They are only a convenience for
sizing and positioning objects on the screen.

The rulers usually show measurements in inches. Click on the box in the upper left corner to toggle between
different measurement units—inches, centimeters, pixels, pica and elite.

Clicking once changes the ruler to centimeters.

A second click changes the ruler to pixels. A pixel is one screen dot, or 1⁄72 inch.

Pica (1⁄6 inch) and elite (1⁄12 inch) rulers can be handy for designing graphics that need to be overlaid on pre-
printed forms.

Click here to change ruler measurement units

Page 564 Panorama Handbook
You can also change the measurement units with the Form Preferences dialog in the Setup menu.

Use the Form Preferences dialog if you want to permanently change the default measurement units for this
form.

Moving a Single Object

There are several ways to move a single object, including dragging, nudging, and using the dimensions dia-
log. To drag an object, the Pointer tool must be highlighted. Press on the object, then drag the object to its new
position. If you drag the object near the edge of the window, the form will automatically scroll.

When you release the mouse, the object will move to the new position.

Chapter 14:Graphic Design Page 565
If an object is hollow (transparent, or filled with NONE), you must click on the border of the object to drag it.

If you want to move the object horizontally or vertically (but not diagonally), hold down the Shift key as you
drag the object. When the Shift key is held down you won’t be able to drag an object diagonally, as shown
below.

If you don’t have far to go you might consider nudging the object instead of using the mouse (see below).
This allows you to exactly position the object or handle in one pixel (or less) increments.

Nudging an Object (or Objects)

You can use the arrow keys (¯, ˘, ¿, ˜) to nudge selected objects into position. Each time you press an
arrow key, the object (or objects) moves one pixel in the direction of the arrow.

For even finer adjustments you can reduce the nudge distance using the Forms Preferences dialog. (Setup
menu). Using this dialog you can set the nudge distance to 1⁄8, 1⁄4, 1⁄2, or 1 pixel.

Page 566 Panorama Handbook
Nudge “Auto Guides”

As you nudge an object (or objects) Panorama checks to see if the object is aligned with any other objects on
the form. When an alignment occurs a blue guide line briefly appears. In this illustration the guide line
appeared as the purple oval was nudged to the left, the guide automatically appeared when the left edge of
the purple oval was aligned with the left edge of the pink oval.

The automatic guide will disappear when you click the mouse or press any key, or it will simply disappear by
itself after a few seconds. If more than one edge is aligned the multiple guide lines will appear, like this.

The alignment doesn’t have to be top to top or left-to-left, if any edge of the nudged object(s) aligns with any
edge of any other object the guides will appear.

The guides can also appear when nudging an object’s size, see “Nudge Size “Auto Guides”” on page 569.

Chapter 14:Graphic Design Page 567
Viewing and Setting Exact Object Dimensions

If the window is wide enough, the Graphic Control Strip will show the exact location and size of the currently
selected object. (This is only valid if a single object is selected — it does not reliably display the location or
size of multiple objects.) To see the exact location and size of any object, simply click on the object.

The Dimensions dialog allows you to display and change the exact dimensions of any object. To use this dia-
log, simply select an object and click on the dimensions in the Graphic Control Strip (you can also choose
Dimensions from the Edit menu).

The Dimensions dialog gives you the choice of absolute or relative dimensions. Absolute dimensions dis-
play the position of all four corners of the object, that is each corner’s position from the top left corner of the
form. Relative dimensions display position of the top left corner of the object along with the size of the
object; that is, the relative distance from the top left corner to the bottom right corner. Use relative dimensions
when you want to move an object without changing its size, or change the size of an object without moving
it. (Note: When using Relative dimensions, the object’s height and width must have a + symbol in front of the
number, as shown above.)

The Dimensions dialog can work with dimensions in inches, centimeters, or pixels. The dialog will default to
the current ruler measurement units. (See “Rulers” on page 563 to learn how to set the ruler units.) Dimen-
sions in inches or centimeters will be rounded to the nearest 1⁄

576 inch (0.017 inch).

Page 568 Panorama Handbook
Changing the Size of a Single Object

To change the size of an object, first select the object with the Pointer tool. Then use the mouse to drag one of
the corner handles. As you drag the handle, an outline of the object will follow the mouse. Release the mouse
when the corner is in the correct spot.

If you want to change the width or height of an object (but not both at once), hold down the Shift key while
you change the size. Holding down the Shift key prevents the corner from moving diagonally.

Nudging the Size of an Object

The arrow keys (¯, ˘, ¿, ˜) usually nudge the entire object. However, after you click or drag a handle,
the arrow keys will nudge just that handle. Each time you press an arrow key the handle will move one pixel
in the direction of the arrow. In other words, each time you press an arrow key the object will grow (or
shrink) one pixel in the direction of the arrow (or less than a pixel if you have changed the nudge distance
using the Form Preferences dialog).

Let’s look at the procedure step by step. Start by clicking on the object whose size you want to adjust.

Chapter 14:Graphic Design Page 569
Now click on the corner you want to adjust.

Use the arrow keys to adjust the size of the object in small increments. In this case we pressed the ¿ and˘
keys about half a dozen times each.

As soon as you click on another object, the arrow keys go back to nudging the entire object instead of just the
corner.

Nudge Size “Auto Guides”

As you nudge the size of an object, Panorama checks to see if any of the edges of the resized objects are
aligned with the edges of any other objects. If any edge is aligned a temporary blue guide appears. In this
illustration the lower right hand corner of the pink square has been nudged, and is now aligned in two direc-
tions with the yellow rectangle.

For more information on auto-guides, see “Nudge “Auto Guides”” on page 566.

Page 570 Panorama Handbook
Nudging to the Crosshair Cursor

You can use the Crosshair cursor to help you nudge objects into alignment. (However, this technique is usu-
ally not necessary now that Panorama has automatic guides that appear when nudging (see “Nudge “Auto
Guides”” on page 566) so you may want to simply skip this section.) Start by clicking on the Crosshair tool to
turn on the crosshairs.

Select the object you want to nudge,

then move the crosshair to the desired spot.

Chapter 14:Graphic Design Page 571
Use the arrow keys to nudge the object until it is aligned with the crosshair. In this case we nudged the entire
object, but we could also adjust the size by clicking on the corner as described in the previous section.

Finally, turn off the crosshair by clicking on the Crosshair tool again.

Percentage Scaling

Use the Scale command (Arrange menu) to expand or shrink an object by an exact percentage.

You can choose one of the pre-defined scales or type in any percentage between 1% and 999%.

Resizing Without Handles

Dragging on the inside of an object normally moves the object. But if you hold down the S key (the letter S)
while you drag, dragging on the inside of an object resizes the object—just like dragging on a handle. This
feature can be very handy when you are working on a cluttered form—the handle you want may be hard to
find. To remind you that the S key is pressed, the cursor turns into a hollow arrow. When you release the S
key Panorama will go back to normal operation.

Page 572 Panorama Handbook
This operation is easier to see than to explain with words. Here’s what happens when you drag on the object
normally — it simply moves:

But if you hold down the S key (the letter S) while you drag, the object will change size instead of moving.
(Notice the hollow mouse arrow.)

When you release the mouse the object will expand or shrink.

Chapter 14:Graphic Design Page 573
Here’s another way to view the operation of the S key. When you press this key, Panorama behaves as if the
handles at the corners of the object had expanded to fill the entire object. No matter where you click, you are
clicking on a handle. Therefore, you cannot drag the object, but only resize it. The four colored rectangles in
the illustration below symbolize the expanded handles (actually, they would be slightly bigger than this, so
that they would cover the entire object).

If you want to change only the width or height of the object, but not both, hold down the Shift key at the
same time as you hold down the S key. This will prevent the object from changing size diagonally.

Changing the Radius of Round Corners

Rounded rectangles have an extra handle in the upper left hand corner.

extra handle

Page 574 Panorama Handbook
This handle is used to adjust the radius of the corner. Drag the handle towards the center of the rectangle to
increase the radius, drag it towards the corner to reduce the radius.

The new radius will appear when you release the mouse.

You can drag the corner diagonally if you want an elliptical corner. Hold down the Shift key if you want a
circular corner.

Removing Objects

To completely remove one or more objects from the surface of the form first select the objects (See “Selecting a
Single Object” on page 558 and “Selecting Multiple Objects at Once” on page 559). Then choose Cut or Clear
from the Edit menu. Cut places the object on the clipboard so that it can be pasted back into the form in a new
location. You can also remove the object by pressing the Delete or Backspace key (this is the same as choos-
ing Clear).

Modifying Object Attributes

New objects are usually white with a thin black border. To customize an object you can change the fill pattern,
border (pen) pattern, line thickness, and color. You can customize these with the Graphic Control Strip or the
Graphics menu.

Chapter 14:Graphic Design Page 575
Fill Pattern

The Fill Pattern menu in contains 40 different fill patterns.

To fill the inside of an object with one of these patterns, first select the object (or objects), then choose the pat-
tern from the Fill Pattern menu. When you release the mouse the object(s) pattern will change.

Click here to set the fill pattern

…or select from the Graphics Menu

Page 576 Panorama Handbook
To make a hollow (transparent) object, choose the empty pattern in the top left corner of the Fill Pattern sub-
menu.

Here’s the transparent object.

Chapter 14:Graphic Design Page 577
Line Pattern

The Line Pattern menu contains 40 different patterns that can be used to draw lines and borders. Only a few
of these patterns are really useful for drawing lines.

To create a dotted horizontal or vertical line choose one of the diagonal patterns.

Click here to set the line pattern (or use the Graphics Menu)

Page 578 Panorama Handbook
The most common line pattern is basic black. If you want an object with no border at all, choose the empty
pattern in the top left corner.

The result is an object without a border.

Chapter 14:Graphic Design Page 579
Line Width

The Line Width menu contains seven different line/border thicknesses from 1⁄4 to 6 points.

When you release the mouse the line width of the object will be updated. Notice that the object’s line width
also appears in the Graphic Control Strip.

click here for line width menu (or use the Graphics Menu)

Page 580 Panorama Handbook
The top spot in the menu, which appears to be empty, actually represents a 1⁄4 point line (1⁄300 inch) hairline.

Hairlines can be printed on Postscript laser printers and imagesetters— on the screen and on other types of
printers hairlines will appear as ordinary 1 point lines.

Color

The Color menu contains 256 colors. To color an object, first select the object with the Pointer tool, then pick
the color from the menu.

hairline

click here to set the color (or use the Graphics Menu)

Chapter 14:Graphic Design Page 581
When you release the menu the object(s) will change color.

Font

The Font menu lists all the fonts installed on your system. To change the font of an object that contains text,
first select the object with the Pointer tool, then pick the font from the menu.

click here to choose font, or use Font menu

Page 582 Panorama Handbook
When you release the mouse the object will change to the new font.

You can use the Font Usage Wizard to display a list of all the fonts used in every form in your database. See
“Font Usage” on page 136.

Maintaining Fonts across Multiple Computers and Platforms

If a font has the same name on two different computers then it can be used in a database on either computer
— even if they are different types of computers (Macintosh vs. Window PC). For example, suppose your
database is created on a Macintosh and uses the Adobe fonts Palatino and Optima. If the database is trans-
ferred to a Windows PC system these fonts will continue to display properly if the Palatino and Optima are
installed on the Windows PC.

No matter what type of computer you are using Panorama will check for the necessary fonts each time it
opens a database. If a database uses one or more fonts that are not installed on this system an alert will
appear listing the fonts that are not available on your system.

To allow you to continue to use the database the objects that use these fonts are switched either to Geneva
(Macintosh) or Alpine (Windows). If you want to keep the original fonts you must close the database without
saving it, install the necessary fonts, then re-open the database. Once the database has been saved you cannot
go back to the original fonts except by manually setting up the fonts again, object by object.

Universal Fonts

Panorama has special handling for four special fonts.

On the Macintosh these four fonts are always present as universal fonts, so you can rely on them always
being available. We have created the four equivalent fonts for Windows computers to guarantee that these
fonts are always available on any computer. For example, if you create an object using the Geneva font on a
Macintosh computer it will automatically be translated to the Alpine font when displayed on a Windows PC
computer. If you want to make sure that your database will display properly on any computer you should
restrict yourself to using only these four fonts.

Macintosh Windows

Geneva Alpine

New York Yankee

Chicago City

Monaco Block

Chapter 14:Graphic Design Page 583
Text Size

The Size menu allows you to adjust the text size of an object. To change the text size, first select the object
with the Pointer tool, then pick the size from the menu.

When you release the mouse, the size of the text will change.

If the size you want is not listed in the menu, choose Other. A dialog will appear asking for the new font size.

click here to choose size, or use Size menu

Page 584 Panorama Handbook
You can type in any integer font size you like — big or small.

You can also make small adjustments to the text size by selecting Up or Down. These commands increase or
decrease the text size by one point.

Text Style

The Text menu allows you to change the style of an object containing text.

Chapter 14:Graphic Design Page 585
You must change the style of the entire object — all the characters in the object must have the same style.

The only exception to this rule is the Word Processor SuperObject, which allows different styles, fonts, sizes
and colors to be mixed. See “Word Processor SuperObject” on page 720 for more information.

Object Type/Object Name

Panorama allows a name to be assigned to any graphic object. The name can be used to identify the object
when programming. If an object has a name, a program can get information about the object, or even modify
the object on the fly. If you are not planning to do any programming with an object, there is no need to assign
a name to it.

The Graphic Control Strip can display the type of the currently selected object, along with its name (if it has
a name). Object types describe what the object is: Rectangle, Oval, Line, Button, Data Cell, etc.

type of object name of object

click here to toggle between
dimensions, font/size
and type/name of object

Page 586 Panorama Handbook
You cannot change the type of an object, but you can change its name. To do so, either click on the object type
or name in the Graphic Control Strip, or choose Object Name from the Edit menu.

You can use any name you want for the object. You can even have two objects with the same name, which can
be handy if you always want to program them the same way. For more information on programming objects
via their name see “Programming Graphic Objects on the Fly” on page 1652 and “Program Control of Super-
Objects™” on page 1678.

The Object Properties Dialog

Many graphic objects have dialogs that control various options for the object. To open the dialog for a partic-
ular object, first select the object and then choose the Object Properties command in the Edit menu. This
command will work for data cells, tiles, buttons, flash art, flash sound and all SuperObjects. There is no dia-
log for basic shapes like rectangles, ovals, etc. The Object Properties dialog is the same dialog that appears
when you create the object. Here is a typical Object Properties dialog.

Chapter 14:Graphic Design Page 587
Another way to open the Object Properties dialog is to simply double click on the object in question. In fact,
this is the most common way to open this dialog. With most types of objects you can double click anywhere
in the object. For a report tile, however, you must double click on the name of the tile. If you double click on
the drag bar of the tile (outside the name), Panorama will not open the Object Properties dialog, but instead
will select all the objects inside the tile. (See “Working with Tiles” on page 1068 to learn more about report
tiles.) The illustration below shows a report tile with two other objects, a list and a rounded rectangle.

If an object doesn’t have an Object Properties dialog (for example basic shapes like rectangles and ovals) then
double clicking on the object will select all of the object inside the object. “Selecting Multiple Objects at Once”
on page 559 for more information about this technique.

Note: In older versions of Panorama (Panorama 2.x) you needed to click on the object with the corresponding
tool to open the Object Properties dialog. For example to open the Object Properties dialog for a button you
needed to select the Button tool, then click on the button. This will still work, but is no longer necessary with
the Object Properties command in the Edit menu and the double clicking (with the pointer) shortcut.

double c lick to open dialog

double c lick title to open dialog

double c lick to select enclosed objects

double c lick to select enclosed objects

Page 588 Panorama Handbook
Working With Multiple Objects

Most forms contain dozens or even hundreds of objects. Often you’ll need to move, resize, or align several
objects at once. Panorama has a number of tools to make these kinds of tasks easier.

Grouping Objects Together

The Group command (in the Arrange menu) gathers several objects together and combines them into a single
object. Once the objects are grouped together, they act as a single unit. The group can be selected, moved,
copied, or resized just as if it was a single object. To group several objects together, first select the objects.

Once the objects are selected, choose the Group command in the Arrange menu. The handles at the corners of
each individual object will disappear, while new handles appear at the corners of the new composite object.

Chapter 14:Graphic Design Page 589
The group now acts as if it was a single object. You can move it, resize it, copy it or delete it, all as a single
entity. For example if you expand the group object, all of the component objects within the group will expand
proportionally.

If you want to manipulate one of the individual objects within a group you must reverse the process with the
Ungroup command. This command splits a group back into the original separate objects.

Tip: Don’t confuse the Group command in the Arrange menu with the Group command in the Sort menu.
The Group command in the Sort menu is used to collect data into groups, while the Group command in the
Arrange menu is used to collect graphic objects into groups. See “STEP 1 - GROUP” on page 459 for more
information about the other Group command.

Page 590 Panorama Handbook
Moving Multiple Objects

You can move several objects at once by selecting the objects and then dragging one of them. The other
selected objects will follow as you drag. You can also nudge the selected objects with the arrow keys (see
“Nudging an Object (or Objects)” on page 565).

Fast Drag

As you drag multiple objects, a gray outline of the objects follows the movements of the mouse (as shown in
the previous illustration). If you have a very slow computer and are dragging a large number of objects, there
may be a delay while Panorama creates this gray outline. You can eliminate this delay by checking the Fast
Drag option in the Edit menu.

Chapter 14:Graphic Design Page 591
When this option is checked the delay is reduced, but the gray outline may be less detailed.

The Fast Drag option remains on until you turn it off or quit Panorama.

Page 592 Panorama Handbook
Resizing Multiple Objects

You have several choices available for resizing multiple objects. You can combine objects into a group and
then change the size of the group. You can use the Dimensions dialog to make each selected object a fixed
height or width, or to increase or decrease the size of each selected object. Finally, you can use cluster resize
to change the width of a column within a table, or the height of a row.

When you change the size of a group object, all of the dimensions inside the group change as well. For
instance, if you double the width of a group, all of the individual objects within the group will also double in
width. The horizontal spacing between the groups will also double. Here is a group of objects before the
width is adjusted…

and after.

Chapter 14:Graphic Design Page 593
Cluster Resize

Panorama’s Cluster Resize is automatically active whenever you select several objects and then change the
size of one of them. Cluster resize adjusts the sizes and locations of the other selected objects to match the
change. For instance, suppose you have a matrix of boxes, and you want to increase the width of one column.

Start by selecting all of the objects (see “Selecting Multiple Objects at Once” on page 559). Then grab one of
the handles in the column you want to make wider and drag it to expand the box.

When you release the mouse, cluster resize will kick in. In this case, it will automatically increase the width of
all the other boxes in the same column. It will also shift the boxes on the right to make room for the expan-
sion.

drag to change the size of one object

Page 594 Panorama Handbook
At first glance cluster resize may look a little bit like magic, but actually it is quite simple. After you change
the size of any object, Panorama checks to see which edge (or edges, for diagonal moves) of the object you
moved—top, bottom, left, or right. It then adjusts the corners of any other selected objects that are in that
direction. For example, if you move the right edge of an object, any objects that are even with or to the right of
that edge will be adjusted.

Here’s another example. We’ll start with six objects.

We’ll slide the right edge of the second object to expand the object about an inch.

Chapter 14:Graphic Design Page 595
Here’s how Panorama will adjust the other five objects.

The first object is completely unaffected. This is because we expanded to the right and this object is com-
pletely to the left of the expansion axis. The third and fourth objects straddle the expansion axis. Therefore,
they grow to match the growth of object number 2. The final two objects are completely to the right of the
expansion axis. Therefore, they stay the same size and slide to the right. Here’s the final result when you
release the mouse.

object corners in this area are pushed to the right

object corners in this area do not move

expansion axis

Page 596 Panorama Handbook
Cluster resize isn’t limited to horizontal expansion. In this example we’ll stretch the second object both hori-
zontally and vertically.

Now there are two expansion axis, one horizontal and one vertical. Depending on what quadrant they are in,
a point will stay in place, move horizontally, move vertically, or move diagonally.

expansion axis

expansion axis

Chapter 14:Graphic Design Page 597
Here’s the final result.

Cluster resize affects all selected objects, even when objects are nested inside each other. If you select nested
objects and then change the size of the innermost object, cluster resize will adjust the size of the larger object.
This makes sense because the right edge of the outer object is to the right of the right edge of the inner object
(say that three times fast!). A real world example of nested objects is a border around a table (or borders
around individual columns in a table). Cluster resize makes sure that if you resize one of the columns in the
table the borders will adjust as well. Just make sure that you always change the innermost object, and cluster
resize will take care of the rest.To illustrate cluster resize with nested objects we’ve added a border around
our six objects.

Page 598 Panorama Handbook
Once again we expand the second object.

The border also expands. Since it straddles the expansion axis, the left side of the border stays put while the
right side expands to fit the expanded objects inside it.

Only selected objects are affected. If the border is not selected, it won’t expand.

Chapter 14:Graphic Design Page 599
Cluster resize makes it easy to adjust the size of rows or columns in a table. Just select all of the objects in the
table, then adjust the size of any object within the table.

Cluster resize adjusts the other objects to maintain the table structure.

Page 600 Panorama Handbook
So far all of our examples have shown expanding to the right and/or down. However, you can also expand to
the left, or shrink. In this case we’ll expand the last column to the left. (When you have this many handles
packed into a small area, it can be difficult to hit the one you want. To make it easier we held down the S
key, which expands the handles. See “Resizing Without Handles” on page 571 for more information on this
technique. We also held down the Shift key to make sure that the expansion was entirely horizontal and not
diagonal.)

When the mouse is released the entire table is adjusted.

Chapter 14:Graphic Design Page 601
Cluster resize is also great for working with reports. If you keep your report tiles lined up, then changing the
width of an item in the body of the report automatically adjusts the width of the same item in the report
header. (Remember that all the objects must be selected. Only selected objects will be adjusted.) In this exam-
ple all the objects are selected and we expand the width of the City field.

Cluster resize automatically adjusts all of the other objects, including the report tiles.

By the way, cluster resize also works when you nudge the size of an object using the arrow keys (see “Nudg-
ing the Size of an Object” on page 568). Select the objects, then click on the handle you want to nudge. As you
use the arrow keys to resize the object, cluster resize will automatically adjust the other objects. You can com-
bine this with the crosshair cursor (see “Nudging to the Crosshair Cursor” on page 570) to quickly and accu-
rately nudge a collection of objects exactly into place.

Don’t forget that when you are resizing an object you can use the Shift key to make sure that only the height
or width changes, but not both. For example, if you are adjusting the width of a column using cluster resize,
hold down the Shift key so that the height of the row doesn’t change also. You can also hold down the S key
to make sure that you are resizing, and not dragging. See “Resizing Without Handles” on page 571 for more
details on this technique.

Page 602 Panorama Handbook
Cluster Resize Troubleshooting

Sometimes you may run across a situation where cluster resize doesn’t seem to work. You change the width
of a column, but some of the objects don’t get adjusted. What’s the problem?

This problem occurs when not all the objects in the column are lined up on the right. Usually this is because
the objects are not quite the same width. If one of the objects in a column is 1 or 2 pixels shorter than the other
objects the short object won’t get adjusted.

The solution is to make sure your objects are all lined up before you start. If necessary, you can use the Align
command to force all the objects into alignment See “Aligning Objects” on page 605 to learn about this com-
mand.

Setting Exact Dimensions of Multiple Objects

When the Dimensions dialog (in the Edit menu and the Graphic Control Strip) is used with a single object,
you can specify both the position and size of the object. But if several objects are selected, the Dimensions
dialog cannot specify the position—only the size of the object. You can use this dialog to set the width and/or
height of all the selected objects—for example, you can make all the selected objects 2 inches wide. Or you
can use the dialog to increase or decrease the size of each selected object—for example, you can make every
selected object 1⁄2 inch wider.

To set the height or width of several objects at once, first select the objects. Then open the Dimensions dialog.
Type in the new height and/or width, then press Ok. All of the selected objects will be set to the specified
height and/or width. For example, suppose you have a collection of miscellaneous objects like this:

To make all these objects 2 inches wide, open the Dimensions dialog (either by clicking in the dimensions
area of the Graphic Control Strip or by choosing Dimensions from the Edit menu).

Chapter 14:Graphic Design Page 603
Set the width to 2 and erase the height.

When the Ok button is pressed all of the selected objects will be changed to 2 inches wide while retaining
their original locations and heights.

Page 604 Panorama Handbook
To increase or decrease the size of several objects at once, first select the objects.

Then open the Dimensions dialog. Type in the increase or decrease amount, with a + (increase) or -
(decrease) sign in front of the number. For example, to make all selected objects 1⁄2 inch wider enter +0.5.

When the Ok button is pressed all of the objects will get 1/2 inch wider.

If you are not careful, the Dimension dialog can turn a form into a big mess in a hurry. If this happens, don’t
panic—just Undo!

Chapter 14:Graphic Design Page 605
Aligning Objects

If you need to line up several objects, you can either do it by eye or you can let the Align command (in the
Arrange menu) do it for you. The Align dialog gives you eight options for aligning objects in different direc-
tions.

Most of the alignment options simply shift the objects to align them, but the Left & Right and Top & Bottom
options actually change the sizes of the selected items. Instead of shifting the objects, these options actually
expand the selected objects to make them all the same width or all the same height. If you ask for Left &
Right, all the selected objects will be expanded to the width of the widest object. If you ask for Top & Bottom,
all the selected objects will be expanded to the height of the tallest object.

This table shows how a collection of three objects is affected by the different alignment options.

Page 606 Panorama Handbook

Chapter 14:Graphic Design Page 607

Page 608 Panorama Handbook
Adjusting Spacing Between Multiple Objects

The Spacing command (in the Arrange menu) allows you to adjust the vertical or horizontal spacing between
multiple objects. The dialog will shift the selected objects so that they are evenly spaced. For example, you
could start with a somewhat random collection of objects like this.

Open the Spacing dialog and set the spacing to 4 pixels between the objects.

When the Ok button is pressed the objects will slide vertically into place.

Chapter 14:Graphic Design Page 609
To finish our cleanup we’ll use the Align command to make all of the objects the same width (by selecting
Align Left & Right).

If the selected objects are arranged in a table, the Spacing dialog will preserve the table structure. For exam-
ple, if the font size of a table is increased the individual rows in the table will overlap. This can be fixed with
the Spacing dialog. To illustrate this, we’ll start with a table that contains 9 point text.

Page 610 Panorama Handbook
We’ll start by converting the text from 9 points to 12 points. Our table doesn’t look so neat anymore!

The next step is to use the Dimensions dialog to increase the height of each object by four pixels (see “Setting
Exact Dimensions of Multiple Objects” on page 602).

Chapter 14:Graphic Design Page 611
The table still doesn’t look so hot.

The final step is to use the Spacing dialog to restore the vertical spacing between the rows.

Page 612 Panorama Handbook
When the Ok button is pressed, the table spread out and now looks great. This may have seemed like a fairly
complex process, but it is much easier than manipulating all 60 of these objects individually!

The Spacing dialog does not align the objects into neat rows or columns. If the objects need to be aligned use
the Align dialog (see “Aligning Objects” on page 605).

Duplicating Objects

Why do the same work twice? Panorama has several methods for creating a duplicate of one or more objects.

Duplicate

The easiest way to copy objects is with the Duplicate command. Just select the objects and choose Duplicate
from the Edit menu. The new object(s) are placed just below and to the right of the originals.

If you duplicate an object (or objects) and then immediately drag (and/or nudge) the copy to a new position,
Panorama will memorize this position relative to the original object. Now if you duplicate the copy, Pan-
orama will automatically place the copy of the copy in the same relative position.

original objects
duplicate objects

Chapter 14:Graphic Design Page 613
Drag Duplicating

You can also duplicate an object by dragging the object with the a special key held down. On the Macintosh
the special key is the Option key. On PC systems the special key is the Alt key. When the special key is held
down you drag a copy of the object(s), instead of the original. Just hold down the key and drag the same way
you would to move the object(s).

When the mouse is released a second copy of the object(s) appears at the new location.

If you want the copy to line up with the original hold down Shift key and the Option/Alt key as you drag
the object. The Option/Alt key tells Panorama to makes copies, while the Shift key prevents you from drag-
ging the copy diagonally.

Once you have created a copy by Option/Alt dragging, you can make another copy with the Duplicate com-
mand. The Duplicate command will exactly mimic your Option/Alt drag, allowing you to quickly create an
accurately spaced row or column of objects (see the next section for an example). Warning: If you want the
Duplicate command to mimic your Option/Alt drag, you must not do anything in between dragging and
pulling down the menu. If you click anywhere else in the form, the Duplicate command will not mimic the
Option/Alt drag.

Page 614 Panorama Handbook
Step and Repeat

You can combine Option/Alt dragging (see previous section) with the Duplicate command to quickly step-
and-repeat evenly spaced rows, columns, and complete tables of objects. To create a row of objects, start with
just one object.

Hold down the Shift and Option/Alt keys and drag the object to the right.

Chapter 14:Graphic Design Page 615
Release the mouse to create a copy.

Then use the Duplicate command to create another copy of the object. The copy will automatically be placed
at the same spacing as the first duplicate.

Repeat the Duplicate command until the row is complete.

Page 616 Panorama Handbook
To create a complete table, select all of the objects in the row by dragging a marquee around them.

Hold down the Shift and Option/Alt keys and drag the row down, creating a copy of the row.

Release the mouse to create the new row.

Chapter 14:Graphic Design Page 617
If you don’t get the spacing just right, you can nudge the row with the arrow keys (see “Nudging an Object
(or Objects)” on page 565). Once the second row is in position, use the Duplicate command to step and repeat
an additional copy of the row

Repeat the Duplicate command until the table is complete.

Once the table is complete, you can modify the width of columns within the table using cluster resize (see
“Cluster Resize” on page 593). Or you can change the spacing between the rows and columns using the Spac-
ing command (see “Adjusting Spacing Between Multiple Objects” on page 608).

Cut, Copy, and Paste

You can use the clipboard to copy objects and to transfer objects from one form to another form. The Cut and
Copy commands copy the selected objects into the clipboard. Cut also removes the objects from the form.

The Paste command places a copy of the objects in the clipboard on to the form. The object (or objects) is
placed into the middle of the current window.

You can also use the Paste command to paste in graphics created in another program. For more information
see “Fixed Images” on page 797.

Page 618 Panorama Handbook
Copying Objects Between Forms

The Copy and Paste commands can be used to copy objects from one form to another. Just copy the objects
from the original form, then switch to the second form and paste. Tip: Both forms must be in graphics mode
to copy graphics between the forms.

Copying Objects Between Files

Using the Copy and Paste commands, you can easily copy graphic objects from one file to another. If you
copy a data cell object to another file, the data cell field name may not match up with any of the fields in the
second database. If this happens Panorama will automatically substitute the first field name in the second
database. You can use the Data Cell tool to assign a different field to the cell.

Copying an Entire Form

The Copy Form and Paste Form commands (in the Graphics Mode's Edit menu) allow an entire form to be
copied at once -- including the form’s Page Setup, custom menu setup, form comments -- everything!

To duplicate a form, start with the original form in Graphics Mode. Then choose the Copy Form command
from the Edit menu. Then choose the Paste Form command. (If you want to duplicate the form in another
database you must go that database, open a form and switch that form to Graphics Mode before using the
Paste Form command.) The Paste Form command will ask you for the name of the new form. When you
press the Paste Form button, Panorama will create the new form as an exact duplicate of the old form. (Notice
that you do not create the new form in advance — the Paste Form command creates the new form for you.)

You can also use the Copy Form command with the regular Paste command to copy all the objects in a form
into another form. When used this way, the Copy Form command is the same as choosing Select All Objects
followed by Copy command. When used this way, only the objects are copied and not the Page Setup, cus-
tom menus, etc.

Chapter 14:Graphic Design Page 619
Overlapping Objects

The computer screen is two dimensional, in other words, flat. So what happens if two objects overlap each
other? To resolve this question, Panorama treats the objects as if they were placed on a stack of clear sheets.
For example, consider the three overlapping objects in this form —

If you could look at this form on edge, it would look like this —

An object that is on top of another object is said to be in front. An object that is below another object is said to
be in back. When you create a new object, the new object is placed in front of all other objects.

Objects that were created earlier will be partially or completely hidden if the new object overlaps them.

front

back

Page 620 Panorama Handbook
Changing the Stacking Order

The Bring to Front and Send to Back commands (in the Arrange menu) change the stacking order of overlap-
ping objects. To put an object behind everything else, select the object and then choose Send to Back. For
example, suppose you wanted to move the red box behind the other three objects on this form. Here’s the ini-
tial form, including the edge view.

The Send to Back command will move the red box behind the other objects.

Chapter 14:Graphic Design Page 621
To bring an object to the front, select the object and then choose Bring to Front. For example, you could bring
the purple box to the front (again showing the edge view).

Selecting a Completely Hidden Object

If an object is completely hidden you can’t click on it. However, there are several ways to select hidden
objects.

To find a hidden object, use the Select All Objects command (in the Edit menu). This command makes han-
dles appear for every object, including hidden objects. For example, at first glance the form shown below
would appear to have only one object — a yellow box. The Select All Objects command reveals that there are
two hidden objects behind the yellow box.

handles of
hidden objects

Page 622 Panorama Handbook
Of course, you can also find a hidden object by moving the objects in front of it out of the way —

or by sending the object in front to the back.

Sometimes you may be able to select a hidden object by dragging a marquee around the object.

Chapter 14:Graphic Design Page 623
Once the object is selected you can bring it to the front, change the object properties, or nudge the object with
the arrow keys.

Another technique for selecting a hidden object is to hold down a special key while you click. On the Macin-
tosh this special key is the Command key, on PC systems it is the Control key. The first time you click, the
topmost object will be selected.

The next click will select the next object behind the top object (remember, you must hold down the
Command/Control key).

Page 624 Panorama Handbook
Each time you Command/Control click again the next object behind the current object will be selected

When you reach the bottom of the file Panorama will cycle back to the top and select the topmost object
again. You can keep clicking around and around forever.

Making a Drop Shadow

Use Duplicate and Send to Back to create a drop shadow for a box. Start with a basic box.

Chapter 14:Graphic Design Page 625
Use the Duplicate command to make a copy of the box (see “Duplicate” on page 612). (An alternate tech-
nique is to hold down the Option/Alt key and drag to create a copy of the box, see “Drag Duplicating” on
page 613.)

Next, use the Fill menu to make the new box black (see “Fill Pattern” on page 575).

click here to change fill pattern

Page 626 Panorama Handbook
Finally, use the Send to Back command to move the shadow behind the original object (see “Changing the
Stacking Order” on page 620).

If the shadow is too large or too small, use the arrow keys to nudge it until it looks right (see “Nudging an
Object (or Objects)” on page 565).

Locked Objects

Use the Lock command to lock objects. Locked objects can’t be moved or resized. Locking is convenient
when you want to make sure the work you have already finished isn’t disturbed as you continue working.

To lock one or more selected objects, choose Lock from the Arrange menu. The object handles will turn gray.
This shows that the objects are locked. The illustration below shows three selected objects, one of which is
locked.

gray handles on locked object

Chapter 14:Graphic Design Page 627
If you attempt to drag these three objects, only the unlocked objects will actually move.

A locked object cannot be moved, resized, or have any of its attributes (color, fill pattern, etc.) changed. How-
ever, you can duplicate the object (the copy is not locked).

Use the Unlock command to release a locked object(s). Once they are unlocked the objects can be moved and
resized normally.

Page 628 Panorama Handbook
Ignoring Locked Objects

Although locked objects cannot be moved, they can still be selected by clicking on them. (Otherwise they
could never be unlocked again!) However, if you check the Ignore Locked Objects option in the Arrange
menu, you will not be able to select locked objects.

Tip: The Ignore Locked Objects option is useful for working on top of a large background covering the entire
form. For example, you might paste a scanned image into the form, and then create data cells and other
objects on top of the scanned background. By locking the scanned image and turning on the Ignore Locked
Objects option, you won’t have to worry about accidentally selecting and possibly moving the scanned back-
ground image.

Alignment Grid

Panorama normally allows you to position objects freely anywhere on a form. The Grid dialog (in the
Arrange menu) allows you to set up a grid that can help you arrange objects in neat rows and columns.

The grid spacing can be specified in inches, centimeters, or pixels. If you use inches or centimeters, the spac-
ing will be rounded to the nearest 1⁄576 inch (For example a grid spacing of 0.1 inch will be rounded to 0.098
inches, or 7.25 pixels.)

Chapter 14:Graphic Design Page 629
If you want to make the grid visible, check the Show Grid option. When this option is checked a dot appears
at each grid point.

When the Snap to Grid option is checked, Panorama will automatically align objects to the grid. Objects are
aligned to the grid whenever they are created, moved, or resized. This option does not affect objects already
in the form (unless you modify them).

Page 630 Panorama Handbook
Panorama snaps the object into place as it is created.

Tip: When Snap to Grid is on, every object you create is automatically aligned to the grid. But what if you
need one or two objects that are not aligned to the grid? Instead of turning Snap to Grid off, you can nudge
the object into place using the arrow keys. Both the position and size of the object can be adjusted with the
arrow keys. See “Nudging an Object (or Objects)” on page 565.

Magnification and Reduction

Panorama allows you to magnify the form for closer inspection, or for more accurate alignment of graphic
objects. Use the Magnify tool to zoom in to 2x, 4x, or 8x magnification. When you select the Magnify tool, the
cursor turns from an arrow into a magnifying glass.

Chapter 14:Graphic Design Page 631
Move this magnifying glass to the spot you want to work on, then click the mouse to zoom in.

You can continue to zoom in up to 8X magnification.

Page 632 Panorama Handbook
Press the Shift key to turn the magnifying glass into a microscope. (If you are using a Macintosh pressing the
Option key or Space Bar also converts the magnifying glass into a microscope. If you are using a Windows
PC you can also press the Alt key or Space Bar.) When the Shift key is held down, each click reduces the
magnification (zoom out). You can continue clicking until you get back to 1x magnification, or you can zoom
out even farther and reduce to 50% or 25% magnification.

All of Panorama’s graphic editing tools and menu commands work at any magnification level—all the way
from 25% to 8x.

By holding down the Command key (Macintosh) or Control key (Windows) and clicking you can force Pan-
orama to immediately return to the normal 100% view.

A Note About Measurement Accuracy

Panorama keeps track of the position and size of each object to an accuracy of 1⁄576 inch (1⁄8 pixel). However,
this accuracy is only visible when you zoom in to 8x magnification (see previous section).

If you are going to print your form, keep in mind that printers are not 100% accurate. We have found that
many printers can be up to 1⁄8 inch off over the length of a page. (For example, a 10 inch high line may actu-
ally print anywhere from about 9.9 to 10.1 inches.) This variation can cause problems if you are attempting to
print unusually small labels or if you want to exactly match a pre-printed form. Most printers are more accu-
rate horizontally rather than vertically—this is probably due to slight variations in drum speed as the paper
feeds through the printer.

Chapter 14:Graphic Design Page 633
Form Background Colors

The default background for a form is white, but you may choose from 256 background colors for any form. To
change the background color, open the Form Preferences dialog (in the Setup menu) and choose the back-
ground color from the pop-up menu.

Here is a typical form with a gray background color. (Note: If the form is displayed on a black and white
monitor, Panorama will automatically use a white background even if you have specified another color.)

To set background colors for a view-as-list form, apply colors to the data tile and header tile. If these two tiles
have different colors, the header and data sections of the form will also have different background colors. See
“View-As-List Background Colors” on page 937 for more information on background colors in a view-as-list
form.

It is possible to check and change the form background color from inside a procedure. See “FORMCOLOR”
on page 5259.

Page 634 Panorama Handbook
Using the Form Explorer Wizard

Panorama comes with a Form Explorer wizard that you can use as an alternative tool for examining and
modifying (to some extent) forms. To use this wizard you must start with a form in Data Access Mode, not
Graphics Mode. Choose Form Explorer from the Wizard menu.

The Form Explorer window opens. The left hand side of this window contains a list of all of the objects in this
form. The objects are listed from back (top of the list) to front (bottom of the list). The number for each object
is relative to the front to back stacking order of the object - lower numbers are further towards the back.

Chapter 14:Graphic Design Page 635
When you click on an object the object will flash on the original form (unless it is invisible). This will also
cause a listing of all the object attributes to appear.

Each attribute is displayed as a name value pair, for example name->BOX or width=74. If a name/value pair
is connected with an = sign then you can click on the text and modify the value. For example you can change
the object width to 200 pixels and the color to solid blue.

When you press the Enter key the object will be modified with the new attributes.

modified object

Page 636 Panorama Handbook
Some objects have more attributes than others. This Text Editor SuperObject has over three dozen attributes.
In general the attributes correspond to the options in the object’s configuration dialog. You can edit most of
these attributes with the Form Explorer if you wish.

You can use the Form menu to explore any open form. You should also use the menu to update the object list
after you edit the form in Graphics Mode (or you can simply close and re-open the Form Explorer).

The Form Explorer wizard can be a great tool for deciphering a form created by another person. You can
quickly zero in on which fields and procedures are used where.

Chapter 15: Displaying and Editing Text

Graphics and icons are powerful tools, but written text is still the primary medium for communication and
record keeping. Panorama forms can display both permanent text (for captions, titles, instructions, etc.) and
textual information from the database.

Displaying Text

This chapter is divided into two sections, displaying text and editing text. In this first section we’ll consider
displaying text, both fixed text and text that changes depending on the information in the database or in a
variable.

Fixed Text Objects

Panorama has two different kinds of fixed text, click text and auto-wrap text. Both types of fixed text are cre-
ated with the Text tool.

Page 638 Panorama Handbook
Once the Text tool is selected you can create click text simply by clicking on an empty spot on the form.

Now you can simply start typing.

As you type each character, the click text object automatically expands.

Chapter 15:Displaying and Editing Text Page 639
You can add additional lines to the click text by pressing the Return key.

Auto-wrap text does not expand automatically as you type. Instead, the text automatically wraps inside a
box.

To create auto-wrap text, start by selecting the Text tool, just like for click text. But instead of clicking on the
form, drag the mouse to define the size and location of the box (don’t worry about exact positioning, you can
adjust it later).

Page 640 Panorama Handbook
Once the box is defined you can start typing in text. The text will automatically wrap to the next line when it
reaches the right edge of the box.

To help you keep track of the type of text you have created, the graphic editor displays a dotted border
around all auto-wrap text objects. (This border disappears when the form is switched to data access mode.)

Editing Fixed Text

To edit text within an object, you must use the Text tool. Once this tool is selected, move the mouse over the
text you want to edit. When the mouse moves over the text it changes from an arrow to an I-beam. Use the I-
beam to edit the text—click to select an insertion point, drag to select a range of characters, or double-click to
select a word.

When you have finished editing the text, either click on the next text object you want to edit or click on the
Pointer tool.

Note: If a text object doesn’t contain any text at all, the entire object will be deleted from the form. The first
thing you should do after creating a text object is to type at least one character into it.

Moving and Resizing Fixed Text Objects

Text objects can be moved just like any other shape. Use the Pointer tool to drag the text to the new location.

Chapter 15:Displaying and Editing Text Page 641
The size and shape of a text object can be changed by dragging one of the handles to a new position.

If this is done to auto-wrap text, the text will re-flow into the new size.

If you change the size of click-text, it will be converted into auto-wrap text.

Page 642 Panorama Handbook
Once the click-text is converted to auto-wrap text it will re-flow into the new size.

To convert auto-wrap text into click text, resize the object so that it is less than one line high or less than one
character wide.

Panorama converts the auto-wrap text into click text.

Later the text can be converted back into auto-wrap text simply by expanding the height again.

Chapter 15:Displaying and Editing Text Page 643
Text Font, Size and Style

Text in a form may be displayed using any font installed in your system. However, you cannot mix different
text styles, sizes, or fonts within a piece of text. To change the font, size, or style of an entire text object, use
either the Pointer or the Text tools to select the object (or objects), then change the text appearance by choos-
ing from the Font, Size, and Style Menus. You can also change the color of the entire text object with the
Color menu (in the Graphics menu or the Graphic Control Strip).

If you need a size that is not listed in the Size menu pick Other. You can also change the text size in 1 point
increments by choosing Up or Down from the Size menu.

Creating Reverse Type (White on Black)

To print reverse type, start with regular text.

Next, put a black object (or any dark color) behind the type. Use Send To Back to send the dark object to the
back (see “Changing the Stacking Order” on page 620).

Select the text object, then use the Line Pattern menu (see “Line Pattern” on page 577) to set the text to white.

Page 644 Panorama Handbook
An alternative technique is to leave the Line Pattern alone and use the Color menu (see “Color” on page 580)
to set the text to white or some other light color.

Text Alignment

Text is usually aligned flush left within the text object. Use the Left Justify, Center, and Right commands (Text
menu) to change the alignment of the text.

Chapter 15:Displaying and Editing Text Page 645
Displaying Data in Auto-Wrap Text

Auto-wrap text objects are not limited to fixed text. They can also be used to display data, either alone or in
combination with fixed text.

To display a field into the middle of an auto-wrap text object, type the name of the field into the text. Sur-
round the name with the « and » chevron characters (for example «First Name» or «Zip Code»). On a Macin-
tosh the « chevron is Option-\ and the » chevron is Shift-Option-\. On Windows systems the « chevron is
Alt-0171 and the » chevron is Alt-0187. To illustrate this technique, suppose you had a database of national
parks like this.

Now you can create an auto-wrap text object that contains fields, like this.

When the form is switched to Data Mode (see “Form Modes: Data Access vs. Graphic Design” on page 543)
Panorama will substitute the actual data in this fields, like this.

fields

Page 646 Panorama Handbook
As you move from record to record, the substituted text will change appropriately.

Since this technique “merges” the database information with the fixed text, it is sometimes called data merg-
ing.

Data Merge Pop-Up Menu

Typing in exact field names with chevrons can be a pain, so Panorama has a pop-up menu that can type in the
field names for you, including the « and » chevrons. To use this menu, first select the Text tool. Then click on
the text to create an insertion point. Once the insertion point is set, press either the Command key (Macin-
tosh) or Control key (Windows) to change the cursor from an I-beam to a tiny menu icon.

With the Command/Control key still held down, press the mouse to activate the pop-up menu

Chapter 15:Displaying and Editing Text Page 647
then pick the field name you want to insert.

Switch back to Data Access Mode to see the final result.

Using Data Merge to Create Address Labels

Data merge is an excellent way to create address labels. To create an address label using data merge, start by
creating an auto-wrap text object the size of the label.

Page 648 Panorama Handbook
Hold down the Command key (Mac) or Control Key (Windows) and select the first field name from the pop-
up menu.

When you release the mouse button Panorama will insert the field name. The insertion point is at the end of
the line.

The first line is complete, so press Return to advance to the second line.

Chapter 15:Displaying and Editing Text Page 649
Repeat the same steps for the second line: hold down the Command/Control key, select Address from the
pop-up menu, and press Return.

The third line contains three fields: City, State and Zip. Start by using the pop-up menu to enter the City field.

Page 650 Panorama Handbook
Now press the Comma and Space Bar keys.

Finish the label by inserting the State field using a pop-up menu, typing a Space and then inserting the Zip
field.

When you switch back to Data Access Mode Panorama will substitute the actual data. Voila! A label!

Panorama will automatically wrap the text within the rectangle you provided. It will start a new line wher-
ever you have typed a Return (or when a line becomes too long to fit).

Chapter 15:Displaying and Editing Text Page 651
If a field is empty and that causes the entire line to be empty, Panorama will completely remove the line. For
example, Great Basin National Park doesn’t have a street or P.O. Box, as you can see in the data sheet.

In the label, Panorama will remove the completely blank line.

If you don’t want the blank line removed, put a space at the end of the line.

space at end of line

Page 652 Panorama Handbook
Now the line can never be completely empty, so Panorama will not remove it.

An address label can be used as part of a larger form (like an invoice), or it can be used by itself as a mailing
label. If you wish to print a mailing label you must define the overall size of the label by creating one or more
report tiles. Report tiles tell Panorama how to print a form. For more information on creating and printing
mailing labels see “Label Fundamentals” on page 1177.

Displaying Formulas in Auto-Wrap Text

In addition to fixed text and fields, auto-wrap text can also contain complete formulas with text and numeric
calculations. Simply type the formula into the text, surrounded by { and } curly brace characters. Here’s what
a formula looks like in Graphics Mode.

When the form is displayed in Data Mode Panorama substitutes the result of the formula instead of the for-
mula itself.

formula inside { and }

formula result

Chapter 15:Displaying and Editing Text Page 653
Of course 2+2 is a pretty silly formula. More useful formulas can be formed by combining fields, variables,
and functions, like this.

In Data Mode this auto-wrap text object looks like this:

An auto-wrap text object is not limited to a single formula. You can include as many formulas as you need.

Here is the same auto-wrap text object in Data Mode. The formulas have been replaced with their results.

formula #1

formula #2

Page 654 Panorama Handbook
Using a formula gives you almost unlimited possibilities for combining and manipulating data on the fly as it
is displayed or printed. By using formulas containing the lookup function you can display or print data from
more than one database at once. You can use a formula to display or print computed information that is not
stored in the database. You can use true-false formulas to display or print data only if a certain condition is
met. The possibilities are almost endless. See “Formulas” on page 1185.

The Build Formula Dialog

You can use the Build Formula dialog box to help you create formulas to merge into auto-wrap text. To create
a new formula with this dialog, click on the Text tool, then click in the text to create an insertion point.

Now choose Build Formula from the Text menu. This causes a dialog to appear.

Chapter 15:Displaying and Editing Text Page 655
Once the Build Formula dialog is open, you can type in a formula using the keyboard. Or you can use the
Field and Function menus to help enter the formula for you. The Field menu contains a list of all fields in the
database; pick from this menu to type a field name into the formula. The Function menu contains a list of all
the functions and operators available; pick from this menu to type a function or operator into the formula.
For example, if you wanted to convert text to upper case, you would select the upper(function from the
Function menu.

If you need to include a field name in your formula, select it from the Field menu.

Page 656 Panorama Handbook
As you select items from these menus, Panorama will insert them into the formula. (Of course you can also
type text into the formula.)

When the formula is finished, press the OK button. Panorama will check the formula for errors. If the for-
mula is correct, it will be inserted into the auto-wrap text (with the required { and } curly braces automatically
added).

If the formula contains an error, Panorama will display an alert and highlight the location of the error. You
won’t be able to close the dialog until you correct the error (unless you press Cancel).

By the way, here’s what our finished formula looks like in Data Mode. Notice that the Park name has been
converted to all upper case (YOSEMITE NATIONAL PARK instead of Yosemite National Park).

Chapter 15:Displaying and Editing Text Page 657
You can also use the Build Formula dialog to edit a formula you have created earlier. To do this, start by
dragging over the text of the formula to select it.

Once the text is selected, choose Build Formula.

Now you can edit the formula by typing or choosing from the Field and Function menus, just like when you
created a new formula.

Page 658 Panorama Handbook
Text Display SuperObjects™

The Text Display SuperObject displays text based on a formula. In some ways, this is similar to an auto-
wrap text, but there are many more options for calculating the formula and formatting the displayed text.
You can store the formula itself in a variable (so it can be changed on the fly), align the text in any corner of
the object, automatically scale the text for different size windows, and even change the color of the text on the
fly.

Creating and Modifying Text Display SuperObjects

The Text Display SuperObject tool is not in the default tool palette, so you’ll need to use the Tool Palette dia-
log to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Chapter 15:Displaying and Editing Text Page 659
Once the tool is selected, drag the mouse across the form in the location where you want to create the Text
Display SuperObject.

When you release the mouse, the Text Display SuperObject configuration dialog will appear.

Page 660 Panorama Handbook
At a minimum you must enter a valid formula into the dialog. For this example we’ve also turned on the
Border and Drop Shadow options and set the alignment to centered (these options are discussed in detail
below). When the OK button is pressed the new object appears. (Notice that unlike the auto-wrap text object,
the Text Display SuperObject shows the result of the formula in both Graphics Mode and Data Mode, not just
Data Mode.)

After it has been created you can modify the location, size, font, style and color of a Text Display SuperObject
just like any other object. To change any of the object attributes (formula, border, alignment etc.) select the
Pointer tool and double click on the object. The configuration dialog will appear again. Make your changes
and press the OK button.

Text Display Options

The Text Display SuperObject configuration dialog is divided into several sections.

Chapter 15:Displaying and Editing Text Page 661
Formula: This section of the dialog specifies the formula for displaying text in this object. If you want to dis-
play fixed text, remember that you need to surround the text with quotes.

This object will always display the word Geography.

To display a field or variable, type in the name of the field or variable. You can use the Field menu to type in
the name of a field for you (that way you don’t have to worry about misspellings.

Here’s the formula to display the Company field.

Page 662 Panorama Handbook
And here is the finished object.

Panorama has hundreds of different functions that you can use to assemble your formula. See “Using Formu-
las to Display Text” on page 671 for some useful tips on building formulas for displaying text on a form.
You’ll find a complete description of formulas in “Formulas” on page 1185.

Evaluate Formula Twice: If this advanced option is enabled, Panorama will calculate the formula, then treat
that result as a new formula and calculate it again to get the final result. The purpose of this feature is to allow
you to store the "real" formula separately in a global or permanent variable (see “Variables” on page 1221 and
“Variables” on page 1369 for more information about setting up and using variables).

Don't Wrap Text: If text is too long to fit on a single line, it will usually "wrap" around to the next line. How-
ever, if the Don't Wrap Text checkbox is turned on, the text will not wrap. Instead, the text will be cut off.

For example, suppose you are constructing a mailing label. With the Don't Wrap Text option turned off, a
long company name will wrap to a second line, messing up the label.

long company name wraps to second line

Chapter 15:Displaying and Editing Text Page 663
To fix this problem, go into Graphics Mode (see “Form Modes: Data Access vs. Graphic Design” on page 543),
double click on the Text Display object, and turn on the Don’t Wrap Text option.

Now the long line will be cut off, and the remaining lines will stay in the correct position.

3D Text: If this option is turned on, a white shadow appears behind the text. This gives the text a "3D" effect if
it appears over a colored background, like this.

Border: If this option is turned on, a one pixel border appears around the object, like this.

extra text is truncated

Page 664 Panorama Handbook
Drop Shadow: If this option is turned on, a drop shadow appears "below" the object. This option is usually
used in combination with the Border option, like this.

Scroll Bars: This section controls what scroll bars (if any) will be available when displaying this text, and
whether space will be left for a grow box if only one scroll bar is used. Here is a Text Display SuperObject
with the Vertical Scroll Bar enabled.

Here is the same object with both Vertical and Horizontal scroll bars.

Text Display scroll bar

Text Display scroll bars

Chapter 15:Displaying and Editing Text Page 665
With the Vertical and Grow Box options turned on, Panorama leaves an empty spot for a grow box in the
lower right hand corner.

Elsewhere in this manual you can learn how to turn off the form’s scroll bars (see “Window Options” on
page 306) and how to add your own custom grow box (see “Elastic Forms” on page 940), to make a final win-
dow that looks like this.

empty spot for grow box

Page 666 Panorama Handbook
Align: This area contains nine radio buttons, allowing you to control the position of the text within the object.

You have the choice of left, center, or right and top, middle, or bottom. (You can also choose left, center, or
right from the Text menu.) This table illustrates the nine different alignment options.

Note: If you have enabled the vertical scroll bar, you must choose one of the top three alignment buttons. If
you have enabled the horizontal scroll bar, you must choose the top left alignment button.

Chapter 15:Displaying and Editing Text Page 667
Scale Text Size: Usually the Text Display SuperObject displays text in a fixed size, controlled by the Text
menu or the Graphic Control Strip (see “Text Size” on page 583). However, if the Scale Text Size option is
turned on, the text size will be proportional to the height of the Text Display SuperObject. The taller the
object, the bigger the text This option can be very useful when used with a form that adjusts as the window
size changes.

To illustrate this option, let’s first look at an ordinary object with this option turned off.

No matter how much we expand or shrink this object, the text size will always be 18 points.

Now let’s turn on the Scale Text Size option. At a small size, the object looks pretty similar to the way it did
before.

Check out what happens now when the object is expanded! The text size expands also, automatically and in
exact proportion to the new height of the object.

When the Scale Text Size option is enabled, Panorama ignores the font size setting. Instead the value in the
Lines box tells Panorama what ratio to use for scaling the text. If the value is 2, the text height will be one half
of the object height. If the value is 3.5, the text height will be 1/3.5 of the object height.

You may need to play with the value to get the effect you want, and the value may need to change depending
on the font you select. (Remember that when you use the Scale Text Size option, the text may be displayed in
any size, so you should select a font that will look good in any size—either a True Type font or a PostScript
font with ATM (Adobe Type Manager).)

Page 668 Panorama Handbook
As an example of a practical use for the Scale Text Size option, here is a calendar that uses this option so that
the text gets bigger as the window get bigger. Here’s the calendar viewed at minimum size.

When the window expands, all of the text in the calendar expands also.

In addition to Text Display SuperObjects this form also uses a SuperMatrix object (see “Super Matrix
Objects” on page 958) and Auto Grow SuperObject (see “Elastic Forms” on page 940).

Chapter 15:Displaying and Editing Text Page 669
Controlling Text Display Color and Style on the Fly

Display text normally appears in the color and style you have selected for the object (see “Color” on page 580
and “Text Style” on page 584). If you are using a Text Display SuperObject, however, it is possible for the for-
mula to change the color and style of the displayed text on the fly. For example you could set up the object so
that positive numbers are black and negative numbers are in red. Or, you could make high priority items dis-
play in bold italic.

To control the color and style, you must use the textdisplay(function (see “TEXTDISPLAY(” on
page 5849 for detailed information on this function). Warning: The textdisplay(function must be the very
first item in the formula! If the textdisplay(function is not the first item in the formula, the display will
be incorrect. (Advanced Note: The textdisplay(function actually generates a special header that is inter-
cepted and removed by the Text Display SuperObject. This header contains special control characters that the
object uses to determine what style and color to use.)

The textdisplay(function has two parameters: color and style The color must be the result of the
rgb(function (see “Colors” on page 1308 for detailed information on the use of color within Panorama for-
mulas). Some useful colors are listed in the table below.

Here is an example of the textdisplay(function in a formula.

This formula causes Panorama to display any price over $150,000 in red. Lower prices are in black.

Formula Color

rgb(0,0,0) Black

rgb(65535,65535,65535) White

rgb(65535,0,0) Red

rgb(0,65535,0) Green

rgb(0,0,65535) Blue

red black

Page 670 Panorama Handbook
The style parameter is a number that controls the style of the displayed text. For simple styles, simply use the
name of the style: "Plain" "Bold" "Italic" "Underline" "Outline" or "Shadow" . If you want to
combine multiple styles together, you must specify the style numerically. Add up the number for the styles
you want from the table listed below. For example, for bold italic text the style should be 3.

This example uses the textdisplay(function to display numbers greater than 130 in bold.

The formula is being used as part of a blood sugar log for a diabetes patient. Values over 130 are abnormally
high and possibly indicate the need for a change in treatment.

With a slight change this formula will display the abnormal values in bold italic.

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

1 (bold) + 2 (italic) = 3 (bold italic)

Chapter 15:Displaying and Editing Text Page 671
Here’s the final result.

Using Formulas to Display Text

Panorama uses formulas to manipulate numbers and text. Using an auto-wrap text object (see “Displaying
Formulas in Auto-Wrap Text” on page 652), a Text Display SuperObject (see “Text Display SuperObjects™”
on page 658) or a Text Editor SuperObject (see “Text Editor SuperObject” on page 689) you can display the
result of a formula on a form (and, since forms are used to produce reports, on a printed report).

There are an infinite number of ways to combine fields, variables and functions into useful formulas. In the
following sections we will explore some of the more common types of formulas used to display information
in forms.

Combining Multiple Text Items Into One

Many times you’ll need to combine several different fields or variables together, usually with captions and
punctuation (carriage returns, commas, spaces etc.) In a formula two text items can be combined with the +
operator.

Page 672 Panorama Handbook
This formula probably isn’t what you had in mind, because the result (seen below in Data Mode) doesn’t
have a space between the first and last name.

Fixed text items (like captions, spaces and other punctuation) must be enclosed in quotes. Panorama allows
several different kinds of quotes, as shown in this table.

Curly braces cannot be used to quote text in an auto-wrap text object, because they are used to surround the
entire formula. Other than that you can use any one of these pairs of quote characters whenever you want.
See “Constants” on page 1218 for more information about quoting text.

Now that we know how to quote a fixed text item we can add a space between the first and last names.

Switch to Data Mode (see “Form Modes: Data Access vs. Graphic Design” on page 543) and voila! The cor-
rectly formatted name appears.

Type Open Close Example

Double Quote " " "January"

Single Quote ' ' ’Tuesday’

Curly Braces { } {San Francisco}

Smart Double Quote “ ” Gothic

Smart Single Quote ‘ ’ Bohemian

Chapter 15:Displaying and Editing Text Page 673
In a formula a carriage return is represented by the ¶ symbol. On the Macintosh you can enter this by typing
Option-7. On Windows systems press Alt-0182. We can use this symbol to help build a complete address
label.

The formula appears all on a single line, but switching to Data Mode shows the finished label on three lines.

Our example used an auto-wrap text object, but the exact same formula could be used with a Text Display
SuperObject. In Data Mode this object will look exactly like the previous example. (Of course, using a Text
Display SuperObject would give you more options for aligning and scaling the text, see “Text Display
Options” on page 660).

Page 674 Panorama Handbook
Note: The alert reader will have noticed that it is possible to create a label like this using data merge in an
auto-wrap text object, without using all of these quotes and ¶ and + symbols (see “Displaying Data in Auto-
Wrap Text” on page 645). The data merge is simpler, so why bother with a formula? In this case there is no
reason except to illustrate the ability to combine text items together. In the following sections, however, we
will expand on this example to show applications that can only be done with a formula.

Creating a Smart Formula

In the real world, data often doesn’t fit into neat little boxes. Some people will enter their middle initial, some
won’t. Some motels have off peak rates, some don’t. Some countries measure temperature in Fahrenheit,
some in Celsius. It takes a bit of work, but using the ?(and sandwich(functions you can set up formulas
that display data correctly under changing, sometimes opposite circumstances.

The ?(function allows a formula to make a yes/no, either/or decision. For example, consider the address
label created in the previous section. Suppose the first name is missing? Using the ?(function a formula can
be constructed that substitutes Mr. for the missing first name.

In data mode, anyone with a first name will simply display a standard label including the first and last
names.

the function will make a decision based on whether First is empty (equal to "") or not empty

if First is empty, then "Mr." will be substituted where the first name normally goes

if First is not empty, then it will be included here

Chapter 15:Displaying and Editing Text Page 675
But if the first name is missing, Mr. will be substituted.

There are many ways you can use the ?(function. Here is a slight re-arrangement of the previous example.

Here’s what this formula produces if the first name is missing.

The ?(function is a simple but very powerful tool. See “The ? Function” on page 1287 for more detailed
information about this function.

Eliminating Unnecessary Punctuation and Blank Areas With the Sandwich Function

Yes, Panorama actually has a function named sandwich! If an item of data is missing, you’ll usually want to
eliminate any punctuation that is associated with that item. For example, if the middle name is missing, you
won’t want to include the extra space. If the city is missing from an address, you’ll want to leave off the
comma afterwards, instead of leaving a comma hanging in the air like this.

Page 676 Panorama Handbook
If the company name is missing from an address, you’ll want to leave off the following carriage return so
there won’t be a blank line. All of these tasks can be performed with the ?(function, but there’s also an easier
way: the sandwich(function.

The sandwich(function has three parameters: prefix, root and suffix. The root is the main item of text you
want to display. The sandwich(function will add the prefix and suffix to the beginning and end of the root,
kind of like slapping bread around a slice of salami. However, if the root is empty, the sandwich(function
won’t “slap on the bread.”

The results of this function depend on whether or not the City field contains any text. If it does, Panorama
adds the prefix (which in this case is empty) and the suffix.

If the City field is empty, Panorama leaves out the prefix and the suffix also. Here’s our empty record again,
but this time, no comma hanging in the middle of the air!

You’ll find that the sandwich(function is very delicious any time you need to conditionally include spacing
or punctuation around a field that might be blank. (Sorry, couldn’t resist.)

root (the “meat”)

suffixprefix

root (the “meat”)
suffixprefix (none)

Chapter 15:Displaying and Editing Text Page 677
Combining Numbers with Text

If a formula contains nothing but a single numeric value, Panorama will automatically convert the value to
text for you, like this.

Panorama will decide for itself what format to use for the number.

If you don’t like the format that Panorama chooses you can use the pattern(function to specify the exact
format you want to use.

The pattern(function gives you total control over the format of the final number. See “Converting Between
Numbers and Strings” on page 1249 for a complete description of this function.

Page 678 Panorama Handbook
If your formula results in more than a single number (for example two numbers or text and a number) you
must convert the numbers to text before they can be used in the formula. This must be done with the str(or
pattern(functions as shown in this example.

Here’s the finished result in Data Mode.

The pattern(function gives you total control over the format of the number. Use the str(function if you
are content to let Panorama decide what format to use.

In this case Panorama chose a simple integer format.

By the way, in case you haven’t guessed, the info("records") function calculates the total number of
records in the database. See “INFO("RECORDS")” on page 5407 for the complete details on this function. See
“Converting Between Numbers and Strings” on page 1249 to learn more about the str(function.

Chapter 15:Displaying and Editing Text Page 679
Displaying Dates

To display a date in a field or variable you must convert that date to text with the datepattern(function
(see “Converting Between Dates and Text” on page 1267 for all the gory details). Here’s a simple example
that prints the current date and time on the top of each page of a report.

When this report is printed the date and time will appear at the top of the page, like this.

use datepattern(function to convert date to text
use today() function to calculate current day

this pattern specifies the date format

use timepattern(function to convert time to text

use now() function to calculate current time

this pattern specifies the time format

Page 680 Panorama Handbook
This example was created with an auto-wrap text object and two embedded formulas. You can create the
same effect with a Text Display SuperObject, but in that case you must use a single formula like this.

"Printed on "+datepattern(today(),"Month ddnth, yyyy")+
" at "+timepattern(now(),"hh:mm am/pm")

The end result is the same either way. (However, with the Text Display SuperObject you would have the
option to center the text vertically or to scale the text automatically. See “Text Display Options” on page 660.)

Merging Images Into Text

Panorama allows an image from the Flash Art Gallery (either stored in the database file itself or on disk) to
be merged into the middle of an auto-wrap text object or Text Display SuperObject (see “Flash Art™” on
page 806 for more information about this gallery). The image cannot be merged into the middle of a line, but
simply replaces one line of text. The line will expand to the full height of the image. For example, this feature
could be used to insert a logo or a signature in a letter. To illustrate this feature we’ll assume you have an
image in your Flash Art Gallery named My Signature.

To insert an image into an auto-wrap text object you must use a special formula. The formula looks like this
(Of course, you should insert the actual name of your image instead of My Signature).

{chr(1)+"My Signature"+¶}

Chapter 15:Displaying and Editing Text Page 681
Here is a complete letter with the special formula for inserting the image at the bottom. The formula must be
on a separate line all by itself, with nothing else on the line.

Switch to Data Access Mode to see the finished product.

formula to insert image

Page 682 Panorama Handbook
Panorama can be a little bit picky about displaying an image in an auto-wrap text object. Remember, the
image cannot be mixed in the middle of a line of text, but must be on a line all by itself. In addition, this fea-
ture only works if the auto-wrap text object is filled with NONE (see “Fill Pattern” on page 575). If the text
object is filled with white or any other color, the image will not appear. Since NONE is the default for new
text objects you probably won’t have a problem, but if you do have difficulties getting the image to appear
this is the first thing to check.

One final tip — this feature works with either an auto-wrap text objects or a Text Display SuperObject. (How-
ever, it does not work with Text Editor or Word Processor SuperObjects.)

Editing Text

Most data entry and editing is done with the keyboard. The rest of this chapter shows how to set up a form
objects for editing text.

Types of Data Editing Objects

In a form data entry is done through objects (just like everything else in a form!). Each object allows a specific
item of data to be edited (for example a person’s first name or a phone number). A collection of data editing
objects is assembled to create a complete data entry form.

fill pattern must be NONE (N)

each object edits a single data item

Chapter 15:Displaying and Editing Text Page 683
Panorama has two primary types of objects for editing text: data cell objects (shown above) and Text Editor
SuperObjects. You can mix these two types on a single form, but usually you’ll want to choose one type per
form and stick with it.

Data cell objects are the “classic” way to edit data in a Panorama form. In early versions of Panorama (before
version 3) this was the only kind of text editing object available. Data cell objects are designed to mimic the
way Panorama works in the data sheet. In Data Mode, clicking once on a data cell object selects the field, but
does not open the field for editing.

Clicking twice on the object opens the pop-up data editing Input Box you are familiar with from the data
sheet (see “The Input Box” on page 376).

Just as in the data sheet, the data cell object’s Input Box can be expanded by dragging on the lower right hand
corner (see “Expanding the Input Box” on page 377).

To learn how to add data cell objects to your form see “Working with Data Cell Objects” on page 685.

click once to select field

double click to edit field

drag corner to resize Input Box

Page 684 Panorama Handbook
As an alternative to data cells, a form may be designed with Text Editor SuperObjects. Text Editor SuperOb-
jects allow you to edit text right in the form window—no double click is required. You can simply click or
drag on the text to begin editing. Press Enter when you are finished. The illustration below shows the effect
of double clicking on the word Harmony. As you can see, instead of opening an Input Box this selects the
word for editing.

Since the Text Editor SuperObject doesn’t use an Input Box, you cannot expand the size of the editing area
“on-the-fly” the same way you can with data cells. The editing area must be defined in advance. On the other
hand, the Text Editor SuperObject doesn’t require the extra double click, and works more like other standard
applications you may be used to. See “Creating and Modifying Text Editor SuperObjects” on page 689 to
learn how to create a form with Text Editor SuperObjects.

The table below summarizes the differences between data cell objects and Text Editor SuperObjects. For
many applications, either type will work all depending on your personal preferences. Some advanced fea-
tures (for example editing variables, see next section) do require the use of Text Editor SuperObjects.

Feature Data Cell Text Editor SuperObject

Operation Edit in pop-up Input Box
(similar to data sheet) Edit directly in form window

Expandable Editing Area? Yes No

Double Click before Editing? Yes No

Edit Fields? Yes Yes

Edit Variables? No Yes

Optional Borders? No Yes

Custom Object Pattern? Yes No

Chapter 15:Displaying and Editing Text Page 685
Working with Data Cell Objects

Data cells are created with the Data Cell tool. To create a data cell, start by selecting this tool.

Next drag the mouse across the surface of the form. It’s just like creating a rectangle.

When you release the mouse, Panorama automatically assigns the first field from the database to the new
data cell.

Page 686 Panorama Handbook
As you create additional cells, each cell is automatically assigned to the next field (using the same order that
the fields appear in the data sheet). In this case the second field in the database is named Last.

You can continue to add cells to the form. The next field in this database is Credit Card.

To change the field assigned to a data cell, move the mouse over the cell. The mouse arrow will change to a
mini-menu icon.

Chapter 15:Displaying and Editing Text Page 687
When you see the mini-menu icon, press the mouse to activate a pop-up menu showing all the fields in the
database.

Select the field you want assigned to this data cell and release the mouse.

You can use this technique to change the field assigned to any data cell at any time. Remember, however, that
you must have the Data Cell tool selected. You cannot change the field assignment when any other tool
(including the Pointer) is selected.

At this point we can continue making additional data cells. The next data cell will be assigned the next field
after Title (in this case Company).

Page 688 Panorama Handbook
When you create data cells by hand like this, the result is likely to be a bit messy. After creating some more
cells, we cleaned up this form using a combination of the Dimension dialog (see “Setting Exact Dimensions of
Multiple Objects” on page 602) the Align dialog (see “Aligning Objects” on page 605), the Spacing dialog
(see “Adjusting Spacing Between Multiple Objects” on page 608) and nudging with the arrow keys (see
“Nudging an Object (or Objects)” on page 565).

These data cells are ready to use. Simply click on the Switch To Data Access Mode tool and you are ready to
start typing.

If you need to revise the data cells (or any other form object) later, click on the Switch to Graphic Design
Mode tool.

Data Cell Custom Output Patterns

Numeric and date data cells are normally formatted using the master output pattern specified in the design
sheet (see “Field Properties” on page 330). If you wish, you can override the design sheet output pattern for
an individual data cell in the form. To do this, use the pointer tool to select the cell and choose Output Pattern
from the Text menu. (Alternately, you can simply double click on the data cell.) Type the new output pattern
into the dialog.

Chapter 15:Displaying and Editing Text Page 689
The data cell will now display the date using the output pattern you typed in.

To review output patterns, see “Numeric Output Patterns” on page 356 and see “Date Output Patterns” on
page 361.

Text Editor SuperObject

The Text Editor SuperObject is used to edit text in a field or variable. Unlike a data cell, the Text Editor Super-
Object does not use a temporary pop-up window for editing. Instead, the user simply clicks and edits the text
right in the form window, just as they do with most other applications (see “Types of Data Editing Objects”
on page 682). (Of course the down side of this is that the area available for editing is fixed and can't be
expanded except by changing the form layout in graphic mode, or with an Auto Grow SuperObject). Another
difference from data cells is that Text Editor SuperObjects can edit variables as well as fields. They can auto-
matically draw borders and include one or two scroll bars (or none). (If you wish, you can mix Text Editor
SuperObjects with standard data cells objects on the same form).

Creating and Modifying Text Editor SuperObjects

The Text Editor SuperObject tool is not in the default tool palette, so you’ll need to use the Tool Palette dia-
log to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Page 690 Panorama Handbook
Now that the tool is added to the palette you can select it.

Once the tool is selected, drag the mouse across the form in the location where you want to create the Text
Editor SuperObject.

When you release the mouse, the Text Editor SuperObject configuration dialog will appear.

Chapter 15:Displaying and Editing Text Page 691
At a minimum you must enter a field name, variable or formula into the dialog. You can use the pop-up
menu to select a field.

For this example we’ve also turned on the Borders options (all of the available options are discussed in detail
in the next section).

Page 692 Panorama Handbook
When the OK button is pressed the new object appears. (Notice that unlike the data cell object, the Text Editor
SuperObject shows the actual data in both Graphics Mode and Data Access Mode, not just Data Access
Mode.)

After it has been created you can modify the location, size, font, style and color of a Text Editor SuperObject
just like any other object. To change any of the object attributes (scroll bars, border, formatting etc.) select the
Pointer tool and double click on the object. The configuration dialog will appear again. Make your changes
and press the OK button.

Text Editor Options

The SuperObject Text Editor Properties dialog is divided into several sections.

Chapter 15:Displaying and Editing Text Page 693
Data: Each Text Editor SuperObject edits a single data item, which may be a database field, a variable, or a
formula. To edit a field, type in the name of the field or select the field name from the pop-up menu.

A variable is a place to store information independently of any database. The primary use for variables is as
temporary storage for procedures (see “Variables” on page 1221 and “Variables” on page 1369). A variable
can also be created and edited by a Text Editor SuperObject. Simply click on the Variable option and type in
the name of the variable.

If you specify a variable that has not already been created with a procedure, Panorama will automatically cre-
ate a global or fileglobal variable with this name the first time the form is displayed. (The default is a global
variable unles the FileGlobal Variables option is set in the Form Preferences dialog, see “Creating Variables
with a SuperObject” on page 1373.) Once it has been created this variable can be used in formulas and proce-
dures, just like any other variable. For example, suppose that your database has fields named AreaCode and
PhoneNumber. The short procedure listed below will check the area code against the local area code entered
by the user in the Text Editor SuperObject. If it is a local call, only the local number is dialed. If the number is
out of the local area, Panorama will dial 1 plus the area code plus the phone number. (See “Writing a Proce-
dure from Scratch” on page 1357 to learn how to create a procedure. See “The ? Function” on page 1287 and
“DIAL” on page 5164 for more information about the specific statements and functions used in this proce-
dure.)

dial ?(AreaCode=LocalAreaCode,PhoneNumber,"1"+AreaCode+PhoneNumber)

For an application like this you would probably want to make LocalAreaCode a permanent variable so that
you don’t have to re-enter it every time you open the database. See “Creating a Variable” on page 1369 to
learn how to create a permanent variable.

Page 694 Panorama Handbook
The final data option is Formula. If you select this item the Text Editor SuperObject is not editing a real data
item, but a temporary data item created “on-the-fly” using a formula. To illustrate this capability we’ll create
an object that edits two database fields (first and last names) in a single Text Editor SuperObject. Select the
Formula option and type in the formula — in this case a formula that combines the first and last names.

This illustration shows the finished object (in the front window). As you can see, the object combines the two
separate fields into just one object.

formula

procedure for splitting the result into two fields (see text)

this option must be set

First and Last name combined in one object

data sheet shows that First and Last are separate fields

Chapter 15:Displaying and Editing Text Page 695
There’s only one problem — if you edit the name, how does Panorama know where to put the edited text?
You can’t store text in a formula! Since it doesn’t know where else to put it, Panorama places the edited text in
a variable called TextEditingResult. If you want to store this text somewhere else you’ll need to create a pro-
cedure that takes this variable and stores the data somewhere (see “Writing a Procedure from Scratch” on
page 1357 to learn how to create a procedure). The procedure can have any name you like. For this example
we have created a procedure called .SplitTheName .

This procedure uses the array(function (see “Text Arrays” on page 1257) to take the edited text and split it
back into separate first and last names. Panorama has several statements and functions that are very handy
for splitting data into multiple components, see “Natural Data Display” on page 1604, “Taking Strings Apart
(Text Funnels)” on page 1236 and “Text Arrays” on page 1257.

Once the procedure has been created you must select it in the Text Editor SuperObject configuration dialog
(see below). You also need to make sure that the Finished option is turned on. The Finished option tells Pan-
orama to trigger the procedure when editing is finished (when the Enter key is pressed or when you click on
another object).

Once the procedure is set up and configured in the dialog you can use the Text Editor SuperObject to edit the
name. In this case the last name is being changed from Kovacs to Dempsey.

select procedure using pop-up menu

this option triggers the procedure when editing is finished

Page 696 Panorama Handbook
When the Enter key is pressed the First and Last name fields in the database are updated (in this case only the
last name actually changed).

As you can see, it takes a bit of work to set up the Formula option, but it does give you the power to set up a
user interface that is independent from the data sheet structure.

Scroll Bars: This section controls what scroll bars (if any) will be available when editing this text.

Here is a Text Display SuperObject with the Vertical Scroll Bar enabled.

updated last name

Chapter 15:Displaying and Editing Text Page 697
Here is the same object with both Vertical and Horizontal scroll bars.

With the Vertical and Grow Box options turned on, Panorama leaves an empty spot for a grow box in the
lower right hand corner.

empty spot for grow box

Page 698 Panorama Handbook
Elsewhere in this manual you can learn how to turn off the form’s scroll bars (see “Window Options” on
page 306) and how to add your own custom grow box (see “Elastic Forms” on page 940), to make a final win-
dow that looks like this.

Padding: When this option is checked extra padding appears around the top, left and right sides of the text.
Here is an example of an object without padding.

Here is the same object with padding.

Chapter 15:Displaying and Editing Text Page 699
Wrap at End of Line: If text being edited is too long to fit on a single line, it will usually "wrap" around to the
next line.

However, if the Wrap at End of Line checkbox is turned off, the text will not wrap. Instead, the text will con-
tinue off the right edge.

Page 700 Panorama Handbook
If the horizontal scroll bar is enabled, you can scroll over to see the rest of the text.

Non-White Background: We recommend that you use this option if the Text Editor SuperObject is placed
over a color (non-white) background. If this option is turned on, Panorama will temporarily display a white
background behind the text while it is being edited.

background of object turns white during editing

Chapter 15:Displaying and Editing Text Page 701
If you don't use this option, you'll find that portions of the background will turn white as you edit anyway.
the result is ugly and possibly confusing.

I think you can see why we recommend using the Non-White Background option!

Terminate When: You can always press the Enter key when you have finished editing a data item. Depend-
ing on the options set in this dialog other keys may also cause editing of this cell to finish, including the
Return, Tab, Up Arrow, or Down Arrow keys. (Note: If you want to be able to tab from this item to the next,
be sure to select the Tab key as one of the keys that causes termination. On the other hand, if you want to be
able to use the Tab key inside this field or variable, Tab should not be checked.)

Borders: The options in this section control the borders that are displayed around the text (if any). You may
separately control the top, bottom, left, and right borders or click on the word Borders to turn all four on or
off at once.

click on the word Borders to turn all 4 borders on or off

Page 702 Panorama Handbook
The Shadow option makes a drop shadow appear.

The 3D border effect works best with a light gray background.

(Note: You can control the background color for the entire form with the Form Preferences command in the
Setup menu. See “Form Background Colors” on page 633.)

Tab = 4 Spaces: If this option is enabled, pressing the Tab key will be the same as pressing the Space Bar four
times.

If this option is selected, the Tab checkbox (part of the Terminate line) should be turned off.

press TAB to indent
4 spaces

Chapter 15:Displaying and Editing Text Page 703
Insertion Point: This option gives you the choice of what text should be selected when you tab into this Text
Editor SuperObject. (Of course when you click into a Text Editor SuperObject, the insertion point goes where
you click.) The three options are: At End, At Start, and ALL (which selects all the text). In the example above,
the Address object has the Insertion Point option set to ALL.

When you Tab from the Company into the Address field, all of the text is selected.

If the At End option had been selected, the insertion point would be at the end of the address.

If the At Start option had been selected, the insertion point would be at the start of the address.

Page 704 Panorama Handbook
Update Variable Every Key: This option only works when editing variables, not fields. If this option is
enabled, the Text Editor SuperObject will update the value of the variable immediately after every key is
pressed. Otherwise the variable will not be updated until editing is finished. This mode is especially useful
when the Text Editor SuperObject is set up to trigger a procedure after every key or most keys (see next sec-
tion).

Procedure: This section specifies what procedure is associated with this Text Editor SuperObject (if any) and
when that procedure will be triggered. To select or change the procedure associated with this object, use the
pop-up menu.

If you later decided to disable the procedure, click on the checkbox (or simply select another procedure).

There are four choices for triggering a procedure: Every Key, Most Keys, Finished and Focus. Finished sim-
ply means that the procedure will be triggered when the user signals that he or she has finished editing the
text by pressing Enter, Return, Tab, etc. (Note: If the Text Editor SuperObject is associated with a field, a pro-
cedure may also be triggered even if no procedure is assigned in the configuration dialog. If the field has a
procedure assigned to it in the design sheet, it will be triggered (see “Data Entry Triggers” on page 1488). If
there is no Finish procedure selected and no design sheet procedure, the .ModifyRecord procedure (if any)
will be triggered (see “.ModifyRecord” on page 1485).)

If the Every Key option is checked, the procedure will be triggered every time the user presses a key. For
example, you might use this option if you wanted to count the user's key strokes.

click here to disable procedure

Chapter 15:Displaying and Editing Text Page 705
If the Most Keys option is checked, the procedure will be triggered after every key when the user types
slowly, but will not be triggered for each key when the user types several characters quickly in a row. The
procedure will not be triggered until the user pauses in his or her typing. This option often works as well as
the Every Key option but usually appears much smoother and faster to the user because the procedure is not
being triggered as frequently while the user types. Possible applications for the Most Keys options include
counting the characters or words being edited, performing a calculation (metric conversion, for example),
checking spelling, etc.

In this illustration the Text Editor SuperObject containing the formula has been set up with the Most Keys
option.

When a key is pressed (most times) a procedure is triggered. This procedure calculates and displays the result
of the formula. The new result appears immediately, as soon as the key is pressed. (If the Finished option was
used instead of Most Keys, the result would not appear until you pressed the Enter key.)

If you want to duplicate this example yourself, here is the .Calculate procedure (see “Procedures” on
page 1345). This procedure relies on the execute statement to perform the calculation. See “Building Sub-
routines On The Fly (The Execute Statement)” on page 1397 to learn about this statement.

The last line of this procedure refers to the Text Editor SuperObject by the name Formula .

superobject "Formula","Open"

As soon as a key is pressed…

the new result appears

Page 706 Panorama Handbook
For this to work the SuperObject must be given this name with the Object Name dialog. See “Object Type/
Object Name” on page 585 to learn how to give an object a name.

If the Focus option is checked, the procedure will be triggered every time editing starts to happen in this
object. In other words, when you click on the field or tab into the field, the procedure will be triggered. It’s
called Focus because this option is triggered whenever this object becomes the focus of attention.

One use for a focus procedure is to implement Undo for editing. Here is a procedure that saves the data in the
field as the editing begins.

if info("trigger") beginswith "Focus."
undoCell=«» /* «» is the current field */
undoField=info("fieldname")

endif

The Undo procedure would look like this.

if undoField<>""
set undoField,undoCell

endif

For completeness you may wish to add the following line to your .CurrentRecord procedure (see “.Curren-
tRecord” on page 1483). This line ensures that you cannot undo after moving to a different record.

 undoField=""

Another use for the Focus procedure is to memorize the selection point when editing was terminated and re-
set the selection when editing resumes again. This example assumes that the database has two numeric fields
named textStart and textEnd.

if info("trigger") contains "focus"
activesuperobject "setselection",textStart,textEnd

else
activesuperobject "getselection",textStart,textEnd

endif

The Focus option must be used with the ..Handler option turned on. When the ..Handler option is turned on,
all procedures triggered by the Text Editor SuperObject are treated as event handler procedures (see “Event
Handler Procedures” on page 1493). The benefit of using event handler procedures is that these procedures
are guaranteed to trigger and work properly under all conditions, no matter how the user started or stopped
editing and whether or not another procedure is currently running. The only downside is that event handler
procedures cannot open or close windows. To retain compatibility with databases created with earlier ver-
sions of Panorama you are allowed to turn the ..Handler option off. To learn more about this type of proce-
dure see “Event Handler Procedures” on page 1493.

Chapter 15:Displaying and Editing Text Page 707
AutoCaps: This option only appears if the Text Editor is associated with a variable or formula.

Use the pop-up menu to control automatic capitalization of the text as it is entered. You can force the text to
all upper case (ABC), word caps (Abc), or capitalization of the first letter of each sentence. If the Text Editor
SuperObject is associated with a field, the Text Editor SuperObject will automatically use the Auto Caps set-
ting for that field (set in the design sheet or the Field Preferences dialog, see “Field Properties” on page 330.)

Page 708 Panorama Handbook
Use Field Attributes: This section only appears if the Text Editor SuperObject is associated with a variable or
formula. You can use this if you would like the Text Editor SuperObject to use the attributes assigned to one
of the fields in your database.

When you select a field with the pop-up menu, the Text Editor SuperObject will use that field's settings for
Input Pattern, Range, Clairvoyance, Space Bar Tab, and Duplicates. (Of course, if the Text Editor is associated
with a field, the text editor will always use the attributes of that field (set in the design sheet or the Field Pref-
erences dialog.)

Converting Data Cells into a Text Editor SuperObjects

To convert one or more data cells into Text Editor SuperObjects, start by selecting the cells. Then double click
on one of the selected cells.

Chapter 15:Displaying and Editing Text Page 709
When you double click the dialog shown below will appear.

Check the Convert to SuperObject box and press OK to convert the selected data cells into Text Editor Super-
Objects.

If you want to change the attributes of any of these new SuperObjects you must double click each object and
set the attributes individually.

Automatically Creating Rows or Columns of Data Cells or Text Editor SuperObjects

Earlier in this chapter you learned how to create data cell objects and Text Editor SuperObjects one at a time.
The Auto Cell Layout command(in the Arrange menu) can automatically generate an entire row or column
of these objects. To use this command, first pick the font and size you want to use from the Graphic Control
Strip or the Text sub-menus (see “Font” on page 581 and “Text Size” on page 583). Once the font is set, make
sure the Pointer tool is selected and click on the spot where you want to place the new objects.

click once at the location
where you want to place
the new objects

Page 710 Panorama Handbook
Then open the Auto Cell Layout dialog using the Arrange menu. This dialog allows you to choose the fields
and arrangement you want.

The box on the left of the dialog lists all the fields in the database. Select each field you want to place in the
form. There are several ways to select fields. You can select individual fields by clicking on them. You can
select several fields at once by dragging the mouse across them. You can select all the fields by pressing the
Select All Fields button. If you change your mind, you can de-select a field by clicking on it again.

Once you have selected the fields you want to create, press the OK button to place the fields into the form.

The new objects appear just below and to the right of the spot you originally clicked on.

Automatic Layout Options

The right hand side of the Auto Cell Layout dialog contains options for varying the arrangement of objects
that are created.

Chapter 15:Displaying and Editing Text Page 711
The Across option controls the direction of the generated objects. The normal direction is down.

If the Across option is enabled the objects are generated horizontally, in a row.

The Same Width option controls the width of the generated objects. If this option is off, the width of each
object will be the same as the width of the corresponding column in the data sheet (see “Changing the Width
of a Field” on page 331). If the Same Width option is enabled, all of the objects will have the same width. (Of
course you can always change the width of any object after it has been generated — see “Changing the Size of
a Single Object” on page 568.) This illustration shows what the end result of this option looks like both in nor-
mal mode and with the Across option enabled.

Page 712 Panorama Handbook
The Lines High option specifies the height of each object. Normally each object is one line high in the current
font, but you can generate objects that are two lines high, three lines high, or more. Of course you can also
change the height of any object after it has been generated (see “Changing the Size of a Single Object” on
page 568).

The Pixels Between option specifies the spacing between adjacent data cells. (A pixel is one dot on the screen
at 100% magnification, or 1⁄72 inch.) When you create a column of data cells, this option specifies the vertical
spacing between the cells.

each object is three lines high

each object is two lines high
each object is one line high

5 pixels between2 pixels between1 pixel betweenZero pixels between

Chapter 15:Displaying and Editing Text Page 713
When you create a row of data cells (Across), this option specifies the horizontal spacing between the cells.

The Field Names option tells Panorama to create a field name next to each generated object. If you create a
column of objects, the field names will be placed to the left.

If you create a row of data cells (Across), the field names will be placed above the objects, like this.

Zero pixels between
1 pixel between
2 pixels between

5 pixels between

Page 714 Panorama Handbook
Use the Boxes option if you want Panorama to draw a box around each generated object. This usually makes
sense only for data cells, since for Text Editor SuperObjects you can generate borders as part of the object
itself. This illustration shows what the boxes look like when used with data cells.

It’s a bit easier to see what the boxes look like in Data Access Mode (see “Form Modes: Data Access vs.
Graphic Design” on page 543).

If Field Names option is checked Panorama will draw a box around the field names as well.

Chapter 15:Displaying and Editing Text Page 715
To create Text Editor SuperObjects instead of data cell, check the Create SuperObjects option. Once this
option is turned on, you can select the options for the Text Editor SuperObjects you want to create — borders,
formatting, etc. These options are the same as the options in the Text Editor SuperObject configuration dialog
(see “Text Editor Options” on page 692).

Pressing OK generates a column of Text Editor SuperObjects (instead of data cells).

Clicking on the word Borders will turn all four borders on or off. If you use the Text Editor SuperObject bor-
ders your probably will not want to turn on the Boxes option, which adds an additional box around each
object (see above).

Page 716 Panorama Handbook
Line Items in a Form

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 342). The
Auto Cell Layout command makes it easy to create a table of line items within a form. With the Pointer tool
selected, click on the upper left hand corner of the spot where you want the line items to appear. Next choose
the font and style you want to use. Now open the Auto Cell Layout dialog and press the Line Items button.

Pressing the Line Items button selects all the line item fields, and also checks the Across and Field Names
options. You may also want to check the Boxes option and/or the Create Superobjects option (see “Automatic
Layout Options” on page 710). When you press the OK button, Panorama will automatically create a table of
line items formatted into rows and columns.

To learn how to adjust the width of an entire column in this table see “Cluster Resize” on page 593. To learn
how to change the font size of this table (or the spacing) see “Adjusting Spacing Between Multiple Objects”
on page 608.

Chapter 15:Displaying and Editing Text Page 717
Tab Order in Forms

Panorama has three tab order options for forms—data sheet order, back to front order, and natural order.
Use the Form Preferences command (Setup menu) to specify the tab order option you want to use. (The form
must be in graphic design mode.)

Data sheet order is exactly that—the Tab key moves from cell to cell in the same order as it would in the data
sheet. However, data sheet order will not work if your form contains one or more variables in addition to
fields to be edited (See “Text Editor Options” on page 692).

Natural order causes the Tab key to move from left to right, then from top to bottom.

Page 718 Panorama Handbook
This usually works well (and is the default option), but in some cases isn’t really what you want. This is espe-
cially true in forms with side by side columns of data.

To fix this you can alter the natural order by grouping data cells together–the Tab key will move through all
the cells in the group of objects (in natural order) before it moves to the next cell. In this case the data cells
need to be brought together into two groups using the Group command (see “Grouping Objects Together”
on page 588.)

Now that the cells have been grouped together the tab order will tab through all of the cells in the left hand
column before moving to the right hand column.

Back to Front order gives you the most control, but also takes the most work to set up. When this option is
enabled the tab order depends on the back to front layering of the data cell objects in the graphic design
mode. Use Send to Back to bring a data cell to the start of the tab order, and Bring to Front to send it to the
end of the tab order. See “Changing the Stacking Order” on page 620 for more information on these com-
mands.

group 1 group 2

Chapter 15:Displaying and Editing Text Page 719
For example, suppose your form contained three fields A, B, and C and you wanted to tab from field to field
in the order B › A › C. To set up this order click on field B and use Bring to Front (the form must be in graphic
design mode). Then click on field A and use Bring to Front. Finally click on field C and use Bring to Front.

Tab Order for Variables

The Form Preferences dialog (Setup menu) allows you to choose from three options — Natural, Data Sheet
Order, and Back to Front (see previous section). All three options will work fine if you editing only fields.
However, if a form allows the user to edit variables, the Data Sheet Order option will not work (because the
data sheet does not contain variables, so they have no order!) Any form that contains Text Editor SuperOb-
jects for variables should use Natural or Back to Front tab order.

Field Setup in Graphics Mode

As you are building a form, you may realize that the database needs another field for the form. You can use
the Setup menu to add new fields to the database (or modify existing field properties) without having to
leave graphic design mode.

To add a new field to the database from within graphic design mode, use the Add Field command in the
Setup menu. Once the field is added to the database itself, you can create new data cell or Text Editor Super-
Objects using the new field.

To modify an existing field, first use the Pointer tool to select a data cell assigned to the field you want to
modify (only data cells work — you cannot click on a Text Editor SuperObject). Then use the Field Properties
command (Setup menu) to modify the field. For more information on setting up fields see “Field Properties”
on page 330.

Page 720 Panorama Handbook
Word Processor SuperObject

The Word Processing SuperObject™ allows you to include a complete word processor as part of a form. The
word processor allows you to mix different fonts, sizes, styles (16 different styles) and colors in a single para-
graph. Left, Right, and First Line margins may be set up separately for each paragraph, and you may set up
left justified, right justified, center justified and decimal tabs with optional tab leaders. The merge option
allows you to merge information from the database (or complete formulas) into the word processing text. The
word processor SuperObject also includes most of the options available with the Text Editor SuperObject,
including borders and a vertical scroll bar.

Creating and Working With Word Processor SuperObjects

The Word Processor SuperObject tool is not in the default tool palette, so you’ll need to use the Tool Palette
dialog to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Chapter 15:Displaying and Editing Text Page 721
Once the tool is selected, drag the mouse across the form in the location where you want to create the Word
Processing SuperObject.

When you release the mouse, the Word Processor SuperObject configuration dialog will appear.

Page 722 Panorama Handbook
At a minimum you must enter a field name, variable or formula into the dialog. You can use the pop-up
menu to select a field. In this database we’ve created a field, called Body, to hold the word processing infor-
mation.

For this example we’ve also turned on the Vertical Scroll Bar and Borders options (all of the available options
are discussed in detail later in this chapter).

Chapter 15:Displaying and Editing Text Page 723
When the OK button is pressed the new object appears. The top portion of the object contains a ruler that
allows you to set tabs, alignment, and line spacing.

After it has been created you can modify the location and size of a Word Processing SuperObject just like any
other object. To change any of the object attributes (scroll bars, border, formatting etc.) select the Pointer tool
and double click on the object. The configuration dialog will appear again. Make your changes and press the
OK button.

To actually use the word processor you need to switch to Data Access Mode (see “Form Modes: Data Access
vs. Graphic Design” on page 543). To learn more about how to configure the Word Processor for your specific
application see “Configuring the Word Processor” on page 744.

Page 724 Panorama Handbook
Using the Word Processor

Once the word processing object is set up you can switch the form to Data Access Mode (see “Form Modes:
Data Access vs. Graphic Design” on page 543) and start using the word processor. To start editing, simply
click in the word processor object and start typing.

Whenever the word processor is active, an extra menu appears in the menu bar: the Text menu. This menu
contains the options for formatting text and controlling the word processor.

Chapter 15:Displaying and Editing Text Page 725
At the top of the Text menu are five submenus: Font, Size, Styles, Fore Color, and Back Color. To change the
appearance of a section of text, start by selecting the text.

Next, choose the desired options from the Text menu.

The selected text will take on the new font, size, color or style (in this case bold).

The submenus also display the status of the selected text. If the text is all the same, a checkmark will appear
next to the font, size, or style.

the selected text is bold

Page 726 Panorama Handbook
If the text contains several different styles in different parts of the text a dash will appear next to each font,
size or style that is contained within the selection. For example, the selected text in the illustration below con-
tains both bold and italic text.

Pulling down the Text menu shows all of the different styles in the current selection. (The Font and Size sub-
menus will also show all of the options used in the selection.)

The Fore Color submenu changes the color of the text.

the selected text is partially bold

… and partially italic

Chapter 15:Displaying and Editing Text Page 727
For example, you can make the selected text red. You can choose any color in the 256 color palette.

The Background Color submenu works the same way, but changes the background color of the text.

The Font and Size menus work the same way as the corresponding menus for other text objects (see “Font”
on page 581 and “Text Size” on page 583). However, the Word Processor SuperObject allows multiple fonts
and sizes within a single object (as shown in the illustration above). In addition, the Font and Size are set
when in Data Access Mode, not Graphics Mode.

The Ruler

The ruler controls how paragraphs are formatted. The ruler allows you to set margins, tab stops, alignment,
and line spacing.

Since the ruler controls how paragraphs are formatted, the changes you make to the ruler are always applied
to entire paragraphs. If you click on a paragraph and make a change to the ruler, the change will affect the
entire paragraph. If you want to change the formatting of multiple paragraphs, select at least one character in
all of the paragraphs you want to change before adjusting the ruler.

background colorforeground color

line spacing
tab stopsalignment

left margin tab stops
right margin

Page 728 Panorama Handbook
The word processing ruler always uses the same measurement system used by the form containing the word
processor. If the form is set to inches, the word processing ruler will also work in inches. If the form is set to
centimeters, the word processing ruler will also work in centimeters. To change the measurement system,
switch into Graphics Mode (see “Form Modes: Data Access vs. Graphic Design” on page 543) and click on the
box in the upper left hand corner of the ruler (see “Rulers” on page 563), then switch back to Data Access
Mode.

To turn the ruler on or off, use the Ruler command in the Text menu (you must be in Data Access Mode and
editing the text within the object to use this command).

Here’s what the word processor looks like with the ruler turned off.

Chapter 15:Displaying and Editing Text Page 729
Margins (Indents)

Each paragraph has three margins: First Line, Left, and Right.

The First Line margin is the distance from the left side of the word processing object to the beginning of the
first line in the paragraph. Drag the upper margin triangle to adjust the first line margin. The text itself will
adjust dynamically as you drag.

left margin

first line margin
right margin

Page 730 Panorama Handbook
The Left margin is the distance from the left side of the word processing object to the beginning of the rest of
the lines in the paragraph. Drag the lower margin triangle to adjust the left margin.

When you drag the left margin, the first line margin also moves to maintain the same spacing between the
two margins as shown in the illustration above. It’s usually best to set the left margin first, then set the first
line margin.

The Right margin is the distance from the right side of the word processing object to the end of the each line
in the paragraph. Drag the triangle symbol to adjust the right margin.

first line margin also moves when you change the left margin

Chapter 15:Displaying and Editing Text Page 731
If the width of the word processing object changes (for example if the form adjusts when the window size is
changed or if the document is printed using a different form) the width of the paragraph may change. How-
ever, the margin from the right edge will not change.

In addition to setting the margins with the ruler you can also set them numerically using the Paragraph Set-
tings dialog. You can open this dialog from the Text menu or by double clicking anywhere in the ruler (except
on a button or tab stop).

Simply enter the numeric values for each indent and press OK to change the paragraph formatting.

right margin stays constanttext width adjusts in sync with object width

Page 732 Panorama Handbook
Tab Stops

The word processor supports four types of tabs: left, center, right, and decimal tabs. There are four buttons
in the ruler for selecting the type of tab you want to create.

If there are no tab stops at all Panorama automatically creates 3 tab stops per inch, as shown below. To create
a new tab stop, first select the type of tab stop by clicking on one of the four tab stop buttons.

To create a tab stop, click anywhere in the tab stop area (just below the ruler itself).

decimal tab stop

right justified tab stop
centered tab stop

left justified tab stop

tab stop area

click to select left justified tab stop

click to create tab stop

Chapter 15:Displaying and Editing Text Page 733
You can click additional times to create additional tab stops. Tab stops may be created in any order (not just
left to right).

To move a tab stop, simply drag it to a new position.

Page 734 Panorama Handbook
To delete a tab stop, drag it out of the tab area (either above or below).

The tab stop disappears and the columns shift into their new positions.

This illustration shows the use of a centered tab.

Chapter 15:Displaying and Editing Text Page 735
This illustration shows the use of a right justified tab.

And finally, a decimal tab stop, so named because the decimal points line up no matter how many digits are
to the left or the right.

For precise tab adjustments you can use the Tab Settings dialog. You can open this dialog three ways: 1) by
double clicking on a tab stop, 2) by holding down the Command key (Mac) or Control key (PC) and clicking
on a tab stop, or 3) using the Tab Settings command in the Text menu (in which case it will operate on the last
tab that you adjusted). This dialog allows you to set the precise position of the tab, the type of tab (this is the
only way you can change the type of an existing tab) and the tab leader.

Page 736 Panorama Handbook
The tab leader is a character that will automatically repeat to fill the space leading up to the tab. The tab
leader helps draw the eye across the page. Common tab leaders include periods (shown below), dashes, and
asterisks (but you may use any single character you want). Use the Tab Settings dialog to set the tab leader
character.

When you adjust a tab stop (either by dragging or with the Tab Settings dialog) don’t forget that only
selected text is affected by the change. Be sure to select the text you want to adjust before changing the tab.

The most common mistake is to click on the text instead of selecting it. In that case, only the line clicked on
will change. Be sure you have selected all of the text containing the tab stops you want to modify.

tab stops in unselected text are not affected changes in the ruler

Chapter 15:Displaying and Editing Text Page 737
Alignment

For each paragraph, the alignment can be left flush, centered, right flush, or full (left and right flush). The
four buttons on the left side of the ruler control the horizontal alignment of the text. For example to center
one or more lines fist select the lines, then click on the center button.

left and right justified

right justified
centered

left justified (ragged right margin)

Page 738 Panorama Handbook
Line Spacing

The spacing between each pair of lines is called the leading. (This is an old word going back to movable type
days, when an actual piece of lead was inserted between each pair of lines.) The word processor normally
sets the spacing for you automatically. However, you can adjust this spacing for unusual effects (double
spaced text, for example). To increase the spacing between lines, press the button on the left.

To decrease the spacing between lines, press the button on the right.

click to increase spacing between lines

click to decrease spacing between lines

Chapter 15:Displaying and Editing Text Page 739
You can also adjust the spacing with the Leading setting in the Paragraph Settings dialog.

This setting specifies the amount of extra spacing desired between each line. For example, to add 6 extra
points between each line, set the leading value to 6. (This value must be 0 or greater.)

Styles

The Panorama word processor supports twenty different styles of text. Most of these styles are self explana-
tory, but a few unusual styles require some additional explanation.

The Underline style can be modified with four different options: Double Underline, Word Underline, Dot-
ted Underline, and Overline.

Page 740 Panorama Handbook
You can combine these options to produce 16 different underline styles, for example Double Word Dotted
Underline.

The Overline option draws the line above the text, instead of underneath.

The Condensed and Extended styles change the letter spacing between the characters. The letters themselves
do not change size. The condensed style pushes the letters closer together, while extended spreads them
apart.

condensed extended

Chapter 15:Displaying and Editing Text Page 741
The Hidden Text style creates text that only appears when you are actually editing the document.

When the document is not being edited (only displayed or printed) the hidden text disappears.

When you re-edit the document (by clicking on it), the hidden text re-appears.

To remind you that this text is hidden, Panorama draws a dotted line through the text. Tip: If you have a line
of hidden text and you want the entire line to disappear without leaving a blank line, make sure that the car-
riage return at the end of the line is part of the selection before selecting the Hidden Text style.

when editing text, hidden text appears with a dotted line through it

Page 742 Panorama Handbook
The Strikeout style draws a line through the middle of the text.

The Small Caps style draws lower case letters as miniature upper case letters.

The All Caps style draws all text in UPPER CASE even if it was entered in lower case. The text is not actually
modified, so you can cancel this style later to display the text normally. The All Lower Case style draws all
text in lower case even if it was entered in UPPER CASE. Like the all caps style, the text is not actually modi-
fied, so you can cancel this style later to display the text normally.

See “Merging Data into Word Processing Documents” on page 756 for a description of Formula Merge, the
final style option.

Selecting Text

The word processor allows you to select text by clicking, dragging, double clicking (to select a word), and tri-
ple clicking (to select a line). You can also select text by holding down the Shift key and using the arrow keys
(hold down the Shift and Option(Mac)/Alt(PC) keys to select a word at a time).

small caps style

Chapter 15:Displaying and Editing Text Page 743
To select non-contiguous selections, hold down the Shift key and the Command key (Mac) or Control key
(PC) while you drag each selection (or double or triple click). Once you have multiple non-contiguous selec-
tions, you can change the appearance of all of the selections at once with the font, size, style, and color sub-
menus.

To select a rectangular area on the Macintosh, hold down the Control key while you drag over the area you
want to select. On the PC you can do this by holding down the right mouse button as you drag.

This option is especially handy for selecting one or more columns from a table. Once the columns are
selected, you can change the appearance with the font, size, style, and color sub-menus.

Page 744 Panorama Handbook
Configuring the Word Processor

The word processor can serve many uses — to store correspondence, to generate custom mail merge “bulk
mail,” to create catalogs, etc. Different applications require different setups. The following sections explain
the different configuration options that are available.

Word Processor Document Storage Strategies

Traditional word processors (Microsoft Word, WordPerfect, Nisus, etc.) store each word processing document
in a separate self contained disk file. In Panorama word processing documents are not self-contained but part
of a database. Panorama gives you flexibility in choosing how the document is related to the database.

In Panorama the word processor can be used in two basic ways. The first way is to use it to create and orga-
nize a collection of documents. For example you might have a correspondence database that keeps all your
letters and memos organized. When the word processor is used this way you will usually have one document
for every record in your database. In addition to the documents themselves, the database might contain addi-
tional information like the date the letter was written, the subject, who it was written to, etc. Here is an exam-
ple of a correspondence database that contains three records and three separate documents (pieces of
correspondence.

Chapter 15:Displaying and Editing Text Page 745
The second way to use the word processor is as a template. When used this way there is a single document
for the entire database. Panorama will combine this “template” document with information from the data-
base to produce the final documents. For example, you can use this technique to send customized “form” let-
ters to a group of people in your database.

The Panorama word processor allows documents to be stored in three different places: 1) in a database field,
2) in a variable, or 3) in a disk file (see illustration below). Which one of these you choose will depend on sev-
eral factors, including whether you need a collection of documents or a template, the number of documents
involved, the amount of memory on your machine and whether or not the documents need to be searchable.

Storing a Collection of Documents

If you need to store a collection of documents the simplest approach is to store the documents in a database
field. You’ll need to set up a text field specifically for the word processor. In the database below a field name
Body has been created for this purpose (the actual name isn’t important, you can pick any name you like).

word processing field

Page 746 Panorama Handbook
As you can see, the field you set up for the word processor is visible in the data sheet, and you can even dou-
ble click on the field in the data sheet to edit it. However, you should not do this. If you scroll to the end of the
Input Box you will see the special formatting information used to keep track of the font, style and other spe-
cial word processing information. If you edit the field in the data sheet you will corrupt this information and
the field will no longer format properly when used in the word processor.

The correct way to display and edit this field is to create a form with a Word Processor SuperObject (see “Cre-
ating and Working With Word Processor SuperObjects” on page 720).

word processor formatting information

Do Not Edit Word Processor Fields in the Data Sheet!

Chapter 15:Displaying and Editing Text Page 747
Storing the documents in a field is simple, but if you have a lot of documents (thousands or tens of thou-
sands) these documents can consume a lot of memory. This isn’t as much of a problem as it used to be, but if
it does become a problem Panorama has an alternative — you can store the documents in separate disk files.
If you do this you’ll still need a field for the word processor, but instead of holding the entire document this
field will only contain the name of the file that actually contains the document.

Here is a typical data sheet for a database with word processing documents stored in external files.

The DocumentID field contains a link to the external document. You must set up a formula in the configura-
tion dialog that creates the actual name of the external file from the value in this field. In this example we
have set up a formula that tells Panorama that the document is stored in the Documents subfolder (a folder
within the folder containing the database). (On PC systems .pwp will automatically added to the end of each
file name if no other extension is supplied, for example Document_1.pwp .)

The DocumentID field must contain a unique value for each record, and that value must be a legal file name.
In some cases you may be able to use data already in your database, for example the customer name. In this
particular example file the unique value is created by a procedure each time a new record is created. See
“.NewRecord” on page 1486 to learn about the automatic .NewRecord procedure, which is triggered when-
ever a new record is added to a database. The uniqueid(function is described in “UNIQUEID(” on
page 5867.

Page 748 Panorama Handbook
When a new record is added to the database, the .NewRecord procedure automatically assigns it a new Doc-
ument ID.

As soon as you start typing into the word processing document Panorama automatically creates the new file
on the disk.

Storing the word processing documents allows you to build a large collection of documents without creating
a huge memory hogging database. On the other hand, since the documents are not part of the Panorama
database, they cannot be searched with the Find/Select command (see “The Find/Select Dialog” on
page 435).

new document id

Chapter 15:Displaying and Editing Text Page 749
Searching for Text Within a Collection of Documents

If the documents are stored in a field (see previous section) you can perform normal database operations on
them, including searching for text within the documents. However, word processor documents combine text
with style information, as you can easily see if you edit a field containing a word processor document with
the data sheet (or with an ordinary data cell in a form).

Remember, you should not edit any part of a word processing document with the data sheet or a data cell.
Editing a word processing document this way will cause the document to lose its style information. Always
use a word processing object to edit word processing documents.

Sometimes you may want to use the text contained in the word processor in a formula. For example, you may
want to count the number of letters or words in a document, or search the document to see if it contains a par-
ticular word or phrase. To use the text in a formula, use the documenttext(function. This function has one
parameter, a word processing document. The result is the text of the document with all of the style informa-
tion removed. For example, suppose your database has a field called Letter that contains word processing
documents. You can use the formula shown below with the Formula Find/Select command (see “The Find/
Select Dialog” on page 435) to select all records with documents containing the word Yosemite.

select documenttext(Letter) contains "Yosemite"

Here is another example that calculates the number of words contained in a letter.

message "This letter contains "+str(arraysize(documenttext(Letter)," ")+" words."

The word processor can also work with standard text. If you give the word processor standard text with no
style information, it will use the default font, size, indents, tabs and line spacing until you specify otherwise.

word processor formatting information

Page 750 Panorama Handbook
Setting up Storage for a Template Document

If you need a mail-merge template document the simplest approach is to store the document in a separate
disk file.

As soon as you begin typing into the word processor Panorama will automatically create a file named Letter
Template (or Letter Template.pwp on PC systems). The file will be created in the same folder as the database.

An alternate method is to store the document in a variable. A permanent variable is recommended so that the
document will be saved automatically when the database is saved (see “Long Life Variables” on page 1371).
Here is a procedure that creates a permanent variable named LetterTemplate (see “Writing a Procedure from
Scratch” on page 1357 to learn how to create procedures). You only need to run this procedure once to create
the permanent variable (that’s why it’s called permanent!).

Once the permanent variable has been created you can go ahead and create the Word Processing SuperObject
(see “Creating and Working With Word Processor SuperObjects” on page 720). Select the Variable option, and
enter the name of the permanent variable you have created.

Chapter 15:Displaying and Editing Text Page 751
When you press the OK button your Word Processor SuperObject is ready to go. The document will be stored
in the permanent variable, which is automatically saved as part of the database each time you use the Save
command.

Page 752 Panorama Handbook
Setting up Storage for Multiple Template Documents

The techniques described in the previous section are fine if you want to use a single mail-merge template. In
this section we’ll show how to set up multiple mail-merge templates for a single database. For example, you
might have different “form” letters that you want to send out at different times — to welcome a new cus-
tomer, to announce a sale, or to ask about a missed payment. Each one of these templates will be stored in a
separate file on the disk, like this.

To start with you’ll need to create a permanent variable. However, instead of using this variable to store the
entire template document we’ll only use it to store the name of the current template document. Here is a pro-
cedure that can create the permanent variable for us. Be sure to run this procedure at least once before you
continue with the next step.

Chapter 15:Displaying and Editing Text Page 753
The form for this example requires two editing objects. First, you’ll need a Text Editor SuperObject that will
allow the name of the current template to be changed (see “Creating and Modifying Text Editor SuperOb-
jects” on page 689). Of course a Word Processing SuperObject is also necessary. The text is stored as a File on
disk, with a formula that tells Panorama to look in the folder Templates and to that the permanent variable
CurrentTemplate contains the file name. (You’ll need to create the Templates folder if it doesn’t already exist.
It should be in the same folder as the database itself.)

Page 754 Panorama Handbook
Once these objects are set up you can switch to Data Access Mode and start building templates. Start by
entering the name of the new template.

After you have entered the name of the new template, click on the word processor. Panorama will immedi-
ately create the new, blank template, which you can start filling in.

If you look on the hard disk you’ll see that the new template has been created.

enter name of new template

new document file

Chapter 15:Displaying and Editing Text Page 755
At any time if you want to re-use a previous template, just type the name of that template into the Text Editor
SuperObject. As soon as you press the Enter key, the previous template is saved and the requested template is
loaded in.

This simple example requires you to type in the name of the template you want to use. A more advanced
database could use a pop-up menu (see “Pop-Up Menus” on page 884) or a scrolling list (see “List SuperOb-
jects” on page 898) in combination with the listfiles(function (see “Disk Files and Folders” on
page 1317) to select the template.

type the name of the template you want to use

the requested template appears when you press the Enter key

Page 756 Panorama Handbook
Merging Data into Word Processing Documents

Just as with an auto-wrap text object, Panorama can merge the result of a formula into the middle of a word
processor document. The auto-wrap text editor does it with special characters around the formula (see “Dis-
playing Formulas in Auto-Wrap Text” on page 652). The word processor does it with a special style, the For-
mula Merge style.

Let’s start with a simple example: 2+2. We’ll type this formula in twice, the first time using the Plain style.
The second time we’ll select the text and apply the Formula Merge style. Notice the box that appears around
the formula.

Chapter 15:Displaying and Editing Text Page 757
When the Enter key is pressed, the display changes. The second formula is now replaced by the result of the
formula: 4.

Any valid Panorama formula may be used. To merge in a data field, just type in the name of that field and
apply the Formula Merge style.

When the Enter key is pressed, the actual data appears.

formulas

Page 758 Panorama Handbook
Click on the word processor to see the formulas again.

The previous example used three formulas, but it could be rewritten to use a single formula.

Since this formula wraps over two lines it looks like two formulas, but it is really one, as you can see by mak-
ing the window wider.

Chapter 15:Displaying and Editing Text Page 759
The Text menu contains two commands that can help you build formulas. The Insert Field submenu types in
a field name and automatically turns on the Formula Merge style. For example, you can be typing in regular
text, like this.

When you want to merge in a field, simply choose it from the menu.

Panorama automatically inserts the field and selects the Formula Merge style.

Page 760 Panorama Handbook
When you use the Insert Field menu you need to be careful not to insert two fields right next to each other. If
you do, the two field names will merge together.

Since there is no field named CityState, this will produce an error when you press the Enter key.

If you need the two fields to be adjacent to each other with no punctuation in between, you must use the +
operator to make a valid formula.

use + to join two fields together in the formula

Chapter 15:Displaying and Editing Text Page 761
A more common solution is to put a space or other punctuation in between the fields. However, watch out!
The punctuation character must not have the Formula Merge style selected.

To make sure that the punctuation does not have the Formula Merge style selected, select the character and
choose Plain from the style menu.

wrong!

correct

Page 762 Panorama Handbook
Here’s a tricky problem. This looks like two fields in two separate formulas, which should be just fine.

However, when Enter is pressed, an error message is displayed.

The problem is that it really is just a single formula, because the line break character has the Formula Merge
style set. To fix this problem, select the line break character (as shown below) and un-check the Formula
Merge style.

Chapter 15:Displaying and Editing Text Page 763
To insert a complete formula into the document, use the Insert Formula command in the Text menu. A dialog
box appears allowing you to enter a formula.

Type the formula into the dialog. You can use the Fields and Functions menus to help you enter the formula.
When you press OK, the formula will appear in the document, and it will already be in the Formula Merge
style.

This particular formula extracts the first name from the Name field (to produce, for example, Dear Mary).
The formula may use any field or function available in Panorama, including lookups to grab data from other
databases. See “Using Formulas to Display Text” on page 671 to learn about some useful formulas for dis-
playing text.

Forcing Merge Data to Update When Moving From Record to Record

Mail merge documents are usually printed. If you display the document on the screen, you may think that it
is broken because the merged data will not update as you move from record to record.

If displaying the merged data is important to you (as opposed to simply printing it) one solution is to overlay
a Text Display SuperObject just underneath the Word Processor SuperObject. If it is configured in the way
described below, the Text Display SuperObject will update whenever you move to a record. The Word Pro-
cessing SuperObject will go along for the ride.

Page 764 Panorama Handbook
Start with the Word Processing SuperObject. Make sure it is positioned where you want it. Then select the
Text Display tool and create a Text Display SuperObject on top. The new object should cover the entire Word
Processor SuperObject except for the scroll bar.

The Text Display formula should be any text field followed by the text funnel [2,1] . This text funnel tells
Panorama to take the field and extract the text from character 2 to character 1. Since character 2 is after char-
acter 1, the result is nothing, nada, zip. So our new Text Display SuperObject won’t display anything, but it
will try! In the process it will force the Word Processor SuperObject to update also.

There is one more step to complete this mini-project. Select the Text Display SuperObject and use the Send To
Back command to move it behind the word processor (see “Changing the Stacking Order” on page 620).
That’s it. Now go to Data Access Mode and see that the data merged in the word processor updates as Pan-
orama moves from record to record.

Chapter 15:Displaying and Editing Text Page 765
Word Processor Options

The SuperObject™ Word Processor Properties dialog is divided into several sections.

Text In: This section of the dialog specifies whether the document will be stored in a field, variable, or sepa-
rate file that will be edited by this object. See “Storing a Collection of Documents” on page 745 and “Setting
up Storage for a Template Document” on page 750 for more information about setting up these options.

Scroll Bars: This section controls whether the vertical scroll bar is displayed, and whether space is reserved
for a grow box in the lower right hand corner of the object. The word processor object does not support a hor-
izontal scroll bar. Instead, the margins automatically adjust to the width of the object.

Wrap at End of Line: If text is too long to fit on a single line, it will usually “wrap” around to the next line.
However, if this checkbox is turned off, the text will not wrap. Instead, the text will be continue off the right
edge.

Non-White Background: We recommend that you use this option if the Word Processor object is over a color
(non-white) background. If this option is turned on, Panorama will temporarily display a white background
behind the text while it is being edited. (If you don’t use this option, you’ll find that portions of the back-
ground will turn white as you edit anyway. The result is ugly and possibly confusing, so that’s why we rec-
ommend you use the Non-White Background option.)

Terminate When: This section controls which keys indicate that you have finished editing this item of text.
The Enter key always indicates you are finished editing. You may also specify that the Return, Tab, Up
Arrow, or Down Arrow keys terminate editing. Usually these options will be left disabled so that these keys
may be typed into your word processing documents.

Borders: This section controls any borders that are displayed around the document. You may separately con-
trol the top, bottom, left and right borders, or click on the word Borders to turn all four on or off at once. If the
Shadow option is checked a drop shadow will appear. If the 3D option is checked a “three dimensional” bor-
der will appear around the object. The 3D border effect works best with a light gray background. (Note: You
can control the background color for the entire form with the Form Preferences command in the Setup menu,
see “Form Background Colors” on page 633.)

Update Variable Every Key: This option only works when the document is stored in a variable, not in a field
or disk file. If this option is enabled, the Word Processor will update the value of the variable after every key
is pressed. This is especially handy when the Word Processor is set up to trigger a procedure after every key
or most keys (see next section).

Page 766 Panorama Handbook
Overflow: This option is used in conjunction with an overflow tile for printing documents that are more than
one page long. See “Printing Multiple Page Documents” on page 773 for more information about this option.

Procedure: This section specifies what procedure is associated with this Word Processor object, and when
that procedure will be triggered. To select or change the procedure associated with this object, use the pop-up
menu. To disable the procedure, clear the checkbox.

There are three choices for triggering a procedure: Every Key, Most Keys, and Termination. The Termination
option simply means that the procedure will be triggered when the user signals that he or she has finished
editing the document by pressing the Enter, Return, Tab, Up Arrow, or Down Arrow keys. (Note: If the Word
Processor is associated with a field, a procedure may be triggered even if no procedure is assigned in the
Word Processor dialog. If the field has a procedure assigned to it in the design sheet, it will be triggered (see
“Automatically Triggering a Procedure” on page 416). If there is no Termination procedure and no design
sheet procedure, the .ModifyRecord procedure [if any] will be triggered. See “.ModifyRecord” on
page 1485.)

If the Every Key option is checked, the procedure will be triggered every time the user presses a key. For
example, you might use this option if you wanted to count the user’s keystrokes.

If the Most Keys option is checked, the procedure will be triggered after every key when the user types
slowly, but will not be triggered for each key when the user types several characters quickly in a row. The
procedure will not be triggered until the user pauses in his or her typing. This option often works as well as
the Every Key option but usually appears much smoother and faster to the user because the procedure is not
being triggered as frequently while the user types. Possible applications for the Most Keys option include
counting the characters or words being edited, performing a calculation (metric conversion, for example),
checking spelling, etc.

Auto Caps: This section only appears if the Word Processor is associated with a variable or file on disk. Use
the pop-up menu to control automatic capitalization of the text as it is entered. You can force the text to all
upper case (ABC), word caps (Abc), or capitalization of the first letter in each sentence. If the Word Processor
is associated with a field, the Word Processor will use the Auto Caps setting for that field (set in the design
sheet or the Field Preferences dialog.)

Use Field Attributes: This section only appears if the Word Processor is associated with a variable or file on
disk. You can use this if you would like the Word Processor to use the attributes assigned to one of the fields
in your database. If you select a field with the pop-up menu, the Word Processor will use that field’s settings
for Input Pattern, Range, Clairvoyance, Space Bar Tab and Duplicates. Of course if the Word Processor is
associated with a field, the Word Processor will always use the attributes for that field (set in the design sheet
or the Field Preferences dialog.)

Default Font and Text Size for New Documents

When you create a new document, the font, size, indents, tabs and line spacing are all set to default values.
The default values for the font and text size are set by setting the font and size of the object in graphics mode.
For example, if you want new documents to default to 14 point Palatino, go to graphics mode, select the word
processor object, and select Palatino from the Font submenu and 14 from the Size submenu (or use the
Graphic Control Strip, see “Font” on page 581).

Chapter 15:Displaying and Editing Text Page 767
To set the default indents, tabs and line spacing, first set up these properties the way you want them (using
the ruler). Once the indents, tabs and line spacing are set up, open the Paragraph Settings dialog (in the Text
menu). Check the Default Settings checkbox, then press the OK button.

Note: If a document consists entirely of text using the default settings (no font changes, style changes, indent
changes, etc.), Panorama will save only the text without any style information. This makes the document
much smaller. If you later change the default settings, this document will reflect the new defaults the next
time it is displayed or opened for editing.

Page 768 Panorama Handbook
Printing Word Processor Documents

The primary use for the word processor is usually to create printed documents — letters, memos, correspon-
dence etc. In this section we will cover some tips for printing these documents.

Normally when a document is printed you won’t want any extra doo-dads — no ruler, no borders, no scroll
bar. When you are displaying and editing the document, however, you need these. You could change these
settings each time you want to print. A better method is to create two separate forms: one set up for editing
documents, and one for printing.

To illustrate this idea we’ll start with a Word Processor SuperObject that has been set up for editing a docu-
ment (see “Creating and Working With Word Processor SuperObjects” on page 720).

Select the object (as shown above) and use the Copy command to copy it onto the clipboard (see “Cut, Copy,
and Paste” on page 617). Then use the New Form command in the View menu to create a new form (see “Cre-
ating a New Form” on page 545), and Paste the Word Processor SuperObject into the new form. Since you’ll
probably want the printed correspondence to fill an entire page, use the Magnify tool to zoom out and make
the an 8 1/2 by 11 inch area visible (see “Magnification and Reduction” on page 630).

Chapter 15:Displaying and Editing Text Page 769
Next, use the Tile tool to create a data tile that is 8 1/2 by 11 inches (see “Working with Tiles” on page 1068).
You can use the Dimensions dialog to help you set the exact dimensions (see “Viewing and Setting Exact
Object Dimensions” on page 567). (You may need to adjust these dimensions later depending on your
printer.)

Page 770 Panorama Handbook
Now expand and position the Word Processor SuperObject on the data tile just as you would like the final
correspondence to appear on the printed page.

Chapter 15:Displaying and Editing Text Page 771
The next step is to double click on the word processor to open the configuration dialog. Use the dialog to turn
off the borders and the scroll bar (see “Word Processor Options” on page 765).

The final step is to turn off the ruler. To do this, switch into Data Access Mode. Click on the word processor to
edit the text, then use the Text menu to disable the ruler.

Page 772 Panorama Handbook
Voila! The form is now ready to print.

Edit all your documents in the original form, which still includes the ruler and scroll bar. When you need to
print switch to the new form, which prints without these extra items. If you like, you can add a procedure to
your database to automatically switch forms and print. Here’s one way this procedure could be written.

local windowOne
windowOne=info("windowname") /* remember where we came from */
goform "Print Correspondence" /* switch windows */
printonerecord dialog /* or print, if you want to print all selected records */
goform windowOne /* switch back to original window */

Chapter 15:Displaying and Editing Text Page 773
Printing Multiple Page Documents

The technique described in the previous section works fine for single page documents. Of course, many doc-
uments are more than one page long. In this section we will extend the example to allow the printing of mul-
tiple page documents.

Start with the form created in the previous example, and switch back to Graphic Design Mode. Double click
on the word processor. In the configuration dialog, enable the Handle Overflow option, then press OK.

Page 774 Panorama Handbook
Now choose Select All Objects from the Edit menu. While holding down the Option key (Macintosh) or Alt
key (Windows), drag a copy of all the objects on the form to an empty spot (see “Drag Duplicating” on
page 613).

Now we need to turn the duplicate Data tile into an Overflow tile (see “Printing Data that Overflows a Page”
on page 1122). To do that, double click on the word Data in the middle of the drag bar at the bottom of the
tile.

double click to configure tile

Chapter 15:Displaying and Editing Text Page 775
This opens the tile configuration dialog (see “Working with Tiles” on page 1068).

Click on the Specialized Tiles button to open a larger dialog. This dialog has over 40 different kinds of tiles to
choose from. Pick the Overflow tile, which is activated with the button shown in the illustration below.

That’s all there is to it. The form will now automatically print as many pages as the document requires — 1, 2,
3, or 1,000! For more information on overflow printing see “Printing Data that Overflows a Page” on
page 1122.

overflow tile

Page 776 Panorama Handbook
Using the Mini Correspondence Wizard

Panorama includes a pre-built database for handling general word processing chores — the Mini Correspon-
dence wizard. This database may be used for general correspondence (letters, memos, etc.) and to create mail
merge letters that are customized and sent to a group of recipients. You can use the Mini Correspondence
wizard as is or you can modify it or even take components of the wizard and include them in your own data-
bases.

Creating a New Letter

One of the most powerful features of the Mini Correspondence wizard is that it can be linked with other
databases that contain names and addresses. We’ve already prepared a link with the 106th Congress data-
base, so we’ll use that database as an example (if you want to follow along you can find this database with
the Favorite Databases wizard).

To write a letter to your congressman, start by locating them within the database. Then choose Mini Corre-
spondence from the Wizards menu.

Chapter 15:Displaying and Editing Text Page 777
The wizard will open and as you if you want to write a letter to this person.

The wizard will create a new letter with Ms. Sanchez’s name and address.

Page 778 Panorama Handbook
 The heading and closing sections of the letter have been created with some incomprehensible looking formu-
las — just ignore those for now and start typing in the body of the letter.

Chapter 15:Displaying and Editing Text Page 779
When you press the Enter key you’ll see the finished letter.

Page 780 Panorama Handbook
If this is the first letter you have created you’ll probably want to customize the signature. When you enter the
signature at the top of the window the wizard will automatically change the letter itself (in fact changing any
of the fields at the top of the window will change the letter).

Printing a Letter

To print the letter choose Print This Letter… from the Letter menu inside the window. (You’ll probably also
want to save the letter at this point. You can use the Save command in the Letter menu or in the regular File
menu. The Save command saves all of the letters in the entire database, not just the current letter.)

Chapter 15:Displaying and Editing Text Page 781
The wizard uses a form called Print to print the letter. You can customize this form by opening it with the
View menu or by choosing Edit Print Form from the Setup menu inside the window.

The Print form has a data tile and overflow tile to allow it to print multi page letters (see See “Printing Multi-
ple Page Documents” on page 773). By editing this form you can adjust the margins and/or add your logo to
the printed letter. When you are done be sure to close the form and save the database.

overflow tile

data tile

left margin tile

Page 782 Panorama Handbook
Printing a Mail Merge Letter

We can take the same letter we just created and send it to multiple recipients — for example we could send it
to every congressional member from California. Start by going back to the 106th Congress database and
selecting the members of congress from California (see “The Find/Select Dialog” on page 435).

As you can see there are 54 members in the California delegation.

Chapter 15:Displaying and Editing Text Page 783
Now go back to the Mini Correspondence database and pull down the Letter menu. The last item in this
menu will print a customized letter to each selected person in the 106th Congress database.

The wizard will print 54 customized letters.

Page 784 Panorama Handbook
Viewing a List of Letters

The Mini Correspondence wizard normally displays only one letter at a time. To see a list summarizing all of
your correspondence choose Open Correspondence List Window… from the Letter menu.

This window shows a list of the letters you have created.

Chapter 15:Displaying and Editing Text Page 785
Linking Mini Correspondence to Other Databases

The Mini Correspondence wizard can be linked with any other database that contains names and addresses.
To illustrate this we’ll link it to this Conference Registration database.

The Setup menu contains commands for linking to each open database. To set up the link to the Conference
Registration database simply choose the appropriate command.

The Mini Correspondence database stores the name and address in eleven separate fields. The dialog allows
you to set up a formula for each field that links this field with the appropriate data in the database being
linked to.

Page 786 Panorama Handbook
You can type in each formula or you can use the pop-up menu. For example, let’s set up the link for the first
name field by clicking on the triangle to choose from the pop-up menu.

When you release the mouse the wizard will fill in the formula (which is simply the field name) and also
show you a sample of the data that is being linked.

Chapter 15:Displaying and Editing Text Page 787
Simply repeat the process for each field you want to link.

Sometimes there will not be a one-to-one correspondence between the fields in the Mini Correspondence
database and the fields in the database you are linking to. In that case you will have to edit the formula man-
ually. In this case the address is actually stored in two separate fields, so we’ll use the + operator to glue them
together (see “Using Formulas to Display Text” on page 671).

The Automatic Formulas button can be helpful for filling in the Data Link dialog. When you press this button
the wizard scans the fields in the in the database being linked to and attempts to figure out how to set up the
link itself. For example, it will figure out that a field containing the word Zip should be linked to the Zip field
in the correspondence file. After you use this button you’ll need to manually go in a fill in any fields that the
wizard was not able to figure out. You should also double check to make sure that the links that were auto-
matically created are correct.

Page 788 Panorama Handbook
When the links are all set up press the OK button. From now on whenever the Conference Registration file is
open you’ll be able to automatically create new letters using the addresses in this database and to print mail
merge letters from this databases.

One last point — the link information is actually stored in the Conference Registration file itself, so you
should go back to that file and save it to permanently save the link information.

Sometimes you may want to link to a database that has the first and last names combined into a single field,
like this.

create new letter

print mail-merge letters

Chapter 15:Displaying and Editing Text Page 789
You can use the array(function to set up the link to this field (see “Text Arrays” on page 1257).

The array(function is being used to split the text into individual words (each word being separated by a
space, or " "). The formula for the first name splits off the first word, while the formula for the second name
splits off the second word. This assumes that the names are entered in the format First Last.

If the names are stored in the format Last, First you’ll need to revise the formulas like this. The formula for
the last name uses a text funnel to strip off the comma (see “Taking Strings Apart (Text Funnels)” on
page 1236).

A formula can be designed for any data that is entered consistently. See “Text Formulas” on page 1235 for
more information on designing formulas for processing text.

Page 790 Panorama Handbook
Correspondence Templates

When you create a new letter the wizard uses a template to set up the heading, closing, and font. You may
choose from pre-built templates and you can also create your own templates. After you create a new letter
you can use the Template menu to change the template used for this (and subsequent) letters.

The wizard updates the letter with the new template, which in this case uses a different font.

Chapter 15:Displaying and Editing Text Page 791
To create your own template you should first create a new letter with one of the existing templates. Then
select all of the text and adjust the font and size (see “Styles” on page 739).

Page 792 Panorama Handbook
Once you have the font and size you want select the phrase <Insert Body of Letter Here>, then choose Save
Template from the Setup menu inside the window.

The wizard will prompt you to enter a name for the new template.

The new template is added to the Template menu.

Chapter 15:Displaying and Editing Text Page 793
If you later decide you want to rename or delete a template use the Delete/Rename Template… command in
the Setup menu.

This command opens this dialog.

To delete a template simply select it and press the Delete button. To rename a template select it and press the
Rename button. The wizard will prompt you for the new template name. When you are finished press OK to
finalize all of the changes.

Page 794 Panorama Handbook
Understanding the Letter Template Formulas

In addition to setting the default font and text size the letter templates also contain all of the formulas needed
to merge the database information into the header and closing section of the letter (see “Merging Data into
Word Processing Documents” on page 756). It’s not necessary to understand these formulas unless you want
to modify them, so if that doesn’t interest you you can simply skip over this section.

The reason the formulas are as complex as they are is to allow for printing mail merge letters. When the wiz-
ard prints a mail merge letter it temporarily saves the name and address stored in the current record. It then
scans the linked database and builds an array in each of these fields. For example, the City field will contain
an array that contains the city name for each person that will be receiving this letter. The wizard prints each
letter using the printonemultiple statement (see “Printing Data in an Array” on page 1732) and it incre-
ments the pRecord variable as it does it (1, 2, 3, etc.). The formulas use the array(function to extract the
actual data currently being printed. If only a single letter is being printed the formula still works because
pRecord is set to 1 so the array(function simply grabs all of the text in the field.

Armed with this knowledge you can now create a letter that merges database information into the body of
the letter.

When you press the Enter key you’ll see the actual data merged into the body of the letter.

This technique will work correctly even if you print multiple letters using the mail merge feature.

formula merges City field into paragraph

Chapter 15:Displaying and Editing Text Page 795

Page 796 Panorama Handbook

Chapter 16: Images & Movies

A Panorama form can display images and movies from a wide variety of sources. An image may be fixed (for
example a logo or background) or variable (changing from record to record - for example personnel photos or
maps associated with individual records). Variable images may be included in the database or (more com-
monly) displayed directly from files on the disk. Images that are displayed from disk are called Flash Art™.
Flash Art allows any image to be displayed according to its name.

Fixed Images

Fixed images are imported into Panorama with the Paste command. Before you use the Paste command, the
graphic picture you want to import must be placed on the clipboard. Most paint and drawing programs
allow you to select the graphic elements you want to use and then use the Copy command to place the graph-
ics on the clipboard. This illustration shows an image being transferred to the clipboard in Adobe Photoshop.

Page 798 Panorama Handbook
Once the image has been transferred to the clipboard, switch to Panorama. The form you want to place the
image into must be open and in Graphic Display Mode (see “Form Modes: Data Access vs. Graphic Design”
on page 543). Then choose Paste from the Edit menu to import the image.

The image will be imported into the center of the window. Like any other object, you can move the picture by
dragging it or adjust the size by dragging the handles on the corners (or with the Dimensions or Scale dia-
logs).

Chapter 16:Images & Movies Page 799
Displaying and Printing EPS Images

On Macintosh systems you can place EPS images on the clipboard when using Adobe Illustrator, Macrome-
dia Freehand and many other programs. To place an EPS image on the clipboard, hold down the Option key
while you use the Copy command.

Once the EPS image has been placed on the clipboard you can switch to Panorama and Paste it into your
form, just like any other image.

hold down
Option key

Page 800 Panorama Handbook
You may notice that the image appears a bit “grainy.” You’re actually seeing a bitmap image that was created
by Illustrator when you placed the image on the clipboard. If you enlarge the image it will get even more
“jaggy.”

Although the image appears jaggy on the screen, it won’t look jaggy if you print the form on a PostScript™
printer. When printing, Panorama uses the EPS and ignores the jaggy bitmap so you get a nice clean image on
the paper.

Memory Requirements for Large Images

Pictures can be real memory hogs. A large image may need up to several megabytes of memory. On PC based
systems you don’t have to worry about this. On MacOS based systems, however, you may need to adjust
Panorama’s Scratch Memory setting. Panorama uses scratch memory as temporary memory for many tasks,
including loading fonts, displaying images, sorting, printing, etc. Panorama normally reserves 650,000 bytes
(650K) for scratch memory. If you try to display or print very large pictures, Panorama will warn you that
scratch memory is full. If that happens, you will have to increase the scratch memory size. See “Changing
Scratch Memory Size (Macintosh)” on page 273 to learn how to do this.

How much memory do you need to allocate for scratch memory? That depends on the images you want to
display. For uncompressed images (PICT, TIFF, etc.) you simply need to assign slightly more memory than
the largest image you want to display. For compressed images (JPEG) you’ll need to allocate enough memory
for an uncompressed version of the image. It’s impossible to know from the file size exactly how much mem-
ory you’ll need, but a good rule of thumb would be to allocate 5 to 10 times the size of the largest image.

Chapter 16:Images & Movies Page 801
Tracing a Scanned Form

You can use a scanner to digitize a form and then paste the image into Panorama. The scanned image can
either be used as is, or you can use it as a template to create a form using Panorama graphic objects. (If you
trace the image using Panorama’s box and line tools, the form will print faster and with better quality.) Start
by scanning the form you want to duplicate. For example, we’ve scanned our Nutrition Information form
into Adobe PhotoShop.

Page 802 Panorama Handbook
To make it easier to use this form as a template for tracing, we’ll increase the brightness, reduce the contrast,
and change the color. See the documentation for your photo editing software to learn how to do this.

Chapter 16:Images & Movies Page 803
Now the image can be copied into your Panorama form. Simply Copy the image in your photo editing appli-
cation, then switch to Panorama and Paste into the form.

Move the template into position, then freeze the template with the Lock command in the Arrange Menu (see
“Locked Objects” on page 626). Once the image is locked, check the Ignore Locked Objects menu option (see
“Ignoring Locked Objects” on page 628). This option allows you to work on top of the scanned image with-
out having to worry about accidentally clicking on and dragging the scanned image.

Page 804 Panorama Handbook
Now you can begin to trace over the scanned template to create Panorama objects like rectangles and text
objects.

Chapter 16:Images & Movies Page 805
When the tracing is complete, the final step is to delete the scanned image you used as a template. Start by
disabling the Ignore Locked Objects option. Then click on the scanned image.

gray handles indicate locked object

Page 806 Panorama Handbook
Once the object is selected, choose the Unlock command to unlock the image (see “Locked Objects” on
page 626). Once the object is unlocked you can use the Cut or Clear commands to delete the image from your
form, leaving only the new objects you have created.

Flash Art™

Panorama employs a technique called Flash Art™ to display non-fixed images. Using Flash Art you can dis-
play images that are not fixed but change depending on circumstances—for example photos of each person
in a personnel database, maps in a contact database or product photos in a catalog database.

When Flash Art displays an image, it does so by name. The actual image may be stored in the database itself
(in the Flash Art Gallery, see “The Flash Art Scrapbook (Gallery)” on page 816), or in separate disk files (see
“Displaying Images Directly From Disk Files” on page 820). You set up a formula that controls what image to
display. When the formula matches the name of an image, that image is displayed.

Panorama actually has several different types of objects for displaying images by name. The standard Flash
Art object (see ““Classic” Flash Art Objects” on page 846) has been standard from the earliest versions of Pan-
orama, and is retained for compatibility with older databases. The newer Super Flash Art object (see “Creat-
ing Super Flash Art Objects” on page 807) is more customizable (more alignment and scaling options, scroll
bars, etc.) and should usually be used for new applications. In addition, the Flash Art Push Button (see “Flash
Art™ Push Button SuperObjects™” on page 862) and Flash Art Data Button (see “Flash Art Data Button
SuperObjects™” on page 879) allow you to create custom buttons from any image.

Chapter 16:Images & Movies Page 807
Creating Super Flash Art Objects

To illustrate the creation of a Super Flash Art object within a form we’ll use a database of nutritional informa-
tion for fruits. This database contains about a dozen different fruits, including the name of the fruit and the
FDA nutritional information.

We’ve also prepared a collection of photographs of fruit. Each photograph has a name, and the photo name
matches the name of the fruit in the database, from Apple to Tomato.

In this case the images are stored in the database in the Flash Art Gallery (see “The Flash Art Scrapbook (Gal-
lery)” on page 816), but they could also be stored in files on the disk (see “Displaying Images Directly From
Disk Files” on page 820). For now, don’t worry about how the images are set up, let’s just continue to see how
the images can be used in a form.

Page 808 Panorama Handbook
The Super Flash Art tool is not in the default tool palette, so you’ll need to use the Tool Palette dialog to add
this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it. Notice that we’ve set up a Text Editor SuperObject
(see “Text Editor SuperObject” on page 689) to allow the name of the fruit to be displayed and edited.

Chapter 16:Images & Movies Page 809
Once the tool is selected, drag the mouse across the form in the location where you want to create the Super
Flash Art object.

When you release the mouse, the Super Flash Art configuration dialog will appear.

Page 810 Panorama Handbook
At a minimum you must enter a valid formula into the dialog. In this case the formula is simply Fruit . Since
the Fruit field contains the name of each fruit, this will automatically display the image for the correct fruit, in
this case an apple.

Notice that the apple is displayed in the upper left hand corner of the Super Flash Art object. You can also
center the image. To do this, first click on the Pointer tool, then double click on the object. This re-opens the
configuration dialog, allowing you to change the alignment.

centered
upper left

Chapter 16:Images & Movies Page 811
We’ve also turned on the border for this object.

With a few adjustments the form is ready to use. As long as you have a photo with the correct name available,
the correct photo will appear for each fruit.

Page 812 Panorama Handbook
Using Flash Art to Display a Fixed Image

Flash art is usually used to display an image that changes, like the fruit in the previous example. However, it
can also be used to display a fixed, unchanging image like a logo or a background. Of course you can also use
a standard picture object (see “Fixed Images” on page 797) to display a fixed image, so why use Flash Art?
The primary advantage is that using Flash Art a single image can be displayed over and over again without
taking up any additional memory or disk space. Only one copy of the image is needed, which can be used
multiple times in the database (or even multiple databases).

To display a fixed, image, simply enter the name of the image into the Flash Art formula, surrounded by
quotes ("). For example, suppose you have an image named FDA Logo.

You can display this image in any form or report by using this formula in a Flash Art or Super Flash Art
object.

You can use this logo as many times as you like within a single form or across multiple forms.

As an added bonus, if you ever need to modify the logo it only needs to be modified in one place.

Chapter 16:Images & Movies Page 813
Using Flash Art to Display a Smart Background

Flash Art isn’t just for displaying pictures. It can also be used to display a border or background that changes
depending on the data in the database. To illustrate this we’ll use this database of hotel listings.

We’ve created a view-as-list form to display this data (see “View-As-List Forms” on page 917).

Page 814 Panorama Handbook
Our goal will be to display a yellow background if the hotel has a rating of 1 or 2 stars. The first step is to cre-
ate a yellow box. You can do this with a graphics program or with Panorama itself (“Creating a Graphic
Object” on page 552). Paste the yellow box into Panorama’s Flash Art Scrapbook (see “Adding a New Image
to the Scrapbook” on page 817) with the name YellowBox.

Now switch to Graphics Mode and create a Super Flash Art object that exactly covers the data tile. You may
need to nudge the object precisely into place after you have created it (see “Nudging an Object (or Objects)”
on page 565 and “Nudging the Size of an Object” on page 568).

Set up the Flash Art formula so that the yellow box will be displayed only if the number of stars is 1 or 2 (in
other words, less than 3). You’ll also want to make sure that the Scale to Fit option is checked. This ensures
that the yellow box fills the entire area.

Chapter 16:Images & Movies Page 815
Once the object is created, use the Send To Back command to move it behind the other objects on the data tile
(see “Changing the Stacking Order” on page 620). Finally, switch back to Data Access Mode to see the fin-
ished result. Voila! Hotels with less than 3 stars have a yellow background, while 3 stars and up have a blue
background. (The first line, the B’n B Motel, is actually blue, but is currently highlighted to indicate that it is
the current record. If you move to another record you will see that this record is actually blue also.)

The ?(function is the heart of this formula. See “The ? Function” on page 1287 to learn more about it.

Page 816 Panorama Handbook
The Flash Art Scrapbook (Gallery)

Every Panorama database has its own Flash Art Scrapbook, a collection of images that can be displayed
within the database. (You can also display images directly from disk files without installing them in the data-
base — see “Displaying Images Directly From Disk Files” on page 820.) Use the View menu to open the
Scrapbook.

 The Flash Art Scrapbook window displays one picture at a time. The name of the picture appears in the win-
dows title bar (for example, the image in the window below is named Watermelon). You can use the Previous
Picture and Next Picture tools to flip through the pictures in the Scrapbook.

You can fill the Flash Art Scrapbook with images you want to use in the database (up to the amount of mem-
ory available in your computer). Once a picture is pasted into the Flash Art Scrapbook, it can be used over
and over again.

image name

First Image
Previous Image

Next Image
Last Image
Cut Image

Copy Image
Paste Image

Change Name of Image

Chapter 16:Images & Movies Page 817
Adding a New Image to the Scrapbook

To add a new picture to the Flash Art Scrapbook, use the Paste command or Paste tool. Before it adds the pic-
ture to the Flash Art Scrapbook, Panorama will ask you for the name of the picture.

It’s a good idea to think about image names before you start. Usually the picture names should correspond to
the data in the database. For example if the picture is a map of Oregon, you might name the picture Oregon
or OR, depending on how you have entered the state name in your database. If the picture is a photograph of
an employee named Bob, you might name the picture Bob or use Bob’s initials. Again it depends on how you
have entered the in information in the database. Keep in mind that the image names do not have to exactly
match the data in the database — but you must be able to write a formula that can convert the database infor-
mation into the image name. For example, suppose you had an employee database with fields for first, mid-
dle and last names. The images could be named according to the employees initials, for example CSL or SLE.
In the Flash Art object you would then need to use the formula

First[1,1]+Middle[1,1]+Last[1,1]

This formulas uses text funnels (see “Taking Strings Apart (Text Funnels)” on page 1236) to extract the initials
from the full name, automatically displaying the correct image.

Locating an Image in the Flash Art Scrapbook

The Find Picture command (in the Picture Menu) displays a list of all the images in the Flash Art Scrapbook

Page 818 Panorama Handbook
Choose the image you want to see and press OK (or double click on the name) to see the image.

Removing an Image from the Flash Art Scrapbook

To remove an image from the Flash Art Scrapbook, first locate the image and then use the Cut tool or choose
Cut from the Edit Menu.

Renaming an Image

To give an image a new name use the Rename Picture tool.

This tool opens a dialog box that allows you to change the name of the currently visible picture.

Chapter 16:Images & Movies Page 819
Re-Arranging the Image Order

You can use the Re-Arrange Pictures command in the Picture Menu to change the order of the images within
the Flash Art Gallery.

Simply copy the images from the left to the right in the new order. Double click on an image to copy it to the
right. (Note: There’s really no reason to ever re-arrange the order of the images, since Panorama doesn’t care
what the order is. The only exception is if you have two images with the same name. In that case, Panorama
will always display the first image in the list and ignore the rest.)

Printing the Flash Art ScrapBook

You can use the Print command to print all the pictures in the Flash Art Scrapbook. Panorama will print as
many pictures per page as it can fit.

Importing PICT Files into the Flash Art Scrapbook

Many graphic applications can save pictures as PICT files. The Import PICT command in the Picture Menu
allows you to add these files to the Flash Art Scrapbook directly, without having to go through the clipboard.

To import a single PICT file into the Flash Art Scrapbook, open the Import PICT dialog (Picture Menu), then
choose the file and press the Load button. Panorama will use the name of the PICT file as the picture name.

You can import every PICT file in a folder by pressing the Load All button. All the pictures in the folder will
be added to the Flash Art Scrapbook, using the names of the files as the names of the pictures.

A Flash Art object can also display PICT files directly from disk without loading them into memory. This
saves memory, but is slower than displaying pictures actually loaded into the gallery. To learn how to use
PICT files directly see “Displaying Images Directly From Disk Files” on page 820.

Transferring the Flash Art Scrapbook to Another Database

You can use the Save Flash Art Scrapbook and Import Flash Art Scrapbook commands to copy the pictures
in a Flash Art Scrapbook from one database to another. The Save Flash Art Scrapbook command saves the
entire Scrapbook in a separate file. The Import Flash Art Scrapbook command imports the saved pictures
into the current Flash Art Scrapbook.

To transfer all the pictures in database A to database B, first open the Flash Art Scrapbook in database A and
choose the Save Flash Art Scrapbook command (Picture Menu). Type in a name for the exported Flash Art
Dialog, and press Save. Now open the Flash Art Scrapbook in database B and choose the Import Flash Art
Scrapbook command. All of the pictures will be added to database B.

Page 820 Panorama Handbook
Displaying Images Directly From Disk Files

In addition to displaying images from the Flash Art Scrapbook, Panorama can also display images directly
from disk files. If the images are large, this can save a tremendous amount of memory. It also makes it easier
to edit the images. The downside is that if you move or copy the database to a new location you’ll have to
make sure to move or copy all of the images also. Here is a typical folder full of image files.

Chapter 16:Images & Movies Page 821
To allow Panorama to display images directly from disk files you must enable the Include Pictures on Disk
option.

Since the images are in the same folder as the database itself, only the image name is needed as the formula
(in this case the image name is in the field Fruit). All of the images have been removed from the Flash Art
Scrapbook in the database shown below (saving 782 kilobytes of memory - almost a megabyte!), so now the
images are displayed directly from the disk files.

Note: If the Flash Art Scrapbook is not empty, Panorama will look there first when trying to locate an image.
If the Flash Art Scrapbook contains an image with the correct name, it will be displayed, and Panorama will
ignore any disk file with the same name.

Page 822 Panorama Handbook
Displaying Images in a Different Folder (Directory)

Flash Art images don’t have to be in the same folder as the database—they can be in any folder (directory) on
your hard disk, or even on a removable media like a CD-ROM or a Zip disk. On the Macintosh, the exact
location of any file can be specified by stringing together the name of the volume (disk) and the folders, each
separated by a colon.

Windows systems are similar, but backslashes (\) are used instead of colons, and drive names always consist
of letters followed by a colon (A:, B:, C:, etc.).

For cross platform compatibility, Panorama also allows you to use colons when using Panorama for Win-
dows, like this:

C::Work in Progress:Ontario:Schedule.pan

A file’s location may also be specified relative to the current database. For example, suppose the current data-
base was in the Work in Progress folder. In that case you could specify the location of the Shedule.pan file by
simply leaving off left hand portion of the specification. The specification must begin with a colon or back-
slash to indicate that it is relative to the current folder and not an absolute location.

Alaska:Work in Progress:Ontario:Schedule.pan

C:\Work in Progress\Ontario\Schedule.pan

:Ontario:Schedule.pan

Chapter 16:Images & Movies Page 823
On PC systems you can specify this relative location like this:

However, keep in mind that on PC systems Panorama will accept : instead of \. Therefore, the specification

:Ontario:Schedule.pan

will work on both Windows and MacOS based computers. You should use colons if your database might ever
be used on both Macintosh and Windows computers.

\Ontario\Schedule.pan

Page 824 Panorama Handbook
To illustrate all of this with a real-world example, let’s revise the Fruit Nutrition database from the previous
section. Instead of placing all of the image files in the same folder as the database, we will move them to their
own folder, with that folder in the same folder as the database itself.

The Fruit Photos folder is said to be nested inside the Nutrition folder, which is the folder that actually con-
tains the database. To display the photos, the formula in our Super Flash Art needs to be modified.

The new formula combines the fruit name with the folder location. For example, if the fruit name is Apricot,
the result of the formula will be :Fruit Photos:Apricot — the exact location for the image.

folder name

leading colon tells Panorama this is a location
relative to the current database

Chapter 16:Images & Movies Page 825
A similar technique can be used to specify an absolute location for the image. Suppose you have a CD-ROM
named Groceries that contains the images nested within the Produce folder within the Photos folder. The for-
mula below could be used to display the images.

On the PC the CD-ROM drive is usually D:, so this would be the formula.

The photos do not have to be in a fixed location. Using a variable (see “Variables” on page 1221 and “Vari-
ables” on page 1369) and the folderpath(function (see “Disk Files and Folders” on page 1317) you can
allow the folder to be moved around.

Elsewhere in your database you can include a procedure (see “Procedures” on page 1345) like this to allow
the database user to select the folder containing the images.

local xFile,xFolder,xType
openfiledialog xFolder,xFile,xType,""
if xFile=""

stop /* stop because the Cancel button was pressed */
endif
photoFolder=xFolder /* update location of photos */
showvariables photoFolder /* make sure new photos are displayed immediately */

All of the previous examples have assumed that the images are all in the same folder. However, that is not
necessary. If you wish, the folder location may be included in the database itself, allowing different images to
be in different folders. The folder location may be combined in with the image name in a single database
field, or they may be stored in separate fields and combined in the Flash Art formula.

variable

Page 826 Panorama Handbook
Displaying Non PICT Images (Enhanced Image Pack)

The standard configuration allows Panorama to display images in PICT format. This is the standard format
for images on Mac OS computers, and is easily created using graphics programs on both Macintosh and Win-
dows computers. This illustration shows how the PICT format may be selected when saving a file in Adobe
Photoshop.

The optional Enhanced Image Pack gives Panorama the ability to display a wide variety of other image for-
mats. This table lists some of the most popular image formats that can be displayed with this option.

The Enhanced Image Pack requires that Apple Quicktime 4.0 or later be installed on your computer. If
Quicktime is not already installed on your system you can download it from www.apple.com . It is also
included on the Panorama CD.

Image Type PC Extensions Notes

BMP .bmp Windows and OS/2 bitmap

JPEG .jpg .jpeg JPEG compressed image

PNG .png Portable Network Graphics bitmap

TIFF .tif .tiff Tagged Image Format

GIF .gif Common web format

PHOTOSHOP .psb Adobe Photoshop

FLASHPIX .fpx FlashPix bitmap

TARGA .targa

Chapter 16:Images & Movies Page 827
Once the Enhanced Image Pack is installed on your system you can display any of these image formats by
name, just as with PICT images. This illustration shows how to display a fixed JPEG image.

Make sure you enable the Include Pictures on Disk option, as shown above. Here is the actual JPEG image
being displayed in the form.

Page 828 Panorama Handbook
Of course usually the images you display will be variable, not fixed. For example, suppose the fruit images
used in the previous examples were JPEG images instead of PICT format. In that case you could display the
images using this formula.

Or, if the images were nested in a different folder you could use a formula like this (see “Displaying Images
in a Different Folder (Directory)” on page 822).

In addition to displaying images the Enhanced Image Pack can also convert an image from one format into
another (see “Converting Between Image Formats” on page 1706). For more information on ordering the
Enhanced Image Pack visit our website at http://www.provue.com.

Image File Extensions in a Cross Platform Environment (MacOS and Windows)

On Windows systems all files have a three our four letter “extension” based on the type of data in the file. For
example, all Panorama databases end with .pan, all text files end with .txt, all PICT image files end with .pct
and all JPEG image files end with .jpg or .jpeg.

On Macintosh systems this extension is not necessary because the file itself contains information about what
type of data it contains. (However, for a few file types it is traditional to include the extension anyway, for
example JPEG or HTML files.)

For most databases you don’t need to worry about whether or not to use file extensions. If the database will
be used on a PC system, you use an extension, if it will be used on a Macintosh, you don’t. But what about
cross-platform databases that may be used on both platforms? Panorama is designed so that you can build a
single database that will automatically display images correctly on both platforms. Let’s see how it’s done.

As you learned earlier, Panorama uses the Flash Art formula to generate the name of the image to display
(see “Displaying Images Directly From Disk Files” on page 820). On Windows systems, this file name must
include an extension (.pct, .bmp, .jpg etc.). If it doesn’t, Panorama will automatically add .pct to the end of the
name. (Remember, .pct is the extension for PICT images, Panorama’s standard image format.) To illustrate
this, let’s go back to the fruit example we saw earlier. Here’s the formula:

Chapter 16:Images & Movies Page 829
On a Macintosh system this formula will simply generate the names of the fruits: Apple, Apricot, Avocado,
etc. But on a Windows computer the Panorama will automatically add the .pct extension: Apple.pct, Apri-
cot.pct, Avocado.pct etc. Therefore the same formula will automatically work on both Macintosh and PC
computers. (If you use the Panorama Platform Converter to convert your database from Mac to PC it will
automatically add the .pct extension to all of your image files fro you, or remove the extension when moving
from PC to Mac. See “Panorama Platform Converter” on page 1738 for more information on the Platform
Converter.)

When you use Panorama on a Macintosh system it doesn’t normally add the .pct extension. However, there is
one exception. If the name of the database ends with .pan, Panorama will automatically add the .pct exten-
sion to any image file name that does not already include an extension. This allows you to create a database
that may be shared on a server between Mac and PC systems. The same database can be used on either sys-
tem with no conversion. However, this also means that when the database name ends with .pan images that
do not have any extension (for example Apple or Tomato) cannot be displayed, only images that do have
extensions (for example Apple.pct or Tomato.pct). (This restriction does not apply, however, to images in the
Flash Art Scrapbook, see “The Flash Art Scrapbook (Gallery)” on page 816.)

Page 830 Panorama Handbook
Super Flash Art™ Options

The SuperObject™ Flash Art configuration dialog has numerous options for customizing each object you cre-
ate.

Formula

This section of the dialog contains the formula that calculates the image name. The formula may be up to 255
characters long (to create longer formulas, see the next paragraph). Use this formula to combine one or more
fields and/or variables into a picture name. See “Formulas” on page 1185 to learn more about Panorama’s
formula capabilities.

Formula in a Variable. If the first character of the formula is @ Panorama treats the rest of the line as a variable
name instead of a formula. This variable must contain the actual formula for calculating the image name.
Using this technique if your formula is over 255 characters (a variable may contain an unlimited number of
characters) or if the formula needs to change under different conditions. See “Variables” on page 1221 and
“Variables” on page 1369 to learn more about variables.

Before you can use this feature you must set up a variable that contains the actual formula you want to use.
Here’s an example that set’s up a variable named PhotoFlash to display JPEG images.

fileglobal PhotoFlash
PhotoFlash={PhotoName+".jpg"}

The Super Flash Art formula would be set up to use this variable. Remember, to use this option the first char-
acter must be the @ symbol.

Later you could change the formula to display PICT files like this.

PhotoFlash={PhotoName+".pct"}

variable name

Chapter 16:Images & Movies Page 831
Default

This is the name of the default image that should be displayed if Panorama cannot locate an image with the
name specified by the formula. For example, consider the Fruit database used in the previous example. Sup-
pose you encounter a new type of fruit for which you don’t have a picture? You could simply leave the image
blank. Or, you could create a default image that will be used in these situations, like this.

Now you can specify this image as the default. Notice that no quotes are needed (or allowed!). The default
image cannot be changed on the fly — it is not specified by a formula like the main image.

Now if you add a new fruit to the database for which there is no picture, the default image, Exotic Fruit, will
be displayed.

Page 832 Panorama Handbook
Alt File

This option allows one database to share the images in its Flash Art Scrapbook with another database. Both
databases must be open for this to work. Usually you would use this option when you have a group of data-
bases that are always used together. All the images could be stored in a single database, saving memory. (This
option only applies to images in the Flash Art Scrapbook (see “The Flash Art Scrapbook (Gallery)” on
page 816). Images in separate disk files (see “Displaying Images Directly From Disk Files” on page 820) can
be accessed by any database at any time.)

For example, suppose you had a Grocery database that was always used with the Fruit database created ear-
lier. A flash art object in the Grocery database can display fruit images in the Fruit database, as long as the
Fruit database is open.

Even if the database containing the images is in a different folder, you should only type in the name of the
database. Since the database must be open in memory, Panorama doesn’t need to know the location of the
database on the disk.

Include Pictures on Disk

Check this option if you want images in separate disk files to be displayed. Panorama will check the Flash Art
Scrapbook first, then check to see if there is a PICT file with the name specified by the formula. For more
information on this option see “Displaying Images Directly From Disk Files” on page 820.

Display Group of Pictures

Enabling this option allows multiple images to be displayed in one spot. The images must be designed to
overlay on top of each other. The most common application for this option is to display a map. You start with
a base map, then overlay information on top of it. The Display Group option is designed to be used with a
summary record (see “3-Step Summarizing” on page 453). It will automatically display all of the images
belonging to the data records above the summary record.

Chapter 16:Images & Movies Page 833
To illustrate this option we’ll use a database with presidential election data. The database has been grouped
to total up the electoral votes for each state, and for each election.

We’ll start with a base map of the United States, as shown in the illustration below. This base map is simply a
fixed image that has been pasted into the form (see “Fixed Images” on page 797).

Page 834 Panorama Handbook
To create our final map we’ll need an overlay map for each of the 50 states. The overlay map must be
designed to fit right on top of the base map. Here’s the overlay map for California.

Here’s the overlay map for Maine.

It can take a lot of work to set up the overlay maps! Once they are complete, you are ready to build a compos-
ite map — in this case showing the results of the presidential election.

Chapter 16:Images & Movies Page 835
To build the composite map you need to create a Super Flash Art object directly on top of the base map. The
Super Flash Art Object must exactly match the position and size of the base map, so that the overlay maps
will line up with the base map. Here’s the configuration dialog for this Super Flash Art object. The formula
uses the ?(function to decide whether or not to display the overlay map for a particular state (see “The ?
Function” on page 1287). If the electoral vote for the Republicans is greater than the vote for the Democrats,
the overlay is displayed (so in this case the state will be displayed in red). If the Democrat vote is larger, the
overlay is not displayed (so the state remains in white).

It can be tricky to get the overlay Flash Art SuperObject to line up exactly with the fixed map. Here’s an easy
way to do it. Start by selecting both of the objects (see “Selecting Multiple Objects at Once” on page 559).

fixed image

overlay
(flash art)

Page 836 Panorama Handbook
Now use the Align Objects command to line up the objects (see “Aligning Objects” on page 605). Start by
aligning the top and bottom…

Then repeat the Align Objects command to line up the left and right edges.

Chapter 16:Images & Movies Page 837
Now let’s see what our composite map looks like. Using the data sheet, we move to a state that was won by
the Republicans.

The formula tells Panorama to display the overlay map for this state.

Page 838 Panorama Handbook
You can move from state to state, viewing the results for each state. When you get to the summary record,
however, something different happens. Here’s the summary record.

Now here’s the map. Because the Display Group of Pictures option is enabled, Panorama displays the overlay
map for every state with a Republican victory that year. You can easily see that Gerald Ford swept the west,
while Jimmy Carter took the South.

A really powerful combination is to create multiple overlay maps with different colors and/or gray levels,
and then select the appropriate color using the formula. For example you could use different colors to indi-
cate different market penetration levels, or pollution levels, etc.

Border

If this option is enabled, Panorama will draw a 1 pixel border around the Super Flash Art object.

Drop Shadow

If this option is enabled, Panorama will draw a simulated drop shadow slightly below and to the right of the
Super Flash Art object.

Chapter 16:Images & Movies Page 839
Overflow

This option is used in conjunction with an overflow tile for printing images that are more than one page high.
See “Printing Data that Overflows a Page” on page 1122 for more information on multi-page overflow print-
ing.

Scroll Bars

If you expect that the images you will be displaying may be too large to fit into the dimensions of the Super
Flash Art object, you can enable scroll bars that will allow the user to shift around and view different parts of
the picture. You can enable a Vertical scroll bar, a Horizontal scroll bar, or both.

You also have the option of leaving space for a Grow Box in the lower right hand corner of the Super Flash
Art object. The Grow Box is simply a 16 by 16 pixel box that is left empty. It’s up to you to draw an icon in this
area (if you want). If the bottom right hand corner of the Super Flash Art object is in the same position as the
bottom right hand corner of the window, you can disable the window’s normal scroll bars and use the Super
Flash Art object’s scroll bars and Grow Box instead (see “Elastic Forms” on page 940).

Align

The dimensions of the picture being displayed often do not exactly match the size of the Super Flash Art
object. This section of the dialog specifies how the picture should be adjusted if it is too large or too small for
the Super Flash Art object.

scroll bars

Page 840 Panorama Handbook
The left side of this section contains nine radio buttons in a tic-tac-toe arrangement. These buttons allow the
picture to be aligned within the Super Flash Art object. The picture can be aligned with any corner, centered
on any side, or centered in the middle of the object. Wherever the object is aligned, it will be displayed actual
size; i.e. it will not be enlarged or reduced. For example, here is an image displayed in the top left corner.

Here is the same image displayed in the middle center.

Chapter 16:Images & Movies Page 841
And again in the bottom right.

The Scale to Fit option will enlarge, reduce, and/or stretch the picture so that it exactly fits in the Super Flash
Art object. The picture may be distorted to make it fit, as you can see in this illustration.

Page 842 Panorama Handbook
The Proportional option will enlarge or reduce the object as much as possible so that it will fit into the object,
but it will not distort the picture. In other words, it will not change the proportions of the picture.

If the proportions of the original picture do not match the proportions of the Super Flash Art object, Pan-
orama will leave a border along the top and bottom or left and right. We’ve added a gray background to this
example so you can clearly see the borders. (The gray background is simply a solid rectangle object placed
behind the Flash Art SuperObject.)

Chapter 16:Images & Movies Page 843
Depending on the aspect ration of the image (width vs. height) the borders may also be on the sides instead
of the top and bottom, like this.

Keep in mind that the Scale to Fit and Proportional options may be used to reduce an image as well as to
enlarge it. Here’s a typical reduced image that has been scaled down with the Proportional option.

Page 844 Panorama Handbook
The Tile option displays the picture over and over again in a tile arrangement, starting from the upper left.
This option allows you to cover a large area with a small picture.

The only disadvantage of this technique is that if the original picture is really small there will be a perceptible
delay as the tile pattern is drawn.

Displaying Images from Resource Files

Super Flash Art normally displays images from the Flash Art Gallery or directly from disk files. However,
images can also be displayed from resource files. An image can be placed in a resource file using a program
like ResEdit or Resourcerer. Before an image can be displayed from a resource file the file must be opened
with the openresource statement. See “Working with Resources” on page 1532 to learn how to do this.

To display an image from a resource file you must use a special prefix as part of the Super Flash Art formula.
If the formula begins with // , the rest of the formula is treated as the name of the resource to be displayed.
For example, this formula would display the resource picture named Blue Sky.

"//Blue Sky"

If the formula begins with ## , the rest of the formula is treated as the number of the resource to be displayed.
For example, this formula would display the resource picture number 4387.

"##4387"

Chapter 16:Images & Movies Page 845
Displaying Icons from Resource Files

To display an icon (ICON or CICN resource) use the prefix #* . Icon resources can be created with ResEdit or
Resourcerer. Unlike a picture, an icon definition includes a mask that allows the image to have an irregularly
shaped edge (not just rectangular). This allows the icon to display correctly on a colored background. Here is
a formula that will display ICON 3981.

"#*3981"

Displaying Form Preview Pictures

Panorama allows you to attach a special preview picture to any form (see “Form Comments” on page 1733).
This picture can be displayed with a Super Flash Art object. To display the preview picture for any form in
the current database use a formula with the format ;;<form name> . For example, this formula will display
the preview picture for the form named Avery 4932 (if any).

";;Avery 4932"

To display the preview picture for a form in another database use a formula with the format
;;<database>:<form name> . For example, this formula will display the preview picture for the form
named Avery 4932 in the Mailing Labels database (if any).

";;Mailing Labels:Avery 4932"

The database containing the form (in this case Mailing Labels) must be open to display the picture.

Page 846 Panorama Handbook
“Classic” Flash Art Objects

In addition to the Super Flash Art object described throughout most of this chapter Panorama also has a
“classic” Flash Art object. When Super Flash Art objects were added as part of Panorama 3.0, “classic” Flash
Art objects were retained for compatibility with older databases. We recommend that you use Super Flash
Art for new applications.

Using “classic” Flash Art objects is very similar to working with Super Flash Art objects. The Flash Art tool
looks like a lightbulb and is part of the standard Panorama tool palette.

To create a “classic” Flash Art object select this tool and drag the mouse across the form (see “Creating Super
Flash Art Objects” on page 807). The configuration dialog for a “classic” Flash Art object looks like this.

The options in this dialog are a subset of the options in the Super Flash Art object. See “Super Flash Art™
Options” on page 830 for a description of each option. Note: The “classic” Flash Art formula is limited to 30
characters, not 255 like the Super Flash Art version.

Chapter 16:Images & Movies Page 847
Storing Images in a Field

Flash Art is the recommended method for displaying images in a Panorama database. Panorama does, how-
ever, have another method for storing and displaying images. Instead of using Flash Art you can actually set
up a Picture field and store the images directly in the database. This has many disadvantages—it uses up
gobs of memory and you have no control over the alignment or scaling of the image. Nevertheless, this has
been an option since the first version of Panorama and is retained for compatibility with databases that may
use this feature.

To store images directly in the database, the database must contain a field that is set up using the picture data
type. You can set up this data type using the Field Properties dialog (see “Setting Up a Field’s Data Type” on
page 352).

You can also set up a Picture type field with the design sheet (see “The Design Sheet” on page 332).

The Picture data type cannot be used in the data sheet—you must set up the form. Create a Data Cell object
for the picture field (see “Working with Data Cell Objects” on page 685). The Text Display Object should be
large enough to display the largest picture you want to use. For other fields you may use either Data Cells,
Text Editor SuperObjects, Text Display SuperObjects or Auto-Wrap text objects.

picture field

text and numeric fields

Page 848 Panorama Handbook
Once the form is set up, switch to Data Access Mode. The text and numeric fields can be filled in using the
normal techniques (i.e. the keyboard).

Now for the picture. Start by clicking on the picture cell to select it.

The next step is to go into your graphics application (Photoshop, etc.), locate the image, and copy it onto the
clipboard.
x

Chapter 16:Images & Movies Page 849
Now go back to Panorama and use the Paste command to paste the image into the database.

When a normal data cell is selected, the text in that cell switches to a negative image, with white text in a
black background. As you can see, the same thing happens with a picture data cell. When the data is selected,
the picture appears in reverse, like a photographic negative. When another data cell is selected, the normal
picture image will appear.

You cannot edit a picture by double clicking on the data cell, nor can you sort or select using a picture field or
use a picture field as part of a formula. In the data sheet the picture field appears to be blank, and Panorama
will not allow you to double click on the field.

Page 850 Panorama Handbook
Displaying Movies in a Form

Panorama’s Super Flash Art object is capable of displaying movies as well as still images. To do this you must
have Apple’s QuickTime software installed on your computer. If you don’t have this software you can down-
load it from www.apple.com for either Macintosh or Windows PC systems.

The first step in displaying movies is to create some movie files.

Next, you’ll need to create a database. In this case we created a very simple database that has the artist’s
name along with the name of the movie (we’ll add the .mov extension in a moment).

same as movie names above

Chapter 16:Images & Movies Page 851
To display the movies we’ll need to create a form, and then to create a Super Flash Art object within the form
(see “Creating Super Flash Art Objects” on page 807). Unlike still images, movies always require you to spec-
ify the complete location of the file. The formula below shows how to do that (assuming that the movies are
in the same folder as the database) and also adds the .mov extension. Make sure that the Include Pictures on
Disk option is enabled, because a movie cannot be pasted into the Flash Art Scrapbook.

Switch to Data Access Mode to try out the movie. The normal QuickTime controls appear at the bottom of the
Super Flash Art object.

name of movie
(from database)

formula for
current folder

volume

play/pause
fast forward/rewind

frame advance/rewind

Page 852 Panorama Handbook
To see a different movie simply move to the record for the movie you want to view.

In Graphics Mode editing a Super Flash Art object that is set up to display a movie can be a bit tricky. Even
though you are in Graphics Mode, clicking on the movie tends to activate the movie controls instead of
selecting the object. If you have difficulty, try dragging a marquee around the object instead of clicking on it
(see “Selecting Multiple Objects at Once” on page 559). Instead of double clicking on the object to open the
configuration dialog, try using the Object Properties command in the Edit menu.

Once a movie has been set up it can be controlled with a procedure as well as with the movie control strip.
The procedure can start and stop the movie, move to a specific spot within the movie, change the playback
rate and the volume. To learn how to program a movie see “Super Flash Art Commands (Including Movie
Control)” on page 1702.

For those of you that can’t stand not knowing who Marty Goetz and Angelique Kidjo are, check them out at
http://www.martygoetz.com (Marty Goetz) and at http://wwwusers.imaginet.fr/~kidjo/home.html (Angeli-
que Kidjo).

Chapter 17: Buttons & Widgets

The Industrial Revolution introduced machinery with all kinds of knobs, levers, and doo-dads. In our elec-
tronic age these have been replaced by virtual push buttons, checkboxes, “radio” buttons, pop-up menus,
scrolling lists, and other widgets. Panorama has a number of tools for incorporating these types of controls
into your forms.

Although most of the buttons and widgets discussed in this chapter can be used without programming, most
of them are often combined with Panorama procedures. Because of this, we will often reference procedures
and programming techniques throughout this chapter. Before reading this chapter you may want to skip
ahead and learn how to create and work with procedures (see “Procedures” on page 1346) and variables (see
“Variables” on page 1221).

Push Buttons

Push buttons have one mission in life—to start something. In Panorama, clicking on a push button triggers a
procedure (see “50 Ways to Trigger a Procedure” on page 1442). You push the button and the program starts,
simple as that. Panorama has three different types of button objects—Super Object Push Buttons (next sec-
tion), “Classic” Button Objects (see ““Classic” Push Buttons” on page 860) and Flash Art Push Buttons (see
“Flash Art™ Push Button SuperObjects™” on page 862).

Super Object Push Button

The SuperObject Push Button makes it easy to create attractive buttons that trigger procedures. Unlike Pan-
orama’s standard button tool, the SuperObject Push Button can create circular or oval buttons, and buttons
with various 3-D effects.

Page 854 Panorama Handbook
The SuperObject Push Button tool is not in the default tool palette, so you’ll need to use the Tool Palette dia-
log to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Chapter 17:Buttons & Widgets Page 855
Once the tool is selected, drag the mouse across the form in the location where you want to create the button.
\

When you release the mouse, the SuperObject Push Button configuration dialog will appear.

Use the pop-up menu to select the procedure that will be triggered by this button. The button can trigger any
procedure in the current database. (If you haven’t created the procedure yet you can still create the button,
then go back later and choose the procedure.)

Page 856 Panorama Handbook
Usually you’ll want to set up a title for the button, and a style. The title can be the same as the procedure
name or it can be different.

When you press the OK button the new button will appear in your form.

You can modify the appearance of the title with the Font and Size menus (see “Font” on page 581 and “Text
Size” on page 583). To re-open the configuration dialog you can either double click on the button or select the
button and open the dialog with the Object Properties command in the Edit menu.

Push Button Styles

There are over a dozen controls for changing the push button appearance. The primary control is the button
style.

Rectangle: This button style has square corners.

Chapter 17:Buttons & Widgets Page 857
Rounded Rectangle: This is a standard two dimensional button. Panorama will display the name of the but-
ton inside the button. If you want this to look like a standard Macintosh button, you should use Chicago 12
point type.

Circle/Oval: This style has an oval border. If the button’s dimensions are square the button will be a circle.

3D Rectangle: This style looks like a 3 dimensional rectangle with beveled edges.

3D Rounded: This style looks like a 3 dimensional rounded rectangle with beveled edges on all four sides.

3D Circle/Oval: This style looks like a 3 dimensional oval with beveled edges.

Beveled Rectangle: This style looks like a 3 dimensional rectangle that is beveled on the top and bottom. This
style looks a lot like the buttons on many VCR’s and stereos.

Note: On black and white (b/w) monitors, Panorama automatically converts the 3D buttons to the corre-
sponding 2D button.

Page 858 Panorama Handbook
Button Title

The button title is the title that appears on the button. This title will be centered in the middle of the button.
The procedure that is triggered by the button can find out what button was pressed with the
info("trigger") function. This function will return Button. followed by the title of the button. Using this
function you can have several buttons that trigger a single procedure. The procedure can then use the
info("trigger") function to find out which button was actually pressed. The procedure will usually use
if or case statements to decide what button was pressed, like this.

local actionDate
case info("trigger") = "Button.Mon" actionDate=date("Monday")
case info("trigger") = "Button.Tue" actionDate=date("Tuesday")
case info("trigger") = "Button.Wed" actionDate=date("Wednesday")
case info("trigger") = "Button.Thu" actionDate=date("Thursday")
case info("trigger") = "Button.Fri" actionDate=date("Friday")
endcase
select Date=actionDate

Advanced Note: In this particular case, there is an easier way to write this procedure. Instead of using case
statements for each button, this procedure simply uses a text funnel to strip out only the name of the day.

select Date=date(info("trigger")[8,-1])

You can often use a trick like this if you choose your button names carefully. See “Taking Strings Apart (Text
Funnels)” on page 1236 for more details about text funnels.

Title Positioning

Panorama attempts to center the title both vertically and horizontally within the SuperObject push button.
However, some fonts have non-standard vertical dimensions and need an adjustment to center properly. If
necessary, you can adjust the title’s vertical position with the +/- option. For example, to move the title up by
2 pixels, enter 2 (or +2) into this option. To move the title down by one pixel enter -1.

3D Title

If the 3D Title option is turned on, Panorama will display the title with a white shadow, giving it an “etched”
3D look. Note: On black and white (b/w) monitors, Panorama ignores this option and displays the title nor-
mally.

Hide Title

This option hides the title. In other words, the button will be blank, even though it has a title. Use this option
if you want to place some graphics on top of the button. The title will be invisible so that it will not interfere
with the graphics, but the procedure can still find out the title with the info("trigger") function.

Chapter 17:Buttons & Widgets Page 859
Click/Release

Unlike most options, Click/Release is enabled by default—you have to turn it off if you don’t want it. When
this option is enabled, the button acts like a normal button—it highlights when you press on it, then activates
(triggers a procedure) when you release the mouse.

If you decide you don’t want to activate the button you can pull the mouse away before you release.

When the Click/Release option is disabled, there is no highlighting when you press the mouse. Instead, the
procedure is triggered immediately as soon as you press the mouse. There’s no chance to back out by pulling
away from the button.

Color Options

Like other graphic objects, you can assign any color to a Push Button (see “Color” on page 580). Unlike most
other types of objects, however, you can control what portions of the button are displayed in color. The four
options are:

Title: If this option is checked, the title will be displayed in color, otherwise the title will be displayed in black.

Border: If this option is checked, the border will be displayed in color, otherwise the border will be displayed
in black. The option can be used with 2D or 3D buttons, like this.

Fill: This option only applies to 3D buttons. If the Fill option is checked, the body of the button will be dis-
played in color instead of gray.

This option only looks good with a few very light colors (use your judgement).

Highlight: If this option is checked, the button will highlight in color when you press on it. For 2D buttons,
Panorama simply displays the highlight color when the button is pressed (without this option the button will
turn black when pressed).

move mouse
over button press mouse release mouse over button

to trigger the procedure

move mouse
over button press mouse pull away and release if

you’ve changed your mind

normal pressed

Page 860 Panorama Handbook
For 3D buttons, Panorama will use the selected color instead of the dark gray it normally uses.

Note: Both 2D and 3D buttons will ignore this option if the Click/Release option is not checked.

“Classic” Push Buttons

In addition to the Super Push Button object described in the previous section Panorama also has a “classic”
Button object. When Super Push Button objects were added as part of Panorama 3.0, “classic” Push Button
objects were retained for compatibility with older databases. For most applications we recommend that you
use Super Push Button for new applications. However, the “classic” Button tool does have one capability
missing in the Super Push Button—the ability to create transparent push buttons.

Using “classic” Button objects is very similar to working with Super Push Button objects. The Button tool
looks like a button and is part of the standard Panorama tool palette.

To create a “classic” Button object select this tool and drag the mouse across the form (see “Super Object Push
Button” on page 853). The configuration dialog for a “classic” Button object looks like this.

normal pressed

Chapter 17:Buttons & Widgets Page 861
The “classic” button object can actually create three types of buttons: push buttons (round rect, rectangle, or
transparent), data buttons (checkbox or radio button) and pop-up menus. In this section we’ll just concen-
trate on push buttons. See ““Classic” Checkbox and Radio Buttons” on page 882 and ““Classic” Pop-Up But-
tons” on page 893 to learn about the other capabilities of the “classic” button object.

At the top of the dialog is a pop-up menu that allows you to select the procedure triggered by this button. The
button can trigger any procedure in the current database. (If you haven’t created the procedure yet you can
still create the button, then go back later and choose the procedure.)

The next line is the button title. This is the title that appears centered on the button. The triggered procedure
can find out the button title with the info("trigger") function. See “Button Title” on page 858 to learn
more about this function and button titles.

The On and Off options are only used for checkboxes and radio buttons. These options will remain dim as
long as one of the push button options (round rect, rectangle, or transparent) are selected.

There are three classic push button styles: round rect, rectangle and transparent.

Rounded Rectangle: This is a standard two-dimensional button. Panorama will display the name of the but-
ton inside the button. If you want this to look like a standard Macintosh button, you should use Chicago 12
point type.

Rectangle: This button style has square corners.

Transparent buttons are described in the next section.

Transparent Push Buttons

A transparent button is just that—transparent. It’s invisible (including the title). However, in Graphics Mode
Panorama does display a dotted line around the button to help you locate it for editing.

transparent button

Page 862 Panorama Handbook
When you switch to Data Access Mode the button completely disappears.

Even though the button is invisible, you can still click on it and trigger the procedure if you know where it is.

Sometimes you may really want a button to be completely invisible—for example a secret button that only
you know about. However, it’s more common to overlay a transparent button over a graphic image, turning
the image into a button.

In Data Access Mode you can now click on the “hand button” to trigger a procedure.

The illustration above shows what happens when you click on a transparent button with the Click/Release
option turned on. If this option is turned off, the procedure will trigger immediately when the mouse is
clicked, without highlighting (reverse image) the button. See “Click/Release” on page 859.

Flash Art™ Push Button SuperObjects™

The Flash Art Push Button SuperObject™ lets you use images in the Flash Art gallery (see “The Flash Art
Scrapbook (Gallery)” on page 816) to create push buttons that trigger procedures. You can use any applica-
tion that can create PICT images to draw your button: Photoshop, Canvas, Freehand, etc. It takes more work
to create a Flash Art™ Push Button, but you have the flexibility to create any kind of button you want!

image

transparent button

Chapter 17:Buttons & Widgets Page 863
The first step in creating a Flash Art Push Button is to create two Flash Art images: the first showing the but-
ton in it’s “normal” (unpressed) state and the second in its “activated” (pressed) state. When the button is
clicked, Panorama will automatically switch between these two pictures as the button is pressed with the
mouse. (The two pictures should have exactly the same dimensions or you will notice a shift as the mouse is
pressed on the button.) The second picture must have the same name as the first picture, but with .DOWN
added to the end. For example, if the “normal” picture is called Download, the “activated” picture must be
called Download.DOWN.

(Note: The Flash Art Push Button will display your pictures actual size, without any scaling or resizing. If the
button you create is smaller than the picture, the picture will be cropped. If the button is larger than the pic-
ture, the picture will appear in the upper left hand corner of the button.)

Page 864 Panorama Handbook
Once the pictures have been created, you are ready to create the button itself. Select the Flash Art Push But-
ton tool and drag across the form to create the button. (If the tool is not currently installed, use the Tool Pal-
ette dialog to install it — see “Customizing the Tool Palette” on page 554.)

When you release the mouse the configuration dialog will appear.

Select the procedure to be triggered and enter the title for the button (the title is not displayed but is returned
by the info("trigger") function).

The Formula box is used to specify the pair of pictures displayed by this button. If you always want to use the
same two pictures, simply enter the name of the “normal” picture surrounded by quotes, for example
"Download". The formula can also be set up so that the picture used for this button changes depending on
circumstances—for example, you might want to use a different button for black and white vs. color monitors
(using the info("windowdepth") function) or a different button in the morning vs. the afternoon.

The Alt File option allows the button to display pictures stored in the Flash Art gallery of another database
(the other database must be open). Enter the name of the database here. See “Alt File” on page 832 for more
information on this option.

Flash Art Pushbutton tool

Chapter 17:Buttons & Widgets Page 865
The Include Pictures on Disk option allows the button to display pictures that have been stored as PICT files
on the disk. Normally these files should be in the same folder as the database itself, however, you may supply
a file path as part of the Formula (see “Displaying Images Directly From Disk Files” on page 820).

The Flash Art Push Button tool allows you to make virtually any custom button you want. Here’s what our
finished button looks like in use.

When you click on the button, the second image appears. This gives you complete control over the appear-
ance and highlighting of the button.

Your imagination is the only limit to the buttons you can create.

Page 866 Panorama Handbook
Data Buttons

Data buttons are buttons that have a value associated with them. The value may be stored in a database field
or in a variable (see “Variables” on page 1221 and “Variables” on page 1369). An on/off data button is usually
called a checkbox.

Data buttons may be grouped together as radio buttons. Only one button in the group may be selected at a
time.

Panorama also allows you to build a group of buttons where more than one member of the group can be
selected at a time. See “Multiple Value Button Groups” on page 873 to learn more about this option.

Chapter 17:Buttons & Widgets Page 867
Data Button SuperObjects™

The Data Button SuperObject™ tool can be used to create checkboxes and radio buttons in a variety of styles.
Unlike the “classic” button tool, this tool can work with global variables as well as fields. The SuperObject
Data Button tool is not in the default tool palette, so you’ll need to move the use the Tool Palette dialog to add
this tool to the palette if it is not already there (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Page 868 Panorama Handbook
Once the tool is selected, drag the mouse across the form in the location where you want to create the button.
\

When you release the mouse, the SuperObject Data Button configuration dialog will appear.

At a minimum you must select a field or variable to store the value, and enter a Title. When you press OK the
new button will appear on the form.

Chapter 17:Buttons & Widgets Page 869
To try out the button, switch to Data Access Mode. Since this button’s value is stored in a field we can use the
data sheet to watch the value as the button is checked and unchecked.

Clicking on the checkbox causes Panorama to fill the field or variable with the value.

If you click again to un-check the button the field or variable will become empty again. (You may wonder if
typing the value into the Data Sheet will cause the button to become checked. The answer is yes!)

Creating a Group of Radio Buttons

The easiest way to create radio buttons is to create a single button and then make copies. For example, sup-
pose you want to make radio buttons for shipping options — Priority Mail, UPS Next Day Air, Federal
Express, Airborne and DHL. Start by selecting the Data Button tool (see previous section) and dragging to
create the first button.

when button is un-checked…
field or variable is empty

when button is checked…
field or variable is filled with value

Page 870 Panorama Handbook
The field or variable and title are set up exactly the same as for a checkbox. You should also enable the
“Radio” button option, and select a radio button style from the list of styles on the right hand side of the dia-
log. (Note: The visual style does not affect the operation of the button, so Panorama will happily let you cre-
ate a radio button that looks like a checkbox, or vice versa.)

Press OK to create the first radio button.

To duplicate this button, make sure that the Pointer tool is selected and hold down the Shift key and the
Option (Mac)/Alt (PC) key while you drag the button. When you release the mouse Panorama creates a copy
of the selected object (see “Drag Duplicating” on page 613).

Chapter 17:Buttons & Widgets Page 871
To make additional copies simply use the Duplicate command (see “Step and Repeat” on page 614).

Now you need to go back and change the title of each button (except the first). To change the title, simply
double click on the button, then fill in the new title.

All the other options remain the same — only the title needs to be changed.

Repeat this process for each button in the group.

Page 872 Panorama Handbook
If necessary, you can adjust the spacing of the buttons with the Spacing command (see “Setting Exact Dimen-
sions of Multiple Objects” on page 602 and “Adjusting Spacing Between Multiple Objects” on page 608).

You can also adjust the width of the buttons using Cluster Resize (see “Cluster Resize” on page 593).

To try out the buttons, switch to Data Access Mode. Since the button’s value is stored in a field we can use the
data sheet to watch the value as the different buttons in the group are checked. To start out, none of the but-
tons are checked and the field is empty.

When a button is checked, the corresponding value appears in the field.

Chapter 17:Buttons & Widgets Page 873
Clicking on any button causes the corresponding value to appear in the field.

The synchronization between buttons and the field also works in reverse. If you type a value into the data
sheet, the corresponding button will be activated. If none of the buttons match the value, all of the buttons
will be turned off.

The buttons can also be completely turned off by clearing the contents of the field (making it empty).

Multiple Value Button Groups

A group of radio buttons works find as long as only one value at a time is valid. You can’t ship a package by
both Priority Mail and Federal Express, only one or the other! Some applications, however, require that mul-
tiple options be selected. For example, consider a group of buttons for selecting pizza toppings.

In this application there may be zero, one, two, or even 12 values at one time! There are two ways to create a
group of buttons like this.

The first method is simply to create a field or variable for each option, and then create a standard checkbox
for each field. See “Data Button SuperObjects™” on page 867 to learn how to create a checkbox.

Page 874 Panorama Handbook
The second method allows you to combine all of the values into a single field. Just as with a group of radio
buttons, you’ll start by creating a single button and making copies (see previous section). However, instead of
enabling the “Radio” button option you’ll enable the Allow Multiple Values option. You also need to specify
what character(s) you want placed between each value. In this example, we’ve chosen a comma.

Set up the first button using the options shown above. Then make copies of the button and adjust the titles,
just as described for radio buttons in the previous section.

Switch to Data Access Mode to try out the group of buttons. When a single option is clicked the value appears
in the field, just as for a standard checkbox. (A Text Display SuperObject has been added to the form to dis-
play the value of the Toppings field, see “Text Display SuperObjects™” on page 658 to learn how to create
such an object.)

When a second button is clicked, that value is added to the field.

Chapter 17:Buttons & Widgets Page 875
You can keep adding as many values as you like.

If you un-check a button, that value will be removed from the field (or variable). In this case we have
removed Peppers.

If Peppers is re-enabled, it is added to the end of the value. You cannot control the order of the options within
the field or variable.

If you un-check all of the buttons the field will become completely empty.

Like other types of buttons, the synchronization between the buttons and the field or variable works both
ways. You can type in a value or combination of values into the field or variable and the appropriate buttons
will automatically “light-up.”

Page 876 Panorama Handbook
Super Data Button Options

The left hand side of the Data Button dialog controls the operation of the button, the right hand side controls
the appearance of the button.

Data

This section of the dialog specifies the field or variable associated with this button. Type the name of the field
or variable into the box (or select the field name from the pop-up menu next to the Field radio button). If the
button is associated with a variable that has not been created with a procedure, Panorama will automatically
create a global variable with this name whenever the button appears. This global variable can be used in for-
mulas and procedures just like any other global variable (see “Variables” on page 1221 and “Variables” on
page 1369).

Title

This section of the dialog specifies the title of the button. This is the title that is actually displayed on the
screen. If the value is empty (see next section) Panorama will use the title as the value.

Value

This section of the dialog specifies the data value corresponding to this button. Each button can have a single
value, which you should type into the box next to the word Value. If you leave this box empty, Panorama will
use the Title for the data value (see previous section). This example shows how you can use a value that is dif-
ferent from the title.

Chapter 17:Buttons & Widgets Page 877
Using this technique you can make a group of radio buttons for western states.

The State field will not contain the fully spelled out state names, but only the 2 letter abbreviations (AZ, CA,
NV, etc.).

Allow Multiple Values

It’s possible to group together multiple buttons associated with the same field or variable. Normally clicking
any button in the group erases the current value and replaces it with the new value (normal radio button
behavior). However, if you have the Allow Multiple Values option turned on, clicking on the button will add
the new value to the existing data in the field or variable, with the Value Separator in between.

As an example of the Allow Multiple Values option, consider pizza toppings. A pizza may have one, two,
three or more toppings, or even none at all. Using the Allow Multiple Values option, you can create a series of
checkboxes that will generate a list of toppings in a single field or variable. As the user clicks on each topping,
it will be added to the end of the list. To remove a topping from the list, click on it again. See See “Multiple
Value Button Groups” on page 873 for an example of this technique.

Value Separator

This is the text that will appear between each value in a multiple value list. Common separators include com-
mas, spaces, slashes and hyphens. The separator may be up to 6 characters long, so you can use a multi char-
acter separator like comma-space. (However, if you want to process the value with Panorama’s array
functions you should use only a single character separator. See “Text Arrays” on page 1257 for more informa-
tion on these functions.

"Radio" button

The data button normally toggles the value on and off each time you click on it. Turning on the “Radio”
button option prevents the button from toggling off. In other words, you can turn the button on, but you can’t
turn it off again. Usually this option is only used for radio button combinations, where the value will be auto-
matically turned off by clicking on another button in the group. This option prevents the user from turning
off all the buttons in the group, so there is always at least one radio button checked.

Procedure

This section of the dialog specifies the procedure that will be triggered when this button is clicked (if any).
The procedure can get information about what button was clicked by using the info("trigger") function.
Even if you don’t specify a procedure here, clicking on the button will trigger any automatic formulas and
procedures associated with the field for the button (see “Automatically Triggering a Procedure” on page 416).

Page 878 Panorama Handbook
Sample

This section of the dialog shows a sample of the button. You can select the button style from the scrolling list
on the right. Click on the sample button on the left to see what the button style will look like in both the on
and off positions.

Here are some of the built-in choices available. (If you need to create your own custom button, use the Flash
Art Data Button, see “Flash Art Data Button SuperObjects™” on page 879).

Color buttons will automatically be displayed in black and white on a black and white monitor. Note: Button
operation is not affected by the button’s appearance. You can create a button that “looks” like a radio button
but acts like a checkbox, or visa versa.

click here to try out button

select button style from this list

Chapter 17:Buttons & Widgets Page 879
Flash Art Data Button SuperObjects™

Flash Art Data Buttons are identical in operation to regular SuperObject Data Buttons. However, instead of
picking the button’s appearance from a list of predefined styles, you create the artwork for the button your-
self using Flash Art™. Before you attempt to use a Flash Art Data Button, you should be familiar with Flash
Art creation and usage (see “Flash Art™” on page 806).

The first step in creating a Flash Art Data Button is to create two Flash Art pictures: the first showing the but-
ton in its “off” state and the second in its “on” state. When the button is clicked, Panorama will automatically
switch between these two pictures as the button is toggled on and off. (The two pictures should have exactly
the same dimensions or you will notice a shift as the mouse is pressed on the button.) The second picture
must have the same name as the first picture, but with .DOWN added to the end. For example, if the “off”
picture is called Box, the “on” picture must be called Box.DOWN.

If you wish, you may optionally create two additional pictures. These pictures will be displayed temporarily
when the mouse is actually pressed on the button, allowing the button to “highlight” as it is being clicked.
Two pictures are needed: one to highlight the “off” state and one to highlight the “on” state. These pictures
must have the same name as the original two pictures but with • added after the name (press Option-8 to
create the • symbol on the Macintosh, Alt-0149 on the PC). In our example these pictures would be named
Box• and Box•.DOWN. Here are four images that have been prepared for a Flash Art Data Button. They
show a box in both open and shut positions. (The images are shown enlarged to 4X in Adobe Photoshop).

Page 880 Panorama Handbook
Once the pictures have been created, you are ready to create the button itself. Select the Flash Art Data But-
ton tool and drag across the form to create the button. (If the tool is not currently installed, use the Tool Pal-
ette dialog to install it, see “Customizing the Tool Palette” on page 554.) Type in the name of the base picture
for this button (enclosed by quotes) into the Formula box. In our example, you would type "Box" into the For-
mula box.

The rest of the options in the Flash Art Data Button dialog are the same as the options in the Flash Art Push
Button and Data Button dialogs. See “Super Data Button Options” on page 876 for descriptions of these
options.

The finished button looks like an open box.

When you click on the button it highlights.

Releasing the mouse causes the button to switch to a closed box.

Click again to highlight the closed box.

And release to switch back to an open box.

This is just one example. You can use this tool to make any size and shape of data button you like.

Chapter 17:Buttons & Widgets Page 881
Sticky Push Button SuperObjects™

Sticky Push Buttons look like Push Buttons (see “Super Object Push Button” on page 853), but they operate
like Data Buttons (see “Data Button SuperObjects™” on page 867). Instead of popping back up when you
release the mouse, a Sticky Push Button stays pushed in like a checkbox or radio button. Like Data Buttons,
Sticky Push Buttons are associated with a field or variable, and can be used separately or in groups (radio
sticky push buttons, anyone?) To illustrate, here is a collection of options created as regular data buttons.

Here is the exact same example, but created with Sticky Push Buttons. Notice that CNN is also selected in this
group of buttons.

These two examples operate exactly the same — the only difference is their appearance.

The Sticky Push Button configuration dialog is a combination of the options for Push Buttons and Data But-
tons.

See “Super Object Push Button” on page 853 and “Data Button SuperObjects™” on page 867 for the details of
these options.

selected button

Page 882 Panorama Handbook
“Classic” Checkbox and Radio Buttons

In addition to the SuperObject data buttons described previously Panorama also has a “classic” Button object.
When SuperObject buttons were added as part of Panorama 3.0, “classic” button objects were retained for
compatibility with older databases. We recommend that you use SuperObject buttons for new applications.
SuperObject buttons have many more style options, and can also work with variables as well as fields.

To create a checkbox or radio button, use the Button tool, which is part of the standard tool palette.

Drag the mouse across the form to specify the size and location of the button.

When you release the mouse, the Button Dialog appears. This dialog allows you to select the type of button
you want to create.

Chapter 17:Buttons & Widgets Page 883
Click on the type of button you want to create (checkbox or radio button) and select the field from the Field
pop-up menu. Next type in the button title. This is the text that will be displayed as part of the button.

Use a checkbox button when a field has only two possible values (especially if one of these values is an empty
cell). You can specify both on and off values. If you leave the on value blank Panorama will use the button
title as the on value.

Use radio buttons when a field has three or more possible states. Each radio button has an on value. If you
leave the on value blank, the button title will be used as the on value.

If you need to change a checkbox or radio button, click on it with the Button tool to make the Button configu-
ration dialog re-appear. You can also double click on the button with the Pointer tool selected.

An easy way to create a group of radio buttons is to create the first button and then make copies of the button.
See “Creating a Group of Radio Buttons” on page 869 for an example of this technique.

Page 884 Panorama Handbook
Pop-Up Menus

Radio buttons work well when there are only a few options. When you get past a dozen or so options, you’ll
probably want to use a pop-up menu or scrolling list (see “List SuperObjects” on page 898) instead. Pan-
orama has three methods for creating pop-up menus: 1) Pop-Up Menu SuperObjects, 2) “Classic” buttons,
and 3) Procedures (programming).

Pop-Up Menu SuperObjects™

The easiest and most flexible way to create a pop-up menu is with the Pop-Up Menu SuperObject™. A Pop-
Up Menu SuperObject™ may be associated with any field or global variable. When the user makes a selec-
tion from the pop-up menu, the corresponding field or variable is automatically updated with the new value.
Because the list of menu choices is calculated with a formula, the pop-up menu can change on the fly if neces-
sary. You can also choose the menu font, color, and style (multi-column or scrolling).

The Pop-Up Menu SuperObject tool is not in the default tool palette, so you’ll need to move the use the Tool
Palette dialog to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on
page 554).

Now that the tool is added to the palette you can select it.

Chapter 17:Buttons & Widgets Page 885
Once the tool is selected, drag the mouse across the form in the location where you want to create the pop-up
menu object.

When you release the mouse, the Super Pop-Up Menu configuration dialog will appear.

Page 886 Panorama Handbook
At a minimum you must select a field or variable for the pop-up menu. This field or variable will hold the
result of the pop-up selection. Press OK to create the pop-up menu object.

Switch to Data Access Mode to try out the pop-up menu.

The default pop-up menu contains ten items, A thru J. To change the items in the menu, switch back to
Graphics Mode, select the Pointer tool and double click on the pop-up object. In the formula, replace
A;B;C;D;E;F;G;H;I;J with the actual items you want to appear in the menu, with each item separated by a
semicolon.

Chapter 17:Buttons & Widgets Page 887
Press OK and switch back to Data Access Mode to try out the revised pop-up menu.

The Pop-Up Menu Formula

The menu formula calculates the list of menu choices. Each menu choice is on a separate line, separated by a
carriage return.

When the user presses on the pop-up menu button, Panorama takes the formula, calculates it, splits the result
into individual menu items (one per line), then displays the pop-up menu and allows the user to make a
selection. All this happens in the blink of an eye as the user clicks on the button.

So much for theory, now let’s take a look at some real world menu formulas. Suppose you want to create a
pop-up menu with three choices: Gold, Silver and Bronze. Keeping in mind that the ¶ symbol represents a
carriage return, the most basic formula that can be used to create this menu would be:

"Gold"+¶+"Silver"+¶+"Bronze"

To type the ¶ symbol, press Option-7 on the Macintosh and Alt-0182 on the PC. If your menu has a lot of
items it can be kind of a pain to type in this symbol over and over again. We can use Panorama’s replace(
function to make this formula easier to type (see “REPLACE(” on page 5662). In the formula below, the
replace(function will change the semicolons into carriage returns. This allows you to type the menu
choices with just a semicolon in between them. This option is so useful that Panorama preloads this function
into the menu formula.

replace("Gold;Silver;Bronze",";",¶)

Page 888 Panorama Handbook
The real power of the menu formula is unleashed when you use a variable or field in the formula. Since the
variable or field may be changed at any time with a procedure (or even with standard data entry), the pop-up
menu can change at any time. For example, suppose you want to create a pop-up menu of salespeople in
your company. Simply create a permanent variable (see “Long Life Variables” on page 1371) named Sales-
People and fill it with the name of each salesperson in your company on a separate line. You can create a pref-
erences form that allows you to edit the list using a Text Editor SuperObject™ (see “Text Editor SuperObject”
on page 689). When you create the pop-up menu, the menu formula will simply be SalesPeople .

Each time you click on the pop-up menu it will display the current list of salespeople.

This list can be edited at any time simply by editing the permanent variable.

Dividing Lines in the Menu

To put a dividing line in a pop-up menu, simply create a line with the entry (-. The formula below produces a
menu of car manufacturers in three sections: US, Japanese, and German.

replace("Ford;GM;Chrysler;(-;Toyota;Nissan;Honda;Mazda;(-;Mercedes;VW;BMW",";",¶)

The dividing lines are not enabled in the menu, so the user cannot accidently choose a dividing line.

Chapter 17:Buttons & Widgets Page 889
Pop-Up Menu Options

The SuperObject™ Pop-Up menu dialog is divided into several sections.

Data

This section of the dialog specifies the field or variable associated with the pop-up menu. Type the name of
the field or variable into the box (or select the field name from the pop-up menu next to the Field radio but-
ton). If the pop-up menu is associated with a variable that has not been created with a procedure, Panorama
will automatically create a global variable with this name whenever the form containing this object appears.
This global variable can be used in formulas and procedure just like any other global variable.

Menu Formula

This section specifies the choices listed in the actual pop-up menu. Instead of simply typing in the choices,
you enter a formula that calculates the choices. (Since the formula can use a field or variable, this allows the
menu to be changed easily on the fly.) The formula must calculate the list of choices, with each choice sepa-
rated by a carriage return. (Remember, a carriage return can be represented by the ¶ symbol (Mac: Option-7/
PC: Alt-0182) in a formula.) See “The Pop-Up Menu Formula” on page 887 for a detailed discussion of the
menu formula.

Page 890 Panorama Handbook
Menu Type

The Pop-Up Menu SuperObject™ supports three menu styles: Multi-Column, Scrolling and Combo Box. The
primary difference between the Multi-Column and Scrolling options is what happens when there are more
menu choices than will fit on a single column of the screen. A Multi-Column menu will automatically split
the menu into an array of two or more columns. This allows dozens or even hundreds of options to appear on
the screen at one time.

A Scrolling menu will always display the menu in a single column. If there are too many items to fit on the
screen, tiny arrows will appear on the top and bottom of the menu. You can move the mouse to the top or bot-
tom of the screen to scroll the contents of the menu until the choice you want appears.

The Chicago 12 option forces the actual pop-up menu to always appear in the standard system font, no mat-
ter what font and size are selected for the pop-up object. (On early Macintosh systems this font was Chicago
12, hence the name of the option.) If you leave this option off, the menu can be displayed in any font and size.
Just select the Pop-Up Menu SuperObject™ and choose the font and size the normal way. (Note: If you select
the Scrolling option, this option is ignored and the menu will always be displayed in Chicago 12 point type.
Only Multi-Column menus can be displayed in non-standard sizes.)

Chapter 17:Buttons & Widgets Page 891
The ComboBox option makes the pop-up button look and operate like a Microsoft Windows style Combo
Box. This type of button looks best on a gray or colored background.

To use a Combo Box, simply click anywhere on the box to make a pop-down list appear, then make your
choice from the list.

click on button

then select from pop-down list

Page 892 Panorama Handbook
If you would like to be able to directly edit the value (the Country in this case) you can superimpose a Text
Editor SuperObject (see “Text Editor SuperObject” on page 689) on top of the Combo Box.

Now you have a choice of editing methods. You can click or drag on the text to edit it directly, or click on the
Combo Box icon to pop-down the list of choices.

The final menu type is Mac Pop-Up/Windows Combo Box. The appearance and operation of this type
depends on the type of computer being used. On a Macintosh computer this button will look and operate like
a pop-up menu. On a Windows computer this button will look and operate like a Combo Box.

Display Options

This section controls how the pop-up menu object is displayed on the form. If the Show Value checkbox is
turned on, the field or variable associated with the pop-up menu will be displayed in the object. If the Show
Triangle option is on, a small downward pointing triangle will appear on the right side of the pop-up menu.
If the Drop Shadow checkbox is on, Panorama will automatically draw a drop shadow around the edges of
the pop-up menu object. You can select whether the drop shadow is 1 or 2 pixels deep. To make a standard
looking Macintosh pop-up menu, you should turn on Show Value, Show Triangle, and 1 Pixel.

Color

This section controls the color of various parts of the pop-up menu object on the form. If an option is checked,
that part will appear in the color specified for the object, otherwise that part will appear in black. (To specify
a color for an object, use the Graphics menu or the Graphic Control Strip (see “Color” on page 580). Note: On
a black and white monitor the menu will always appear as black text on white, no matter what colors you
have specified.)

Value: If this option is checked, the field or variable value will appear in color, otherwise it will appear in
black. (This option is ignored if the Show Value option is not turned on.)

Fill: If this option is checked, the pop-up menu object will be filled with the object color. You should not check
both this option and the Value option (this makes the value invisible).

Text Editor SuperObject

Pop-Up Menu SuperObject
(set to ComboBox style)

Click or drag on text to edit directly
Click on icon to select from drop-down list

Chapter 17:Buttons & Widgets Page 893
Shadow: If this option is checked, the border and drop shadow will appear in color, otherwise it will appear
in black. (This option is ignored if the Drop Shadow option is not turned on.)

Fill Color: This pop-up menu controls the background color of the pop-up menu itself. Usually, the back-
ground color is white, but you can switch it to any color you want. (Note: This option only works with Multi-
Column menus. Scrolling menus always have a white background.)

Procedure

The pop-up menu can optionally trigger a procedure whenever the user makes a selection. This procedure
can perform additional tasks that need to be done when a selection is made.

Since the pop-up menu updates a field or variable, the procedure can simply read the menu choice from that
field or variable. In addition, the procedure can find out the name of the menu object using the
info("trigger") function. The info("trigger") function will return the name of the pop-up menu
object itself (if any). If you haven’t assigned a name to this object, the default is custom (see “Object Type/
Object Name” on page 585 to learn how to assign a name to an object). If you want to have several pop-up
menus that trigger the same procedure, you should give each a unique name so that the procedure can tell
which pop-up menu was used.

Pop-Up Menu Font, Size and Dimensions

A standard Macintosh pop-up menu uses black Chicago 12 point type on a white background and has a drop
shadow around it to identify it as a pop-up menu. The standard pop-up menu is 20 pixels high, the width
may be anything from 1/2 inch to several inches.

If you are using a Multi-Column menu you can use other fonts and point sizes. To get the most options in the
least space, use Geneva 9 point (Alpine 9 point on a PC). For the best performance, you should stick to simple
fonts and sizes that you actually have available in your system file (these sizes appear outlined in the Size
menu.)

“Classic” Pop-Up Buttons

In addition to the SuperObject pop-up menu buttons described previously Panorama also has a “classic” But-
ton object that can also create pop-up menus, although with very limited options. When SuperObject buttons
were added as part of Panorama 3.0, “classic” button objects were retained for compatibility with older data-
bases. We recommend that you use SuperObject buttons for new applications. SuperObject buttons have
many more style options, and can also work with variables as well as fields.

The “classic” pop-up menu button uses the Choices field of the design sheet as the template for the menu.
The items in the menu will be the same as the choices in the list.

See “Choices” on page 364 to learn more about setting up a list of choices.

type the list of choices into the Choices column

Page 894 Panorama Handbook
To create a classic pop-up menu button, use the Button tool, which is part of the standard tool palette.

Drag the mouse across the form to specify the size and location of the button.

When you release the mouse, the Button Dialog appears. This dialog allows you to select the type of button
you want to create.

Chapter 17:Buttons & Widgets Page 895
Click on the type of button you want to create (pop-up menu) and select the field from the Field pop-up
menu. You can type in a button title, but it will be ignored. Press OK to create the button.

Switch to Data Access Mode to try out the pop-up menu.

Unlike SuperObject Pop-Up Menu buttons, the “classic” button does not display the contents of the field. If
you want the field contents to appear you must add a Data Cell (see “Working with Data Cell Objects” on
page 685), Auto-Wrap Text (see “Displaying Data in Auto-Wrap Text” on page 645), or Text Display SuperOb-
ject (see “Text Display SuperObjects™” on page 658) to the form. In this example we have added a Data Cell.

data cell

Page 896 Panorama Handbook
If the Data Cell remains on top of the button it will interfere with clicking on the button. Use the Send to Back
command to move the Data Cell behind the button (see “Changing the Stacking Order” on page 620). Switch-
ing to Data Access Mode you can now see the field value displayed “inside” the pop-up menu.

If this all seems like a lot of extra tedious work, it is. To avoid all this extra work use the SuperObject Pop-Up
Menu instead.

Creating a Pop-Up Menu with a Procedure

In very rare cases you may need even more flexibility than the Pop-Up Menu SuperObject™ provides. For
even more control over your pop-up menu, you can create a pop-up menu with a standard button and with a
procedure. In this procedure, you can control what happens both before and after the pop-up menu appears.

Here’s how it works. First, the user clicks on a standard transparent button (see “Transparent Push Buttons”
on page 861). This button must have the Click/Release option turned off, so that the procedure is triggered
immediately when the mouse is clicked. Now the procedure determines the location of the mouse and makes
the pop-up menu appear at that location. The procedure pauses while the user makes a selection from the
menu. Once the selection is made, the procedure takes the choice and stores it or processes it. These are the
same steps taken by the Pop-Up Menu SuperObject™, but in this case each step must be programmed by you
as part of the procedure.

Where Will the Pop-Up Menu Appear?

The first step the procedure must take is to figure out where the pop-up menu will appear on the screen. You
must determine two numbers: 1) The distance (in pixels) from the top of the current window and, 2) The dis-
tance from the left edge of the current window. (These two numbers are known as the local co-ordinates,
because they are relative to the current (local) window. Global co-ordinates are relative to the entire screen.)

The usual choice is to make the pop-up menu appear in the same spot as the button that was pressed. You can
find out the local co-ordinates of this button using the GetLocalButton statement. You must create four
local variables to hold the four dimensions of the button (top, left, height, width).

local PopTop,PopLeft,ButtonHeight,ButtonWidth
GetLocalButton PopTop,PopLeft,ButtonHeight,ButtonWidth

For the purposes of a pop-up menu, you’re only interested in the first two values, PopTop and PopLeft.

Another option is to make the pop-up menu appear right over the current mouse location. This is especially
useful if you have created a large button where the current mouse location may be quite far from the upper
left corner of the button. To find out the current mouse location in local co-ordinates, use the GetLocalClick
statement.

local PopTop,PopLeft
GetLocalClick PopTop,PopLeft

(Note: The names of the local variables are not important. You can use any names you want as long as you are
consistent within the procedure.)

Chapter 17:Buttons & Widgets Page 897
The PopUp Statement

Once the procedure has calculated where the pop-up menu should appear, it should use the PopUp statement
to actually make the menu appear and allow the user to make a choice from the menu. This statement has
five parameters:

PopUp MenuFormula, V, H, CurrentValue, NewValue

The first parameter, MenuFormula, is a formula that specifies the menu items that should appear in the pop-
up menu. This formula uses exactly the same rules that the Pop-Up Menu SuperObject menu formula uses,
so you should refer to that section (see “Menu Formula” on page 889) for details on setting up the menu for-
mula.

Experts only: The MenuFormula can also be used to specify that a custom menu you have created with
ResEdit should be used for the pop-up menu. In this case the menu formula should result in a single number
which corresponds to the resource number for the custom menu. Using this technique, you can create a pop-
up menu with icons, or a pop-up menu that uses a non-standard menu proc (perhaps a non-text menu).
(Menu procs must be written in C or Pascal and are discussed in Inside Macintosh.)

The next two parameters, V and H, specify the location where the pop-up menu should appear. Use the val-
ues you calculated with the GetLocalButton or GetLocalClick command.

The final two parameters, CurrentValue and NewValue, tie the pop-up menu to a field or variable. Cur-
rentValue specifies what item in the menu should be highlighted when the menu first appears. After the user
makes a choice, the result will be placed in NewValue. NewValue must be a variable (see “Variables” on
page 1369). If you need this value in a field, the procedure must copy it from the variable into the field after
the PopUp command. (However, if the user pulls the mouse off the menu and releases the mouse without
making a choice, NewValue will be empty. In this case you probably want to leave the original field alone.)

The example below shows a simple procedure for a pop-up menu that allows a medal to be selected. This
example assumes that the database contains a field named Medal.

local PopTop,PopLeft,ButtonHeight,ButtonWidth
local TempMedal
GetLocalButton PopTop,PopLeft,ButtonHeight,ButtonWidth
PopUp replace("Gold;Silver;Bronze",";",¶),PopTop,PopLeft,Medal,TempMedal
if TempMedal ≠""

Medal=TempMedal
endif

The only problem with this example is that it is a lot of work, and the same effect could be achieved in a few
seconds with the Pop-Up Menu SuperObject™. Only use this technique when you need to accomplish some-
thing that absolutely cannot be done any other way (for example a non-text menu or a menu that pops up
anywhere in a large area).

The PopUpByNumber Statement

The PopUpByNumber statement is exactly the same as PopUp except for the last two parameters. The
PopUpByNumber statement treats CurrentValue and NewValue as menu item numbers, instead of as text.
For example, if the user selects the third menu item, NewValue will be 3. This command is useful for non-text
menus, for example, a menu of color swatches.

The PopUpStyle Statement

The PopUpStyle statement allows you to control the font, size and color of pop-up menus created with the
PopUp and PopUpByNumber statements. The PopUpStyle statement must be placed directly above the
PopUp or PopUpByNumber statement in your procedure. This statement has four parameters:

PopUpStyle Font, Size, Color, BackgroundColor

Page 898 Panorama Handbook
The first parameter, Font, is the name of the font you want to use for the menu, for example "Chicago" or
"Geneva".

The second parameter, Size, is the size of the text you want to use for the menu, for example 9 or 12.

The final two parameters specify the foreground and background colors for the menu, which may be created
with the rgb(or hsb(functions (see “Colors” on page 1308). For a standard black on white menu you can
simply use empty strings for the colors: "","".

Here are a couple of examples of the PopUpStyle statement. Both set the menu to Geneva 9pt, but the sec-
ond example creates a menu with red text on a dark gray background.

PopUpStyle "Geneva",9,"",""
PopUp replace("Gold;Silver;Bronze",";",¶),PopTop,PopLeft,Medal,TempMedal

/* red text on dark gray background */
PopUpStyle "Geneva",9,rgb(65535,0,0),rgb(50000,50000,50000)
PopUp replace("Gold;Silver;Bronze",";",¶),PopTop,PopLeft,Medal,TempMedal

List SuperObjects

Using a List SuperObject™ it’s easy to add a scrolling list to a Panorama form or dialog. This is the same type
of scrolling list used in the standard Open and Save dialogs. The scrolling list allows a large amount of data
to be displayed in a small area. Using the scroll bars, the user can quickly locate the items they are interested
in. Each Panorama scrolling list can be filled with information from a field or variable or from an entire data-
base.

Creating List SuperObjects™

List objects are created just like any other SuperObject™. First make sure that the List tool is installed in the
tool palette (see “Customizing the Tool Palette” on page 554 if it isn’t.)

Chapter 17:Buttons & Widgets Page 899
Select the List tool…

then drag the mouse across the form in the spot where you want the text to appear.

Page 900 Panorama Handbook
When you release the mouse, the List configuration dialog appears.

In some ways configuring a list is similar to configuring a pop-up menu. You need to specify a field or vari-
able to hold the result, and you need to supply a formula to generate a list of items. Each item is separated by
a carriage return. Here’s a typical configuration to display a list of state names. (To type the ¶ symbol, press
Option-7 on the Macintosh and Alt-0182 on the PC.)

Chapter 17:Buttons & Widgets Page 901
Press OK to create the List object.

To actually use the list, switch to Data Access Mode. In this mode you can use the scroll bar to slide the con-
tents of the list up and down, and click on list items to select them.

Page 902 Panorama Handbook
List Options

The SuperObject™ List dialog is divided into several sections. This dialog allows you to configure the way
the text is calculated and formatted. The options in this dialog are described in the following sections.

Once the options are set, press the OK button and the List object is ready to use. If you need to change the
options later, double click on the List object to re-open the dialog.

Data

This section of the dialog specifies the field or variable associated with this list, if any. This field or variable
doesn’t contain the list itself, but only the selected value(s) within the list. Type the name of the field or vari-
able into the box (or select the field name from the pop-up menu next to the Field radio button). If the list is
associated with a variable that has not been created with a procedure, Panorama will automatically create a
global variable with this name whenever the list appears. This global variable can be used in formulas and
procedures just like any other global variable.

When first learning how to use the List SuperObject it’s handy to include a Text Editor SuperObject on the
form to allow you to see and modify the data value (see “Text Editor SuperObject” on page 689). In this exam-
ple both the Text Editor and the List objects are displaying the same value — the field State.

Chapter 17:Buttons & Widgets Page 903
Clicking on an item fills the field with that value.

It’s also possible to work this process in reverse. If you type a value into the Text Editor SuperObject the List
will automatically select the corresponding item in the list, if any. For example, you could type Iowa into the
field:

Page 904 Panorama Handbook
When you press Enter Iowa will be selected in the list.

The item must be spelled exactly the same as it appears in the list, including capitalization. Only Iowa will
work, not iowa or IOWA.

Sep

This is the separator text that will appear between each value if multiple items are selected in the list. Com-
mon separators include commas, spaces, slashes and hyphens. The separator may be up to 6 characters long.
(Note: If the separator is left blank, Panorama will use a carriage return as the separator.)

As an example of multiple items, consider pizza toppings. A pizza may have one, two, three or more top-
pings, or even none at all. You can create a list that shows all the different pizza toppings. In this example the
separator character is a comma.

Chapter 17:Buttons & Widgets Page 905
When you click on a single topping it appears in the field, just as in the previous example.

By holding down the Command key (Mac) or the Control key (PC) you can click on and select additional
items, as shown below. The data field (or variable) will contain all of the selected items, with each item sepa-
rated by a comma (or whatever separator character you have specified.) The values will always be in the
same order as they appear in the list, no matter what order you click on them (unlike a group of radio buttons
— see “Multiple Value Button Groups” on page 873).

You can continue to select additional items if you wish. You can also de-select an item by holding down the
Command (Mac) / Control (PC) key and clicking on the selected item. Another option is to hold down the
Shift key and drag across several items to select them all.

You can use any separator character you want. If you leave the Sep option empty, Panorama will use a car-
riage return as the separator. In other words, each item will be on its own separate line.

combined values

separator character

Page 906 Panorama Handbook
Database

There are two ways that Panorama can build the list of items: it can use a formula to build the list or it can
scan a database to build the list. So far all of the examples have shown building the list with a formula. If you
want the list built by scanning an entire database, select the name of the database from the pop-up menu in
this section (the database must be open). To illustrate this feature we’ll use this contact database.

Create a List SuperObject the usual way (see “Creating List SuperObjects™” on page 898). Select the database
to be scanned from the pop-up menu of open databases.

Chapter 17:Buttons & Widgets Page 907
In the formula field you must enter a formula that will be used to process each field within the database. Usu-
ally this is simply a field name, which can either be typed in or selected from the Field menu. For this first
example we’ll build a list of company names.

When you press OK the list appears, already filled in with the items scanned from the database.

If the database name ever changes, this list will stop working. Here’s how this problem can be fixed. Open the
configuration dialog again (by double clicking on the object). Click on the Database checkbox to disable the
database scanning procedure.

Click to turn off database scanning

Page 908 Panorama Handbook
Now click the checkbox again to turn database scanning back on. As you can see, this enables scanning of the
current database, no matter what the name is.

This trick only works with the current database. If the list is built from another database you’ll have to make
sure that the database name doesn’t change (or if it does, you’ll have to open the configuration dialog and
adjust the name to make the list work again).

Sort Up

If this checkbox is turned on, the list of items will be sorted in ascending alphabetical order, otherwise the list
will be displayed in the order the data was scanned. For example, the list of companies built in the previous
example displays the company names in the order they appear in the database, which is definitely not alpha-
betical.

To display the list in order, enable the Sort Up option.

Here’s the alphabetized list.

The Sort Up option works both with database scanning and when the list is generated by a single formula.

Chapter 17:Buttons & Widgets Page 909
No Duplicates

If this checkbox is turned on, duplicate data items will be eliminated from the list of items. (This option is not
available if the Sort Up option is not also turned on.) For example, the list generated in the previous example
contains many duplicate company entries.

To automatically remove the duplicate items enable the No Duplicates option.

Here is the revised list, without the duplicates.

Formula

This section of the dialog contains the formula used to extract the data items from the database, field or vari-
able. See “Building the List” on page 912 for details on how this formula is used.

duplicates

Page 910 Panorama Handbook
Click Action

This section of the dialog controls how multiple items in the list are selected.

Normal: This option normally allows only one item to be selected at a time. When the user clicks on an item,
it is selected and all other items are un-selected. However, if you hold down the Shift key you can drag to
select a contiguous range of items.

By holding down the Command key (Mac) or the Control key (PC) you can click on and select additional
items, as shown below.

You can continue to select additional items if you wish. You can also de-select an item by holding down the
Command (Mac) / Control (PC) key and clicking on the selected item.

One Cell Only: This option only allows one item to be selected at a time, no matter what modifier keys are
pressed.

Contiguous Cells Only: This option is similar to the Normal option, except that holding down the Command
(Mac) / Control (PC) key does not allow you to select/un-select individual items. You can, however, select
multiple items by holding down the Shift key and dragging across the items.

Extend w/o Shift: This option allows you to select a group of items simply by dragging over the items (you
don’t have to hold down the Shift key if this option is enabled).

Chapter 17:Buttons & Widgets Page 911
Grow Box

This option makes the scroll bar shorter to reserve space for a grow box in the lower right hand corner of the
object.

Usually you would only use this if the list was in the lower right hand corner of the window, or even filling
the entire window. Then you could use this option with an Auto-Grow SuperObject to create an elastic form
(see “Elastic Forms” on page 940). Here is an example of such a form in Graphics Mode…

and in Data Access Mode.

space for grow box

auto-grow superobject

list superobject

Page 912 Panorama Handbook
This form will automatically adjust to different window sizes.

See “Elastic Forms” on page 940 to learn more about elastic forms.

Procedure

This pop-up menu allows you to specify a procedure that will be triggered every time the user clicks on an
item in the list.

Click/Release

This option controls when the procedure (if any) is triggered. Normally, the Click/Release option is enabled
and the procedure is triggered when you release the mouse. If the Click/Release option is disabled the proce-
dure will be triggered immediately, as soon as you click on the list. This means that you cannot hold down
the Shift key and drag to extend the selection (see “Click Action” on page 910). Turn off the Click/Release
option if you want to trigger a procedure to drag list items (see “Using Drag and Drop to Change the Order of
Items in a List” on page 1723).

Building the List

There are two ways that Panorama can build the list of items: it can scan a single field or variable, or it can
scan an entire database. Panorama normally builds the list once when the form containing the list is first
opened. If you need to update the list or change it later, you’ll need to send the list a command with a proce-
dure (see “List SuperObject™ Commands” on page 1719).

Scanning a single formula: If this method is selected, Panorama calculates the result of the formula, then
scans the result to separate it into individual items for the list. Each line (separated by carriage return) in the
result is treated as a separate item. This is the same method used by the Pop-Up Menu SuperObject to build a
list; see “The Pop-Up Menu Formula” on page 887 for tips and tricks for setting up this formula.

Chapter 17:Buttons & Widgets Page 913
Scanning an entire database: If this method is selected, Panorama will scan the entire specified database,
building up the list one record at a time as it scans. The formula determines what information is extracted
from each record in the database and places it in the list. For example, suppose you want to build a list of cit-
ies extracted from an address database. For this application, the formula would be simply:

For this application you would probably want to turn on the Sort Up and No Duplicates options, so that each
city will be listed only once.

If you wanted both the city and state to appear in the list, a more complex formula could be used:

Here’s the revised list.

Page 914 Panorama Handbook
If you want to build a list of only part of the database, use the ?(function to select only the information you
want (see “The ? Function” on page 1287). If a record should not be included in the list, the result of the for-
mula should be an empty string (""). The formula below will fill the list with cities in California.

All other states will be left off the list.

“Hiding” Part of a List Item

The List SuperObject normally supplies all of the text in each line you supply to it. However it is possible to
add hidden text to each line. This hidden text will be included in the value when a list item is clicked on, but
will not be displayed. Any text after a null byte (chr(0)) will be hidden.

To illustrate this we’ll create a list that displays only the city but actually contains both the city and state.
Here’s the configuration dialog for this list.

the state will be hidden

start of hidden text
city will be visible

Chapter 17:Buttons & Widgets Page 915
When the list is displayed only the city names are displayed.

Although the states are not displayed they are still part of the list. We can build a Text Display SuperObject to
display the selected city and state. Here is the formula to be used to display the information.

Clicking on different items in the list displays both the city and the state.

An excellent use for the hidden text information is to keep secret identifying information in the list. For exam-
ple a list of invoices might display only company names while keeping the invoice number hidden. When
you click on an invoice the procedure can extract the hidden invoice number to display the corresponding
invoice.

Maximum List Size

The List SuperObject is capable of handling lists up to a few thousand items. For large lists, you may need to
increase your scratch memory allocation. However, keep in mind that the List SuperObject is not intended to
replace Panorama’s normal database operation. The performance of the list (speed) will degrade as the size of
the list increases. Very large lists are also difficult for the user to handle. It’s usually best to keep the list size to
several hundred items or less. If necessary, you should split the list into multiple lists: for example by state,
by price, or even by starting letter (A-Z).

array(function extracts invisible data

array(function extracts the visible data

Page 916 Panorama Handbook

Chapter 18: Form Goodies

This chapter covers some cool things you can do with forms that don’t fit into any particular category. View-
as-List forms allow you to display multiple records at a time, instead of just a single record at a time like a
normal form. Elastic Forms allow you to create forms that automatically stretch to fit any window size (see
“Elastic Forms” on page 940). Super Matrix objects allow you to quickly build repeating arrays like monthly
calendars and photo arrays (see “Super Matrix Objects” on page 958). Scroll Bar SuperObjects can be used
to create standalone scroll bars within a form (see “Scroll Bars” on page 983). Balloon Help Objects (Macin-
tosh only) allow you to add detailed help to your forms (see “Balloon Help” on page 994).

View-As-List Forms

Panorama allows you to set up blank forms as individual pages or as a continuous sheet (view-as-list). When
forms are set up as individual pages you see one record at a time. You can flip through the records just as you
would shuffle through a stack of paper forms.

A view-as-list form displays data as a continuous sheet, as shown below. Instead of flipping from record to
record, you scroll up and down through the data in a manner similar to the data sheet. However, unlike the
data sheet, a view-as-list form allows you to arrange the data any way you like, and even include graphics in
the display. On the other hand, view-as-list forms are slower than the data sheet (because of the overhead in
displaying the graphics) and they are much more work to set up.

Page 918 Panorama Handbook
How View-As-List Forms Work

Panorama displays a View-As-List form by taking a collection of graphic objects and displaying them over
and over again, once for each record. For the form in the previous section the collection of graphic objects
looks like this.

As you can see, this collection of objects is just a small portion of a form. How does Panorama know which
collection of objects to include? You tell it by enclosing the objects in a special object called a tile. Panorama
has over 40 different kinds of tiles, but for now we are interested in just two types—data tiles and header
tiles.

Panorama doesn’t care what the exact location of the tile is. It simply looks to see what is contained within
the tile. For example, you could move the tile to a new position like this (see “Working with Tiles” on
page 1068).

data tile

objects inside the data tile
are displayed over and over

header tile

objects inside the header tile are displayed
at the top of the window

Chapter 18:Form Goodies Page 919
In Data Access Mode this new configuration will look like this.

The height of the Data Tile controls the spacing of the records. For example, we can reduce the spacing by
reducing the height of the tile (see “Working with Tiles” on page 1068).

Here’s what this configuration looks like.

Page 920 Panorama Handbook
Creating a View-As-List Form

The first step in creating a view-as-list form is to create a Data Tile. To do this, select the Tile tool.

Now drag the mouse across the form to define the location and size of the tile.

Chapter 18:Form Goodies Page 921
When you release the mouse Panorama will create the tile.

As you can see, the area outside of the form turns gray. This indicates that any object placed in this area will
not be included as part of the form when in Data Access Mode.

The next step is to enable the View-As-List option in the Form Preferences dialog. You’ll find this dialog in
the Setup menu.

Page 922 Panorama Handbook
Press the OK button to confirm the new preferences. Now we’re ready to start adding graphics to the form.
We’ll start by using the Line tool to add a horizontal line across the top of each record (see “Creating a
Graphic Object” on page 552).

Switch to Data Access Mode to see what this configuration looks like. The line is repeated once for each
record. (You’ll also notice that the current record is highlighted in reverse - see “Buttons on a View-As-List
Form” on page 939 for more information about this.)

current record is highlighted

Chapter 18:Form Goodies Page 923
Got the idea? Now we can go back to Graphics Mode and add more objects. In this example we used auto-
wrap text objects to display two fields from the database (see “Displaying Data in Auto-Wrap Text” on
page 645). You can also use Data Cells (see “Working with Data Cell Objects” on page 685), Text Editor Super-
Objects (see “Text Editor SuperObject” on page 689), Text Display SuperObjects (see “Text Display SuperOb-
jects™” on page 658) or even Flash Art (see “Flash Art™” on page 806).

You can switch to Data Access Mode at any time to check out your work.

Page 924 Panorama Handbook
The view-as-list form kind of works like the data sheet. You can select a different record by clicking on it.

Or you can use the vertical scroll bar to navigate to any location within the database.

click to select record

scroll bar

Chapter 18:Form Goodies Page 925
The width of the current record’s highlighting corresponds to the width of the data cell. By changing the
width of the data cell you can change the width of the highlight.

In Data Access Mode you can see the new, revised highlight width.

Since this form doesn’t contain any Text Editor SuperObjects or Data Cells you cannot edit the data using this
form. See “Editable View-As-List Forms” on page 931 to learn how to create an editable view-as-list form.

width of data tile

width of data tile

Page 926 Panorama Handbook
Working with Tiles

Like all other graphic objects, tiles can be moved and resized with the Pointer tool. However, tiles are slightly
different than other objects. On the screen, a tile looks similar to an upside down window. Tiles are divided
into two parts: the surface and the drag bar.

Unlike other graphic objects that can be manipulated by clicking anywhere in the object, a tile is only sensi-
tive to clicks on its drag bar. To move a tile, press the mouse on the drag bar and drag the tile to the new posi-
tion. To select a tile, click on the drag bar. When the tile is selected, four handles appear around the corners of
the tile.

You can use these handles as grips to change the size of the tile (see “Changing the Size of a Single Object” on
page 568). Tiles can also be moved or resized with the Dimensions command (see “Viewing and Setting
Exact Object Dimensions” on page 567).

The surface of the tile is not sensitive to the mouse. In other words, clicking on the surface area does not select
the tile, and you cannot move the tile by dragging on the surface.

tile surface

tile drag bar

handles

Chapter 18:Form Goodies Page 927
Adding a View-As-List Header

To add a header to your view-as-list form you’ll need to add a second tile. Surprisingly enough this is called
a header tile. There are two methods for creating this tile—you can create it from scratch or you can create it
from a copy of the data tile.

To create a header tile from scratch start by selecting the Tile tool.

Now drag the mouse across the form where you want the tile to appear. The header tile does not have to line
up with the data tile, although that can make it easier to visualize the final result.

Page 928 Panorama Handbook
When you release the mouse a tile configuration dialog appears. This dialog allows you to select the type of
tile you are creating.

Press the Header button. When you press the button, Panorama creates the new tile.

Now you should add any graphics and text that you want to appear on the header.

Chapter 18:Form Goodies Page 929
Switch to Data Access Mode to see the finished result.

Now let’s create a header tile by duplicating the data tile. Start with just the data tile.

Page 930 Panorama Handbook
To duplicate the tile, hold down the Option key (Mac) or Alt key (Windows) and drag the tile (see “Drag
Duplicating” on page 613). You may also want to hold down the Shift key at the same time to make sure that
the two tiles stay in perfect alignment.

When you release the mouse your form will contain two data tiles.

Chapter 18:Form Goodies Page 931
To transform the new data tile into a header tile, double click on the word Data.

This opens the tile’s configuration dialog.

Press Header to convert the data tile into a header tile.

Voila! Now you can add any graphics and text you want to add to the header, and your form will be com-
plete.

Editable View-As-List Forms

Adding data cells or Text Editor SuperObjects to the data tile makes it possible to edit the database using the
view-as-list forms. The operation of each is a bit different.

double click here to open tile configuration dialog

double clicking on sides selects all
objects inside the tile

Page 932 Panorama Handbook
Here is a view-as-list form designed with Data Cells for editing. To learn how to add data cells to your form
see “Working with Data Cell Objects” on page 685.

Switch to Data Access Mode to see the list view.

Chapter 18:Form Goodies Page 933
As you can see, when Data Cells are added to the form Panorama no longer highlights the entire record. Only
the current cell itself is highlighted. You can click on any visible cell to highlight it.

To edit a cell, double click on it. To learn more about editing within a cell see “Editing Data Within a Cell” on
page 376.

Page 934 Panorama Handbook
Here is a form created using Text Editor SuperObjects (see “Text Editor SuperObject” on page 689).

In this case, each object was created with borders on the left, bottom and right but not on the top. Here is an
“exploded view” of these objects, along with the configuration dialog for one of the objects.

Chapter 18:Form Goodies Page 935
Switch to Data Access Mode to see the finished result.

As you can see, one potential disadvantage of this technique is that nothing is highlighted, so it is very diffi-
cult to see which record is current. (If you need to be able to tell which record is highlighted, use Data Cells.)
To edit a particular item just click on it.

Page 936 Panorama Handbook
You might be tempted to try placing a Text Editor SuperObject or Data Cell onto the header tile, like this.

Unfortunately, this does not work correctly. When you attempt to edit the text, the edited text appears in the
wrong position, something like this.

This problem may be corrected in a future version of Panorama, but for now you can only edit text within the
data tile.

Text Editor SuperObject

text should appear here…

but actually appears here!

Chapter 18:Form Goodies Page 937
View-As-List Background Colors

A tile’s surface is normally white. However, it is possible to change the color of the tile surface to any color in
Panorama’s color palette. To change the color, start by clicking on the tile’s drag bar to select it (see “Working
with Tiles” on page 926).

Once the tile is selected you can select a new color from the Graphic Control Strip (see “Color” on page 580).
You can choose any color you want, but usually the lighter grays and pastels work best.

Page 938 Panorama Handbook
When you release the mouse the tile’s surface changes to the new color. By the way, if you want to change the
tile’s surface back to white, select black (the color in the far bottom right).

Colored tiles work well with Text Editor SuperObjects. Here’s an example.

Here’s the same form in Data Access Mode.

Chapter 18:Form Goodies Page 939
When you click on an item to edit it, the entire area turns white (be sure you have selected the Non-White
Background option, see “Text Editor Options” on page 692).

Colored tiles can also work with Data Cells.

Here’s what this form looks like in Data Access Mode.

Buttons on a View-As-List Form

You can place any kind of button on either the data tile or header tile of a view-as-list form — push buttons,
data buttons, pop-up menus etc. Data buttons that are placed on the data tile should be linked to fields. Data
buttons that are placed on the header tile should be linked to variables (see “Variables” on page 1221 and
“Variables” on page 1369).

Page 940 Panorama Handbook
Elastic Forms

Elastic Forms is a feature that allows a form to adjust intelligently when the window containing the form is
resized or zoomed. When the form is designed, you decide how the individual elements will expand or shift
as the form changes size. Here’s an example of a typical form.

If the window containing an ordinary form is resized, the form remains the same, in this case leaving a large
blank area.

Chapter 18:Form Goodies Page 941
However, if the form is elastic the objects within the form will adjust themselves to the new size.

The best part is that once you learn how, you can turn almost any form into an elastic form in just a couple of
minutes!

Theory of Elastic Forms

The basic theory of elastic forms is simple. The form is divided into four quadrants, like this.

The upper left hand quadrant always remains fixed, no matter how large or small the window gets. The
upper right hand quadrant slides back and forth horizontally as the window size changes, while the lower
left hand quadrant slides vertically. The lower right hand quadrant slides diagonally, always sticking to the
bottom right hand corner of the window.

As Panorama adjusts the form, it doesn’t adjust entire objects. Instead it adjusts individual points (i.e. object
corners). If an object is split across multiple quadrants, that object will adjust in size as the form expands and
shrinks. If an object is not split across multiple quadrants, it will remain the same size but may slide to a new
position depending on which quadrant it is in.

Page 942 Panorama Handbook
As an example consider the Text Editor SuperObject shown below. The four corners of this object are split
across the four quadrants. Point A, in the upper left quadrant, stays put. Point B, in the upper right quadrant,
slides to the right. Point C slides down, while Point D slides diagonally. The end result is that the object
expands to fill up the newly available space.

On the other hand the check number, amount and the category pop-up menu are all contained within a single
quadrant, so these objects do not change in size. The Date and Pay To fields are split across two quadrants, so
they expand in width but not in height.

As you can see, the point where these four quadrants come together is very important (see “Defining the
Quadrants” on page 943). You’ll need to pick this point carefully to create a form that expands and shrinks
the way you want it to. Usually you’ll have one primary object that will expand and shrink as the window
expands and shrinks. The quadrant meeting point should be inside this object. You may also have secondary
objects above or below this object that need to expand and shrink in width only. The quadrant meeting point
should line up with the middle of these objects. (If it is impossible to line up the quadrant meeting point with
all of the secondary objects, you can create one or more slave Auto Grow objects. Slave Auto Grow objects
allow you to create extensions that stick out of one or more quadrants (see “Non-Rectangular Quadrants” on
page 953).)

A B

C D

Chapter 18:Form Goodies Page 943
Building an Elastic Form

The first step in building an elastic form is to create a regular non-elastic form. Just use Panorama’s regular
shape and user interface elements. It’s usually best to create the form in its smallest possible configuration. In
other words, any form elements that may expand and shrink should be created in their “maximum shrink”
size and shape. Once the form is created, be sure to save the database before going further.

Defining the Quadrants

Once the form is created, the next step is to divide the form into four quadrants. This is done with the Auto
Grow SuperObject™. The Auto-Grow tool is not in the default tool palette, so you’ll need to use the Tool
Palette dialog to add this tool to the palette if it is not already there (see “Customizing the Tool Palette” on
page 554).

Now that the tool is added to the palette you can select it.

Page 944 Panorama Handbook
Once the tool is selected, drag the mouse across the form in the location where you want to create the auto-
grow object. The Auto Grow SuperObject should cover the lower right hand quadrant of the form (the quad-
rant that will shift down and to the right diagonally when the window expands). The upper left corner of this
Auto Grow SuperObject will determine the point where the four quadrants meet.
\

When you release the mouse, the Auto-Grow configuration dialog will appear.

Chapter 18:Form Goodies Page 945
For a basic elastic form just press the OK button.

Using the mouse and the arrow keys, make sure the Auto Grow object is positioned exactly where you want
the lower right quadrant of the form to be (see “Nudging an Object (or Objects)” on page 565 and “Nudging
the Size of an Object” on page 568). Be sure to allow some space for a slight margin on the right and bottom
side of the form.

Once the Auto Grow object is set up, switch the form to Data Access Mode. At first, all you’ll notice is that the
Auto Grow object disappears.

auto-grow object

Page 946 Panorama Handbook
Now change the size of the window. As soon as you change the size of the window, the form will adjust to the
new window size.

Try making the window larger or smaller, or zooming the window. The form will automatically adjust to the
new size.

If the form doesn’t quite adjust the way you wanted, set it back to the minimum size and then go into Graph-
ics Mode and adjust the auto-grow object. In extreme cases you may need to Revert To Saved to get the orig-
inal form configuration back (you did save the database before you tried your elastic form, right?).

Once the Auto Grow object is exactly positioned over the lower right quadrant of the form you can set the
minimum window size. The following discussion assumes that the form is currently in its minimum window
size configuration, with all expandable objects set to their smallest size. In other words, the bottom right hand
corner of the Auto Grow object defines the smallest possible window size.

To set this minimum size, double click on the Auto Grow object, then click on the Match This Object button.

The dialog will show the dimensions of the minimum window size. Click on the OK button to permanently
set this size.

Chapter 18:Form Goodies Page 947
After the minimum window size is set, use the Send to Back command (Arrange menu) to move the Auto
Grow object underneath all of the other objects in the form (see “Changing the Stacking Order” on page 620).

This prevents the Auto Grow object from interfering with the operation of other objects (for example but-
tons). Whether it is on top or on the bottom, the Auto Grow object will become invisible when the form is
switched from Graphics Mode to Data Access Mode.

The Auto Grow dialog also allows you to manually set the minimum window size by typing in the dimen-
sions. This is necessary if the form elements are not currently at the minimum window size. We recommend
that you avoid this if at all possible. Only edit the form when it is in its minimum size configuration.

Maximum Window Size

Panorama windows can normally be expanded to the full height and width of the computer screen (or even
across multiple monitors if your computer has them). In some cases, however, you may wish to restrict the
maximum height or width of the window. Double click on the auto-grow object to set the maximum dimen-
sions.

In this case the Maximum Height is set to 0. When the maximum is set to zero, Panorama treats it as if there is
no maximum. In other words, the vertical expansion of this window is unlimited, but the horizontal expan-
sion is limited to 450 pixels. You can set a limit on the vertical expansion (height), horizontal expansion
(width) or both.

You can set a maximum window size even if the form is not elastic. To do this, create an auto-grow object
anywhere on the form. In the configuration dialog, set the maximum dimension and also enable the Don’t
Adjust Form option. When this option is enabled Panorama does not adjust the objects in the form when the
window is resized.

If you want the window to be a fixed size (not expandable) set the minimum and maximum dimensions to
the same value.

Page 948 Panorama Handbook
Removing the Window’s Scroll Bars

Form windows normally have scroll bars on the right and bottom edges of the window. When using an elas-
tic form these scroll bars really aren’t necessary because the form objects are always adjusted to fit inside the
visible area. Panorama allows you to remove the unnecessary scroll bars either manually or with a procedure.

To manually remove the scroll bars, hold down the Command key (Macintosh) or Control key (PC) while
you click on the Zoom box (in the upper right hand corner of the window).

A dialog with a miniature diagram of the monitor appears. Drag the mouse across this diagram to define a
new window position.

Now press the Options button. This opens a second dialog. Using this dialog you can enable and disable four
different window options. Normally all four of these options are enabled. In the example below the scroll
bars have been disabled.

hold down Command key
and click on Zoom (maximize) button

(on PC hold down Control key)

Chapter 18:Form Goodies Page 949
Press OK twice to close both dialogs. The window will be re-displayed without the scroll bars.

Depending on the operating system you are using, the grow box in the lower right hand corner may not
appear. To make sure that it appears, open the auto-grow configuration dialog and check the Draw Grow
Icon option.

If you save the database with this window open, Panorama will remember to leave the scroll bars off when
you re-open the database. However, if you close just this window you will have to repeat this process to turn
off the scroll bars when you re-open the window.

Page 950 Panorama Handbook
The Window Tweak Procedure

The process described in the previous section gets rather tedious if you wind up repeatedly adding and
removing the scroll bars. You can automate this process by adding a procedure to your database. We have
called the procedure Window Tweak, but you can give it any name you like.

You can type this procedure into your database, or you can copy it from the Window Tweak example data-
base that came with your copy of Panorama. Once you have added this procedure to your database you can
easily add and remove the scroll bars and tool palette. For example, we’ll start with an ordinary form with
everything enabled.

Once the form is set up and ready to go, run the Window Tweak procedure.

remove this word if you don’t want the tool palette to disappear

Chapter 18:Form Goodies Page 951
Voila! The scroll bars and tool palette magically disappear.

When you need to get the palette and scroll bars back again, run the Window Tweak procedure again.

Poof! The missing items re-appear.

Each time you run the Window Tweak procedure the scroll bars and palette will toggle on or off.

Page 952 Panorama Handbook
Opening Windows with a Procedure

It’s possible to write a procedure that opens a form window with the scroll bars already disabled. Here’s such
a procedure from the Checkbook database that comes with Panorama.

This procedure automatically opens either the Check or Deposit form, depending on the type of transaction
contained in the current record. The key statement in this procedure is setwindowrectangle . This state-
ment tells Panorama the dimensions of the new window, and also tells it not to include horizontal or vertical
scroll bars in the new window. For more information on this statement see “Specifying the New Window
Location” on page 1545.

Modifying an Elastic Form

If you need to change an elastic form, we recommend that you start by resizing the window to its minimum
size. Once the window is at the minimum size, you can switch to Graphics Mode and then expand the win-
dow (if necessary). In Graphics Mode the window can be expanded without automatically adjusting the
form.)

If you change the position or size of the Auto Grow object, you must re-set the minimum window size. Sim-
ply double click on the object, then click on the Match This Object button, just as you did before. The dialog
will show the new minimum window size. Click on the OK button to permanently set this size.

Chapter 18:Form Goodies Page 953
Non-Rectangular Quadrants

Sometimes it is not possible to position the intersection point of the four quadrants so that all the objects in
your form expand and shrink the way you want them too. In that case you can add “extensions” to the upper
right and/or lower left quadrants that stick out into the fixed quadrant. The area covered by these extensions
will adjust when the window is resized. These extensions are created by “slave” Auto Grow objects. These
objects are called slaves because they always follow exactly what the “master” Auto Grow object does. An
extension to the upper right hand quadrant is called a horizontal extension because it sticks out horizontally
into the fixed quadrant. This is the most common type of extension. It allows different lines of a form to
expand differently. A vertical extension sticks out from the lower left quadrant into the fixed quadrant.

Here is an example of a form that requires an extension. When this form expands we would like both the
Notes and the City fields to expand.

There’s no way to divide the form into quadrants and have both of these objects expand. Instead, an exten-
sion is needed, like this.

Page 954 Panorama Handbook
To create an elastic form with an extension like this, start by creating a normal auto-grow object in the lower
right hand corner. This is the master. Then add a second auto-grow object over the area of the extension. This
second auto-grow object is a slave. Make sure that the slave object extends past the edge of the fixed quad-
rant into one or more of the movable quadrants.

Here is the configuration dialog for the slave auto-grow object shown above. A slave may be horizontal or
vertical. In this case the extension area will slide left and right so the extension is horizontal.

You can add as many slaves as necessary to your form. Once they have been added the form will adjust auto-
matically with the extensions, like this.

“master” auto-grow object

“slave” auto-grow object

Chapter 18:Form Goodies Page 955
Expanding Multiple Objects Proportionally

Panorama normally adjusts each object separately, either by expanding them or sliding each object. For exam-
ple, consider the form shown below.

This form expands like this.

Sometimes, however, you may want several objects to expand or shrink proportionally as a group. For exam-
ple, if the window grows by an inch, you want four objects to grow equally by 1/4 inch.

One way to do this is by grouping the objects (see “Grouping Objects Together” on page 588).

four objects combined
into single group

Page 956 Panorama Handbook
The form adjusting mechanism treats the group as a single object. Within the group, each object will expand
or shrink proportionally as the entire group expands or shrinks. Notice that the gaps between the objects also
expand proportionally.

Another method is to use a Matrix SuperObject (see “Super Matrix Objects” on page 958). Again, as the entire
matrix expands or shrinks, the individual cells in the matrix expand or shrink proportionally. This method is
ideal for calendars (see “Building a Calendar” on page 975). If you use the Text Display SuperObject to dis-
play text, the text can automatically increase or decrease in size as the form expands and shrinks (see “Text
Display Options” on page 660).

Elastic View-As-List Forms

Starting with Panorama 4.0 it is possible to create an elastic view-as-list form. In this case the vertical position
of the auto-grow object is unimportant. The horizontal position of the object should correspond to the right
edge of the visible area. It’s easier to set this up if the data tile is aligned with the left edge of the form. In the
example below the width of the Deposit field will increase when the form is expanded.

auto-grow object

Chapter 18:Form Goodies Page 957
Here’s what this form looks like in a minimum width configuration.

When the window is expanded, the form adjusts automatically.

You can also use the auto-grow object to set the minimum and maximum dimensions of the view-as-list form,
just as with a regular form.

Page 958 Panorama Handbook
Super Matrix Objects

Some applications require a rectangular array (or matrix) of data, pictures, and/or pushbuttons (for example
a monthly calendar or a thumbnail artwork preview).

Such a matrix consists of a series of cells assembled into rows and columns. Of course, you can build up such
a matrix from individual objects, but the Super Matrix SuperObject™ allows the entire matrix to be built by
repeating a single template. The template may contain artwork and text that will be repeated over and over
again for each cell in the matrix. The template can use formulas to display the appropriate information in
each column and row. This system has several advantages: 1) The array can be built quickly, 2) If changes are
necessary later, they only have to be made once in the template and are automatically repeated throughout
the entire matrix, 3) It is very easy to change the number of columns or rows in the matrix, 4) The matrix and
template can be constructed to adjust automatically as the window changes size and shape.

Chapter 18:Form Goodies Page 959
The Matrix Template (and Frame Object)

Unlike most other objects, the Super Matrix is not completely self contained. For non-trivial applications, it
requires a template that tells Panorama what to draw within each matrix cell. This template consists of Pan-
orama objects enclosed within an object you designate as the frame object. We call the object a frame object
because it surrounds the objects inside, just like a picture frame. Any object that is inside the frame object will
automatically appear inside the cells of the matrix. The frame is usually placed off to the side or below, some-
where where it will not normally be visible.

To designate an object as a frame object, you must give it a unique name. To give an object a name, first select
the object (frame objects are usually rectangles, but any kind of object will work).

“frame” object

matrix

Inside the matrix the
template is repeated
over and over

surrounds the template

Page 960 Panorama Handbook
Next, use the Object Name command in the Edit menu or click on the object name in the Graphic Control
Strip (along the bottom of the window). See “Object Type/Object Name” on page 585 for more details about
setting and viewing an object’s name. The name you pick is unimportant, but keep it handy, because you’ll
need it when you create the matrix itself.

If you later forget the name of the object you can use the Graphic Control Strip to remind you.

The frame object may be located anywhere on the form, and may be any size you want. Usually it is most
convenient to make it about the same size as the cells in the matrix will be. You can move the frame object
around at any time, but remember that only objects inside the frame object will appear inside the cells of the
matrix.

In some ways, the matrix frame object is similar to a report tile object. Both are used to designate a template
built up with other objects. However, there are some important differences. First of all, the tile is a special
kind of object, while any object may be designated as a matrix frame.

A more important difference is that the tile object always prints at a fixed size and proportion, no matter what
the size of your paper is. The matrix frame, however, will be squeezed and adjusted as necessary to fit into
the actual matrix cells. If the matrix cells are tall and skinny then the matrix frame and template will be
sqeezed to fit—even if in graphics mode the matrix frame appears to be short and wide.

click here to toggle view until name appearsobject name

template

Chapter 18:Form Goodies Page 961
If you know the exact size your matrix cells will be, make the matrix frame the same size and you won’t have
to worry. But if the size of the matrix cells may change, you’ll have to design your matrix template to adjust
as the matrix changes size and shape. Techniques for making adjustable templates are discussed later in this
section.

Creating Super Matrix Objects

Super Matrix objects are created just like any other SuperObject™. The Super Matrix tool is not in the default
tool palette, so you’ll need to use the Tool Palette dialog to add this tool to the palette if it is not already there
(see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Page 962 Panorama Handbook
Once the tool is selected, drag the mouse across the form in the location where you want to create the matrix
to appear.
\

When you release the mouse, the Super Matrix configuration dialog will appear.

Chapter 18:Form Goodies Page 963
For a blank matrix just fill in the number of columns and rows and press the OK button.

If you need to change the matrix options later, double click on the matrix object with the Pointer tool to re-
open the configuration dialog.

Linking with the Matrix Frame

The first option in the Super Matrix dialog is called Matrix Frame. This is the name you gave to the frame
object described earlier (see “The Matrix Template (and Frame Object)” on page 959). If you haven’t created
this object yet, don’t worry. Just type in the name you intend to use here, then later go back and create and
name the frame object and template.

As you may recall, in our example we named the frame object Sample Cell. You can double check the name
by clicking on the frame object (see “Object Type/Object Name” on page 585).

click on object

to make object name appear

click triangle to toggle between dimensions/font/object name

Page 964 Panorama Handbook
Now that we’ve double checked on the name of the frame object, double click on the Super Matrix object to
open the configuration dialog. Type in the name of the frame object, Sample Cell.

When you press the OK button the frame is linked to the matrix. The objects in the template will be repeated
inside each matrix cell.

It’s possible to have more than one Super Matrix object in a single form. In this case, usually each one will
have its own matrix frame with a unique name. The unique name is important so that Panorama can tell
which frame belongs to which matrix.

Matrix Cell Borders & Background

If you turn on the Cell Borders option in the Super Matrix dialog, Panorama will display a border around
each cell in the object. You can control the color, line width, and pen pattern of the border using the Graphic
Control Strip or the Graphics menu. (If you would like a dotted border, use a diagonal stripe pen pattern.)
Panorama will adjust the borders of adjacent cells so that they overlap (instead of creating a double width
border). The amount of overlap is adjusted according to the width of the line. (Note: This overlap feature
does not work with hairlines.)

The Frame Object option controls whether or not the frame object itself is displayed as part of each matrix
cell. Usually you’ll leave this option off. However, you might want to use this option to display a background
for each cell, perhaps using a Flash Art object as the frame object. You could also display a border around
each cell using the frame object, but in this case Panorama will not make adjacent cells overlap.

Chapter 18:Form Goodies Page 965
Matrix Order

Each matrix cell is numbered, starting from 1. The matrix can be drawn one of two ways: vertically or hori-
zontally. In both cases the upper left hand cell is number 1. If the matrix order is horizontal, then the cell
numbers will be consecutively numbered from left to right in each row.

If the matrix order is vertical, then the cell numbers will be consecutively numbered from top to bottom in
each column.

Page 966 Panorama Handbook
Matrix Rows and Columns

The Super Matrix dialog allows you to control how many rows and columns your matrix has. You can choose
either variable sized (fixed #) or fixed size rows and columns.

For example, suppose you wanted to build a monthly calendar. In that case you would always want 7 col-
umns and 6 rows, so you should choose the fixed # of columns and fixed # of rows options.

This matrix will always have 7 columns and 6 rows, but the size of the rows and columns will change if the
matrix changes size.

Chapter 18:Form Goodies Page 967
In another application you may want to display icons in a matrix with cells that are always 36 pixels wide
and 36 pixels high (1/2 inch). To get this effect you must choose the fixed width and fixed height options.

The rows and columns will always be 36 pixels (1/2 inch) high and wide. If the overall matrix changes size,
the number of rows and columns will increase or decrease as necessary.

If the size of the matrix is not an exact multiple of the size of the individual cells there will be extra space left-
over on the right and/or bottom of the matrix. Panorama will leave this space blank. The only solution to this
problem is to make sure that the matrix height and width are an exact multiple of the height and width of
each individual cell.

Page 968 Panorama Handbook
It’s possible to mix the fixed width/height and fixed # of rows/columns options in a single matrix. For exam-
ple, this matrix always has one column, but has a variable number of rows that are always 13 pixels high.

As the height of the matrix increases, more and more rows appear. Each row is always 13 characters high.

Designing a Matrix Template

Matrix templates were introduced earlier in this chapter. The next few sections explain how to create the
actual “guts” of a matrix template.

In creating matrix templates, it may help to understand how Panorama draws a matrix. First, it calculates the
exact size and location of each cell in the matrix. Then, starting from the upper left, it draws each cell. To
draw each cell, it first locates the matrix frame, and the objects inside the matrix frame. It temporarily moves
and adjusts these objects so that they fit inside the matrix cell. It then draws the cell. The process repeats for
each cell. Your job is to create graphic objects that: 1) display the appropriate information in each cell, and, 2)
will look satisfactory when adjusted to fit inside any reasonable size and shape matrix cell (as a bonus, you
get to decide what constitutes a reasonable size and shape matrix cell!).

Adjustable Size Templates

The cells in a Super Matrix object can change size and shape several ways: 1) You can change the number of
rows or columns, 2) You can change the size of the entire matrix in graphics mode, or 3) If you’ve created an
elastic form, the size of the entire matrix can automatically change when the size of the window changes.
Whenever any of these things happen, the graphics inside each matrix cell need to adjust automatically.

The Super Matrix object has two methods it can use for adjusting the graphics you create so that they auto-
matically fit into each matrix cell. We’ll use this matrix template to illustrate both of these methods.

Chapter 18:Form Goodies Page 969
The standard method is Proportional. In this method, each graphic object will occupy the same relative posi-
tion in the matrix cell that it occupies inside the matrix frame object. So if, for example, a flash art object is
located in the bottom right third of the matrix frame it will also appear in the bottom right third of each cell.
It’s almost as if you drew the matrix template on a rubber sheet, and Panorama stretches the rubber sheet as
necessary to fit each cell.

A potential disadvantage of this method is that as the cell expands, everything in the cell expands with it. For
example, if each cell contained a photograph with a 9 point caption on the bottom, the caption would also
expand if the cell expanded. This may or may not be what you want to happen.

Page 970 Panorama Handbook
The second method for adjusting the matrix template is called Sliding. As the matrix cell gets bigger, points in
the upper left hand corner stay put, while points toward the right and the bottom slide over and down.
Essentially, the template “explodes” as the cell gets bigger. This method is somewhat similar to Panorama’s
cluster resize feature, and is also similar to an elastic form. To control the point at which the template
“explodes,” enter the size (in pixels) of the upper left hand corner that you want to stay together in the boxes
marked v and h. V is the height of this box (stands for vertical) and h is the width (for horizontal). In some
cases, it may be more convenient to enter negative values. In this case the dimension will be measured from
the bottom right hand corner instead of the upper top.

If you use the sliding method, be careful that your matrix cells don’t get too small. If they do, your template
may “implode.” The result isn’t as horrible as it sounds, but it may look very strange and become unreadable.

Chapter 18:Form Goodies Page 971
Using the sliding method you can create a variable size photograph with a fixed height caption, like this. No
matter how small or large the matrix is, the caption area will always remain the same height.

Tips for Adjustable Size Templates

The Text Display SuperObject™ is very handy for displaying text in a matrix cell (see See “Text Display
SuperObjects™” on page 658). It has flexible alignment options that allow the text to be aligned both horizon-
tally and vertically within the cell.

Page 972 Panorama Handbook
Even more handy is the Scale Text Size option, which allows the text to grow and shrink as the matrix grows
and shrinks (see See “Text Display Options” on page 660). You may need to play with the lines option to get
the effect you want (as this value is increased, the text size decreases).

Both standard Flash Art™ and SuperObject™ Flash Art are also handy for displaying pictures in a matrix cell
(see See “Creating Super Flash Art Objects” on page 807). Use the Center or Scale options to automatically
display the picture attractively within each cell. For displaying photographs, the Proportional option (Super
Flash Art only) is ideal. The photograph will always be displayed in the largest possible size without distor-
tion.

Matrix Formulas (What cell is this?)

Whether you are displaying text or pictures (or both), chances are you want to display something different in
each cell in the matrix. To do this you’ll use one or more formulas. These formulas can either be displayed
directly (using an Auto Wrap Text object or Text Display SuperObject™) or may be incorporated into a Flash
Art™ object to display a picture. Within each formula, you can use three different functions to identify the
cell being drawn.

The info("matrixcell") function returns the cell number within the matrix, starting with 1 in the upper
left hand corner. If the matrix order is horizontal, then the cell numbers will be consecutively numbered from
left to right in each row. If the matrix order is vertical, then the cell numbers will be consecutively numbered
from top to bottom in each column. This illustration shows a matrix with an auto-wrap text object being used
to display the cell number along the bottom.

Chapter 18:Form Goodies Page 973
The info("matrixcolumn") function returns the column number, starting with 1 for the left hand column
and increasing by one for each column to the right.

The info("matrixrow") function returns the row number, starting with 1 for the top row and increasing
by one for each row in the matrix.

Usually the result of these functions is not used alone, but is fed into another function. For calendars, you
would feed the cell number into calendardate(and calendarday(functions. To display items in an
array or list, you would feed the cell number into the arrayelement(or extract(functions. These func-
tions can help convert the raw cell number into the actual data that should be displayed in the cell.

Using the Matrix as a Button

The Super Matrix object doesn’t just display a matrix, it also allows you to click on matrix cells and trigger a
procedure. You can select the procedure to be triggered using the Procedure pop-up menu in the Super
Matrix dialog. If you decide later that you don’t want a procedure to be triggered, simply un-check the
Procedure check box.

If the Click/Release option is checked, Panorama will highlight the matrix cell the user clicked on by invert-
ing it (black becomes white, white becomes black). The procedure will be triggered if the mouse is released
over the same matrix cell it was originally clicked on. If the Click/Release option is not checked, Panorama
will trigger the procedure immediately without highlighting the matrix cell.

What Cell Was Clicked?

The procedure can determine what cell in the matrix was clicked by using the info("matrixcell") ,
info("matrixcolumn") and info("matrixrow") functions described earlier in this section. In addi-
tion, the info("trigger") function will return the name of the matrix object itself (if any — see “Object
Type/Object Name” on page 585). If you haven’t assigned a name to this object, the default is custom.

Page 974 Panorama Handbook
Buttons Within Matrixes

If you place buttons (3D buttons, checkboxes, radio buttons, etc.) within a matrix template, these buttons will
be displayed in each cell of the matrix. However, these buttons will not be active and will not do anything
when you click on them.

Updating the Matrix Display

So far this discussion has assumed that the contents of the matrix never change. But appointments are
rescheduled, new photos are added to portfolios, and all these changes must be displayed as they happen. To
cause the entire matrix to update whenever the current record moves up or down check the Sync Up/Dn
option.

If you want to update only a portion of the matrix you must use a procedure. To review, a procedure can send
a message to any SuperObject that has a unique object name using the SuperObject statement (see “Pro-
gram Control of SuperObjects™” on page 1678). The format for the statement that tells a Super Matrix to
redraw some or all of the cells is:

SuperObject "matrix name","redraw","area",start,end

The first parameter, "matrix name", is the name assigned to the matrix object. (Note: To give an object a name,
first select the object, then use the Object Name command in the Edit menu or click on the object name in the
Graphic Control Strip. See “Object Type/Object Name” on page 585 for more details on object names.)

The second parameter, "redraw", tells the Super Matrix object that you want to redraw part or all of the
matrix.

The third parameter, "area", defines the area that will be redrawn. Legal options for this parameter are: "all",
"column", "row", and "cell".

The fourth and fifth parameters define the start and end of the area to be redrawn. For example, if the third
parameter was "column" and the last two parameters were 3 and 5, then columns 3 thru 5 would be redrawn.
(Note: The start and end values are ignored if the "all" area is chosen.)

Chapter 18:Form Goodies Page 975
The following one-line examples illustrate different ways a matrix might be updated.

; This command redisplays the entire month
SuperObject "Month","redraw","all",0,0

; This command redisplays only weekdays
SuperObject "Month","redraw","column",2,6

; This command redisplays photo 7 only. Use a similar command
; if you update a single item in a matrix.
SuperObject "Thumbnails","redraw","cell",7,7

; This command redisplays all photos after photo 12. Use a similar
; command if you insert or delete an item in the middle of a matrix.
SuperObject "Thumbnails","redraw","cell",12,9999

A Trick for Updating the Matrix Display Automatically

If you simply want the entire matrix to redraw whenever a specific field changes, you can do so without writ-
ing a procedure. Simply overlay the matrix with an auto-wrap text object (see “Displaying Data in Auto-
Wrap Text” on page 645) or text display SuperObject™ (see “Text Display SuperObjects™” on page 658) with
a formula that includes the field or fields you want to update. (If you use an auto-wrap text object, don’t for-
get that formulas must be enclosed in { } characters.) Use text funnels to make the result of the formula invis-
ible (see “Taking Strings Apart (Text Funnels)” on page 1236). For example, if you want to update the matrix
when the Photos field is updated, overlay the matrix with an object that contains the formula:

Photos[2,1]

The result of this text funnel will always be an empty string, so nothing is displayed. Nevertheless, Panorama
will always try to redisplay this text whenever Photos is changed, and your matrix will go along for the ride
and get updated also.

Building a Calendar

One typical use for a SuperMatrix object is building a monthly calendar. A simple calendar can be con-
structed in a few minutes. Start by creating a Super Matrix object.

Page 976 Panorama Handbook
The object should be seven columns wide (one for each day of the week) by six rows high. Make sure that the
matrix order is horizontal and assign a name for the Matrix Frame of One Day. We’ve also set the resizing
method to Slide (see “Adjustable Size Templates” on page 968).

Next create a rectangle to serve as the matrix frame. Notice that the rectangle frame does not have to be the
same size as the cells in the matrix, though it can’t hurt either.

Chapter 18:Form Goodies Page 977
Use the Object Name command to assign the name One Day to this object (see “Object Type/Object Name”
on page 585).

The next step is to add a Text Display SuperObject to display the day of the month (1, 2, 3, … 30, 31). See
“Creating and Modifying Text Display SuperObjects” on page 658 to learn how to create such an object. Use
the formula shown in the illustration below.

Page 978 Panorama Handbook
When you press OK the beginnings of a calendar will appear.

The 12 pt text looks a bit big. Change the text to 9 pt. You’ll notice that nothing happens when you make this
change. To actually see the change you’ll need to force the window to redisplay. The easiest way to do that is
to scroll down a page, then scroll back. On Macintosh systems you can also click on the window minimize
icon twice. Either way, once the screen updates you’ll see the new look.

Next our calendar needs a header for the days of the week. You could create the header with separate text
objects, but we’ll create it with another matrix. Select the Matrix tool and drag to create the new matrix.

text display superobject

Chapter 18:Form Goodies Page 979
This new matrix will have only one row with seven columns (one for each day of the week). Type in Day Of
Week for the matrix frame, which we will create in a moment.

Page 980 Panorama Handbook
Once the new matrix is created you may need to nudge it a bit to get it perfectly lined up with the main body
of the calendar (see “Nudging an Object (or Objects)” on page 565 and “Nudging the Size of an Object” on
page 568).

The next step is to create the second matrix frame. Start by creating a rectangle.

Set the name of the rectangle to Day Of Week (see “Object Type/Object Name” on page 585).

Chapter 18:Form Goodies Page 981
The next step is to add a Text Display SuperObject to display the day of the week (Sun, Mon, Tue, …). See
“Creating and Modifying Text Display SuperObjects” on page 658 to learn how to create such an object. The
Text Display SuperObject should be created to almost fill the frame rectangle.

Use the formula shown in the illustration below to display the day of the week. You’ll also want to set the
alignment to centered, as shown below.

Page 982 Panorama Handbook
Depending on where your window is on the screen, you may need to scroll the form down a page and then
back to see the finished result.

Believe it or not, this entire calendar has been created with only six graphic objects — two matrixes, two rect-
angles, and two text objects.

Chapter 18:Form Goodies Page 983
Scroll Bars

Scroll bars are another common user interface element, and in fact may be included as part of several other
user interface elements (text editor, flash art, lists). The Scroll Bar SuperObject™ allows you to create a scroll
bar by itself as an independent user interface element.

Scroll bars can be used two ways. One is to act as a graphical method of displaying and modifying a numeric
value. For example, you could set up a scroll bar that allowed you to display and control the Temperature
field in a database. Instead of typing in the temperature, you would simply dial it in.

The second way to use a scroll bar is to scroll something. A Scroll Bar object can be combined with other
objects (a matrix, for example) to produce a scrolling section within a form.

Scroll Bar “Theory”

A scroll bar has two arrows at the end, and a sliding “thumb” that can be positioned anywhere between the
two ends. The position of the thumb moves corresponds to the current “value” of the scroll bar. As the value
increases, the thumb moves down or to the right (depending on the direction of the scroll bar). Conversely,
moving the thumb (by dragging it) changes the current value associated with the scroll bar. This value is kept
in a field or variable.

The scroll bar value is not unlimited, but ranges between preset minimum and maximum values. The mini-
mum value corresponds to a thumb position all the way to the top (or left), while the maximum value corre-
sponds to a thumb position all the way to the bottom (or right). Values in between the minimum and
maximum represent intermediate thumb positions. Only integer values are allowed; fractional values (like
2.49) are not allowed. The minimum and maximum values may be preset to any value between 1 and 65535.
For example, if the minimum is set to 1000 and the maximum set to 2000 then the scroll bar will have 1001
possible positions. A thumb position halfway in the middle corresponds to 1500.

Each time the user presses on one of the scroll bar arrows the value will increase or decrease by one. If the
minimum and maximum are set close together (for example 1 and 10) you’ll be able to see a definite jump
each time the arrow is clicked. If the minimum and maximum are far apart (for example 1 and 1000) you may
have to click several times to see even a tiny change in the thumb position.

thumb (drag to set value)

increasing value
increasing value

increase value by one
decrease value by one

increase value by page sizedecrease value by page size

Page 984 Panorama Handbook
If the user presses on the gray area above or below the thumb the scroll bar value changes by a larger, prede-
termined amount. This usually corresponds to scrolling a page at a time, instead of a line at a time. The exact
value change is set in the scroll bar’s configuration dialog.

Creating Scroll Bar SuperObjects™

Scroll Bar objects are created just like any other SuperObject™. First make sure that the Scroll Bar tool is
installed in the tool palette (see “Customizing the Tool Palette” on page 554).

Now that the tool is added to the palette you can select it.

Chapter 18:Form Goodies Page 985
Next drag the mouse across the form in the spot where you want the scroll bar to appear. If you want a verti-
cal scroll bar, drag a tall skinny box; if you want a horizontal scroll bar drag a squat wide box.

When you release the mouse, the Scroll Bar configuration dialog appears.

Page 986 Panorama Handbook
Select a field (must be a numeric field) or type in a global variable name (see “Variables” on page 1221 and
“Variables” on page 1369) and then press OK. The new scroll bar appears.

In this case we linked the scroll bar to a numeric field: H. We can add a Text Editor SuperObject to display the
value of that field (see “Creating and Modifying Text Editor SuperObjects” on page 689).

Now switch to Data Access Mode to try out the scroll bar. You can drag the thumb to any spot to set the value
of the H field.

Chapter 18:Form Goodies Page 987
You can also move the position of the scroll bar thumb by typing in a value from 1 to 100. For example, you
could type 25 into the Text Editor SuperObject.

When you press the Enter key the scroll bar thumb will hop to the 25% position.

Scroll Bar Options

The SuperObject™ Scroll Bar dialog is divided into several sections. To re-open this dialog for a scroll bar you
have already created, select the Pointer tool and then double click on the scroll bar object.

Data

This section of the dialog specifies the field or variable associated with this scroll bar. Type the name of the
field or variable into the box (or select the field name from the pop-up menu next to the Field checkbox). If
you choose a field, the field must be numeric with zero digits (see “Numeric Data” on page 355). If the scroll
bar is associated with a variable that has not been created with a procedure, Panorama will automatically cre-
ate a global variable with this name whenever the scroll bar appears. This global variable can be used in for-
mulas and procedures just like any other global variable.

Min

This is the minimum value for the scroll bar, which corresponds to the scroll bar thumb position at the far left
or top. The minimum value must be between 1 and 65535, and must be less than the maximum value.

Page 988 Panorama Handbook
Max

This is the maximum value for the scroll bar, which corresponds to the scroll bar thumb position at the far
right or bottom. The maximum value must be between 2 and 65535, and must be greater than the minimum
value. Setting the maximum value close to the minimum will produce a “grainy” scroll bar with big jumps as
you press the arrows. Setting the maximum value far from the minimum will produce a “precise” scroll bar
with tiny or even imperceptible movement as you press the arrows.

Page Up/Down

This is the amount the scroll bar value will change when the user presses on the gray area above and below
the thumb. This value must be less than the difference between the minimum and maximum values, and is
often about 1/10th of that difference.

16 Pixel

If this checkbox is turned on, Panorama will limit the scroll bar width to 16 pixels, even if the object is larger.
This is the normal size for most scroll bars. The illustration below shows a scroll bar with the 16 Pixel option
enabled. Even though the scroll bar object is 29 pixels high, the scroll bar is only 16 pixels high.

Here is the same scroll bar with the 16 Pixel option turned off.

Procedure

This section of the dialog allows you to specify a procedure that will be triggered every time the user clicks
on the scroll bar.

Chapter 18:Form Goodies Page 989
Creating a Scrolling Matrix

A scroll bar can be combined with a matrix to create a scrolling matrix. Start with an ordinary non-scrolling
matrix (see “Creating Super Matrix Objects” on page 961).

Add a scroll bar on the right hand side of the matrix (see “Creating Super Matrix Objects” on page 961).

Page 990 Panorama Handbook
The scroll bar will be linked to a variable named matrixLine (see “Variables” on page 1221 and “Variables” on
page 1369). This variable will be automatically created when you press the OK button. The database will use
this variable to keep track of how many lines this matrix is scrolled. The Page Up/Down value should be set
to the number of rows in the matrix, in this case 4. The Max value should be set to the maximum number of
lines you want to display.

Press OK to see the new scroll bar.

Now you’ll need to modify the formula of the Text Display SuperObject in the matrix frame. Double click on
this object.

double click to open configuration dialog

Chapter 18:Form Goodies Page 991
For this simple example the original formula was simply info(matrixcell) (see “Matrix Formulas
(What cell is this?)” on page 972). Add ((val(matrixLine)-1)*5)+ to the beginning of this formula, as
shown below. This formula takes the matrixLine variable and subtracts one from it, so that it will be 0 for the
first line, 1 for the second, etc. Then it multiples this value by 5, the number of columns in the matrix. (If your
matrix has more or less columns you should replace 5 with the actual number of columns in the matrix.) The
result is added to the cell number within the matrix to produce a cell number adjusted for scrolling.

Of course in a real application you probably won’t want to display just a cell number — you’ll want to dis-
play actual data. You can use the formula above as part of a larger formula, most typically as a parameter to
an array(statement that looks up the actual data to be displayed.

There’s one more object that needs to be added to our example. So far there is no way to make sure that the
matrix is redrawn when the scroll bar is changed. To do that we’ll add a Text Display SuperObject. This object
should be added exactly on top of the matrix so that it completely covers the entire matrix.

Page 992 Panorama Handbook
Here’s the formula for this object. It simply displays the matrixLine variable, and will be redrawn whenever
that variable changes (in other words, when the scroll bar is clicked). However, because of the [2,1] text
funnel (see “Taking Strings Apart (Text Funnels)” on page 1236) it actually doesn’t draw anything at all (since
we are asking it to draw from the second character to the first character, which is backwards). Nevertheless,
each time the matrixLine variable changes it will attempt to draw nothing, and as a side effect the matrix that
it is covering will also redraw, which is what we were after in the first place.

Now let’s try out our scrolling matrix. First Save the database, then switch to Data Access Mode.

Chapter 18:Form Goodies Page 993
Click on the scroll bar’s down arrow to scroll the matrix by one line.

Click in the page down area to scroll the matrix by one page.

You can also drag the scroll bar thumb to scroll the matrix to any position you want.

Page 994 Panorama Handbook
Balloon Help

The Macintosh has a feature called balloon help that can help in learning how to use a program. When the
Show Balloons option is turned on (Help menu), little pop-up balloons with help messages appear as you
move the mouse across the screen.

Panorama allows balloon help to be added to any form. You can make any message you want pop-up over
different areas of a form.

Chapter 18:Form Goodies Page 995
Creating Balloon Help Objects

Balloon help is added to a form by creating balloon help objects. You must create a separate balloon help
object for each area where you want a different balloon help message to appear. For example, if you want to
create balloon help for a button, you must create a balloon help object in the same location as the button
(either on top of or behind the button).

Balloon help objects are created in a different way than any other kind of object. First, you create a text object
with the Text tool.

Page 996 Panorama Handbook
Type in the text that you want to appear in the balloon (you can edit this later).

Once the text is created, select the text object with the Pointer tool. If necessary, move and resize the object to
position it over the appropriate area of the form.

Chapter 18:Form Goodies Page 997
With the auto-wrap text object selected, choose Convert/Edit Balloon Help from the Setup menu.

Panorama will convert the text object into a balloon help object, and at the same time it opens a dialog that
allows you to specify balloon help options.

Page 998 Panorama Handbook
Don’t worry about the fact that the Help Text are is empty. Just leave it blank and press OK. The text object
has been converted into a balloon help object, which appears with a black line around it.

When you go to Data Access Mode the black line disappears, and the balloon help object becomes completely
invisible.

new
balloon help
object

Chapter 18:Form Goodies Page 999
Turn on the Show Balloons option (Help menu) to try out your new help balloon.

If you want to change the options later, go back to Graphics Mode. Select the object and choose Convert/Edit
Balloon Help again to re-open the configuration dialog. This time the help text will appear, and you can edit
it.

Page 1000 Panorama Handbook
Balloon Help Options

The Balloon Help configuration dialog has four pop-up menus that allow you to specify various balloon help
options. To open this dialog for a balloon help object that has already been created select the object and then
choose Convert/Edit Balloon Help from the Setup menu. (Note: Unlike virtually every other type of Pan-
orama object, you cannot open the configuration dialog by double clicking on the object with the Pointer tool
selected. You must use the Convert/Edit Balloon Help command.)

The Type pop-up menu allows you to control whether a text or picture appears inside the balloon. If you
select Text (the default option), the balloon will display the text in the Help Text section of the dialog. If you
choose any of the resource options, the dialog will change to allow you to enter a resource ID number. The
Picture Resource option will display a picture with the specified resource ID number. The String Resource
option will display text from a STR resource. The String# Resource option will display text from a STR#
resource. The TEXT styl Resource option will display styled text (which may include bold, italic, etc.) from a
styl resource. These resources must be created with ResEdit or your favorite resource editor.

The Position pop-up menu controls where the tip of the balloon will appear. The Normal option makes the
tip appear at the current mouse location. The Center option makes the tip appear in the center of the balloon
help object.

The Tip pop-up menu controls the default position of the balloon. If possible, the computer will place the tip
at the corner of the balloon that you specify. However, if the mouse is near the edge of the screen this may be
impossible.

The Redraw pop-up menu controls how the screen is redisplayed when the balloon disappears. The Update
option will always work, but is usually slower. The BitCopy option works by saving the pixels under the bal-
loon and then replacing the exact same pixels when the balloon disappears. This option is much faster, but
won’t work if the pixels underneath might change while the balloon is visible (for example if the balloon is
over a clock). The Both option uses both methods simultaneously. I’m not sure why you would want to do
this, but Apple made this option available to us so we made it available to you.

Changing the Cursor Shape Over Different Areas

Many applications change the shape of the cursor as the mouse moves over different areas of a window. For
example, it might change to a finger when over a button, to a crosshair when over a table, and to a pointer
everywhere else. You can make the cursor change as the mouse moves over your Panorama forms by using
Balloon Help objects. The Balloon Help dialog allows you to enter the resource ID of a cursor in the Cursor ID
option. The cursor must be stored in a resource file that has been opened with the openresource statement.

Chapter 18:Form Goodies Page 1001
Displaying Balloon Help Text Directly on the Form

Balloon Help text can be displayed on the form itself using a special variable. When used this way the text is
visible even if the Show Balloons option is not turned on. This option also also allows the balloon help text to
be displayed on PC systems (kind of like tool tips). Note: This option was added in the Panorama 4.0.2
release, and will not work with earlier versions.

To display balloon help text directly on a form first set up balloon help objects on various locations on the
form (as described earlier in this chapter, see “Creating Balloon Help Objects” on page 995). Once the balloon
help objects are set up you’ll need to set up a Text Display Objector Auto-Wrap Text Object that displays the
variable BalloonHelpText (see “Using Formulas to Display Text” on page 671). You don’t need to create this
variable yourself, Panorama will do it for you. Here is an example of how to set up a Text Display SuperOb-
ject to display the balloon help text.

There’s nothing more to it. To see the help text simply move the mouse over a location where you have set up
balloon help.

The help text will automatically update as you move the mouse over different locations in the form. The help
text will appear whether or not the Show Balloons option is turned on, and will also appear when viewing
the form on a Windows PC system.

move mouse over
balloon help
location

The balloon help text automatically appears in the text object

Note: The green background in this example was created with a separate rectangle object

Page 1002 Panorama Handbook

Chapter 19: Charts

Many databases are filled with numbers. In this chapter you’ll learn how to bring those numbers to life by
turning them into charts and graphs. Panorama can draw five different kinds of charts—Bar, Line, Area, Pie,
and Scatter.

Drawing a chart involves two steps—setting up the chart itself and preparing the database. You only have to
set up the chart once, but you usually have to prepare the database each time you want to draw the chart.
Fortunately, preparing the data is easy, and the entire process can be automated with a procedure to make it a
real “no brainer.”

Chart Data

The job of a chart is to display numeric information graphically. Before Panorama can draw a chart it needs to
know what numbers you want to draw, and what those numbers represent.

The illustration below shows a simple data sheet along with a form containing a bar chart. Each bar corre-
sponds to a record in the database. The database has 12 visible records, so this chart has 12 bars.

value field
legend field

legends

values

Page 1002 Panorama Handbook
Of course, most databases have hundreds or thousands or records—far too many records to chart directly
like this. Before you can draw a chart of a database with hundreds or thousands of records, you must create a
summary of the database. The chart will display the summary instead of the entire database. See “Preparing
the Database for Drawing a Chart” on page 1014 later in this chapter.

Each bar has a legend that tells what the bar represents. The chart grabs the legend from a field in the data-
base—the legend field. In the illustration above the legends come from the Month field. The legend is usually
drawn across the X (horizontal) axis of the chart.

The height of each bar shows its value. The chart grabs the value from a field in the database—the value field.
Any numeric field can be used as a value field. In the illustration above the values come from the Sales field.
The values are usually drawn along the Y (vertical) axis of the chart.

The chart doesn’t just use any random field for the legend and value—you must specify these fields using
pop-up menus. You’ll learn how to do that later in this chapter.

Tip: Remember that each legend and value comes from a separate record. When you set up your database,
make sure that the data to be charted is in separate records—not spread across a single record.

Creating a New Chart

Charts are graphic objects that are set up and manipulated with the same graphic editing tools you use to cre-
ate forms and reports (see “Graphic Design” on page 549). Be sure the form is in graphic design mode before
you try to create a chart.

To create a chart, start by selecting the Chart tool.

Chapter 19:Charts Page 1003
Next, drag the mouse across the form to define the corners of the chart.

The new chart doesn’t look much like a chart. In fact, it looks more like a dialog!

Page 1004 Panorama Handbook
The buttons and pop-up menus in the dialog allow you to configure the chart. At a minimum, you must
select a legend field and at least one value field. In this case the legend field is already set to Month. Use the
pop-up menu to set the value field to Sales.

When you switch to Data Access Mode, the chart options disappear and Panorama draws the actual chart
based on the information in the legend and value fields.

You can move the chart by dragging it, or change the size by dragging one of the handles on the corners (just
like any other graphic object). When you drag the chart, be sure you press on one of the empty areas within
the chart, not on a button.

legend field

value field

Chapter 19:Charts Page 1005
In addition to the four handles on the corners, charts have an extra handle at the intersection of the X and Y
axes. You can drag this handle to change the position of the X and Y axis within the chart. In this illustration
the extra handle is being dragged upward to leave more room for the legends.

Switching back to Data Access Mode shows that there is now enough room to display the legends without
cropping.

Page 1006 Panorama Handbook
Setting Up Legend and Value Fields

To set the legend field, use the pop-up menu at the bottom of the chart object.

If the chart is being designed to display summary records, the legend field is usually the field that was used
to group the database (see “STEP 1 - GROUP” on page 459). Each chart has one (and only one) legend field.

To set the value field, use the pop-up menu in the upper left corner of the chart object.

Keep in mind that the value field must contain numeric data (see “Numeric Data” on page 355).

Chapter 19:Charts Page 1007
Setting Up Additional Value Fields

The simple bar chart shown on the previous pages displays one value per record. More complex charts can
display several values per record by adding additional bars or lines.

A chart can display up to 10 values per record. To differentiate between the values, each value field can be
given its own color and pattern.

After you specify the first value field, a second pop-up menu appears below the first value field. To add
another value field, use this pop-up menu.

You can add up to 10 value fields to a chart.

click here to add second
value field

Page 1008 Panorama Handbook
To remove a value field, choose Remove Field from the value field pop-up menu. However, you cannot
remove the first value field.

Chart Types

The chart dialog has eight icons representing the kinds of charts Panorama can draw, including bar charts,
line charts, area charts, pie charts, and scatter diagrams. The following section contains a brief description of
each type of chart. Select the chart type by clicking on the appropriate icon. A box will appear around your
selection.

scatter
pie

line
area

side by side bar
stacked bar

Chapter 19:Charts Page 1009
Bar Charts

Bar charts are probably the most common type of chart. Panorama can draw bar charts with either vertical or
horizontal bars. Horizontal bars are especially useful when you have lots of data or long legends.

Page 1010 Panorama Handbook
If the chart has multiple value fields, the bars can appear either side-by-side or stacked. If the values are side-
by-side, they are displayed from left to right. If the values are stacked, they are displayed from bottom to top.

side by side

stacked

Chapter 19:Charts Page 1011
Line Charts

Line charts are also popular, especially when large amounts of data need to be displayed.

See “Dressing Up Chart Appearance” on page 1022 to learn how to control the pattern, width, and color of
each line.

Area Charts

Area charts are very similar to line charts. The areas for each value are stacked on top of one another.

Page 1012 Panorama Handbook
Pie Charts

Pie charts display the data as slices of a pie. The size of each slice is proportional to size of each value in rela-
tion to the whole. If possible, Panorama will draw the legends around the pie.

If some of the slices are too thin, Panorama will draw a separate legend, either to the right or below the pie.
The exact location of the legend depends on the shape of the chart object.

Pie charts should only be used for showing the relationships between a few values. Most graphic designers
suggest that pie charts with more than seven slices should be avoided. Although Panorama can draw a pie
chart with dozens of slices, a bar or line chart will probably convey the message more clearly.

A pie chart can only display a single value field. Any additional value fields will be removed from the chart
when the pie chart icon is selected.

Chapter 19:Charts Page 1013
Scatter Diagrams

Scatter diagrams plot two numeric fields against each other. Each record contains a pair of numbers (Leg-
end,Value) that Panorama uses as Cartesian (x,y) co-ordinates.

Each pair of values is normally plotted as a separate dot, but you can also connect the dots or change the dots
into symbols or pictures (see “Scatter Diagram Flash Art” on page 1046 and “Connect Dots” on page 1050).

Unlike other charts, a scatter diagram requires that both the legend and the value fields contain numeric data.

Page 1014 Panorama Handbook
Preparing the Database for Drawing a Chart

Most databases contain far too much raw data to chart directly, record for record. For example, this check-
book database has several hundred records. Panorama can’t draw a chart with 411 bars, and even if it could,
you wouldn’t be able to make much sense out of it.

Chapter 19:Charts Page 1015
Before the chart can be drawn from this database the data must be reduced to a few summary records. To
recap those techniques, first group (usually Group Up, see “STEP 1 - GROUP” on page 459), then calculate
(Total, Average, etc., see “STEP 2 - CALCULATE” on page 463), then use Outline Level to collapse the data-
base so only the summary records are visible (see “STEP 3 - OUTLINE” on page 469). The result is that hun-
dreds or even thousands of data records are converted into a few summary records that can be charted easily
like this. In this example the 411 data records have been summarized into nine monthly summary records.
(The tenth summary record, the grand total, is not included in the chart).

A chart will only display data from a single summary level. Before it starts drawing a chart, Panorama checks
the summary level of the first visible record in the database. It only charts information that is at the same
summary level as that first record. This means that you do not have to remove the grand total from the bot-
tom of the database—the chart will ignore it automatically. It also means that you must collapse the data in
addition to grouping it. If you do not collapse the data with the Outline Level command (see “STEP 3 - OUT-
LINE” on page 469), the chart will try to display the raw data.

Page 1016 Panorama Handbook
If you forget to group and collapse the database before opening the chart, Panorama will probably not be able
to display any chart at all. Instead of drawing the chart, the chart will display the message Too many data
items in chart.

Don’t panic—just go back and prepare the database. As soon as the database is collapsed, the chart will
appear.

Tip: You can also reduce the scope of a chart with the Find/Select command (see “The Find/Select Dialog” on
page 435). For example, you may only want to chart data in the current year, or transactions on the west
coast. You should perform selections like these before you group the database.

You may want to create a procedure that automatically groups, calculates, collapses, and then opens the form
window containing the chart. For information about creating procedures see “Procedures” on page 1346.

Chapter 19:Charts Page 1017
Ranking (Sorting) the Chart Values

Sometimes you may want a chart to display the values in order from smallest to largest, or largest to smallest.
To display a chart this way, sort the database by value after it has been collapsed (see “Sorting by Summary
Value” on page 478). Click on the value field you want to sort by and choose Sort Up to display values from
smallest to largest, or Sort Down to display values from largest to smallest. Here is a chart that shows the
result of Sort Down on the value column. The months are no longer in chronological order, but in order of
spending per month from highest to lowest.

Sort Down the Debit field

Page 1018 Panorama Handbook
Pie charts are often displayed with the largest pie first (at 12 o’clock), then each smaller pie in order. Use Sort
Down to sort the collapsed database in this order.

Chapter 19:Charts Page 1019
Charts with “Other”

Often you’ll want to display a chart with all the small values lumped together under the legend Other. The
best way to do this is with a procedure. Here is an example procedure that creates totals for the top three
checkbook categories, with all other categories lumped together into an Other category.

Running this procedure will produce summaries that look like this —

Page 1020 Panorama Handbook
which can be easily charted like this!

This procedure is designed to be easily adaptable to any database or situation. For example, to lump every-
thing into only 3 categories plus other you only need to change one number.

Chapter 19:Charts Page 1021
Here’s the revised chart.

To adapt this procedure to a different database just change the field names.

By the way, it’s kind of fun to run this procedure with the chart visible. Check it out!

Restoring the Original Data

When you are done with your chart, use the Remove Summaries dialog (Sort Menu) to remove the summary
records (see “Getting Rid of Summary Records” on page 482). Simply press the Remove All Summaries but-
ton and all the summary records will vanish.

(Remember, if the chart is still visible, the message Too many data items in chart will re-appear when the
summaries are deleted.)

Page 1022 Panorama Handbook
Maximum Number of Chart Points

Most bar or pie charts only display a few values. But a complex line chart or scatter diagram may display
hundreds of data values. You must tell Panorama in advance that you plan to display such a complex chart.

The complexity pop-up menu (below the chart type icons) allows you to specify one of three complexity lev-
els—simple, medium, or very complex. A simple chart takes the least amount of memory and can display up
to 50 data values—more than adequate for most applications. The table below lists the attributes of each com-
plexity level.

If memory is tight, you’ll want to use the simple chart option whenever possible. On the other hand, in
today’s world of machines with 32 mb, 64 mb, 128 mb or more memory there’s not much reason to avoid
using the more complex chart types.

Dressing Up Chart Appearance

Panorama tries to display an attractive chart automatically. However you are not stuck with the chart Pan-
orama provides. You can change the fonts, patterns, colors and many other chart attributes to suit your tastes.

Chart Font, Size, and Style

You can change the font, size, and style of the text in a chart just as you would for any text object. Simply
select the chart and choose from the Font (see “Font” on page 581), Size (see “Text Size” on page 583), and
Style (see “Text Style” on page 584) menus.

Type of Chart # of Values # of Bytes

Simple 50 2100

Medium 200 3400

Medium 500 5000

Complex 2,000 20,000

Very Complex 5,000 41,000

Chapter 19:Charts Page 1023
Vertical Legends

Legends are normally displayed horizontally under bar, line and area charts. However, as in this example,
sometimes the legends are just too wide to fit under the bars!

The Vertical Legends check box allows the chart to display legends vertically instead of horizontally.

Adjust the fifth handle of the chart to allow enough room for the vertical legends.

Page 1024 Panorama Handbook
Note: If a chart uses horizontal legends, there may not be enough room on the chart for a long legend. When
this happens, the legend is not displayed. Four solutions are possible: 1) use vertical legends, 2) use shorter
legends, 3) use a smaller font size, or 4) increase the size of the chart.

Output Patterns

Panorama displays the numbers along the axis of the chart using the output pattern (see “Numeric Output
Patterns” on page 356) set up for the first value field. For example if the first value field’s output pattern is
$#.## , the chart will display a dollar sign in front of each tick mark value.

If the legend field contains numbers or dates, you can use the Output Pattern command (Text Menu) to for-
mat the legend. For example, if the chart is designed to display data grouped by month, the output pattern
could be set to mm-YY or Mon yy .

Here’s an example of a chart without any output pattern set. The database has been grouped by month, so
the chart legend shows the date of the last transaction in each month.

We can make a much better chart by selecting the chart object with the Pointer tool, choosing the Output Pat-
tern command, and setting the pattern to Mon yy.

Chapter 19:Charts Page 1025
Here’s the revised chart.

Graphic Attribute Icons

Panorama normally lets you select the graphic attributes of an object (pattern, border, color, etc.) by selecting
the object and then choosing the attributes from the Graphic Control Strip or Graphic sub-menus. A chart,
however, can have several different components that need to have separate graphic attributes. For example,
you must be able to set the attributes for each slice of a pie chart independently.

To allow you to assign different attributes to different components, the chart object contains a row of graphic
attribute icons just below the chart type buttons.

The number of graphic attribute icons available depends on the type of chart and the number of value fields.

graphic attribute icons

Page 1026 Panorama Handbook
For most types of charts the number of graphic attribute icons is the same as the number of value fields. The
leftmost icon is used to set the attributes for the first value field, the next icon represents the second value
field, etc.

value field #1

value field #2

value field #1

value field #2

value field #1 value field #2

Chapter 19:Charts Page 1027
A pie chart always has 15 graphic attribute icons (although some may be invisible if the chart object is too
small). The leftmost icon is used to set the attributes of the first pie slice (12 o’clock), the second icon repre-
sents the next slice, etc. If the pie has more than 15 slices, the 16th slice will wrap back to the beginning and
use the first graphic attribute icon. The 17th slice will use the second icon, etc.

To change the graphic attributes of one of these icons, simply click on the icon to select it and then choose the
attributes from the Graphic Control Strip or the Graphic sub-menus (Fill Pattern, Line Pattern, Line Width,
Color). The icon will change to show the effect of the new attributes. Panorama draws a box around the
selected icon to show that it is active.

For example, to change the color of the third slice of a pie chart, click on the third graphic attribute icon.

slice #1

slice #2
slice #3

slice #4

Page 1028 Panorama Handbook
Once the icon is selected, pick the color from the Color box in the Graphic Control Strip.

When you release the mouse the icon updates to show the new color.

Chapter 19:Charts Page 1029
Here’s the updated chart with a brown third slice.

Here is a line chart with two lines — domestic (purple) and overseas (blue) sales.

Page 1030 Panorama Handbook
Suppose you wanted the overseas line to be dotted instead of solid. Switch to Graphic Design mode and click
on the second graphic attribute icon.

Now choose a gray pattern from the line pattern menu.

Chapter 19:Charts Page 1031
When you release the mouse you will see a dotted border around the graphic attribute icon.

Switch to Data Access Mode to see the revised chart.

Page 1032 Panorama Handbook
Let’s make one further revision. Go back to Graphic Design Mode and select the first graphic attribute icon.

Now choose a double width line from the Line Width menu.

Chapter 19:Charts Page 1033
Here’s the result of this modification.

Grid

The Grid checkbox tells the chart to display grid lines from each tick mark.

You can also turn grids on or off by double clicking any of the chart type icons. The Grid checkbox is ignored
when displaying pie charts.

Page 1034 Panorama Handbook
Non-Zero Axis OK

Panorama normally displays all charts from zero. If you check the Non-Zero Axis OK option, Panorama is
allowed to display charts that don’t go all the way to zero. Here’s a normal chart that includes zero even
though the lowest value is over $20,000.

Here’s the same chart with the Non-Zero Axis OK option enabled.

As you can see, a chart with a non-zero axis can greatly exaggerate the differences between values. Because
charts that are not based on zero can be very misleading, they should be avoided if possible.

Chapter 19:Charts Page 1035
Tick Mark Spacing

Panorama normally sets the number of tick marks automatically depending on the data values and the chart
size. You can override the automatic tick mark spacing using the two pop-up menus near the bottom of the
chart object.

Here’s what this chart looks like with automatic tick marks and set to 12 tick marks.

automatic tick marks

12 tick marks

Page 1036 Panorama Handbook
Chart Preview

You can see the effect of a change in chart setup by switching from Graphic Mode to Data Access Mode. You
can also preview the chart by clicking on the preview flap in the lower left hand corner of the chart object.
The preview flap is the small triangle that looks like a turned up page corner.

Click the preview flap to flip to a preview of the chart.

Click the preview flap again to flip back to the chart dialog. You can flip back and forth as many times as you
like.

preview flap

Chapter 19:Charts Page 1037
Chart preview is especially handy when you want to draw graphics on the chart itself. For example, you may
want to draw a line to a data point to highlight the point. Chart preview lets you see the chart while you
draw objects on top of it. Of course if the data changes, these objects may no longer be in the correct position!

Copying a Chart to Another Application

Chart preview is also useful for copying a chart to a separate graphics or page layout program. To copy a
chart to the clipboard, first preview the chart, then select the chart object and use the Copy command. You
can then paste the chart into another program (as a picture).

Page 1038 Panorama Handbook
Graphic Embellishments (Titles, Legends, Drop Shadows, etc.)

Since a chart object is part of a form, you can use Panorama’s graphic tools to spruce up the form any way
you wish. You can add a title to a form with the Text tool. Since charts are transparent, you can add a back-
drop by putting a gray or colored rectangle behind the chart. You can even create a complete legend for the
chart showing which pattern or color corresponds to which data value.

Adding a drop shadow to a chart requires two rectangles. First create a white or light colored rectangle over
the chart (see “Creating a Graphic Object” on page 552).

Chapter 19:Charts Page 1039
Use Send to Back to move the rectangle behind the chart (see “Changing the Stacking Order” on page 620).

Next, duplicate this rectangle (see “Duplicate” on page 612) and change it to a dark color (see “Color” on
page 580).

Page 1040 Panorama Handbook
Use Send to Back to move this new rectangle behind everything else. Voila! A drop shadow!

If necessary, move the shadow into position behind the chart, using the arrow keys if necessary for fine
adjustments (see “Nudging an Object (or Objects)” on page 565). (The white or light colored rectangle is
needed because the chart is transparent. This rectangle blocks the shadow rectangle below it.)

Chart Flash Art

Charts are usually displayed using solid patterns and colors. With a little extra effort, you can create a truly
unusual charts by using Flash Art to draw the values in a bar, area, or scatter chart.

Chapter 19:Charts Page 1041
Before you can use Flash Art in a chart, you must build up a scrapbook of one or more Flash Art pictures.
Each Flash Art picture is identified by a name. For instructions on building a Flash Art Scrapbook, see “The
Flash Art Scrapbook (Gallery)” on page 816. The image used for the chart above was created in Adobe Photo-
shop and consists of a series of pineapples stacked on top of each other.

Page 1042 Panorama Handbook
To use Flash Art instead of a standard pattern or color, double click on one of the graphic attribute icons (see
“Graphic Attribute Icons” on page 1025).

Double clicking on a graphic attribute icon opens a dialog for setting up the Flash Art options.Type in the
name of the Flash Art picture you want to use (up to 28 characters).

double click

Chapter 19:Charts Page 1043
When you click OK, the icon will display a tiny flash art light bulb.

Switch to Data Access Mode (or preview) to see the Flash Art picture in the chart.

light bulb

Page 1044 Panorama Handbook
The Flash Art dialog allows you to specify whether you want to scale or crop the picture to fit in each bar of a
bar chart. Here’s an example of the same chart using the Scale option.

If the picture is cropped, you can specify whether it should be cropped from the center or from either end.
Here’s an example that is cropped from the bottom instead of the top. Notice how the tops of the pineapples
are cut off.

Flash Art cannot be used in line or pie charts.

Using Flash Art for Color or Blends

Beyond the obvious application of pict-o-grams, Flash Art can also be used to display charts using graphic
effects that cannot normally be created with Panorama. For example, Panorama is normally limited to 256
colors, but using Flash Art you can use any color available on your system. Simply create a swatch of the
color in a color paint or draw program, then copy the swatch into the Flash Art Scrapbook. Once the color
swatch is in the scrapbook, it can be used in a chart.

Chapter 19:Charts Page 1045
You can also use a program like PhotoShop to create a blend, then paste the blend into the Flash Art Scrap-
book.

Once the blend is in the scrapbook, it can be used in a chart. This chart was created using the Scale option, but
you can also get nice effects using the Crop option.

Page 1046 Panorama Handbook
Scatter Diagram Flash Art

Scatter diagrams don’t have to be just a collection of dots. You can spruce up scatter diagrams with Flash Art,
and by playing connect the dots. (See “Scatter Diagrams” on page 1013 for basic information about scatter
diagrams.)

To use a Flash Art picture instead of a simple dot, start by creating an image you want to use, then paste that
image into the Flash Art Scrapbook (see “Adding a New Image to the Scrapbook” on page 817).

Next double click the graphic attributes icon and set up the Flash Art option (see “Chart Flash Art” on
page 1040).

Chapter 19:Charts Page 1047
Now Panorama will draw the scatter diagram using red triangles.

It’s possible to create a scatter diagram in which different points are represented with different images. To
create a chart like this, start by adding an extra field to the database that contains the name of the image asso-
ciated with each point. In this example a field named Data Type has been added (see “Add Field” on
page 329).

Page 1048 Panorama Handbook
The next step is to add the images to the Flash Art Scrapbook (see “Adding a New Image to the Scrapbook”
on page 817).

Next double click on the graphic attribute icon for the chart (see “Chart Flash Art” on page 1040).

double click

Chapter 19:Charts Page 1049
Enter the name of that field surrounded by the « » chevron characters. On the Macintosh these characters are
produced by typing Option-\ and Shift-Option-\. On PC systems these characters are produced by typing
Alt-0171 and Alt-0187.

(Note: Although the example may make it appear as if you could enter an entire formula, only a field name is
allowed.)

When the chart is displayed it shows the appropriate symbol for each point.

Page 1050 Panorama Handbook
Connect Dots

To draw a line between the dots in a scatter diagram, check the Connect Dots option. The Connect Dots
option only affects scatter diagrams. All other chart types ignore this option.

When a chart is connecting the dots, the order of each point is very important. If the points are out of order,
the result can be a mess.

normal

connect dots

Chapter 19:Charts Page 1051
The points can be re-arranged into order by Sorting the X value, and then using Sort Within on the Y value
(see “Sorting By More Than One Field” on page 426). (This assumes, of course, that you don’t want the lines
to be scrambled up.)

If the chart uses different Flash Art symbols for different dots (see “Scatter Diagram Flash Art” on page 1046),
Panorama will only draw a line between points that are the same shape.

To make sure that all points of each symbol are connected together, sort the database by the type of symbol.
You may also want to Sort Within by the X and Y values.

Printing a Chart

A chart can be printed just like any other graphic element. A simple way to print a chart is to place it on a
data tile and use the Print One Record tool to print it (see “Print One Record” on page 1065). (If you use the
Print command you will get many identical copies of the chart—one for each visible record.)

Page 1052 Panorama Handbook
Another method is to place the chart on the First Page Header tile (see “First Page Header Tile” on
page 1111).

Chapter 19:Charts Page 1053
This allows you to combine the chart with a listing of the data on the same page. Here’s what the final printed
page looks like.

Page 1054 Panorama Handbook

Chapter 20: Printing Basics

Since we haven’t quite arrived at the age of the totally paperless office, printing is still an important function
of any computer program—including Panorama. This chapter covers the basics of printing. In the next chap-
ter you’ll learn how to design and use custom reports.

Printing Different Views

You can print any of Panorama’s six kinds of views—data sheet, design sheet, flash art gallery, form, crosstab,
or procedure. To print a view, you must make it visible in the top window. Use the View Menu if the view
you want to print is not currently visible and on top (see “Switching Between Views” on page 302).

Once the view is visible in the top window, use the Print command in the File Menu to print the contents of
the view.

Printing the Data Sheet

Panorama prints the data sheet exactly as it appears on the screen. If the data sheet is too wide to fit on the
page, Panorama will print extra pages until all the columns are printed.

You can get more data sheet columns on a page several ways. One method is to use the Page Setup dialog to
switch to a wide paper orientation (sideways or landscape), or to reduce the printout to a smaller size (Mac-
intosh only). You can also use a smaller font.

You can also print the design sheet or a crosstab sheet. These views will also print extra pages if they contain
more columns than will fit on a single page.

Page 1056 Panorama Handbook
Printing Data Sheet Headers & Footers

The Headers/Footers dialog (File Menu) sets up headers and footers for the data sheet, design sheet, or any
crosstab. (You can set up separate headers and footers for each of these windows.)

The Headers/Footers dialog allows you to position headers and footers in four locations on the printed page:
top left, top center, top right, and bottom center.

Chapter 20:Printing Basics Page 1057
If you want to create a header or footer that is more than one line high, just press the Return key and type in
the additional lines, like this.

When printed this header will look like this.

You can insert special codes into the header/footer text to print the page number, date, and time. Here’s an
example of how to insert the page number (the printed result is shown above). On the Macintosh the « »
chevron characters are produced by typing Option-\ and Shift-Option-\. On PC systems these characters
are produced by typing Alt-0171 and Alt-0187.

The table below lists some of the special codes that can be inserted into a header or footer:

As the last two entries in this table show, you can actually insert any formula into a header or footer by sur-
rounding the formula with { and }. Here’s an example that uses two formulas to display the database name
and number of records in the footer.

Description Code Example

Page Number «page #» 1

Date «date:mm/dd/yy» 3/7/02

Date «date:Month ddnth, yyyy» April 8th, 2003

Time {timepattern(now(),"hh:mm:ss am/pm"} 2:23:12 PM

Database Name {info("databasename")} Hotels

Page 1058 Panorama Handbook
Here’s what the finished footer looks like. See “Formulas” on page 1185 to learn more about formulas.

The four buttons just below the header/footer area will insert the most common codes into a header or footer
for you. For example, suppose you wanted the top center header to show the time and date the database was
printed, like this: Printed on May 23rd, 2000 at 4:21 PM. Start by opening the Headers/Footers dialog. Type
Printed on into the Top Center header.

Chapter 20:Printing Basics Page 1059
Now press the Month dd, YYYY button. Panorama will insert the code for you.

Next type in at and press the hh:mm:ss button.

Page 1060 Panorama Handbook
Now press OK, and print or preview the data sheet. The top of the printed page will look like this:

Printing a Form

When you ask Panorama to print a data sheet, it prints an exact line-for-line replica—with one line for every
visible record in the database. But when a form view is printed it would not be practical to print the entire
form for every record. Instead, Panorama lets you specify what part of the form should be printed where on
the report. To do this you use special graphic objects called report tiles. Each report tile defines a section of
the form that is to be included in a printed report. By combining several tiles you can create a complex report
with headers, footers, subtitles, summaries, etc. Report tiles and their applications are covered in detail in the
following chapter, see “Custom Reports” on page 1067.

If you ask Panorama to print a form that has no report tiles, it will simply print the upper left hand corner of
the form (8" by 10"), one record per page. In other words if your database contains 187 visible records, Pan-
orama will print 187 pages. For most reports you will want to use report tiles so that more than one record is
printed per page.

Preparing Data For Printing

Before you print the database, you may want to prepare it for printing. If you want the data printed in a cer-
tain order (for example alphabetical by name), you must sort the database before you print it (see “Sorting”
on page 425). If you want to print only a portion of the database (for example, only zip codes in California),
you must use the Find/Select command to make the rest of the database invisible (see “Searching and Select-
ing” on page 433). If you want to print subtotals or other summary information, you must group and total the
database before printing (see “Summaries and Outlines” on page 453).

If you are going to print a report often, you may want to create a procedures to automatically prepare the
data before printing. For example, here is a procedure that groups the database by month and by day, calcu-
lates the totals, then opens the form Monthly Statements and prints the database.

Chapter 20:Printing Basics Page 1061
For more information on procedures see “Procedures” on page 1345.

The Page Setup Dialog

The Page Setup command in the File Menu displays a dialog that allows you to specify several printing
options. The exact options available depend on the operating system and what kind of printer you are using,
but in general you can control the page size, orientation (tall or wide), and print reduction factor. Here is a
typical Page Setup dialog.

Each form view has its own separate page setup. The page setup is remembered as part of the form. For
example, a single database can have an invoice that is printed using the tall orientation, and a report that is
printed using the wide orientation (sideways). You don’t have to remember to switch the page setup when
you switch forms—Panorama will do it for you. Incidentally, be sure to save the file after you change the
page setup. If you save the file, Panorama will remember the page setup the next time the file is opened.
(However, not all print options are saved as part of the database. The exact options that are saved vary from
printer to printer.)

Fractional Fonts

The Fractional Fonts option is in the Form Preferences dialog (Setup Menu).

Page 1062 Panorama Handbook
If this option is checked, Panorama will print using the most accurate character spacing. This option should
only be checked when you are printing using a Postscript or TrueType font (which these days, is almost
always true).

The Print Dialog

The Print command also displays a dialog box allowing you to choose printing options. You can choose
which pages to print, how many copies to print, and whether you want to manually feed the paper. The exact
options will depend on the operating system and printer you are using. Here is a typical Print option dialog.

For the exact details on the operation of this dialog see the documentation that came with your printer.

Chapter 20:Printing Basics Page 1063
Print Preview

The Print Preview command (File Menu) allows you to see what a report will look like without using any
paper. This command opens a new window called Print Preview.

The preview window normally fills the entire screen, but you can change the size and location of the preview
window after it is opened using the grow box and drag bar. Only one preview window can be open at a time,
and all other Panorama windows are disabled when the preview window is open. You can still see the other
windows, but you cannot bring them to the front or click on them.

The image of the printed page is reduced so that the entire page fits in the window. To expand the image to
full size, click on the magnifying glass tool.

Page 1064 Panorama Handbook
Each time you click on this tool, the window toggles between reduce to fit and 100% magnification, like this.

When the preview is magnified to 100%, you can use the scroll bars to shift to different locations within the
page. You can also use the mouse to push the preview to a different spot. Simply press the mouse (which
looks like a hand, see illustration above) on the preview window, then drag the image to a new location.

To preview the next page, click on the Next Page tool.

Chapter 20:Printing Basics Page 1065
To copy an image of the page to the clipboard, use the Copy Page tool.

Once the image is on the clipboard, you can copy it into a graphic or page layout program.

Print One Record

The Print command normally prints every visible record in a database. If you want to print just one record,
use the Print One Record tool at the bottom of the tool palette.

This tool only appears in the tool palette of form windows. It is not available for any other view (data sheet,
design sheet, etc.).

Page 1066 Panorama Handbook

Chapter 21: Custom Reports

Panorama has a very flexible system for printing custom reports. Panorama assembles each report page by
taking pre-defined components from your form and sliding them into position on the page. Because the
report components fit together like floor tiles, these components are called report tiles. Each tile in the form
corresponds to a section of real estate on the printed page.

A form for generating a report may contain only a single report tile, or it may contain dozens of tiles. Pan-
orama checks for the presence of each type of tile as it is building the report, and if found, uses the tile to
build one section of the report. The size and shape of the tiles determines the overall layout of the report.

Report tiles are graphic objects that are part of a form. Here is an example of a typical form that contains three
report tiles—top margin tile, left margin tile, and data tile. (This form also contains a Text Display SuperOb-
ject that has been placed on top of the data tile—more on that later.)

You can manipulate report tiles just as you would any other graphic object—drag, nudge, copy, etc. (see
“Graphic Design” on page 549). Each form can be used to generate a unique report. Since a database can con-
tain an unlimited number of different forms you can also have an unlimited number of custom reports. To
print a particular custom report simply open the appropriate form (see “Switching Between Views” on
page 302) and print. (You may also want to prepare the data before you print by sorting, selecting, and/or
summarizing the data. See “Sorting” on page 425, “Searching and Selecting” on page 433, and “Summaries
and Outlines” on page 453).

top margin tile

left margin tile

data tile

text display superobject

Page 1068 Panorama Handbook
Working with Tiles

To create a new tile, start by selecting the Tile tool.

Next, drag the mouse across the form in the spot where you want to place the new tile. Any empty spot will
do. The position of a tile on the form does not affect how it is printed—only the size and shape.

Chapter 21:Custom Reports Page 1069
When you release the mouse, Panorama creates the new tile. If this is the first tile on the form, Panorama
automatically creates a data tile (see “Data Tiles” on page 1081). Later, Panorama will give you a choice.

When you add the first tile to the form (the data tile), the background (outside the tile) will turn gray, as
shown above. Only graphics or text that are on top of a tile will be printed — any graphics or text in the gray
area will not be printed.

On the screen, a tile looks sort of like an upside down window. Tiles are divided into two parts: the surface
and the drag bar. The surface is the actual printed area of the tile.

tile surface

tile drag bar

type of tile

Page 1070 Panorama Handbook
Unlike other graphic objects that can be manipulated by clicking anywhere in the object, a tile is only sensi-
tive to clicks on its drag bar. If you click and/or drag on the surface of a tile, the object is not selected and
does not move. Instead, a selection marquee appears, just as if you had dragged on an empty spot in the form
(see “Selecting Multiple Objects at Once” on page 559).

To move a tile, press the mouse on the drag bar and drag the tile to the new position.

Chapter 21:Custom Reports Page 1071
When you release the mouse, the tile moves to the new position, just as with dragging any other kind of
object.

To select a tile, click on the drag bar. When the tile is selected, four handles appear around the corners of the
tile, as shown above. You can use these grips to change the size of the tile, again, just like any other kind of
object.

Page 1072 Panorama Handbook
Release the mouse to see the new size.

Tiles can also be moved or resized with the Dimensions command (see “Viewing and Setting Exact Object
Dimensions” on page 567) and by nudging with the arrow keys (see “Nudging an Object (or Objects)” on
page 565 and “Nudging the Size of an Object” on page 568). Note: When using the Dimensions command
the dimensions are for the surface of the tile only, not including the drag bar along the bottom of the tile.

As mentioned above, the surface of the tile is not sensitive to the mouse. In other words, clicking on the sur-
face area does not select the tile, and you cannot move the tile by dragging on the surface. However, you can
place objects on top of the tile and move or select them.

In fact, as you will see later, most tiles must have other objects placed on top of them to build a complete
report.

Chapter 21:Custom Reports Page 1073
If a report tile has one or more objects placed on top of it, double clicking on the tile’s drag bar will select both
the tile and all of the objects on top of the tile. This is convenient if you want to move or copy the tile and the
objects to a new position or to a different form.

However, double clicking on the type of tile does not select the objects.

double click drag bar to select tile and all objects on the tile

double click here to open the tile configuration dialog

Page 1074 Panorama Handbook
Instead it opens the tile configuration dialog, allowing you to change the type of a tile. Depending on the
number and type of tiles that are already on your form you may get the simple dialog shown on the left or the
more complex dialog shown on the right.

To change the tile’s type simply pick the appropriate button, or press Cancel to keep the same type.

Creating Additional Tiles

A minimum report contains at least a data tile. Many reports will contain additional tiles. To create an addi-
tional tile, start by selecting the Tile tool.

Chapter 21:Custom Reports Page 1075
Next, drag the mouse across an empty (gray) spot on the form. Remember, the exact position of the tile is not
important, only the size and shape.

When you release the mouse the tile configuration dialog appears. Since this form currently has only one tile,
the simple version of the configuration dialog will appear.

Page 1076 Panorama Handbook
To create a Header tile, Footer tile, or Left Margin tile simply press the appropriate button. To create any
other type of tile press the Specialized Tiles button, which makes the “long” version of the tile configuration
dialog appear.

The multitude of choices in this dialog will be discussed later. For now we’ll simply press the Header button
to create a header tile.

Chapter 21:Custom Reports Page 1077
Creating A New Tile By Duplicating

Another way to create a new tile is by duplicating an existing tile. For example, suppose you started with a
data tile like this an wished to create a matching header tile.

To duplicate this tile, hold down the Option key (Macintosh) or Alt key (PC), then click on the tile’s drag bar
and drag it (see “Drag Duplicating” on page 613). You may also want to hold down the Shift key to keep the
new tile perfectly aligned with the original.

Page 1078 Panorama Handbook
When you release the mouse a second data tile will appear.

To change the type of the new tile, double click on the type of tile.

This opens the tile configuration dialog.

double click here to open configuration dialog

Chapter 21:Custom Reports Page 1079
Press Header to switch the type of the new tile.

You may want to increase the height of the header tile. Here’s one way to do that. Start by clicking on the
drag bar to select the tile.

Page 1080 Panorama Handbook
Now drag one of the handles to set the new size. Hold down the Shift key if you want to keep the width con-
stant.

When you release the mouse button the tile snaps to the new height.

Of course the tile can also be moved or resized with the Dimensions command (see “Viewing and Setting
Exact Object Dimensions” on page 567) and by nudging with the arrow keys (see “Nudging an Object (or
Objects)” on page 565 and “Nudging the Size of an Object” on page 568).

Chapter 21:Custom Reports Page 1081
Tiles In Action

Panorama has many different types of tiles. Each type of tile has its own rules that tell Panorama where the
tile should be printed on the page. For example, a header tile is always printed at the top of the page. You can
make the header bigger or smaller, add fancy graphics, even move it to a different spot in the form window—
but no matter what you do, the header will always print at the top of the page.

Panorama’s basic rules for printing tiles are simple. First it prints the header (if any) at the top of the page,
then the footer at the bottom of the page. The space left in the middle is available for data. Panorama starts in
the upper left hand corner and prints a column of data—one data tile at a time. Once Panorama reaches the
bottom, it checks to see if it should print another column. If another column is needed, Panorama goes back
to the top and prints it.

More complex reports can have variations on this basic theme. Panorama has many different specialized
types of tiles for automatically creating almost any report format. But the basic idea is the same—each tile
slides into place on the page according to its rules.

A form should contain no more than one tile of each type. If a form contains two header tiles, for example,
Panorama will not know which one to print at the top of the page. If you attempt to print using a form that
has duplicate tiles, Panorama will display an alert.

Data Tiles

The data tile is the cornerstone of every custom report. Because the data tile is used to print each data record,
the size and shape of the data tile has a major impact on the overall look of the report. For instance, if you
want to print labels, the data tile should be the same size and shape as a single label plus the gaps between
the labels, like this.

Page 1082 Panorama Handbook
When you print this form it will look like this.

This illustration shows how Panorama stacked the tiles together to create the report shown above. In this
illustration, the tiles, which are actually invisible, are shown in light blue. As you can see, Panorama slides
the tile surfaces together as closely as possible. (The tile drag bars are not counted as part of the tile when the
report is printed.)

Chapter 21:Custom Reports Page 1083
Simply changing the size or shape of the data tile can completely change the printed report.

The only change is that the data tile (and the text object on it) has been made wider. Now Panorama can only
stack two data tiles side by side.

Page 1084 Panorama Handbook
Once again here is an illustration that shows how Panorama fits the invisible tiles together to make the fin-
ished report.

To make a columnar report with one line per record, make the data tile as wide as the page and one line high,
like this.

Here’s the finished report printed from this tile.

Chapter 21:Custom Reports Page 1085
This data tile is too wide to stack side-by-side, so Panorama simply stacks them vertically.

At the other extreme you can make the data tile very large so that only one or two records will be printed per
page. This form is designed to print two postcards per page.

Page 1086 Panorama Handbook
Here’s what the postcards look like when printed on an 8.5 x 11 inch page.

Chapter 21:Custom Reports Page 1087
Just as with the other reports, Panorama prints this one by stacking the data tiles as close together as possible.

Page 1088 Panorama Handbook
If the data tile is large enough Panorama will only print one record per page. Common applications include
invoices, statements, tax returns, and form letters like the one shown here.

Chapter 21:Custom Reports Page 1089
Here’s the printed result of this form. Panorama will print one complete page for each selected record in the
database, each with a customized letter. (Or, if you wish, you can use the Print One Record tool to print a sin-
gle letter. See “Print One Record” on page 1065)

By the way, it’s also possible to print multi-page letters. See “Printing Data that Overflows a Page” on
page 1122.

Page 1090 Panorama Handbook
Margins

If a form doesn’t contain any margin tiles (like the examples in the previous section) Panorama will automat-
ically start printing as far up and to the left as possible on the current printer. In this case the exact margins
will depend on the printer and on the Page Setup options you have chosen.

Top Margin Tile

The top margin tile allows you to modify the distance from the top of the page to the top of the first tile
printed. Unlike most other tiles where both dimensions are important, Panorama only cares about the height
of the top margin tile. If the report contains a top margin tile, the height of that tile becomes the top margin of
the report.

To create a top margin, start by selecting the Tile tool.

Drag the mouse over an empty spot on the form. You don’t need to worry about the width, but the height of
this object will become the height of the top margin. Of course you can adjust the dimensions later.

Chapter 21:Custom Reports Page 1091
When you release the mouse the tile configuration dialog appears. If the small configuration dialog appears
(as shown below) then click on the Specialized Tiles button.

The top margin button is near the bottom of the dialog, and is abbreviated T Margin.

Press this button to create the new tile.

Page 1092 Panorama Handbook
When it’s printed this report will look like this.

This illustration shows how Panorama assembles the report using the top margin and data tiles. The top mar-
gin is always the top tile on the page, with any other tiles stacked below it.

Unlike other tiles, Panorama will not print text or graphics that are placed on the surface of the top margin
tile. The top margin tile has only one purpose—to set the top margin.

If the height of the top margin tile is less than the minimum printer margin the text may be cut off.

Left Margin Tile

Panorama normally prints the header, footer, and data tiles with the smallest possible left margin, usually
about 1⁄4 inch. (The actual minimum left margin depends on the type of printer you are using, and on the cur-
rent Page Setup.)

You can use the left margin tile to change the left margin. Unlike other tiles where both dimensions are
important, Panorama only cares about the width of the left margin tile. If the report contains a left margin tile,
the width of that tile becomes the left margin of the report.

Chapter 21:Custom Reports Page 1093
To create a left margin, start by selecting the Tile tool.

Drag the mouse over an empty spot on the form. You don’t need to worry about the height, but the width of
this object will become the width of the left margin. Of course you can adjust the dimensions later.

When you release the mouse the tile configuration dialog appears. If the small configuration dialog appears
(as shown below) then click on the Left Margin button.

Page 1094 Panorama Handbook
If the large configuration dialog appears press the L Margin button, which is near the top of the dialog.

Since the Left Margin tile is often quite narrow, Panorama simply displays a triangle in the tile’s drag bar.

Chapter 21:Custom Reports Page 1095
When it’s printed this report will look like this.

This illustration shows how Panorama assembles the report using the top margin and data tiles. The top mar-
gin is always the top tile on the page, with any other tiles stacked below it.

Unlike other tiles, Panorama will not print text or graphics that are placed on the surface of the left margin
tile. The left margin tile has only one purpose—to set the left margin.

Right Margin Tile

The right margin tile is rarely used. Panorama normally tries to use the entire printed area of the page, right
up to the minimum right margin. The usual right margin is about 1⁄4 inch, but like the left margin, it can vary
depending on the type of printer you are using and the current Page Setup.

You can use the right margin tile to set a larger right margin. Like the left margin, Panorama only cares about
the width of the right margin tile. If the report contains a right margin tile, the width of that tile becomes the
right margin of the report. However, there is one exception—if your right margin tile is less than the mini-
mum width, the report will ignore the tile and use the minimum right margin.

Page 1096 Panorama Handbook
Increasing the right margin has two effects. First, when you are using automatic multiple columns (see “Con-
trolling the Number of Columns” on page 1147), increasing the right margin can reduce the number of col-
umns printed. Panorama will stop printing columns when the right margin is reached. However, it is usually
simpler not to use a right margin and instead set the number of columns explicitly using the Report Prefer-
ences dialog (see “Controlling the Number of Columns” on page 1147).

The right margin also affects the position of the center and right header/footer tiles (see “Designing Headers
and Footers For Changing Page Sizes” on page 1115). The centered tiles will be centered between the left and
right margins, while right flush tiles will be flush against the right margin.

The right margin does not have any effect on normal header/footer tiles, or on the first column of data tiles.
For example, suppose that the header tile is wider than the space between the left and right margins. The
header will overlap and print in the right margin area.

Unlike other tiles, Panorama will not print text or graphics that are placed on the surface of the right margin
tile. The right margin tile has only one purpose—to set the right margin.

Bottom Margin

Panorama does not have a special tile for setting the bottom margin. Instead, you should include space for
the bottom margin in the footer tile (see “Footer Tile” on page 1105).

Headers and Footers

Many reports have headers at the top of each page and footers at the bottom. As you might guess, headers
and footers are set up with report tiles!

Header Tile

The header tile is printed at the top left of each page. The header can be used to print the report title, page
number (see “Page Numbers” on page 1106), date (see “Printing the Current Date and Time” on page 1109) or
anything else you want.

To create a header, start by selecting the Tile tool, just as with any other tile. Drag the mouse over an empty
spot on the form, leaving the proper amount of space for the header you want to create. Usually the header is
approximately the entire width of the page. (Of course you can adjust the dimensions later.) The header tile
can be in any empty spot on the form. In this example we are creating the header tile below the data tile, even
though the header will eventually print above the data.

Chapter 21:Custom Reports Page 1097
When you release the mouse the tile configuration dialog appears. If the small configuration dialog appears
(as shown below) then click on the Header button.

If the large configuration dialog appears press the Header button, which is near the top of the dialog.

Page 1098 Panorama Handbook
Here’s the new tile.

A blank header tile isn’t much use, so we’ll add some text and graphics to the header.

Chapter 21:Custom Reports Page 1099
When it’s printed this report will look like this.

This illustration shows how Panorama assembles the report using the margin, header and data tiles.

Page 1100 Panorama Handbook
Creating a Header Tile by Duplicating the Data Tile

An alternate way to create the header tile is to duplicate the data tile (see “Drag Duplicating” on page 613).
This makes it easy to line up items between the two tiles. Start with just a data tile.

To duplicate the tile, hold down the Option key (Mac) or Alt key (Windows) and drag the tile (see “Drag
Duplicating” on page 613). You probably also want to hold down the Shift key at the same time to make sure
that the two tiles stay in perfect alignment.

Chapter 21:Custom Reports Page 1101
When you release the mouse your form will contain two data tiles.

Grab one of the handles to adjust the height of the new tile.

Page 1102 Panorama Handbook
To convert the new tile from a data tile into a header tile, double click on the word Data.

This opens the tile configuration dialog.

double click here to open tile configuration dialog

double clicking on sides selects all
objects inside the tile

Chapter 21:Custom Reports Page 1103
Press the Header button to convert the tile.

Now we can add graphics and text to the header. Anything placed on the header will line up vertically with
objects in the same position on the data tile.

Page 1104 Panorama Handbook
Here’s the printed report.

Once again Panorama builds these reports by sliding the tile’s into place.

You can also build a header using the Table Header tile. See “Table Header and Table Footer Tiles” on
page 1143.

Chapter 21:Custom Reports Page 1105
Footer Tile

The footer tile is printed at the bottom left of each page. The footer can be used to print the report title, page
number (see “Page Numbers” on page 1106), date (see “Printing the Current Date and Time” on page 1109) or
anything else you want.

You can create a footer with the Tile tool (see “Header Tile” on page 1096) or by duplicating another tile (see
“Creating a Header Tile by Duplicating the Data Tile” on page 1100). In this example the footer was created
by drag duplicating the data tile (see “Drag Duplicating” on page 613).

Here’s what the bottom of this page looks like.

Page 1106 Panorama Handbook
Notice that there is a gap between the bottom of the last line of data and the footer tile. This is because the
Panorama always aligns the footer with the bottom of the page. The footer is printed as close to the bottom of
the page as possible.

If you want to create a footer that is right below the data tiles with no gap, use the Table Footer tile (see
“Table Header and Table Footer Tiles” on page 1143).

Page Numbers

Panorama can automatically calculate and print a page number on each page of your report. One technique
for printing the page number is to use an auto-wrap text object (see “Displaying Data in Auto-Wrap Text” on
page 645). The page number is merged into the text by typing «page#» into the object. (On a Macintosh the «
chevron is Option-\ and the » chevron is Shift-Option-\. On Windows systems the « chevron is Alt-0171
and the » chevron is Alt-0187.) The illustration below shows how to print page numbers on the upper right
hand corner of a report. Notice that the text object has been set to right justify (Style Menu) so that the page
number will be flush with the right edge of the report.

gap

bottom
of page

data tiles

Chapter 21:Custom Reports Page 1107
Here is what the first three pages of this report look like.

If you want the page number to start with a page number other than one you must use the
info("pagenumber") function. You can either merge this function into an auto-wrap text object (see “Dis-
playing Formulas in Auto-Wrap Text” on page 652) or use a Text Display SuperObject (see “Text Display
SuperObjects™” on page 658). The example below shows how to create a report with page numbers starting
at 25.

Page 1108 Panorama Handbook
Here’s the printed report, with page numbering beginning at 25.

To center the page number at the bottom of each page, place an auto-wrap text or Text Display SuperObject in
the center of the footer tile. To make sure that the page number is centered, the text object should be centered
within the footer tile. You also need to check the center justify option in the Style Menu.

You may want to display each page number in relation to the total number of pages in the report—for
instance Page 2 of 5. Panorama cannot automatically calculate the total number of pages in a report, but you
can find out this number manually with the Preview command (see “Print Preview” on page 1063). Use the
Next Page tool in the preview window to count the number of pages, then edit the title to display the correct
number.

Chapter 21:Custom Reports Page 1109
The examples shown have all assumed that odd and even pages are identical. It is also possible to make odd
and even pages mirror images, so that the page number always prints on the outside (on the right for odd
pages and on the left for even pages). See “Even and Odd Page Layout” on page 1172 to learn how to set this
up.

Printing the Current Date and Time

Panorama can automatically print the current date and time on each page of your report. One technique for
printing the date is to use an auto-wrap text object (see “Displaying Data in Auto-Wrap Text” on page 645).
The page number is merged into the text by typing «date:pattern» into the object. (On a Macintosh the « chev-
ron is Option-\ and the » chevron is Shift-Option-\. On Windows systems the « chevron is Alt-0171 and the
» chevron is Alt-0187.) Don’t actually type in the word pattern, instead choose one of the patterns from the
table below.

The illustration below shows how to print the current date in the upper left hand corner of a report.

Pattern Example

mm/dd/yy 3/9/04

MM/DD/YY 03/09/04

mm-dd-yyyy 3-9-2004

dd-MON-yy 9-MAR-04

dd-Month-yy 9-March-04

Month dd, yyyy March 9, 2004

Month ddnth, yyyy March 9th, 2004

DayOfWeek, Month dd Thursday, March 9

Page 1110 Panorama Handbook
Here’s the top of the first page of this report.

To include the current time in a printed report you must use the now() and timepattern(functions. You
can either merge these function into an auto-wrap text object (see “Displaying Formulas in Auto-Wrap Text”
on page 652) or use a Text Display SuperObject (see “Text Display SuperObjects™” on page 658). The exam-
ple below prints both the date and time using a formula.

Chapter 21:Custom Reports Page 1111
Here is the printed report.

You can actually merge in any formula you want into the header and/or footer.

First Page Header Tile

Panorama normally prints the header tile (or tiles) at the top of each page (see above). However, if the report
includes a first page header tile, that tile will be printed at the top of the first page. All subsequent pages will
print using the normal header tile (or tiles). Here is an example of a form that contains both a first page
header and a regular header that will print on the second, third, and any additional pages.

Page 1112 Panorama Handbook
Here are the first two pages of the printed report generated by this form. The first page includes the First
Page Header, while the second (and subsequent pages) use the regular Header tile.

The First Page Header tile can also be used to create a title page for the report. To do this simply enlarge the
First Page Header tile until it is large enough to cover an entire page. In that case Panorama will print only
that tile on the first page. The regular report will begin on the second page.

Chapter 21:Custom Reports Page 1113
BackDrop Tile

The backdrop tile can be used to print an overall graphic design on each page of the report. The backdrop tile
actually overlays all of the other tiles on the page. For example, the backdrop tile could be used to print the
word “Confidential” across each page of the report or to print a border around the page. Here’s an example
of a backdrop tile.

Page 1114 Panorama Handbook
The contents of the Backdrop tile will print on top of every page in the report.

Chapter 21:Custom Reports Page 1115
Designing Headers and Footers For Changing Page Sizes

Most reports are designed for a specific page size. It is possible, however, to design headers and footers that
automatically adjust for different page sizes. The key is to divide the header and footer into three compo-
nents: left flush, centered, and right flush. Here is a report with three headers.

On a standard 8 1/2 by 11 page this report will look like this.

Page 1116 Panorama Handbook
If you print this report on a different size page (or switch from portrait to landscape orientation or use a dif-
ferent page reduction factor) the titles will adjust automatically.

You don’t need to use this technique unless you think that the page size may change. If the page size is fixed,
just use the regular header and footer tiles.

Chapter 21:Custom Reports Page 1117
The QuickReport Dialog

When you create a new form, Panorama gives you the option of creating a blank form or automatically creat-
ing a label or report.

The QuickReport button opens a dialog that can do most or all of the work of setting up a report for you. The
QuickReport dialog allows you to automatically create a tabular report.

On the left is a list of all the fields in the database. On the right is a list of the fields that will be included in the
report. In the dialog the report fields are listed from top to bottom, in the actual report they will be printed
from left to right. To set up the report, copy the fields you want to include in the report from the list of fields
on the left to the report list on the right.

The easiest way to copy a field from the left to the right is to double click on the field name. Double clicking
on a field name adds the field to the end of the list on the right. If a field name on the right is already selected,
then double clicking on a field name on the left replaces that field. The Add button works the same as double
clicking.

To insert a field into the middle of the list on the right, first select a field on the right, then select a field on the
left. Press the Insert button to insert the new field into the list on the right.

To delete a field from the list on the right, select the field and press the Remove button. You can also delete a
field from the list on the right by double clicking on it.

If you want to use a non-standard page size, you should use the Page Setup button to set it up. Be sure to set
up the page size before you press the OK button. This lets QuickReport know how wide the page will be.

Page 1118 Panorama Handbook
Press the OK button to generate the actual report. Panorama will generate all the tiles and cells needed for
the report.

You can use this report as is, or you can use it as a starting point and modify it to suit your needs.

Chapter 21:Custom Reports Page 1119
The QuickReport dialog also creates header and footer tiles. You can specify the height of the header and
footer by specifying the top and bottom margins (in either inches or centimeters).

The QuickReport dialog can place page numbers and/or the date and time on the header and footer tiles. To
set up the page numbers and date/time, press the Set Up Titles button. This button opens a small dialog
with 16 checkboxes.

Page 1120 Panorama Handbook
These checkboxes allows you to place any combination of page number, date, and time in up to four positions
on the page: top left, top center, top right, and bottom center. Here is the form generated with the options
shown above.

To learn more about printing the page number and date see “Page Numbers” on page 1106 and “Printing the
Current Date and Time” on page 1109.

Printing Multiple Page Records

If the data tile is made large enough to fill the entire page then Panorama will print only one record per page.
In some cases, a single page is not enough. For example, you may need to print an invoice, statement or tax
return with several pages per record. Panorama can print up to 10 pages for each record.

To print a multiple page form you will need to create multiple data tiles. These additional data tiles are cre-
ated with the Specialized Tile configuration dialog.

standard
data tile

overflow page tile

second page data tile
third page data tile

fourth page data tile
fifth page data tile

Chapter 21:Custom Reports Page 1121
The tile’s for additional pages can be identified by the page number in the drag bar of the tile.

When you create a data tile for an additional page it should be large enough to fill the entire sheet of paper,
just like the first data tile. When a form contains data tiles for multiple records Panorama will ignore any
header or footer tiles. Only the margins and data tiles will be printed. This illustration shows a form for
simultaneously printing an invoice and packing slip. (Sorry — had to reduce this image to make both pages
fit!)

When you print this form, both pages will print automatically for each record printed. If you use the Print
One Record tool (see “Print One Record” on page 1065) Panorama will automatically print the current
invoice and packing slip. If you use the regular Print command Panorama will print an invoice and packing
slip for each selected record.

Selectively Printing Multiple Pages per Record

Panorama allows up to 9 pages to be printed per record using data tiles 1 through 9. However, you do not
have to print all tiles for each record, you can print them selectively using a formula on the form. For exam-
ple, you can easily ask Panorama to print pages 1, 2, and 5 for one record and 1 and 4 for another record (page
one, the primary data tile, always prints). You could use this feature to selectively print an envelope, to print
only selected portions of a tax return, to print one or two page invoices, etc.

Page 1122 Panorama Handbook
To control which extra data tiles get printed, you must use the extrapages(<pagelist>) function (see
“EXTRAPAGES(” on page 5210). This function must be put in a formula in an auto wrap text object some-
where on the main data tile. For example if you want to print pages 1, 2, and 5 you would need to use the for-
mula

{extrapages("25")}

Usually you would use a field or variable to selectively control which pages print instead of a fixed string. To
illustrate this let’s modify the invoice example from the previous section. This form would always print both
an invoice and a packing slip. By adding an extrapages(function we can modify the form so that a pack-
ing slip is not printed if the shipping method is Will Call.

The extrapages(function may be placed anywhere on the primary Data tile. The function has no result, so
it won’t cause anything to be printed. In this case if the shipping method is Priority Mail, FedEx, UPS, or any-
thing except Will Call the ?(function will produce "2" and the second page (the packing list) will print. If the
shipping method is Will Call the ?(function will produce "" and the packing list will not print.

Printing Data that Overflows a Page

With some restrictions, Panorama allows a report to print data records that won’t fit on a single page. For
example, this feature could be used to print a multiple page letter. If the letter doesn’t fit on the first page it
spills over onto multiple pages using the data overflow tile.

To print data in a single record that doesn’t fit on a single page, the data must meet the following criteria:

1) The data must be contained in a single graphic object.

2) The graphic object must be an auto-wrap text object, Word Processor SuperObject, or Super Flash Art object.

extrapages(formula may be placed anywhere on primary Data tile

Chapter 21:Custom Reports Page 1123
To print data that overflows a page you’ll need two tiles: a data tile and an overflow tile. The overflow tile is
labeled (…) in the Specialized tile configuration dialog.

standard
data tile

overflow page tile

Page 1124 Panorama Handbook
Usually the best way to create a form with an overflow tile is to start with a single page form like this.

Chapter 21:Custom Reports Page 1125
Double click the tile drag bar to select the tile and all the objects on it (see “Working with Tiles” on page 1068).
Then duplicate these objects by holding down the Option key (Macintosh) or Alt key (PC), and clicking on
the tile’s drag bar and dragging it (see “Drag Duplicating” on page 613). You may also want to hold down the
Shift key to keep the new tile perfectly aligned with the original. The result is two data tiles, like this.

Double click on the title of the second data tile to change it to an overflow tile.

Page 1126 Panorama Handbook

Chapter 21:Custom Reports Page 1127
Now adjust the graphics on the overflow tile to the format you want for the second, third, and succeeding
pages. If you are using auto-wrap text to display the text you’ll need to type in the overflow() function as
shown in the illustration below.

Page 1128 Panorama Handbook
That’s all there is too it! When you print a record that contains more than one page of data, Panorama will
automatically print as many additional pages as is necessary to display all of the data. The blue arrow shows
how the text overflows from one page to the next.

Chapter 21:Custom Reports Page 1129
Printing overflow pages with the Word Processor SuperObject (see “Printing Word Processor Documents” on
page 768) is almost the same as with the auto-wrap text object. Instead of two auto-wrap text objects, you
have two Word Processor SuperObjects.

Both of these Word Processor objects should be configured exactly the same, and both must have the Handle
Overflow option turned on.

Identical Word Processor SuperObjects

Page 1130 Panorama Handbook
Just as with the auto-wrap text objects, the text wraps from one page to the next.

In the same way you can also wrap a tall image from page to page with the Super Flash Art object (see “Flash
Art™” on page 806). This only works for images taller than a page - it does not work for images that are
wider than a page.

Chapter 21:Custom Reports Page 1131
Variable Height Records

In most reports each record is evenly spaced down the page. In some databases, however, the amount of data
in each record may vary dramatically. For example, a database of catalog items may contain a description
field whose contents vary dramatically. Some descriptions may be only a few words long, while others are
several hundred words long. When a database like this is printed with a fixed height per record there will be
large gaps between some of the records. For example, consider this form designed for printing a catalog of
books.

Page 1132 Panorama Handbook
Since this form is designed to print the longest possible description, it will leave gaps when printing shorter
book descriptions.

To print this type of database without leaving these large gaps between the records the report must be
printed with variable height records. Contrary to what you might think at first, creating a report with vari-
able height records does not involve using a special report tile. Instead, you design the report for the mini-
mum possible size (in this case a one line description) and tell Panorama which objects may need to expand
to accommodate extra data. As the report prints, Panorama will automatically expand these objects, and also
adjust any other objects that may need to make room.

gap

gap

Chapter 21:Custom Reports Page 1133
Here is a revised version of our book catalog form that is designed to print the minimum possible amount —
a one line description.

Of course when this report is printed it isn’t what we want at all - only the first line of each description is
printed. (On the other hand, we have gotten rid of the gaps between the records!)

Page 1134 Panorama Handbook
To fix this problem we need to select the Description object and make it Expandable.

The Description object is the only object that needs to be made expandable. You don’t need to make anything
else expandable, including the Data tile. (On the other hand, it doesn’t hurt anything to make the Data tile
expandable. Since the Data tile doesn’t contain any data itself it cannot expand on it’s own. When a data cell
(or other variable height object) expands, the tile it is placed on expands automatically. Although you can
make any type of object variable height, it only makes sense for objects that can contain variable height
data—data cells, auto-wrap text, and flash art.)

Chapter 21:Custom Reports Page 1135
Now that the Description object is expandable we get a very nice printed report that even Goldilock’s could
love — each record is not too long, not too short, but just right.

Page 1136 Panorama Handbook
It’s possible to place two or more expandable objects side-by-side in a form. This report contains two expand-
able objects: a Flash Art SuperObject and a Data Cell.

When you place expandable objects side-by-side it’s important to make sure that the bottom edges of the
expandable objects are perfectly aligned. You can make sure they are aligned properly with the Align
Objects command (see “Aligning Objects” on page 605). When the objects are perfectly aligned Panorama
will adjust the form for the largest object. In this example either the Flash Art or the text may be larger — the
form will be adjusted for whichever is larger.

expandable

image is larger

text is larger

Chapter 21:Custom Reports Page 1137
Any graphic element below an expandable object will shift downward as the expandable object expands.
Any graphic element surrounding a variable height object will expand as that object expands. For instance, if
a variable height cell has a box around it, the box will expand automatically as the cell expands. You don’t
need to check the Expandable option for the box.

Stacking Variable Height Objects

In the previous section expandable objects were arranged side by side. You can also stack variable height
items vertically.

expandable

Page 1138 Panorama Handbook
As each cell expands, it shifts the material below it, including any other expandable objects.

You can arrange expandable objects horizontally or vertically, but not both horizontally and vertically in the
same report. The result of such a combination is usually unpredictable.

The Expand/Shrink Option

Expandable cells can grow to accommodate large amounts of data, but they can never get smaller. The
Expand/Shrink option allows variable height objects to both grow and shrink as the data changes. If there is
no data at all the object will shrink to nothing and disappear! In fact, this ability to make an object disappear
completely is the main advantage of this option. If you don’t need the object to disappear completely we rec-
ommend using the Expandable option.

Expand/Shrink objects can be stacked vertically in a column, but they should never be placed side by side.
When expand/shrink objects are placed side by side they fight each other and the result is unpredictable. In
fact, you must be careful when placing an Expand/Shrink object next to anything else. You may find that an
object placed next to an Expand/Shrink object also disappears, which is probably not what you had
intended.

Chapter 21:Custom Reports Page 1139
Mixing Variable Height Objects With Other Graphics

When variable height objects are mixed with other objects, the variable height objects can force the other
objects to move or change size. The illustration below shows this effect. On the left is a variable height data
cell. The illustration shows how four other graphic objects are affected by the variable height object.

When a variable height object expands or shrinks, everything in the area below the object (shown in gray) is
affected. How the other objects are affected depends on their location relative to the gray area.

Object A is completely above the gray area. It isn’t affected by the variable height data cell.

Object B touches the gray area, so it expands and shrinks in step with the variable height object.

Object C straddles the gray area, so it also expands and shrinks. If it shrinks too much it will disappear com-
pletely! (Of course that could be exactly what you want.)

Object D is completely in the gray area, so it slides up and down as the variable height object expands and
contracts. It does not change size, however.

If there is more than one variable height object, the effect is cumulative. Panorama starts with the first vari-
able height object (closest to the back) and works its way toward the front. For each variable height object the
new height is calculated and all the other objects are adjusted.

These rules apply to other variable height objects as well as fixed height objects. If a second variable height
object is partly or completely below another variable height object, it will be adjusted when the original vari-
able height object expands or shrinks. You can use these rules to predict how unusual combinations of vari-
able height objects will interact.

variable
height

A

B

C

D

Page 1140 Panorama Handbook
Printing Multiple Column Reports

If the data tile is less than half the width of the page Panorama can print a two column report. If the data tile
is less than 1/3 of the page width Panorama can print a three column report. Multiple column reports can be
used to print mailing labels, or to print multiple column catalogs, lists, and directories.

For example, the data tile on this form is just about 1/3 page.

When you print this form it will look like this.

Chapter 21:Custom Reports Page 1141
Here’s another report where the Data tile is just less than half of the page width.

Panorama will print a two-up report, like this.

Page 1142 Panorama Handbook
Across or Down?

When printing a multiple column report Panorama normally prints the entire first column, then goes back to
the top of the second column, prints the entire column, goes to the top of the third column and prints it and
on and on for all of the columns in the report.

If you want Panorama to print the data row by row instead of column by column, open the Report Prefer-
ences dialog (in the Setup menu) and switch to Across instead of Down.

Here is the exact same report but with the Across option enabled.

The Across option is often the way you’ll want to print mailing labels, and is automatically enabled when
you create labels with the QuickLabel dialog (see “The QuickLabel Dialog” on page 1177).

Chapter 21:Custom Reports Page 1143
Table Header and Table Footer Tiles

The Table Header and Table Footer tiles allow you to print a header and/or footer at the top and bottom of
each column in a multiple column report. Unlike the regular header and footer tiles (see “Header Tile” on
page 1096 and “Footer Tile” on page 1105) which are only printed once per page, the Table Header and Table
Footer tiles are printed once for each column. You can combine the Table Header/Footer tiles with regular
Header/Footer tiles if you wish, using the regular Header/Footer tiles for page numbers and overall page
titles while using the Table Header/Footer tiles to create headers for each column.

Here is an example of a form with a table header.

When the form is printed, the table header appears at the top of each column.

Page 1144 Panorama Handbook
This illustration shows how Panorama assembles the Table Header and Data tiles into two columns.

Here’s a modified version of the same report that includes both Table Header and Table Footer tiles.

Chapter 21:Custom Reports Page 1145
This form uses the Table Footer tile to print a bottom border below each column.

Page 1146 Panorama Handbook
Notice that unlike the regular Footer tile (see “Footer Tile” on page 1105) there is no gap between the last data
tile and the column footer tile. (In this example the second column is shorter than the first because there
weren’t enough data records to fill the entire page. The height of each column will always be the same except
for the last column on the last page.)

However, if the form does contain a regular Footer tile there may be a gap between the bottom of the Table
Footer tile and the top of the Footer tile. Here’s an example showing a report with both a Table Footer and a
regular Footer tile. The regular Footer tile is being used to print the page number (see “Page Numbers” on
page 1106).

Usually table header and footer tiles are combined with the normal header and footer tiles for printing the
report title, date, and page numbers.

Chapter 21:Custom Reports Page 1147
Controlling the Number of Columns

Panorama normally packs in as many columns as it can based on the width of the data tile. However, you can
override the number of columns with the Report Preferences dialog in the Setup menu.

Picking 1, 2, 3, or 4 forces the number of columns. Panorama will use the number of columns you specify
even if the columns won’t fit on the page. This is usually useful when the number of columns you want to fit
almost fits on the page, but not quite. There’s no point in printing four columns when only three will fit — the
extra column will simply be invisible. Pick Auto to let Panorama choose the number of columns based on the
width of the data tile.

Page 1148 Panorama Handbook
Spacer Tile

The spacer tile is rarely used. Panorama normally packs the data tiles as close to each other as possible. The
spacer tile allows you to spread the data tiles apart. When printing a multiple column report, Panorama will
spread the columns apart by the width of the spacer tile. Vertically, each data tile will be spread apart by the
height of the spacer. Horizontally, each data tile will be spread apart by the width of the spacer. Here’s an
example of a form with a spacer tile.

When the form is printed, Panorama inserts the Spacer tile in between the Data tiles. Notice, however, that
there are no spacer tiles to the right of the last column. This slightly reduces the overall width of the report,
possibly allowing you to sqeeze in that extra column.

For most reports, this same spreading effect can be obtained by increasing the size of the data tile. If you are
using automatic multiple columns however, increasing the size of the data tile doesn’t always work, because
it may force the last column into the right margin. If that happens, Panorama won’t print the final column.
The spacer tile allows you to spread the columns apart while still printing the maximum number of columns.
Remember, the only time you may need the spacer tile is when you are printing reports with automatic mul-
tiple columns. You can also force the number of columns with the Report Preferences dialog (see previous
section).

spacer tile

Chapter 21:Custom Reports Page 1149
Printing Summary Information

In the chapter “Summaries and Outlines” on page 453 you learned how to take a database and group it into
categories and then summarize those categories. The summary information (totals, averages, etc.) appears in
temporary new summary records that temporarily become part of the database, like this.

summary records

Page 1150 Panorama Handbook
In an ordinary report these summary records are printed just like any other record – in other words, they are
printed with the data tile. Here’s an example of a typical form with a data tile.

Here’s a page from the printout, with the summary records circled in red. As you can see, the summary
records are formatted exactly the same way as the regular data records.

Chapter 21:Custom Reports Page 1151
If you want the summary records to print differently from regular data records you’ll need to add additional
summary report tiles to your database (described in the next section). The use of these specialized tiles is
strictly optional. If the report does not contain any summary tiles, Panorama will print summary records as if
they were ordinary data records. For many reports this is just fine. If, however, you choose to use the special-
ized summary tiles, you can independently control how each summary level will be printed.

Summary Tiles

A summary tile works just like a data tile, except that the summary tile is used only when Panorama prints a
summary record. Since a database may have up to 7 levels of summary records, a report may contain up to 7
summary tiles. For example, you could use summary tiles to print the data in 12 point Helvetica, subtotals
(level 1) in 14 point and the grand total (level 2) in 18 point. Summary tiles are created with the Specialized
Tile configuration dialog.

When Panorama is about to print a summary record, it checks to see if the report has a summary tile for that
level. If it does, that summary tile will be placed in the report instead of the data tile. If there is no corre-
sponding summary tile, Panorama will look for summary tiles corresponding to a lower summary level. If it
finds such a tile, Panorama will use it to print the summary record. If Panorama doesn’t find a lower level
summary tile, it gives up and uses the data tile to print the summary record.

level one summary

level two summary

level three summary level four summary

level five summary

Page 1152 Panorama Handbook
The easiest way to create summary tiles is dragging to make a copy of the data tile (see “Drag Duplicating”
on page 613). Once the new tile is created, you can double click on the tile’s name to open the configuration
dialog and convert it from a data tile into the appropriate level summary tile. Here is an example of a report
with two summary tiles - one for subtotals and one for the grand total.

Chapter 21:Custom Reports Page 1153
Here is one page from the report that is printed by this form (assuming that the database has already been
grouped by the Category field (see “STEP 1 - GROUP” on page 459) and totaled by the Amount field (see
“STEP 2 - CALCULATE” on page 463).

Page 1154 Panorama Handbook
The last page of this report contains both level 1 (subtotal) and level 2 (in this case, grand total) summaries.

This illustration shows how the report tiles at the end of this report are put together. Data records are printed
with the Data tile, level 1 (subtotal) summary records are printed with the Summary (1) tile, and level 2
(grand total) summary records are printed with the Summary (2) tile.

Chapter 21:Custom Reports Page 1155
Printing Summaries Without Data

Sometimes you may want to print only summary records without printing any data records. The preferred
technique for doing this is to use the Outline Level dialog to collapse the database before printing (see “STEP
3 - OUTLINE” on page 469). Another method is to create a zero-height data tile, as shown in this example.

zero
height
data
tile

Page 1156 Panorama Handbook
The easiest way to make sure that the height of the Data tile is exactly zero is to use the Dimensions dialog
(see “Viewing and Setting Exact Object Dimensions” on page 567). When this form is printed all of the data
records are invisible because of the zero height Data tile and all you see are the summaries.

Remember that all reports must have a data tile, even if (as in this case) it is not actually visible in the printed
report.

Printing Data Grouped by Month, Quarter or Year

When a database has been grouped by month, quarter or year, the dates should usually be formatted differ-
ently at each summary level. At the raw data level the entire date should be printed, while on the summary
tiles only the month, quarter, or year should be printed.

To format a Data Cell object to display only the month, quarter, or year, select the date cell object and choose
the Output Pattern command in the Text Menu (see “Data Cell Custom Output Patterns” on page 688). This
command sets the output pattern for just the individual selected object. The pattern for a month summary
could be Month yyyy, Mon-yy or mm-yy. For a quarter summary use qqqyy or Qtr “Qtr” yy. For a year use yy
or yyyy. For more information about date output patterns see “Date Output Patterns” on page 361.

To print only the month, quarter or year with an auto-wrap or Text Display object use the datepattern(
function (see “Converting Between Dates and Text” on page 1267) with one of the patterns mentioned in the
previous paragraph.

Chapter 21:Custom Reports Page 1157
Here’s an example that uses Text Display SuperObjects to display the date.

To prepare this report for printing you must Group Up by Quarter on the Date field (see “Grouping by Week,
Month, Quarter, or Year” on page 460) then Group Up by Month, then Total the Debit field (see “Total” on
page 463). Here is a procedure that will prep the database for you (see “Procedures” on page 1345).

Page 1158 Panorama Handbook
Here is the printed report.

Chapter 21:Custom Reports Page 1159
Group Headers

Panorama normally prints a header at the top of each report page. The Group Header tiles allow an individ-
ual header to be printed at the top of each group in the report. (Of course, the database must already be
arranged into groups.) The Group Header tile can be used to print a title at the top of each group and also to
provide extra spacing between groups. Here’s an example of a report with a group header. This example
assumes that the database has been grouped by the PayTo field.

PayTo field

Date field Ck # field Debit field

Page 1160 Panorama Handbook
When it’s printed this report looks like this.

Chapter 21:Custom Reports Page 1161
This illustration shows how Panorama assembles the tiles to create the final report. At the beginning of each
group it prints the group header, then the data tiles. At the end of the group it prints the summary tile.

Sometimes two groups start at the same spot. For example, in a database grouped by State and City, the start
of the California group may also be the start of the Anaheim group. In this case the higher level wins, and
Panorama will print the group header for California. Because of this, the higher level summary headers
should include any graphics or data needed for each lower level, as shown in this illustration.

Header

Group Header (1)

Data

Summary (1)

Group Header (1

Data

Summary (1)

Group Header (1

Data

Summary (1)

City field is printed on both Group Header (1) and Group Header (2)

Page 1162 Panorama Handbook
Here’s the finished report,

Here’s how Panorama assembles the tiles to create this report.

Group Header (2)

Data Summary (1)

Group Header (1)
Data

Summary (1)

Group Header (1)
Data Summary (1)

Group Header (1)
Data Summary (1)

Group Header (1)
Data Summary (1)

Group Header (1)
Data Summary (1)

Group Header (1)
Data

Summary (1)

Chapter 21:Custom Reports Page 1163
Group Sidebars

The Group Sidebar tile allows you to print a “header” beside each group (either to the left or to the right)
instead of above the group. The group sidebar tile is unusual because when it is printed, it will actually over-
lap the data tiles that follow. It is up to you to design the graphics on the group sidebar and data tiles so that
they don’t interfere with each other. In other words, all the text and graphics on the group sidebar tile should
be to the left with the text and graphics on the data tile to the right, or vice versa.

Here is a report with two Group Sidebar tiles. The report is designed to be printed after the database has been
grouped by State and then by City.

Page 1164 Panorama Handbook
Here is the printed report. Notice that at the beginning of each state and city the sidebar prints next to the
data. The sidebar is actually overlaying the data (and in the case of the state, the other sidebar) but because of
the way the graphics are laid out the sidebars don’t interfere with each other or with the data.

Chapter 21:Custom Reports Page 1165
Here’s how Panorama assembles the tiles to create this report. Because of the overlapping tiles this can be a
bit confusing, so the Data tiles have been omitted from this illustration. The Group Sidebar(2) tiles are shown
in green, and the Group Sidebar(1) tiles are shown in blue.

Tip: Although the group sidebar will overlap the data tiles when the report is printed, they must not overlap
on the form window.

from Group Sidebar(2) tile
from Group Sidebar(1) tile

from Data tile

Page 1166 Panorama Handbook
You can add images to a group sidebar using Flash Art. This report is exactly the same as the previous exam-
ple except for the addition of the Super Flash Art image displaying the state flag (see See “Flash Art™” on
page 806).

Chapter 21:Custom Reports Page 1167
Here is the printed report.

Notice that the for the state of Florida the sidebar is actually taller than the data records. In that case Pan-
orama will leave a gap between the last data record in a group and the first data record of the next group.

Page 1168 Panorama Handbook
Keeping a Group Together on a Column or Page

If you wish, Panorama can automatically make sure that groups are not divided across column or page
boundaries. This can make a report easier to read and much more attractive. (Of course it can only do this for
groups that are small enough to fit on a single column or page.) This feature is called widow/orphan control
and is available in the Report Preferences dialog in the Setup menu.

Select the largest group level you want to keep together on a column or page (or both).

Chapter 21:Custom Reports Page 1169
For example, consider the report shown below. The group of records for Advertiser’s Mailing Service is split
across two columns.

Page 1170 Panorama Handbook
To prevent this from happening, open the Report Preferences dialog and check the box as shown below.

Panorama will automatically push the group to the next column so that it is no longer split in the middle.

If the checkbox in the Page row had been checked Panorama would only have made sure that a group wasn’t
split across a page - it wouldn’t worry about group’s split across a column like this.

Chapter 21:Custom Reports Page 1171
Starting a Group on a New Column or Page

If you wish, Panorama can automatically skip to a new column or a new page at the beginning of each new
group. To do this, choose Report Preferences from the Setup Menu, then choose the summary levels that trig-
gers skipping to a new column or page.

Here’s what the first few pages of this report looks like. Only one group is printed per page.

Page 1172 Panorama Handbook
Even and Odd Page Layout

Panorama allows you to format the even and odd pages of a report differently. For example you could change
the margins from even to odd pages to create a wide gutter in the middle, or flip the titles so the page number
is always on the outside.

To set up these amazing feats, Panorama allows you to set up two sets of tiles: even page tiles and odd page
tiles. When you create a tile with the Specialized Tile dialog, you can use the Side menu to select whether
the tile is for even or odd pages. (The Side menu only appears when this dialog is open.)

Chapter 21:Custom Reports Page 1173
You can recognize an even tile on a form by the ◊ symbol in front of the tile name.

It’s not necessary to create a complete duplicate set of both even and odd tiles. You only need to create even
tiles for tiles that are actually different from the odd tiles. For example, suppose you want the left margin to
be different on even and odd sides, but everything else is the same. In that case you would create an odd data
tile, header tiles, etc. along with both an odd and even left margin tile.

tile for even pages (2, 4, 6, ...) tile for odd pages (1, 3, 5, ...)

Page number on left side for even pages Page number on right side for odd pages

extra margin (gutter) in middle for binding

Page 1174 Panorama Handbook
Special Paper Options

The Special Paper Options dialog (Setup Menu) allows Panorama to print reports with multiple page images
on a single physical sheet of paper. After the report is printed you can cut up the individual pages…usually
so that they can be inserted in an organizer notebook. It also allows a report to be printed double sided (you
must print one side, then turn the paper over and feed it back into the printer to print the second side). Note:
You must turn off background printing to use the double sided option.

The left side of the Special Paper Options dialog displays a list of paper formats.

The default format, Standard Paper, prints normally on the entire page. The other options split the physical
paper into two or more separate subpages. The area on the right shows a preview of how the paper will be
split into separate pages. If necessary, you should use the Page Setup dialog to adjust the paper orientation
(portrait vs. landscape) to make sure that all of the subpages fit on the paper.

If you select a format with two or more subpages, Panorama will print a separate report page on each sub-
page. For example, if you use the DayRunner 5.5" x 8.5" format (two subpages per sheet), Panorama will print
report pages 1 and 2 on the first sheet, report pages 3 and 4 on the second sheet, etc. You must design your
report so that each report page fits on a subpage.

The report below is designed to print using the DayRunner 3.75" x 6.75" option.

Chapter 21:Custom Reports Page 1175
This option will cause 3 DayRunner pages to print on one, real page, like this.

Page 1176 Panorama Handbook
After the report is printed you can cut apart the individual pages, punch holes, and install them in a DayRun-
ner style binder. (You can also purchase paper that is pre-perfed to be split apart this way.)

The bottom of the Special Paper Options dialog has two additional options: 2-sided and Borders. If you
select the 2-sided option, Panorama will use a special procedure for printing the report on both sides of the
paper. First, it will print all the odd pages (1, 3, 5, 7, etc.). Then it stops printing and displays a dialog request-
ing that you flip the paper over and re-insert the paper into the printer. When you press the OK button, Pan-
orama will print the even pages (2, 4, 6, 8, etc.). If the report is printed using multiple subpages, Panorama
will adjust the positions as it prints the even pages to make sure that page 2 is on the back of page 1, page 4
on the back of page 3, etc. (Warning: The 2-sided option does not work properly if background spooling is on.
You must turn off background spooling before printing a 2-sided report.)

The Borders option makes Panorama print a border around each subpage. If you are not printing on pre-per-
fed paper, you can use this border to help you cut apart the individual subpages. The border can also be use-
ful to see where the subpages are when you use Print Preview.

Chapter 22: Labels

Two of the most common jobs for a database program are printing mailing labels and form letters. Mailing
labels can be tricky because the printing must line up with the pre-cut labels. This chapter describes tips and
techniques that can help take the “trial and error” out of printing labels and form letters.

Label Fundamentals

Labels are printed using report tiles in a form (see “Custom Reports” on page 1067 for an introduction to
report tiles). Many labels only require a single tile: the data tile (see “Data Tiles” on page 1081). This tile
should be the same size as the size of the label plus the gap between labels. In some cases you may also need
margin tiles, see “Top Margin Tile” on page 1090 and “Left Margin Tile” on page 1092.

To actually print the names and addresses you will usually use an auto-wrap text object (“Displaying Data in
Auto-Wrap Text” on page 645) or a Text Display SuperObject (see “Text Display SuperObjects™” on
page 658). Either of these types of objects allow data, text, and punctuation to be mixed in the label.

The QuickLabel Dialog

When you create a new form, Panorama gives you the option of creating a blank form or automatically creat-
ing a label or report.

The QuickLabel button opens a dialog that can do most or all of the work of setting up a label for you. To use
the QuickLabel dialog, select New Form from the View Menu (see “Switching Between Views” on page 302),
give the new form a name, and then click on the QuickLabel button.

Page 1178 Panorama Handbook
The QuickLabel dialog is really a two part dialog. The first part allows you to define the dimensions of the
label. The dialog shows a picture of a label with dimensions around it. You can enter the dimensions manu-
ally, or you can pick a pre-defined label size using the pop-up menus inside the label. The top pop-up menu
allows you to choose from popular label sizes. The bottom pop-up menu allows you to choose whether the
label should be printed 1, 2, 3, or 4 up.

The most popular style of label is Avery 5160, which prints 30 labels on a sheet (10 rows by 3 columns).

Chapter 22:Labels Page 1179
The second part of the dialog allows you to specify the data that will be printed on each label (usually name
and address). The left side of the dialog lists all the database fields, while the right hand side contains an
image of the actual label.

To copy a field into the label, double click on the field name. Double clicking types the field name into the
area on the right, surrounded by « » characters.

To add a space or punctuation, simply press the appropriate key. To start a new line, press the Return key.

You can also edit the text in the label like any other text—click to create an insertion point, drag to select one
or more characters, or type to enter new text.

¥ key

¥ key

˙ key

˙ key

˙ key, key

Page 1180 Panorama Handbook
When the content of the label is finished, press the OK button. The dialog will automatically create one or
more tiles and an auto-wrap text object.

The label is now finished and can be printed or modified further. Here’s what the printed labels look like.

Printing Labels on Sheets

Labels come in two styles — sheets and rolls. Most of today’s laser and inkjet printers work well with sheets,
so we’ll discuss those first. To learn about printing roll labels see “Printing Roll Labels” on page 1181.

Some sheets contain labels that go right up to the edge of the sheet. Depending on your printer you may not
be able to print all the way to the edge. You may be able to use the Page Setup command to make it possible
to print closer to the edge of the sheet. Consult the documentation that came with your printer to find out if
this is possible.

The height of the data tile should equal the distance from the top of one label to the top of the next label,
while the width of the label should equal the distance from the left edge of one label to the left edge of the
next label.

Chapter 22:Labels Page 1181
Printing 3 by 10 1” Labels (Avery 5160)

The most common type of label sheet contains 30 1” high labels in 3 columns of 10 labels (Avery 5160). The
Avery 5160 labels are spaced 1” vertically and 2.75” horizontally. There is a 1⁄2 inch top margin above the
labels, and a 0.18 inch left margin.

You can use the QuickLabel dialog to set up the tiles for this type of label (see “The QuickLabel Dialog” on
page 1177). If the edges of the labels are cut off when you print, use the Page Setup dialog to adjust your
printer settings to allow Panorama to print as close to the edge of the sheet as possible. Consult the documen-
tation that came with your printer to find out how to set the printer margins (if possible).

Aligning Labels on the Sheet

If the names and addresses are not properly aligned on the labels, you can create Left Margin and Top Margin
tiles. (The QuickLabel dialog automatically creates these tiles for you.) To shift the text up or down, change
the height of the Top Margin tile (see “Top Margin Tile” on page 1090). To shift the text left or right change
the width of the Left Margin tile (see “Left Margin Tile” on page 1092). You can make precision adjustments
to the size of a tile with the Dimensions dialog (see “Viewing and Setting Exact Object Dimensions” on
page 567).

Note: If you do not specify a left or top margin, Panorama will use the default printer margins.

Printer Inaccuracy and Vertical Creep

If you try to print very small labels (less than 1⁄2 inch high), or if you try to print to the very edge of each label
(for example a border around the label), you may run into problems due to printer inaccuracy. Due to
mechanical tolerances, most printers are only accurate to about 1⁄8 inch over a full 11 inch page. Even if the
labels line up properly at the top of the sheet, they may gradually creep out of place towards the bottom of
the page. Unfortunately this problem is difficult to correct.

You may be able to reduce or eliminate the creep by adjusting for the inaccuracy in your printer. To try to
compensate for this problem you can adjust the height of the data tile in 1/8th pixel increments. To do this,
use the Form Preferences dialog to reduce the nudge increment to 1⁄8th pixel, then use the up/down arrows
to nudge the size of the tile. Remember this adjustment may be different for different printers, or may even
change for the same printer at different times.

A simpler solution is to not print anything less than 1⁄8th inch from the edge of a label. These leaves enough
tolerance for the inaccuracy of the printer.

Printing Roll Labels

Roll labels can be much more difficult to set up than sheet fed labels, and on some printers you may not be
able to get roll labels to print correctly at all.

Before you read this section we have a confession to make. Printers that can print roll labels are very rare
these days, and here at ProVUE we have not used such a printer for at least a decade. We also rarely get tech
support calls on this topic. The material below was written primarily for the Apple ImageWriter printer, a
printer that has not been available for many years, so this material is pretty out of date. However, we decided
to include it since we do not have any more recent experience with roll feed labels.

Printing on 1-up 1” Roll Labels

The most common type of roll label contains labels spaced 1 inch from label to label (usually the label itself is
15⁄16 inch, with a 1⁄16 inch gap between the labels). To print 1 inch labels, use the QuickLabel dialog to set up
the report tiles. The data tile should be exactly 1 inch high, and as wide as the label. Choose 1-up from the
pop-up menu. If your printer has an option for turning off gaps between pages use the Page Setup dialog to
make sure that gaps are disabled. If you printer always prints a gap between labels you won’t be able to print
roll labels on that printer.

Page 1182 Panorama Handbook
Printing Non 1” 1-up Labels

There are two basic methods for printing roll labels. The first method is to set up a custom page size and treat
each label as a separate page. The second method is to use a normal page size and print several labels per
page. For example, you could print eleven 1 inch high labels on a normal 81⁄2 by 11 page. Each of these meth-
ods has advantages and disadvantages.

Using Custom Page Size to Print Labels

To print 1-up labels using a custom page size, start by creating a data tile the same width as the label. Make
the height of the tile equal to the distance from the top of one label to the top of the next. For instance if the
labels are 1 15⁄16 inch high with a 1⁄16 inch gap between labels, make the tile 2 inches high.

Once the data tile is set up choose the Page Setup command from the File Menu. Click the Custom Labels
button. Custom Labels tells Panorama to automatically set the paper size to the same dimensions as the data
tile. Warning: If you ever change the size of the data tile, you must go back to the Page Setup command and
re-set the paper size to Custom Labels. Otherwise Panorama will continue to use the old custom label size.

Remember that for most labels you will also have to set the No Gaps Between Pages option to eliminate the
top and bottom margins.

You should only use a custom page size if you need to print on an odd size label. Custom page sizes are only
available for the Apple ImageWriter printer—they are not available for non-Apple printers.

Using Standard Page Sizes to Print Labels

The most common label size is 1 inch high (1 inch from the top of one label to the top of the next). Since 11 of
these labels are an exact fit on a standard 11 inch high paper size, you can avoid the use of custom page size
to print these labels. This can help reduce problems with labels peeling off inside the printer that can occur
when custom page sizes are used with the No Gaps Between Pages option.

Using a standard page size to print labels is easy—just set up the data tile and print. Remember that the
height of the data tile should equal the distance from the top of one label to the top of the next. For 1-up labels
the tile should be the same width as the label.

You can print using a standard page size even if the labels don’t fit evenly on the page. For instance, you can
get almost nine 1 1⁄4 inch high labels onto a standard page, but not quite. However, if you set the No Gaps
Between Pages option Panorama will compensate, automatically printing labels that are split over the page
break. The only problem will be that before printing begins, the Macintosh will automatically skip over the
first 11 inch page. This wastes labels and throws the labels out of alignment. One solution to this problem is to
start with a single blank sheet of paper in the printer. Let the printer skip over this page, then feed in the roll
of labels and continue printing. Of course another solution is to use a custom page size. This only wastes one
label but runs an increased risk of label jamming.

2, 3, and 4-Up Roll Labels

Panorama can print multiple column labels, but we don’t recommend doing this with adhesive backed labels
in an ImageWriter printer. As each label is printed the printer platen will rock back and forth. We’ve found
that with multiple column adhesive labels this almost always results in labels peeling off inside the printer.
At a minimum you should watch the printer carefully during printing to prevent a minor problem from turn-
ing into a catastrophe. You can also reduce the problem quite a bit by using Best or Faster print quality
instead of Draft.

You can print multiple column labels simply by using the Report Preferences dialog to select the number of
columns (from 1 to 4). If you are using the Custom Labels page size you should set up the number of columns
before you use Page Setup to set the page size to Custom Labels.

Chapter 22:Labels Page 1183
4-Up Cheshire Labels

To print 4-up Cheshire labels, use the QuickLabel dialog and select 4-up Cheshire from the pop-up menu.
Once the form is set up, use the Report Preferences dialog to set the Across option, so the labels will print
across the page instead of down. Don’t forget to use the Page Setup dialog to set the No Gaps Between Pages
option. When you print the labels, we recommend using Best or Faster print quality instead of Draft.

Selecting Font and Print Quality

When you are printing labels using an ImageWriter, the choice of font and print quality can have a major
impact on print speed. For maximum speed, use Draft quality with Monaco 10 point text. It looks funny on
the screen, but prints several times faster than any other font because it matches the ImageWriter’s built in
font.

Of course if the label contains any graphics, it must be printed using Best or Faster quality. Using Best or
Faster quality can also reduce the amount of forward/back platen motion when printing multiple column
labels.

Page 1184 Panorama Handbook

Chapter 23: Formulas

The result we proceed to divide, as you see,
by Nine Hundred and Ninety Two:

Then subtract seventeen, and the answer must be
Exactly and perfectly true.

- Lewis Carrol, The Hunting of the Snark

Panorama’s primary job is storing and retrieving data. The primary job of formulas is to combine and manip-
ulate data, both numeric and textual. Using formulas Panorama can automatically add up all the items in an
invoice and calculate the sales tax. Using formulas Panorama can automatically divide all the names in a
database into separate first and last names, or convert all the company names in a database to upper case.
Using formulas Panorama can automatically look up the price of an item in inventory, or check the quantity
on hand, or look up and display the items on a customers previous order. As you can see, you’ll need to learn
how to use formulas to get the most from your Panorama investment. Fortunately, formulas are easy to learn
and use (especially the most common mathematical formulas like totals, taxes and percentages). (However,
we have to admit that sometimes formulas can be frustrating because they are very picky. If you get one little
detail wrong, the formula won’t work correctly. This isn’t just a problem with Panorama, but with virtually
any computer program that uses formulas. To help ease the potential frustration factor Panorama has some
wizards you’ll learn about later in this chapter that can help you build error free formulas.)

Formulas In Action

Formulas are a general purpose tool that Panorama can use in a variety of different situations. You can dis-
play or print the result of a formula, use a formula to modify the database, or use a formula to help locate
information in the database. The next few sections demonstrate each of these techniques.

Page 1186 Panorama Handbook
Displaying/Printing A Formula

A formula can be displayed or printed anywhere on a form with an auto-wrap text object (see “Displaying
Formulas in Auto-Wrap Text” on page 652) or Text Display SuperObject (see “Text Display SuperObjects™”
on page 658). For example, consider the database shown below. The auto-wrap text object contains two for-
mulas, one which calculates the total of the four columns (A, B, C and D) and one which calculates the aver-
age.

When the form is switched to Data Access Mode, Panorama calculates the formula results and displays them.

When a formula is used this way the results are not stored anywhere in the database, they are simply calcu-
lated on the fly and displayed or printed, then thrown away. If you switch to a different record Panorama will
calculate and display the new values.

formula to calculate total

formula to calculate average

Chapter 23:Formulas Page 1187
You can even print a report using formulas calculated on the fly. (See “Custom Reports” on page 1067 to learn
more about creating a custom report like this.)

Once again, the formula results are calculated on the fly as the report is printed, then discarded. Here is the
finished report.

(You may notice that the columns in the report above don’t line up because they don’t all have the same num-
ber of places after the decimal point. You can fix this with the pattern(function, see “Converting Between
Numbers and Strings” on page 1249).

Panorama’s Flash Art feature allows a formula result to be displayed visually. See “Flash Art™” on page 806.

formula to calculate total

formula to calculate average

Page 1188 Panorama Handbook
Storing Formula Results in the Database

Sometimes you’ll want to actually store the result of a formula in the database itself. You can do this manu-
ally after data has already been entered, or automatically as data is entered or changed. To illustrate these two
techniques we’ll add two new columns to the example database used in the last section, Total and Avg.

To calculate the values for these new fields we need to use the Formula Fill command (see “Filling a Field
with a Formula” on page 511). To calculate the total, first click anywhere in the appropriate column.

Now choose Formula Fill from the Math menu, and enter the formula for calculating the total.

Chapter 23:Formulas Page 1189
When you press OK Panorama will calculate and store the value for every selected record in the database. In
this case it performs seven calculations and stores seven values.

Repeat the same process for the average, but of course with a different formula.

Here’s the end result.

Once the Formula Fill calculation is finished the formula is forgotten and the numbers are simply stored in
the database just like a number that has been typed in. You can even manually edit a value to override the
result of the formula calculation.

Page 1190 Panorama Handbook
Since the Formula Fill formula is forgotten as soon as it is complete, Panorama does not update the values if
the original numbers (in this case A, B, C or D) change or if new records are added to the database. If you
want values stored in the database to update automatically as the database is updated you must set up auto-
matic calculations in the design sheet (see “Automatic Calculations” on page 406). Here’s the design sheet for
our example updated to automatically calculate the total and average.

To activate these formulas you need to create a new generation for this database (see “Database “Genera-
tions”” on page 332). Once you’ve done this you can start entering or updating information. In this illustra-
tion a new record has been added (Diamond Bar) and the first number typed in (but not entered into the
database yet).

As soon as the data is entered by pressing the Tab (or Enter) keys the formulas update the Total and Avg
fields.

formula to calculate total
formula to calculate average

formulas in design sheet update fields as data is entered

Chapter 23:Formulas Page 1191
As more data is entered the Total and Avg fields are updated instantaneously.

The Total and Avg fields will be updated any time the A, B, C or D fields are modified.

Using a Formula to Locate/Select Information

The Formula Find/Select command (see “Formula Find/Select” on page 447) allows you to select data based
on a formula. This allows you to make selections on data that is not directly stored in the database. For exam-
ple, suppose you want to select all records with an average greater than 6.8, but without actually storing the
average in the database. Here’s the database.

Choose the Formula Find/Select command and enter the formula. This formula calculates the average and
then compares the average to 6.8.

Page 1192 Panorama Handbook
When the Select button is pressed records with averages above the threshold are selected.

Hey - I cheated (sort of)! This database already has the averages stored in the database. I can expand the win-
dow to double check that I really selected only records with averages over 6.8.

Do you forgive me? Anyway, the point is that the selection can be made even if the average is not stored in
the database. Here’s another example. This formula will select every record where the city name is longer
than 10 characters (11, 12, 13, etc.)

Chapter 23:Formulas Page 1193
Press Select to see only the records with long city names.

With a bit of ingenuity you can almost come up with a formula to locate or select even the most obscure infor-
mation.

11 characters

11 characters
12 characters

13 characters

Page 1194 Panorama Handbook
Formulas in Procedures

Within a procedure formulas are used to calculate values and control program flow. Most procedures contain
many formulas — a typical example is shown below. The formulas in this procedure (there are 25 visible in
this window) have been highlighted with a light blue box. Don’t worry, I don’t expect you to understand this
procedure right now — the point is to show how vital formulas are to the operation of almost any procedure,
and to show the wide variety of formulas possible, from very simple like a single number or text item to a
complicated multi-line formula.

To learn more about creating procedures see “Procedures” on page 1345.

Chapter 23:Formulas Page 1195
Using the Formula Wizard

Panorama includes a Formula Wizard that you can use as a “sandbox” for playing with formulas. The For-
mula Wizard let’s you play around with formulas and see the results immediately. It’s great for trying out a
new function or technique you are not familiar with or to work the bugs out of a formula before actually
incorporating it into your database. To use this wizard start with any database and select it from the Wizard
menu.

The Formula Wizard window appears.

To use the Formula Wizard type a formula into the top section.

Page 1196 Panorama Handbook
When you press the Enter key the result appears in the bottom section (see “Arithmetic Formulas” on
page 1228).

As you can see, the Formula Wizard can be used as a handy calculator.

Calculations with Database Fields

The Formula Wizard can include values in database fields as part of the calculation. The name of the data-
base that is currently linked with the wizard is shown in the window’s title bar, in this case Phone Bill. If you
forget a field name you can see a list of all the fields in the Fields menu.

When you select a field from this menu the wizard will automatically type it in for you.

You can included as many fields as you want in the formula. However, they normally must all be from the
active database, in this case Phone Bill.

active database

Chapter 23:Formulas Page 1197
Once again when you press the Enter key the wizard will calculate the result, in this case the cost of the
phone call in cents per minute.

When the wizard performs the calculation it does so based on the currently active record in the active data-
base. In this example the calculation was based on a charge of 2.70 for a 42 minute phone call.

You can use the two small triangles to try out the calculation for other records in the active database. As you
press the triangles the active record will move up and down.

press to move down one record
press to move up one record

calculation automatically updates

Page 1198 Panorama Handbook
A formula can also work with text fields (see “Text Formulas” on page 1235). This formula glues the city and
state together with a comma in between (see “Gluing Strings Together” on page 1235).

Changing the Active Database

You can change the database that is used by the Formula Wizard at any time with the Database menu. This
menu lists all of the currently open databases.

Now when we re-evaluate the same formula it comes up with a different result (Opelika, AL).

If you switch to a database that does not contain one or more of the fields used in the formula…

Chapter 23:Formulas Page 1199
the result will be an error.

Another way to set the active database is to click on one of the database’s windows and then choose Formula
Wizard from the Wizard menu. This brings the wizard back to the front and makes the selected database
active.

Using Fields from Other Databases

Some functions (for example lookup(and grabdata(, see “Linking With Another Database” on page 1289)
use fields from other open databases, not just the active database. The Fields menu can help you type in these
field names. When more than one database is open the Fields menu will list the fields in all of them. The
fields for the active database (in this case Phone Bill) are listed first, followed by the name of each database (in
quotes) and the fields for each database.

To type in a database name or field simply select it from the menu.

active database fields

database name

fields in Mini Contacts

database name

database name

fields in Bank Accounts

fields in Books

Page 1200 Panorama Handbook
Saving a Formula for Later Use

Sometimes you may want to save one of your formulas and use it again later. For example, suppose you have
typed in the formula shown below.

To save this formula choose Save Formula from the Formula menu inside the window.

The saved formula appears as part of the Formula menu.

formula that was just saved

other Mini Contacts formulas that have been saved

formulas that have been saved for other databases

Chapter 23:Formulas Page 1201
You can select any formula in this menu to bring it back.

If you select a formula that was saved for a different database the wizard will automatically make that data-
base active (if it is open), just as if you had selected it from the Database menu.

database switched

Page 1202 Panorama Handbook
If you want to delete one or more formulas choose Delete Formula… from the Formula menu. This dialog
appears with a list of all of the formulas.

When you click on a formula the bottom section of the dialog displays the name of the database this formula
was saved for along with the full text of the formula (in case the formula was too long to be completely visi-
ble in the list).

At this point you can delete this formula by pressing the Delete button (although the deletion is not final
until you press the OK button).

database name

full text of formula

Chapter 23:Formulas Page 1203
If you want to delete all of the formulas for a database click on one formula and then press the Select This
Database button. All of the formulas saved for that database will be selected.

Press the Delete button to delete these formulas.

You can also select all of the formulas with the Select All button, and you can toggle individual formulas on
or off by holding down the Command key (Macintosh) or the Control key (Windows PC) and clicking on the
formula.

Operator and Function Help Menus

The Formula Wizard contains about a dozen single letter menus that contain lists of operators and functions
used by Panorama. This table contains a summary of these menus.

Menu Description

@ Operators and special characters (+, -, *, /, ¶, Ω etc.)

N Numeric functions (including trig and financial functions)

T Text functions (including text funnels and number to text conversion functions)

A Array functions

H HTML and general parsing functions

D Date and time functions

? Conditional logic and boolean functions

L Lookup functions

G Graphics/color functions

B Binary data and hex/octal conversion functions

F File access functions

S System information functions

X User defined (see “Configure Your Own Help Menu” on page 1207)

Page 1204 Panorama Handbook
To type a function or operator into your formula simply choose it from one of the menus.

When you release the mouse the function or operator will be typed into the formula.

If the function has one or more parameters (see “Multi-Parameter Functions” on page 1213) you can select the
first parameter by choosing Select Next Parameter from the Formula dialog. You can also press Command-1
(Macintosh) or Control-1 (Windows PC).

This selects the first parameter of the function.

Now you can type in the actual parameter, then choose Select Next Parameter again to advance to the next
parameter.

If this function had additional parameters you could continue to advance until all of the parameters were
complete.

Chapter 23:Formulas Page 1205
The Function Dialog

The Function dialog provides an alternate way to help you enter functions and operators. To open this dialog
choose Function Dialog from the Formula menu inside the window.

The dialog displays an alphabetized list of functions and operators.

To type a function or operator into the formula you can click on it and press OK or the Enter key, or you can
simply double click on the function or operator you want.

Page 1206 Panorama Handbook
The list initially contains several hundred functions and operators. To cut down this list you can type in a
search criteria. As you enter each key the number of items in the list will be reduced to show only functions
or operators that contain the text you have typed in. For example the list below shows only functions that
contain the word date.

At any time you can click on one of these functions and press OK or the Enter key, or you can simply double
click on the function you want. If the list has been reduced to a single item you can simply press the Enter
key.

After the function or operator has been typed in you can advance through the parameters as described in the
previous section.

Chapter 23:Formulas Page 1207
Configure Your Own Help Menu

The X menu contains custom “snippets” of text for both the current database and for all databases.

To type a “snippet” of text simply select it from the menu.

The wizard will type the text into the formula for you.

for active database

for all databases

Page 1208 Panorama Handbook
To edit the custom items choose Edit Custom Items… from the X menu. The dialog allows you to type in
“snippets” of text for all databases (Global Options, on the left) and for the current database (on the right).

You can also use the checkbox in the lower left to control which set of text snippets appears first — database
specific or global.

Special Formula Result Formats

The Formula Wizard normally displays the result of the formula as a number or as text. Using the Formula
menu you can select other custom formats for displaying the result.

Use the Date option when you want to display the numeric result of a formula as a date (see “Date Arith-
metic” on page 1266). The table below illustrates how a date is displayed with both the Normal and Date
options.

Normal Date

Chapter 23:Formulas Page 1209
Use the Time option when you want to display the numeric result of a formula as a time (see “Time Arith-
metic” on page 1273). The table below illustrates how a time is displayed with both the Normal and Time
options.

Use the SuperDate option when you want to display the numeric result of a formula as a SuperDate (see
“SuperDates (combined date and time)” on page 1276). The table below illustrates how a result is displayed
with both the Normal and SuperDate options.

Use the Hexadecimal option when you want to display the result of a formula as a hexadecimal number (see
“Raw Binary Data” on page 1310). The table below illustrates how a number is displayed with both the Nor-
mal and Hexadecimal options.

Normal Time

Normal SuperDate

Normal Hexadecimal

Page 1210 Panorama Handbook
The Hexadecimal option may also be used to display text results. The ASCII value of each character is dis-
played in hexadecimal.

Use the True-False option when you want to display the result of a formula as true or false (see “True/False
Formulas” on page 1282). The table below illustrates how a number is displayed with both the Normal and
True-False options.

Normal Hexadecimal

Normal Hexadecimal

J a s p e r

Chapter 23:Formulas Page 1211
Formula Components

Just as a sentence is constructed from basic words, a formula is created by combining simple elements — val-
ues (also called operands), operators and functions. Values (operands) are roughly equivalent to nouns,
while operators and functions act as verbs. This illustration show the components that go into a typical for-
mula.

Formula Grammar

Panorama formulas have grammar rules just as languages like English and Spanish do. These rules tell how
values, operands and functions can be combined to make a valid formula.

The simplest formula is a single data value. Here are four examples of such simple formulas.

A

47

"Oregami"

ShippingMethod

Two values can be combined with an operator in between. The first example below adds two numbers
together. The second example multiplies two numbers together. The third example appends two text values
together (to produce a value like Mr. Jones).

2 + 2

Total * TaxRate

"Mr. " + LastName

The values must be the appropriate type for the operator. For example, you can multiply two numbers
together like this

2 * 2

but you cannot multiply two text values together like this (see “Grammar Errors” on page 1216).

"Mr. " * LastName

You can combine three or more data values with an operator between each pair of values.

7 + 3 * 4 / 2

FirstName + " " + MiddleInitial + " " + LastName

value
operator

function
value value

operator operator

value

operator

value
operator

value
value

Page 1212 Panorama Handbook
Calculation Order and Parentheses

When a formula contains more than one operator, the calculations are performed from left to right unless one
of the operators has a higher precedence (priority). This is the natural arithmetic order—multiply and divi-
sion first, then addition and subtraction. This table lists the order of precedence for all operators.

For example, consider the formula below.

7 + 3 * 4 / 2

Panorama first multiplies 3 * 4 to get 12, then divides this by 2 to get 6. Finally it adds 7 (addition is last
because of it’s low precedence) to get the final result, 13.

You can override the natural calculation order with parentheses. For example, the parentheses in the formula
below force the addition to be calculated first, then the multiplication and division.

(7 + 3) * 4 / 2

Now the final result is 20 instead of 13. When in doubt you can always add parentheses to force Panorama to
calculate the formula in any order you want.

Functions

A function is a formula component that calculates a value. It may calculate the value out of thin air (for exam-
ple, calculating the value of the current date or time) or it can calculate the value from other values (for exam-
ple trigonometry functions calculate values from angles). Panorama has several hundred functions available.
Each function has a name, and is always followed by parentheses. For example, the tan(function calculates
the tangent (a trigonometry function) of an angle.

tan(30)

A function can be used in a formula anywhere a regular value can be used. Just as with ordinary values, you
can use operators to combine functions with other values (and functions).

3 + tan(30)

The value operated on by the function is called a parameter.

1. Unary minus (example: -12)

2. Raise to power (example: 10^5)

3. Multiply and Divide

4. Integer Divide

5. MOD (remainder)

6. Add and Subtract

7. Comparisons (=, <>, <, >, …)

8. NOT

9. AND

10. OR and XOR

function parameter

Chapter 23:Formulas Page 1213
A function takes the parameter value (in this case 30) and transforms it into another value (in this case -
6.4053, the tangent of 30). The parameter can be a formula itself, like this.

tan(A + B)

In this case Panorama first calculates the value A+B, then computes the tangent of that sum. A parameter
may be as complex a formula as you need, with additional parentheses and even other functions nested
inside the first function.

tan(sqr(A + B) + 1)

The parameter to the sqr(function is A+B, while the parameter to the tan(function is sqr(A+B)+1. (The
sqr(function, by the way, calculates square roots.) Panorama will always calculate the formula from the
inside out until the entire formula has been computed.

Multi-Parameter Functions

Many functions use more than one parameter. When more than one parameter is required each parameter is
separated from the next by a comma. All of the parameters are surrounded by parentheses, just as with single
parameter functions. For example, the pattern(function (shown below) requires two parameters. The first
parameter must be a numeric value (in this case a calculated average) and the second parameter must be a
text value containing a pattern for formatting the number (see “Numeric Output Patterns” on page 356).

Some functions require as many as six parameters. You must always supply every parameter — you cannot
leave one out (see “Grammar Errors” on page 1216).

Zero Parameter Functions

A small handful of functions don’t require any parameters at all. These functions generate a value all by
themselves, either by consulting the computer hardware (current date, current time), querying internal Pan-
orama data (line number, imported data) or by generating a completely random number each time the for-
mula is computed.

today() -- current date

now() -- current time

seq() -- line number

import() -- line of text from import file

rnd() -- random number

As you can see, these functions simply have both parentheses next to each other, with no parameter in
between. You cannot omit the parentheses — you are required to include them as shown in the examples
above.

function
first parameter second parameter

comma

Page 1214 Panorama Handbook
Functions Menu

To help you type in a formula without errors Panorama has a special Functions menu that will type in a func-
tion for you. This menu is available whenever you enter a formula into a dialog, the design sheet or a proce-
dure window. The function has a number of submenus that allow you to select from the hundreds of
functions available.

When you select the function you want Panorama will automatically type it in for you. If the function
requires parameters Panorama will type in a template for each parameter.

Simply type in the actual parameters to complete the function.

Chapter 23:Formulas Page 1215
Whitespace

Most of the examples you’ve seen so far have extra spaces between the components, like these.

7 + 3 * 4 / 2

FirstName + " " + MiddleInitial + " " + LastName

tan(sqr(A + B) + 1)

Panorama ignores spaces between components. You can leave out the spaces, like this.

7+3*4/2

FirstName+" "+MiddleInitial+" "+LastName

tan(sqr(A+B)+1)

Or you can add extra spaces between components, or even carriage returns, like this. (Note: Some dialogs do
not allow you to enter carriage returns, because pressing the Return key closes the dialog.)

7 + 3 * 4 / 2

FirstName + " " +
 MiddleInitial + " " +
 LastName

tan(sqr(A + B) + 1)

Spaces are only ignored between components, not within components. A common mistake is to place a space
in between the function name and the left parenthesis. This is not allowed. The formula below will not work
(see “Grammar Errors” on page 1216) because of the spaces after tan and sqr .

tan (sqr (A + B) + 1)

Another common problem is spaces or other punctuation in field names. If your database has fields named
First Name, Middle Initial and Last Name you might be tempted to try a formula like this.

First Name + " " + Middle Initial + " " + Last Name

Sorry, but it won’t work (see “Grammar Errors” on page 1216). Because of the spaces inside the field names,
Panorama will think that First and Name, Middle and Initial and Last and Name are separate components.
The solution is to place chevron (« and ») characters around the field names. In many cases you can use the
Field menu to type in the field name with chevrons for you. Otherwise, on the Macintosh press Option-\ to
create the « chevron character and Shift-Option-\ to create the » chevron character. On Windows systems
press Alt-0171 to create the « chevron character and Alt-0187 to create the » chevron character. Here’s the
revised formula, which will work perfectly

«First Name» + " " + «Middle Initial» + " " + «Last Name»

You’ll also need to put chevrons around a field or variable name that contains punctuation, for example «P/E
Ratio». Without the chevrons Panorama will think that this is four separate components — P, /, E and Ratio.

Page 1216 Panorama Handbook
Grammar Errors

Unlike a human listener, Panorama is not able to tolerate incorrect or sloppy grammar. If you ask Panorama
to calculate a formula that has incorrect grammar it will refuse to comply until you correct the mistake. For
example, consider the formula shown below in an auto-wrap text object.

When you switch to Data Access Mode Panorama tells you about the grammar error.

The error message tells you that Panorama expected an operand (value) after the + operator. The solution is
either to remove the extra + operator or add another value in between the two + symbols.

When you are editing a formula within a procedure, Panorama will attempt to point out the location of the
grammatical error. For example, here is the same formula with the same error used in a procedure.

If you click to another window or use the Check Procedure command (in the Edit menu) Panorama will dis-
play an alert letting you know about the problem.

Grammar error! Can’t have two operators in a row!

Chapter 23:Formulas Page 1217
When you close the alert window Panorama will move the insertion point to the location where Panorama
detected the error.

This location is usually fairly close to where the actual error is. However, in some cases Panorama is unable to
determine exactly where the problem is. Consider the formula shown below, which has a missing left paren-
thesis.

When you click to another window or use the Check Procedure command (in the Edit menu) Panorama will
display an alert letting you know about the problem.

When you close the alert window Panorama will move the insertion point to the location where Panorama
detected the error.

But wait — is this really where the error is? No, the error actually is somewhere earlier in the formula. In this
case the missing (probably goes in front of the B or the C. Panorama has done the best job it could to locate
the error for you. One thing you do know for sure, though, is that the error is always before the insertion
point and not after.

location where Panorama detected the error

location where Panorama detected the error

Page 1218 Panorama Handbook
Values

Values are the raw material that formulas work with—numbers and text. A value may be embedded in the
formula itself, may be stored in a database field or may be stored in a variable (see “Variables” on page 1221
and “Variables” on page 1369).

Constants

When a value is embedded in the database itself it is called a constant. A numeric constant may be in fixed
point format, like the numbers in this example (the numeric constants are highlighted in purple).

x + 2

today() - 90

Total * 0.0625

A numeric constant may also be in floating point format, which consists of the mantissa followed by the letter
e followed by the exponent. The example below is equivalent to the mathematical formula x • 6.0223.

x * 6.02e23

A formula may also contain text constants. A text constant is a series of characters surrounded by quotes.
When writing a text constant you may choose from five different types of quotes, as shown in this table.

The primary reason for different types is to allow quotes themselves to be used in a text constant. Suppose
that you needed to use the text The shim was 6" high in a formula. Using double quotes around the constant
will cause a grammar error, because Panorama won’t know what to do with the text after 6" (shown in red
below).

"The shim was 6" high"

One possible solution is to use a different quote character around the constant. Any of the examples shown
below will work.

'The shim was 6" high'

{The shim was 6" high}

“The shim was 6" high”

‘The shim was 6" high’

Another solution is put two double quotes in a row (as highlighted dark blue in the example below). Pan-
orama will convert these into a single quote and continue with the text constant.

"The shim was 6 "" high"

Type Open Close Example

Double Quote " " "January"

Single Quote ' ' ’Tuesday’

Curly Braces { } {San Francisco}

Smart Double Quote “ ” Gothic

Smart Single Quote ‘ ’ Bohemian

Chapter 23:Formulas Page 1219
Build in Constants: Pi, Carriage Return and Tab

Panorama has one built in numeric constant—pi. Use the Greek ππππ symbol to access this value. For example
the area of a circle can be calculated with this formula.

π * radius^2

To create the ππππ symbol on the Macintosh press Option-P. On the PC, type Alt-0254.

Panorama has two built in text constants—¶ (Carriage Return) and¬ (Tab). For example three line address
can be included in a formula like this.

"Suzette Elliot"+¶+892 Melody Lane"+¶+"Fullerton, CA 92831"

To create the ¶ symbol on the Macintosh press Option-7. On the PC, type Alt-0182.

To create the ¬ symbol on the Macintosh press Option-L. On the PC, type Alt-0172.

Fields

To use a field within a formula, type the name of the field into the formula. This formula adds up the sum of
three fields.

SubTotal+Shipping+Tax

When a field is used in a formula it always refers to the value of that field in the current record in the current
database (the database belonging to the topmost window). As you move from record to record the result of
the computation will change depending on the values in that particular record. (The only exception to this
rule is the lookup(and grabdata(functions, which may refer to fields in other records or even other data-
bases.)

If a field name contains spaces, numbers, or punctuation marks in it, you must surround the name with chev-
ron characters (« and »). (On the Macintosh press Option-\ to create the « chevron character and Shift-
Option-\ to create the » chevron character. On Windows systems press Alt-0171 to create the « chevron char-
acter and Alt-0187 to create the » chevron character.) If the field name contains carriage returns, they must be
represented with spaces. Here is a database with some unusual field names.

The first two names can be used without chevrons, but the last two require chevrons because of spaces and
punctuation in the names.

Price

Quantity

«Zip Code»

«P/E Ratio»

Page 1220 Panorama Handbook
Formulas require field names to be spelled exactly as they appear in the database, with no typos allowed.
Fortunately, Panorama can help you out with this. Start by positioning the insertion point where you want
the field to appear.

Now pick the field from the Field Menu. This menu is available whenever you are editing a formula in a dia-
log, design sheet or procedure.

Panorama will type in the field name for you, including the chevrons if necessary (as they are in this case).

If the chevrons are not necessary (for example for Price or Quantity) Panorama will not include them.

Using the Current Field

A formula may use «» (see “Special Characters” on page 1225) to refer to the current field without having to
know what the current field is. For example, this formula converts the current cell to upper case.

upper(«»)

If necessary, a formula can find out what the current field name is with the info("fieldname") function
(see “INFO("FIELDNAME")” on page 5372).

Line Item Fields

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 342).
Line item fields always end with a numeric suffix, for example Qty1, Qty2, Qty3, etc. Line item fields can be
used in formulas just like other fields, for example:

Quantity3*Price3

When the current cell is a line item field the Ω symbol (see “Special Characters” on page 1225) can be used as
an automatic numeric suffix. Panorama automatically adjusts the suffix depending on what cell is currently
active. For example, consider this formula using the Ω symbol.

Quantity Ω*Price Ω

Chapter 23:Formulas Page 1221
When this formula is calculated, Panorama will automatically substitute the correct line item number for
each Ω symbol as shown in this table.

If a formula containing the Ω character is used when the current cell is not a line item cell an error will occur.

To add up a series of line items you can use the sum(function. See “Adding Line Item Fields” on page 1230.

Variables

A variable is a place in the computer where an item of data can be stored, kind of like a storage bin for a
value. Variables may be created by procedures or by SuperObjects. Most procedures will use one or more
variables to hold and transfer data as the program runs (see “Variables” on page 1369 for more details on
how variables can be created and used in procedures). Use a variable whenever you need to store a single
data item so that you can use it later. Unlike a field, the value variable doesn’t change as you move from
record to record, or, in the case of a global variable, even when you move from database to database.

Current Cell Adjusted Formula

Quantity1*Price1

Quantity2*Price2

Quantity6*Price6

current cell
is Quantity1

current cell
is Quantity2

current cell
is Price6

Page 1222 Panorama Handbook
Variable Names

Just as a house is identified by its address, a variable is identified by its name. A street address tells you
exactly how to find a house or business. It doesn’t tell you who or what is inside the house, however. Families
may come and go, but the street address remains the same. In a similar way, a variable name identifies a place
where data can be stored. The data may change, but the variable name remains the same.

Panorama allows any sequence of characters to be used as a variable name. However, if the variable name
contains any punctuation (including spaces) it must be surrounded by the chevron characters « and ». (On
the Macintosh press Option-\ to create the « chevron character and Shift-Option-\ to create the » chevron
character. On Windows systems press Alt-0171 to create the « chevron character and Alt-0187 to create the »
chevron character.) Here are some examples of typical variable names:

X

birthDay

Counter

«Tax Rate»

«PrimeRate%»

A variable name must be spelled exactly the same way every time, including upper and lower case. The vari-
able name birthDay is not the same as Birthday or birthday. In fact, you could create three different variables
using these three different names (although this is not recommended because it would be very confusing).

By the way, it’s always ok to use chevrons around a variable name, even if the name doesn’t have any punc-
tuation. «Counter» is exactly the same as Counter, and they can be used interchangeably. So if you have any
doubts about whether or not chevrons are necessary, go ahead and use them. No harm, no foul.

What’s Inside A Variable?

By itself, a variable has no meaning, no value…until you put some data in it. When you use a variable in a
formula or procedure, you are actually telling Panorama to use the contents of the variable.

A variable is sort of like a cup that you can pour anything into. A cup may contain water, soda, tea, or coffee.
If you tell a person to drink the blue cup, what you really mean is to drink whatever liquid is in the blue cup.
Each time they drink they may get a different liquid, depending on what the blue cup has been filled with.

Using a variable is similar. If you tell Panorama to calculate X+Y (where X and Y are variable names), what
you really mean is “take whatever value is in X and whatever value is in Y and add them together.”

It’s important to remember that a variable name simply identifies the variable, but the name is not the vari-
able itself. The name is like a placeholder for the real contents of the variable.

The Life Cycle of a Variable

A variable doesn’t just appear by magic. It must be created, just as you have to build a house before you can
move in. Once the variable has been created it can be used for storing a data item. However, variables don’t
last forever. Most variables eventually disappear without a trace. You can also force a variable to disappear at
any time — see “Destroying a Variable” on page 1371.

Panorama has five kinds of variables: local, window, fileglobal, global and permanent. The only difference
between these three types of variables is how long they last before disappearing and when the variables are
available.

Chapter 23:Formulas Page 1223
Local variables are the most short-lived. A local variable disappears when the procedure that created the
variable is finished. In addition, a local variable can only be used by the procedure that created it. If proce-
dure A calls procedure B as a subroutine, procedure B cannot access the local variables created by procedure
A. In fact, procedure B could create its own local variables with the same names as the local variables created
by procedure A. Panorama keeps the local variables for each procedure completely separate from each other.

Window variables are associated with a particular window. A window variable is only accessible when the
window it is associated with is on top, and the variable disappears completely when the window is closed. It
is possible for several different windows to have window variables with the same name. In that case, each
window variable may have a different value.

FileGlobal variables are associated with a particular database (file). A fileglobal variable is only accessible
when the database it is associated with is the current database (on top), and the variable disappears com-
pletely when the file is closed. It is possible for several different files to have fileglobal variables with the
same name. In that case, each fileglobal variable may have a different value. For many applications fileglobal
variables are the best choice because there is no chance of an accidental conflict with a variable of the same
name in another database.

Global variables are relatively long-lived. A global variable doesn’t disappear until you quit from Panorama.
Even if you close the database, the global variable remains. Once a global variable has been created it can be
accessed in any procedure, in any database or window, at any time. You should avoid using global variables
unless you absolutely need universal access across databases for the value stored in the variable. If the value
is only needed in one database it is much better to use a fileglobal variable to avoid the chance of an acciden-
tal conflict with another database using the same global variable name.

Permanent variables are almost immortal. When the database is saved, all permanent variables in that data-
base are also saved. Like a fileglobal variable, a permanent variable is only accessible when the database it is
created in is the current database, and a fileglobal variable disappears when you close the database. How-
ever, unlike a fileglobal variable, a permanent variable will re-appear like a phoenix from the ashes when you
re-open the database. In fact, there are only two ways a permanent variable can permanently disappear. First,
you can explicitly kill a permanent variable with the unpermanent statement. Secondly, you can create a
permanent variable but never save the database.

Creating Variables in a Procedure

Panorama has five statements for creating variables in a procedure: local , windowglobal , fileglobal ,
global , and permanent . Each of these statements is exactly the same except for the type of variable created.
The statement must be followed by a list of one or more variables to create, with each variable name sepa-
rated from the next by a comma. (Remember: if a variable name contains punctuation, it must be surrounded
by chevrons « and ».)

Here are a few examples of typical statements for creating variables:

There is no limit to the number of local, global, and permanent statements you use in your programs, and no
limit to the total number of variables (except for scratch memory, see below).

Page 1224 Panorama Handbook
Initializing Variables

Creating a variable creates a place to store data, but it doesn’t actually put any data in the variable. It’s kind of
like a new house that no one has moved into yet. If you try to access the variable before any data has been put
into it, an error occurs.

To put data into a variable, use an assignment statement. Here’s the start of a procedure that creates a vari-
able named Count and initializes it to zero. The variable is now ready to use.

local Count
Count=0

Sometimes you may not be sure if a global variable has been initialized yet. If it has not been, you want to ini-
tialize it. But if it has already been initialized, you don’t want to disturb the value that is already there. You
can get around this problem with the if error statement, as shown in this example.

global AreaCode
AreaCode=AreaCode
if error

AreaCode="714"
endif

This procedure starts by creating a global variable named AreaCode. However, it’s possible that AreaCode
has already been created and initialized by another procedure. To test this, the procedure copies the variable
to itself. If the variable is already initialized, there will be no error and the contents of the variable have not
been disturbed. If the variable is brand new and has not been initialized, an error occurs. This error is trapped
by the if error statement and the variable is initialized. If you have a number of variables that are always ini-
tialized as a group, you don’t need to test each one. Just test one, and if an error occurs initialize the entire
group of variables (see also “The Define Statement” on page 1368).

Variables and Data Types

A variable can hold any kind of data: text, numbers, and secondary data types like dates, times, points, rect-
angles, etc. In addition, you can change the type of data in a variable at any time. One minute the AreaCode
variable can contain text, moments later it can contain a number. The variable takes on the data type of what-
ever data you copy into it.

SuperObject Variables

A number of Panorama SuperObjects™ have the option of linking to a variable or a field. These SuperOb-
jects™ include the Text Editor, Data Button, Pop-up Menu, List, Sticky Button and Scroll Bar. If one of these
objects is linked to a variable and the variable does not exist, Panorama will automatically create a global
variable when it opens the form, and initialize the variable to empty text. Except for how it was created, this
global variable is just like any other global variable and can be used freely in procedures and formulas.

Variable Name Conflicts

If two database files define a global variable with the same name, you’ve got a conflict. It’s kind of like two
families trying to share the same house. This can work if the two families have an arrangement, but if they
don’t the result is chaos.

The best solution to this problem is to avoid it. If you can, use a fileglobal variable instead of a global variable.
If this is not possible, stay away from simple global variable names like X, Payment, Count, etc. If possible,
choose names that incorporate the database name (or an abbreviation of the name), for example Invoice-
TaxRate, ReceivablesTotal, or APLastReconcileDate.

Variable names (even for local variables) can also conflict with fields in a database. In this battle, the variable
always wins. Panorama will use the data in the variable instead of the data in the field. Avoid variable names
that are the same as field names.

Chapter 23:Formulas Page 1225
Permanent Variable Tips

When the permanent statement creates a permanent variable, it really creates two variables: one in memory
and one in the current database. The one in memory is an ordinary fileglobal variable. Whenever the data-
base is saved, Panorama copies the contents of the fileglobal variable into the copy of the variable in the data-
base itself, then saves the database. Just like any other data, the contents of the permanent variable are not
saved unless the database itself is saved. However, if you have not made any other changes to the database,
Panorama will not warn you if you attempt to close a database without saving changes to the permanent
variable.

Whenever a database is opened, Panorama automatically creates fileglobal variables for any permanent vari-
ables associated with that database. Next it copies the values from the database into the fileglobal variables.
The variables are now ready to use.

If you ever want to make a permanent variable un-permanent, use the unpermanent statement, which is fol-
lowed by a list of variables you want to make unpermanent. This statement doesn’t make the variables go
away, but they will no longer be permanent. The unpermanent statement only affects variables that are per-
manent in the current database. The example below changes two permanent variables back into regular (non-
permanent) fileglobal variables.

unpermanent myAreaCode,myZipCode

Special Characters

Formulas are very picky about special characters. You’ve got to use the right special character in the right
spot—no substitutes are allowed.

For example, some people mistake the bracket [] characters for the parentheses (). On your keyboard, the
parentheses are created by pressing Shift and the 9 or 0 keys. Another common mistake is using the \ (back-
slash) instead of the / (slash) for divide. The table below lists all the special characters used by formulas and
shows how to type them.

Character Name Mac PC

(left parenthesis Shift-9 Shift-9

) right parenthesis Shift-0 Shift-0

[left bracket [[

] right bracket]]

{ left curly brace Shift-[Shift-]

} right curly brace Shift-] Shift-]

« left chevron Option-\ Alt-0171

» right chevron Shift-Option-\ Alt-0187

^ caret (raise to power) Shift-6 Shift-6

* asterisk (multiply) Shift-8 Shift-8

÷ divide Option-/ not available, use /

= equal = =

≠ not equal Option-= not available, use <>

< less than < <

> greater than > >

≤ less than or equal Option-< not available, use <=

≥ greater than or equal Option-> not available, use >=

Page 1226 Panorama Handbook
To use the Alt key on the PC you must hold down the Alt key, then press the numeric digits (for example
0182) then release the Alt key. When you release the Alt key the special symbol will appear.

¶ paragraph Option-7 Alt-0182

¬ export tab Option-L Alt-0172

§ section mark Option-6 Alt-0167

¢ cents Option-4 Alt-0162

‘ left smart quote Option-] Alt-0145

’ right smart quote Shift-Option-] Alt-0146

“ left smart double quote Option-[Alt-0147

” right smart double quote Shift-Option-] Alt-0148

Ω omega (line items) Option-Z Alt-0166

π pi Option-P Alt-0254

Character Name Mac PC

Chapter 23:Formulas Page 1227
Working With Extremely Complex Formulas

Panorama has an internal 2000 byte buffer it uses for processing formulas. This allows very complicated for-
mulas to be processed (since each function is represented in the buffer by a single byte, the actual formula can
contain even more than 2,000 characters). However, it is possible to create a formula too large to fit into the
buffer. When this happens Panorama generates an Expression too complicated error message.

To avoid this error Panorama allows you to create a larger expression buffer, letting you work with formula
as complex as you want. The only downside is that increasing the size of the expression buffer consumes
scratch memory, so you may want to increase the scratch memory setting (see “Changing Scratch Memory
Size (Macintosh)” on page 273).

To increase the size of the expression buffer, use the formulabuffer statement. This statement has one
parameter, the number of bytes to make the formula buffer. For example, to make the formula buffer 12,000
bytes long, insert the following line into your procedure (you probably want to put this line into your .Initial-
ize procedure, see “.Initialize” on page 1484):

formulabuffer 12000

This would allow formulas up to six times as complicated as would be allowed normally.

The formulabuffer statement is semi-permanent: it applies to all formulas in all databases until you quit
Panorama or change the setting again. If you want to cancel expanded buffer and go back to the internal
buffer, use formulabuffer statement with a size of 0:

formulabuffer 0

The expanded formula buffer is not created until the procedure is run. That means that if the complex for-
mula is in the same procedure as the formulabuffer statement, you won’t be able to compile the procedure
because the buffer hasn’t been expanded yet. The best way to eliminate this problem is to put the
formulabuffer statement into your .Initialize procedure.

How Large Should the Buffer Be?

Most users have never encountered the Expression too complicated error message and have no need to
expand the buffer. If you do encounter this error, you should probably start by modestly expanding the
buffer, perhaps to 3000 to 4000 bytes. If you still have a problem you can expand it further until the problem
disappears.

However, if your database allows users to enter formulas that are out of your control (for example a formula
that is automatically generated by selecting options on a form or a web page), you may wish expand the
buffer in advance to a very large size, perhaps 32000 bytes.

Page 1228 Panorama Handbook
Arithmetic Formulas

Panorama formulas are very adept at performing arithmetic—from simple addition to complex financial cal-
culations. Arithmetic formulas usually work just like the ones you learned about in high school. Panorama
has seven arithmetic operators, as shown in this table.

The ^ operator (press Shift-6) raises the operand on the left to the power specified on the right. For example
the formula

2^3

means raise 2 to the third power (equivalent to the mathematical formula 23).

The \ operator converts both operands into integers and then divides them. The result is also an integer. For
example,

19/5

is 3.8 (a normal division), but

19\5

is 3. Notice that because this is an integer operation, the result is not rounded.

The mod operator computes the remainder after an integer division. For example the result of the formula

19 mod 5

is 4, but

20 mod 5

is zero. The result of the mod operator will always be an integer between zero and the value of the operand
on the right (in this case 0, 1, 2, 3, or 4).

symbol operator

+ add

- subtract

* multiply

/ or ÷ divide

^ raise to power

\ integer divide

mod modulo
(remainder)

Chapter 23:Formulas Page 1229
Dividing by Zero

Dividing by zero is, of course, a no-no. If you do attempt to divide by zero, Panorama will display an alert
reminding you of this arithmetical impossibility. Sometimes, however, you may want to defy mathematical
reality and divide by zero without getting slapped on the wrist. For example, since formulas treat empty data
cells as zeros, attempting to divide by a cell that hasn’t been entered yet will result in a divide by zero error.
To bypass the error message, use the divzero(function instead of the / operator. The divzero(function
returns zero if you attempt to divide by zero. For example, using the formula

Price/Qty

can result in a divide by zero error if Qty field is empty, but

divzero(Price,Qty)

will not.

Overflow/Underflow Problems

A number is a number, right? Well, not quite. You may remember that Panorama actually stores two different
kinds of numbers—fixed digit and floating point, with fixed digit numbers being further divided into 0, 1, 2,
3, and 4 digit precision. In a formula these differences may be important, since some numbers are too big or
too small to be represented in some of the fixed point formats.

Formulas try to perform arithmetic using the final numeric type required for the answer. For example, if the
result of a formula will be placed in a fixed 2 digit field, calculations will be performed in a fixed 2 digit for-
mat unless you force the formula to use another format. If the final destination is not a numeric field, arith-
metic will be performed using floating point. Floating point is also used when the answer is not going to be
stored in a field—for example formulas that are merged into auto-wrap text object (see “Displaying Formulas
in Auto-Wrap Text” on page 652) or Text Display SuperObject (see “Text Display SuperObjects™” on
page 658).

Since the internal format used for arithmetic can vary depending on the final destination of the answer, the
same formula can give different results depending on where it is used. For example, the formula

1/4

gives the result 0.25 if the result is a floating point field, but 0 if the result is a fixed 0 digit field.

A more subtle problem can occur if an intermediate calculation causes an overflow, underflow, or loss of pre-
cision. Often this can be fixed by re-arranging the formula. For example, this formula for computing sales tax
can have problems if the result will be stored in a 2-digit fixed field.

total*taxrate/100

If the tax rate is 6.5%, the intermediate result of the division is 0.065. But since 2-digit fixed point arithmetic is
being used, this intermediate result will be rounded to 0.07, resulting in an incorrect calculation. You can fix
this formula by doing the multiplication first.

(total*taxrate)/100

You can also fix this formula by forcing all the numbers to floating point using the float(function.

float(total)*float(taxrate)/float(100)

If all the operands are in the same numeric format, the formula will calculate the result using that format, in
this case floating point.

Page 1230 Panorama Handbook
If you don’t want to worry about overflow/underflow problems one solution is simply to make all numeric
fields floating point. Floating point fields take up slightly more RAM than fixed point fields, but for most
databases the difference isn’t critical.

Adding Line Item Fields

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 342).
Line item fields always end with a numeric suffix, for example Qty1, Qty2, Qty3, etc. Line items can be added
up just like ordinary fields:

Qty1+Qty2+Qty3+Qty4+Qty5

You can also use the sum(function to add up line item fields:

sum("Qty Ω")

Using the sum(function is easier to type, and it is slightly faster than regular addition when used in the
design sheet or a procedure. (Ordinary addition is faster than the sum(function when used in a Formula
Fill.)

When you use the sum function, don’t forget to include the quotes around the field name as shown above,
and don’t forget the Ω symbol (see “Special Characters” on page 1225). To learn how to perform calculations
within line item fields see “Line Item Fields” on page 1220.

Warning: The sum(function is not compatible with the Design Sheet’s Spreadsheet Mode (see “Spreadsheet
Mode Calculations” on page 406). If you are using Spreadsheet Mode you must add up the items field by
field (i.e Qty1+Qty2+Qty3…).

Basic Numeric Functions

These functions perform various mathematical operations. Each of these functions takes one or more numeric
parameters and returns a numeric result.

Function Reference
Page Description

abs(number) Page 5007
This function returns the absolute (positive) value of the numeric param-
eter. In other words, negative numbers are converted to positive numbers
while positive numbers remain positive.

divzero(numerator,denominator) Page 5175
This function divides two numbers. However, unlike the / operator, the
divzero(function does not care if you attempt to divide by zero. If you
attempt to divide by zero, this function simply returns zero.

fix(number) Page 5251

This function truncates a number to an integer. It always truncates
towards zero. For example fix(-4.6) is -4, while int(-4.6) is -5. For positive
numbers the int(and fix(functions are identical.

Don’t confuse this function with the fixed(function, which converts num-
bers from floating to fixed point format.

fixed(number) Page 5252

This function forces a number to fixed point format, using the least num-
ber of digits possible. Since formulas usually perform this conversion
automatically, you probably won’t ever need this function. Don’t confuse
this function with the fix(function, which truncates a number to an inte-
ger but does not change the type of the data.

float(number) Page 5253
This function forces a number to a floating point format. You may need to
use floating point to get around overflow, underflow, and accuracy prob-
lems that can occur when using fixed point arithmetic.

int(number) Page 5455
This function truncates a number to an integer. It always truncates
towards negative infinity. For example int(-4.6) is -5, while fix(-4.6) is -4.
For positive numbers the int(and fix(functions are identical.

Chapter 23:Formulas Page 1231
max(number,number) Page 5520
This function compares two numbers and returns the larger value. If you
need to compare more than two numbers, you can nest this function
within itself, for example max(a,max(b,c)).

min(number,number) Page 5527
This function compares two numbers and returns the smaller value. If
you need to compare more than two numbers, you can nest this function
within itself, for example min(a,min(b,c)).

round(number,step) Page 5679

This function rounds a number to the nearest step. You can use any value
you want for the step: 1, 10, 0.5, whatever.

For example, you could use the formula round(Quantity,12) to round the
quantity to the nearest dozen. The quantity 16 will be rounded to 12; the
quantity 20 will be rounded to 24.

Since dates are treated as numbers (see “Date Arithmetic” on page 1266)
you can use this function round to the nearest week. Use a step value of 7
(7 days per week), for example round(Date,7).

rnd() Page 5678

This function returns a random number between 0 and 1. Each time you
use this function it will return a different number. If you need a random
number in a different range just adjust the output of this function. For
example, to get a random number between 1 and 10, use the formula
int(1+10*rnd()). Notice that even though this function has no parameters,
you must still include the empty parentheses after the function name.

sum("lineitemΩ") Page 5813

This function adds up all the instances of a line item field within the cur-
rent record. You must specify the name of the line item field followed by
the Ω character (see “Special Characters” on page 1225). The whole thing
must be surrounded by quotes, for example sum("QtyΩ"). This example
is the same as the formula Qty1+Qty2+Qty3… but much easier to type!

Warning: The sum(function is not compatible with the Design Sheet’s
Spreadsheet Mode (see “Spreadsheet Mode Calculations” on page 406). If
you are using Spreadsheet mode you must add up the items field by field
(i.e Qty1+Qty2+Qty3…).

zeroblank(number) Page 5912

This function tells Panorama to store zero as an empty space. If the final
formula result is not zero, this function has no effect. The zeroblank(
function is handy when you want to leave the result of a calculation
blank if one of the operands are blank. For example, if you use the for-
mula zeroblank(Qty*Price), the result will be empty if either the quantity
or price is empty.

Function Reference
Page Description

Page 1232 Panorama Handbook
Scientific Functions

These functions perform various log, trig, and exponential calculations. Each of these functions takes one or
more numeric parameters and returns a numeric result.

The trig functions listed in this table normally use radians to measure angles (1 radian = 180/π degrees). In a
procedure the degree statement may be used to temporarily switch Panorama’s trig functions to use
degrees instead of radians (see “DEGREE” on page 5152). The radians statement switches the mode back to
radians (Panorama also switches back automatically when the procedure is finished). For example, the proce-
dure below calculates the tangent of 30 degrees, not 30 radians.

degree
height=tan(30)

Calculations performed outside of a procedure always use radians (for example in a Text Display SuperOb-
ject). If you need to convert degrees into radians you can simply multiple the number of degrees by 180/π
(see “Special Characters” on page 1225), for example tan(30*180/ππππ).

Function Reference
Page Description

arccos(number) Page 5027

This function calculates the inverse cosine of a number. The number must
be between -1 and +1. The result is normally in radians, but may be in
degrees if the degree statement has been used (see “DEGREE” on
page 5152).

arccosh(number) Page 5028 This function calculates the inverse hyperbolic cosine of a number. The
number must be between 1 and ∞.

arcsin(number) Page 5029 This function calculates the inverse sine of a number. The number must
be between -1 and +1.

arcsinh(number) Page 5030 This function calculates the inverse hyperbolic sine of a number.

arctan(number) Page 5031
This function calculates the inverse tangent of a number. The result is
normally in radians, but may be in degrees if the degree statement has
been used (see “DEGREE” on page 5152).

arctanh(number) Page 5032 This function calculates the inverse hyperbolic tangent of a number. The
number must be between -1 and +1.

cos(number) Page 5125

This function calculates the cosine of an angle. The angle is normally
specified in radians, not degrees. To convert degrees to radians, divide by
180/π, which is 57.2958. For example cos(A*180/π) calculates the cosine
of A, where A is in degrees. It is also possible to modify the action of Pan-
orama to use degrees instead of radians for all trig functions, see
“DEGREE” on page 5152.

cosh(number) Page 5127 This function calculates the hyperbolic cosine of a number. The result will
be a value between 1 and ∞.

exp(number) Page 5199
This function raises e to a number. For example, the formula exp(10.2) is
equivalent to e10.2. Incidentally, e is a constant that is used in many math-
ematical formulas. It’s approximate value is 2.71828.

fact(number) Page 5211
This function calculates the factorial of a number. For example, the for-
mula fact(4) is equivalent to 4! or 4*3*2*1. You can calculate the factorial
of any integer from 0 to 170.

log(number) Page 5489 This function calculates the natural logarithm (base e) of a number.

log10(number) Page 5490 This function calculates the common logarithm (base 10) of a number.

Chapter 23:Formulas Page 1233
sin(angle) Page 5769

This function calculates the sine of an angle. The angle is normally speci-
fied in radians, not degrees. To convert degrees to radians, divide by 180/
π, which is 57.2958. For example sin(A*180/π) calculates the sine of A,
where A is in degrees. It is also possible to modify the action of Panorama
to use degrees instead of radians for all trig functions, see “DEGREE” on
page 5152.

sinh(angle) Page 5771 This function calculates the hyperbolic sine of a number.

sqr(angle) Page 5788 This function returns the square root of the number.

tan(angle) Page 5838

This function calculates the tangent of an angle. The angle is normally
specified in radians, not degrees. To convert degrees to radians, divide by
180/π, which is 57.2958. For example tan(A*180/π) calculates the tangent
of A, where A is in degrees. (Note: The tangent of π/2 (90°) is ∞, which
results in an overflow error.) It is also possible to modify the action of
Panorama to use degrees instead of radians for all trig functions, see
“DEGREE” on page 5152.

tanh(number) Page 5840 This function calculates the hyperbolic tangent of a number. The result
will be a value between -1 and +1.

Function Reference
Page Description

Page 1234 Panorama Handbook
Financial Functions

These functions calculate financial data, including loan payments, future value, and present value. They are
designed to be compatible with the same functions in Microsoft Excel®. The financial functions are based on
the following formula.

pv(1+rate)periods+payment(1+rate × begin) ×((1+rate)periods-1)/rate+fv=0

Function Reference
Page Description

pmt(rate,periods,amount,fv,begin) Page 5601

This function calculates the periodic payment required to pay off a loan.
The rate is the interest rate of the loan per period. Periods is the term of
the loan expressed in payment periods, for example 36 months for a three
year loan that is paid monthly. Amount is the amount being borrowed.
The fv (future value) and begin values are optional, and should usually
be set to zero.

For example, suppose you are taking out a 36 month loan of $20,000 to
buy a car. If the annual interest rate is 13.5% (1.125% compounded
monthly), what would the monthly payment be?

pmt(0.135/12 , 36 , 20000 , 0 , 0)

The monthly payment is $678.71.

fv(rate,periods,payment,pv,begin) Page 5280

This function calculates the future value of an investment. Rate is the
interest rate per period. Periods is the term of the investment, for example
ten years or 48 months. The pv is the present value of the investment, for
example the starting balance in a savings account. Begin should be either
1 or 0; 1 if the payments occur at the beginning of the period, 0 if the pay-
ments occur at the end of the period.

For example, to calculate the final balance in a savings plan when you
invest $500 per year for 10 years at 9% annual interest use the formula—

fv(0.09 , 10 , -500 , 0 , 1)

At the end of ten years you would have $8280.15. What if this savings
plan already has $2000 in it at the time you start this 10 year savings pro-
gram? The new formula would be—

fv(0.09 , 10 , -500 , -2000 , 1)

At the end of 10 years you would have $13,014.87.

pv(rate,periods,payment,fv,begin) Page 5618

This function calculates the present value of an investment. Rate is the
discount rate, periods is the periodic investment, and payment is the
periodic payment. The fv is an optional lump sum at the end of the final
period; use zero if there is no lump sum. Begin specifies whether pay-
ments are received at the beginning or end of each period—1 for begin-
ning or 0 for end.

Present value is a variation of the old theme that a bird in the hand is
worth two…well, you know. It’s better to get $1000 now instead of $1000
next year, but how much better? The present value computation puts a
numeric value on time and money.

For example, suppose you find an investment opportunity that promises
to pay you $1,000 per year for the next 3 years. Assuming the current
interest rate is 10% per year, how much are these payments worth right
now?

pv(0.1 , 3 , 1000 , 0 , 0)

The computation shows that $3000 paid over 3 years is worth $2486 right
now (assuming 10% interest).

Chapter 23:Formulas Page 1235
Text Formulas

Formulas can work on text as well as numbers. Formulas can combine two or more pieces of text, extract a
portion of a piece of text (for example the area code or last name), or even re-arrange the text. Formulas can
also convert numbers into text and back again.

Programmers call a piece of text a string, referring to the fact that the text is made up of a string of characters.
Since this is such a handy term we’ll use it ourselves. So whenever you see the word string think “piece of
text.”

Where do strings come from? Most strings come from the database itself. Any text or choice field can be used
as a string. You can also store strings in a variable (see “Variables” on page 1221), or put a string right into the
formula itself (see “Constants” on page 1218).

Gluing Strings Together

The simplest operation that can be performed on two strings is sticking them together, also called concatena-
tion. To glue strings together use the + operator. This operator attaches the string on the right to the end of
the string on the left. For example the formula

"abc"+"def"

produces the result abcdef. To attach the word Mr. to the beginning of a last name field use the formula

"Mr. "+«Last Name»

(Of course, you better be sure everyone in the database is a man!).

You can use more than one + operator to stick several strings together at once. For example to combine sepa-
rate first and last names into a single string using the format Last, First use this formula:

 «Last Name»+", "+«First Name»

Another way to glue strings together is with the sandwich(function (reference page 5686). This function
combines up to three items of text: a prefix, a suffix, and the root text. The prefix and suffix are slapped on the
ends of the root, just like a sandwich. However, if the root is empty (sort of like a sandwich with no meat!) the
prefix and suffix are also left off, just as you wouldn’t bother to make a sandwich without any meat.

Let’s revisit our previous example with the sandwich(function. The previous formula will work fine as
long as there is a first name. But if the first name is empty, the formula will produce an extra comma, for
example Jones, . The sandwich function can solve this problem:

«Last Name»+sandwich(", ",«First Name»,"")

If the First Name field contains a name, the sandwich(function will slap the prefix in front of the name (in
this case the prefix is a comma and a space). But if the First Name field is empty, the sandwich(function will
also leave off the prefix. All the formula will produce is the Last Name, with no extra comma and space.

The rep(function (reference page 5659) repeats an item of text by concatenating it to itself over and over.
The number of times the item is repeated is specified by the second parameter, which must be an integer. For
example, this formula will create twenty asterisks in a row:

rep("*",20)

This is exactly the same as the formula:

"********************"

Page 1236 Panorama Handbook
The rep(function, however, is less prone to error, and the count can be changed easily or even vary dynam-
ically. Here is a function which adds leading asterisks to a number so that there are always 15 characters.

rep("*",15-length(pattern(Amount,"$#,.##")))+pattern(Amount," $#,.##")

This formula is perfect for displaying numbers with an auto-wrap text object or Text Display SuperObject.
The numbers will be padded with asterisks, for example ***** $4,983.45.

Taking Strings Apart (Text Funnels)

Sometimes you may have an item of text where you only need a portion of the text and want to strip off the
beginning and or the end of the text. Panorama has a special tool for stripping off the ends of a text item. This
tool is called a text funnel.

A text funnel is used a bit differently than other Panorama functions and operators. The text funnel always
follows the text item that is being “stripped.” In a sense a text funnel has three parameters, the text item, start,
and end. But as you can see below, these parameters are arranged quite differently than they are for other
functions:

<text item> [<start> , <end>]

The first parameter, text item, is the item of text which will be stripped to get the final result. This may be a
field, a variable, or an entire formula (as long as it produces a text item as its final result). If you use an entire
formula you should put parentheses around the formula.

The second parameter, start, specifies the first character you want to include in the final output. For example
if you want to strip off the first three characters the start should be 4 (because the 4th character is the first one
we want to keep). If the starting position is past the end of the text all the text will be stripped out and the for-
mula is left with an empty text item.

The third parameter, end, specifies the last character you want to include. For example, if you want to strip
off everything after the 12th character, the end should be 12. If the starting position is after the ending posi-
tion, all the text will be stripped and the formula is left with an empty text item.

The real trick in setting up text funnels is deciding what the start and end parameters should be. The follow-
ing sections will describe several techniques for setting up these parameters.

Numeric Start and End Positions

The simplest way to specify starting and ending positions is with a number. Positive numbers are counted
from the beginning of the original text item (1 is the first character in the original text item). Negative num-
bers are counted from the last character of the original text item (-1 is the last character).

Our first example removes the first character from the Notes field.

Notes[2,-1]

The next example does the exact opposite—it removes the last character from the Notes field.

Notes[1,-2]

By using the same number for the start and end a text funnel can strip out a single character. The procedure
below uses the text funnel [1,1] to check to see if the first character of the phone number is a (. If so, it uses
another text funnel to strip out the area code.

if Phone[1,1]="("
AreaCode=Phone[2,4]

endif

Chapter 23:Formulas Page 1237
A procedure can use a variable to pre-load the start and end positions. The procedure below will strip out
everything starting with the phrase Private Notes Below ---.

local X
X=search(Notes,"Private Notes Below ---")
if X ≠0

PublicNotes=Notes[1,X-1]
else

PublicNotes=Notes
endif

Specifying Numeric Length Instead of Position

An alternate form of text funnel allows you to specify the length of the text to be stripped out, instead of the
ending position. This alternate form simply uses a semicolon instead of a comma:

<text item> [<start> ; <length>]

The length specifies the number of characters from the starting position. A positive length means that the
stripped text begins at the starting position and extends to the right. A negative length means that the
stripped text begins at the starting position and extends to the left. The character at the starting position is
always included (unless the length is zero).

Let’s look at two examples of this technique. The first extracts the area code from a long distance phone num-
ber.

Phone[2;3]

The next example strips out the local phone number (the last 8 characters).

Phone[-1;-8]

If the original text item is too short to fulfill the request the text funnel will take whatever it can get. For exam-
ple, if the phone number is only 3 characters long, the value in LocalNumber will be 3 characters long.

Start/End Positions by Character Matching

The previous section described how to strip out text by absolute numeric position within the original text (for
example from character 3 to character 8). Another technique is to specify not the absolute position, but the
character value where stripping should begin and/or end. For example instead of telling the text funnel to
strip off everything before position 5, you tell the funnel to strip off everything before the first $ character, or
everything after the last % character. The text funnel scans the original text looking for a matching character,
and then strips the text accordingly.

To specify a starting or ending position by character matching, simply supply a character instead of a num-
ber. For example, suppose you had a field named Line that contained data like this:

X2245A Tape Cartridge $22.95

To extract just the price from Line you could use this text funnel.

Line["$",-1]

This formula will take Line and strip off everything in front of the first dollar sign. In our example this will be
the value $22.95. If there is no dollar sign in Line then the result will be empty text ("").

Notice that the output of a text funnel is always a text item, not an actual number. If you wanted to convert
this to a number you would have to remove the dollar sign with an additional text funnel and use the val(
function (reference page 5883).

Page 1238 Panorama Handbook
A text funnel can use a character value for either the starting or ending position, or both. Here is an example
that extracts the hour from the time by stripping off everything after the first colon:

Time[1,":"]

Both of these examples are developed further in the next section.

Cascading Text Funnels

The examples in the previous section both have a problem: they don’t strip off enough text. The first example
strips off the price but leaves the dollar sign (for example $45.67). The second example strips the hour from
the time but leaves the colon (for example 9:). These problems can be solved by using two text funnels in a
row.

Adding a second text funnel is easy—just enter it after the first funnel. This example strips off the $ symbol
from the beginning of the price using a regular numeric position text funnel.

Line["$",-1][2,-1]

The table below shows how some typical data would be processed by this formula.

This example strips off the hour from the time—including the pesky extra colon.

Time[1,":"][1,-2]

Once again, the table shows how the data is processed by each text funnel.

These examples show two text funnels cascaded together, but there is no limit to the number of text funnels
you can use in a row. Each funnel chops away at the text until you have just the text you want. Usually the
best approach to developing a series of cascaded funnels is to develop one funnel at a time. Make sure one
funnel really does what you want and expect it to before adding the next one.

Character Matching in Reverse Gear

If the character to be matched is preceded by a minus sign the text funnel will match the last instance of the
value in the original text instead of matching the first.

The example below strips out the year from an appointment. The formula assumes that there is a date in the
format mm/dd/yy somewhere in the text item. The funnel will attempt to match up the last / symbol in the
original text.

Year="19"+Appointment["-/",-1][2;2]

Original Data After
["$",1]

After
[2,-1]

X2245A Tape Cartridge $22.95 $22.95 22.95

AF8899 Data Casette $7.80 $7.80 7.80

XB3 Head Cleaner $19.50 $9.50 9.50

Original Data After
[1,":"]

After
[1,-2]

9:42 AM 9: 9

3:07:12 PM 3: 3

11:23 AM 11: 11

Chapter 23:Formulas Page 1239
Here is how the data is processed.

The last two lines above shows the hazards of making faulty assumptions. Neither line contains a valid mm/
dd/yy date. The result in this case is a bogus year. Unfortunately there is no magic pill fix for this kind of
problem. As a programmer you must think of, check for and process every possible option. If you absolutely
know that there will be a date in the text item, fine. If not, you’ll have to write a more complicated procedure
to check for a properly formatted date before you strip out the year. Here’s an example of a more robust pro-
cedure.

if Appointment notmatch "*/*/*"
message "Sorry, the appointment has no year!"

stop
endif
Year="19"+Appointment["-/",-1][2;2]

This procedure could still be fooled—for example data containing two dates would trip it up. Designing a
completely foolproof procedure is left as an exercise to the reader.

Stripping Out Individual Words

One of the most common needs is to strip out a single word at the beginning, middle or end of a text item.
This is easily done by using a space as the matching character value. You’ll need to look at the formulas in
this section very carefully. Don’t confuse a space (" ") with an empty text item (""). They’re not the same thing.
(For clarity, the samples below showing how the data is processed use ˙ to show a space whenever it is at
the beginning or end of a text item. For example, ˙now means space followed by now.)

Here’s a formula that extracts the first word from an item of text by stripping off all the rest of the words.

Original[1," "][1,-2]

Here’s how this formula would process several sample text strings.

Original Data After
["-/",-1]

After
[2;2]

Lunch with Bob 3/4/01 /01 01

call Joan 4/2/99 3PM /99 2PM 99

10/7 L’s Birthday /7 L’s Birthday 7

call Ted call Ted al

Original Data After
[1," "]

After
[1,-2]

Now is the time Now˙ Now

Boston reports 23 degrees Boston˙ Boston

Apple stock up 5 points Apple˙ Apple

Page 1240 Panorama Handbook
This next formula does the exact opposite: it strips off the first word, leaving the rest of the words.

Original[" ",-1][2,-1]

Here is how this formula would process the same sample strings as before.

You can cascade these two text funnels to produce a formula that extracts the 2nd word from the original text,
stripping off the rest.

Original[" ",-1][2,-1][1," "][1,-2]

Here is how this formula would process the same sample strings as before.

This process can be repeated indefinitely. However, a better approach is probably to use the array(function
with space as a separator character. See reference page 5033 to learn more about this function.

Here’s a simple formula that extracts the last word from a text item, stripping off the earlier words (if any).

Original["- ",-1][2,-1]

Here’s how this formula would process several sample text strings.

A close examination will show that this is exactly the same as the first example but with an extra minus sign
to specify the last space instead of the first space.

Original Data After
[1," "]

After
[1,-2]

Now is the time ˙is the time is the time

Boston reports 23 degrees ˙reports 23 degrees reports 23 degrees

Apple stock up 5 points ˙stock up 5 points stock up 5 points

Original Data After
[" ",-1]

After
[2,-1]

After
[1," "]

After
[1,-2]

Now is the time ˙is the time is the time is˙ is

Boston reports 23 degrees ˙reports 23 degrees reports 23 degrees reports˙ reports

Apple stock up 5 points ˙stock up 5 points stock up 5 points up˙ up

Original Data After
["- ",-1]

After
[2,-1]

Now is the time ˙time time

Boston reports 23 degrees ˙degrees degrees

Apple stock up 5 points ˙points points

Chapter 23:Formulas Page 1241
Multiple Matching Characters for Start/End Position

Sometimes you may need to use multiple character values to specify the starting or ending position of a text
funnel. Any one of these character values will match up with the original text. For example, a sentence may
end with a period, a question mark, or an exclamation mark. To use more than one matching character sim-
ply list each character separated by commas. Here is an example that extracts the first sentence from a letter.
All the text after the first sentence is stripped off.

Letter[1,".,?,!"]

You can include a comma as one of the character values. This example extracts everything up to the first
semicolon, comma, or colon. All the text after that point is stripped off.

Description[1,";,,,:"]

If you use alphabetic values, don’t forget that upper and lower case are separate values, even for the same let-
ter. This example extracts am or pm from a text item.

Appointment["a,p,A,P";2]

It’s also possible to specify a range of matching characters, for example 0 through 9 or A through Z. To specify
a range the starting and ending characters must be separated by a dash, for example "0-9". The range will
include all characters between the two characters on the ASCII table (see “Characters and ASCII Values” on
page 1251.)

Here is an example that extracts the frequency from a radio station. The call letters are stripped off.

Station["0-9",-1]

Here’s how this formula would process several sample text strings.

Original Data After
["0-9",-1]

KFI 640 AM 640 AM

KLSX 97.1 FM 97.1 FM

KFAC 105.1 FM 105.1 FM

KROQ 106.7 FM 106.7 FM

Page 1242 Panorama Handbook
A text funnel can combine multiple character ranges, or combine a range with one or more separate character
values. The next example strips off everything before the first number, or before the first dollar sign (which-
ever comes first).

Line["0-9,$",-1]

Here’s how this formula would process several sample text strings.

The last line shows a possible pitfall of this text funnel. Text funnels rely on consistent patterns in the data. If
there isn’t a pattern you can identify accurately, you won’t be able to design a funnel to strip the text apart
reliably. In this case a more reliable pattern would be to notice that the price is always the last word of Line,
so the text funnel below will strip off the price reliably.

Line["- ",-1][2,-1]

Be sure to test your text funnels with a wide variety of sample data to make sure you have identified a consis-
tent pattern.

As mentioned in the previous section, putting a minus sign in front of the character value tells the text funnel
to find the last matching character, instead of the first. This works for character ranges too. This example
extracts the item name from Line by stripping off everything after the last letter.

Line[1,"-A-Z,a-z"]

Here’s how this formula would process our sample text strings.

Although this example has two ranges (A-Z or a-z) only one minus sign is needed (at the beginning). If the
first character is a minus sign, the text funnel will always look for the last matching character in the original
text.

Non-Matching Character for Start/End Position

The previous examples have all used one or more characters that must match a character in the original text
item. By using the ≠ symbol (see “Special Characters” on page 1225) you can specify that the text funnel
should begin (or end) with the first character (or characters) that does not match. For example, you might
want to match with the first character that is not a number, or the last character that is not a space.

Original Data After
["0-9,$",-1]

Tape Cartridge $22.95 $22.95

Data Cassette 7.80 7.80

XB3 Cleaner $19.50 3 Cleaner $19.50

Original Data After
[1,"-A-Z,a-z"]

Tape Cartridge $22.95 Tape Cartridge

Data Cassette 7.80 Data Casette

XB3 Cleaner $19.50 XB3 Cleaner

Chapter 23:Formulas Page 1243
An example should make this clearer. Suppose you have imported some numbers that have one or more
asterisks in front of them, and you want to strip off the asterisks. The text funnel in this formula will set the
starting position to the first character in the original text that is not an asterisk.

Imported[" ≠*",-1]

Here’s how this formula would process some sample text strings.

You can use this feature to strip off leading spaces.

Name[" ≠ ",-1]

Here’s how this formula would process some sample text strings (leading spaces are shown as ˙ for clar-
ity).

(An easier way to strip leading and trailing spaces is to use the strip(function, which is designed for that
purpose. See reference page 5798 for more information about this function.)

The example below specifies that the starting position should be the first character that is not a letter, not a
comma, and not a space. It extracts the zip code or Canadian postal code from an address.

CityStateZip[" ≠A-Z,a-z,,, ",-1]

Here’s how this formula would process some typical addresses.

The astute reader may have realized that a simpler text funnel can do the same job, ["0-9",-1] . Of course
it would not have illustrated the ≠ feature. The moral of the story is: watch out for college solutions when a
grade school solution may work just as well!

Original Data After
["›*",-1]

****23.67 23.67

***782.12 782.12

*****2.98 2.98

Original Data After
["› ",-1]

˙˙Jeff Nance Jeff Nance

˙Williams Williams

Original Data After
["›A-Z,a-z,,, ",-1]

Fullerton, CA 92831 92831

Kamloops, BC 3J2 X7G 3J2 X7G

Page 1244 Panorama Handbook
A text funnel that uses the ≠ symbol can also work in reverse gear, so that it specifies the last character that
does not match, instead of the first. The ≠ symbol must be first, and then the - symbol. For example, here is
yet another formula for extracting the price from Line.

Line[" ≠-0-9,.",-1][2,-1]

Here’s how this formula would process some of our favorite sample text strings.

Unlike some of our previous examples, this formula does not rely on a $ symbol or a space in front of the
price, and it does not choke if there is a number in the item description.

Limitations of Text Funnels

Unlike Humpty Dumpty, text items are easy to put together but hard to take apart intelligently. Text funnels
are a powerful tool, but they do have limitations. One limitation is that, by themselves, they can only work
with one character at a time. If you want to start stripping text with the word fax or P.O. Box a text funnel
can’t do it on its own. You’ll have to combine the funnel with the search(function for jobs like this (see ref-
erence page 5704).

The most important limitation of text funnels is that they cannot work reliably if there is not a single consis-
tent pattern in the data. If the data has no pattern at all, you’re out of luck (short of re-keying data). If the data
has two or more patterns you’ll need to isolate each pattern and process each one with a separate text funnel.
One way to do this is with the ?(function (see reference page 5005). This formula extracts the local phone
number from a complete phone number. If the complete phone number starts with (, the formula uses a text
funnel that strips out the area code, otherwise the local number starts with the first character.

?(Phone[1,1]="(" , Phone[7;8] , Phone[1;8])

Here’s how this formula would process some of our favorite sample text strings.

Don’t be afraid to combine text funnels with other functions and statements. Some functions that are often
useful with text funnels include ?((see reference page 5005), length((see reference page 5464), strip(
(see reference page 5799), stripchar((see reference page 5799), search((see reference page 5704),
replace((see reference page 5662), and array((see reference page 5033).

Original Data After
["›-0-9,.",-1][2,-1]

Tape Cartridge $22.95 22.95

Data Cassette 7.80 7.80

XB3 Cleaner $19.50 19.50

Original Data After
?(Phone[1,1]="(",Phone[7;8],Phone[1;8])

(714) 555-1212 555-1212

852-9632 852-9632

(562) 492-1438 ext 23 492=1438

Chapter 23:Formulas Page 1245
String Testing Functions

These functions return information about the content of a string.

Function Reference
Page Description

length(string) Page 5464 This function counts the number of characters in a string. The result is an
integer. If the string is empty, the result will be zero.

search(string,phrase) Page 5704

This function searches through a string looking for a word or phrase. If
the search is successful, the function returns the position of the phrase
within the string, otherwise the function returns zero. For example, the
formula search(Name,"Dr.") will return a non-zero value (usually 1) if the
name contains Dr., or zero if it does not.

sizeof(name) Page 5774

This function calculates the amount of memory used by a field cell or a
variable. Name is the name of the field or variable that you want to calcu-
late the size of. The function returns the number of bytes of memory used
by the variable or field cell.

The sizeof(function can be used to decide if a numeric or date field is
empty or not. The example procedure shown below selects all the records
with no price (not the same as records with a price of zero).

select sizeof(Price)=0

 Another use for the sizeof(function is to check if a variable is taking up
too much scratch memory (see “Changing Scratch Memory Size (Macin-
tosh)” on page 273). This example checks to see if the variable importLet-
ter is more than 500 bytes long. If it is, the procedure clears the variable.

if sizeof(importLetter)>500
importLetter=""

endif

Page 1246 Panorama Handbook
String Modification Functions

These functions modify the contents of a string. Usually the string is actually a database field. Remember, to
use a database field as a string parameter simply use the name of the field, for example upper(Name).You’ll
often want to use these functions to modify the existing data in a field. For example, you might want to con-
vert all company names to upper case. To convert existing data use the Formula Fill command in the Math
Menu (see “Filling a Field with a Formula” on page 511). This command calculates the formula over and over
again—once for each selected record.

Function Reference
Page Description

extract(text,separator,item) Page 5208

This function extracts a single data item from a text array. This function is
almost identical to the array(function. The extract(function is excellent
for extracting a word, line or phrase from a larger text item. It can also be
used to count the number of items in the array. There are three parame-
ters: text, separator and item. Text is the item of text that contains the data
you want to extract. Separator is the separator character for this array.
This should be a single character. For carriage return delimited arrays,
use the ¶ character (see “Special Characters” on page 1225). For tab
delimited arrays use the ¬ character. Item is the number of the data item
you want to extract. The first item is item 1, the second is item 2, etc.

Using an item number of -1 tells the extract(function to count the number
of data items in the array. This is similar to the arraysize(function. In this
case the extract(function will return a number, not text.

 If the item parameter is 1 or greater, this function returns an item of text
from the array. Only the item itself is returned, the separator characters
on each end are not included. If the item does not exist (for example if
you ask for item 12 from a 7 item array) the function will return empty
text ("").

lower(string) Page 5513
This function converts all of the letters in the string to lower case. For
example, the formula lower(Terms) will convert NET 30 to net 30, or
C.O.D. to c.o.d. See also the upper and upperword functions.

rep(string,count) Page 5659

This function replicates a string over and over. The number of replica-
tions is specified by the count (a number). This function is handy for cre-
ating a long repeating string. For example to create a string containing
twenty asterisks in a row, use the formula rep("*",20). The count does not
have to be a constant, but it must be an integer.

replace(string,search,replace) Page 5662

This function searches for a word or phrase within a string and if found,
replaces it with a new word or phrase. The first parameter is the string
that may contain the word or phrase. Usually this parameter is a database
field. The second parameter is the word or phrase to search for. The third
parameter is the new word or phrase.

For example, to replace Corporation with Corp. in the Client field, use the
formula replace(Client,"Corporation","Corp."). To use this formula to
replace the data in the database, use the Formula Fill command. (For a
simple replace case like this, however, it is easier to use the Change com-
mand. The replace(function is useful when you want to perform other
transformations in addition to the replace.)

Chapter 23:Formulas Page 1247
replacemultiple(
string,search,replace,sep) Page 5664

This function searches for a set of words or phrases and replaces them
with another set of words or phrases. It is similar to the replace(function,
but can replace a whole set of items at once. The string parameter must
contain the text that contains the words or phrases you want to replace.
The search parameter contains a list of words or phrases to search for. The
items in this list must be separated by the sep character. Here’s an exam-
ple that uses comma as the separator.

"Drive,Lane,Avenue,Boulevard"

The replace parameter contains another list of words or phrases. These
must use the same separator character and be in the same order as the
search parameter. Here’s another example.

"Dr,Ln,Ave,Blvd"

Putting it all together, here’s an example that inserts abbreviations in an
address.

replacemultiple(
 Address,
 "Drive,Lane,Avenue,Boulevard",
 "Dr,Ln,Ave,Blvd",
 ",")

In this example we’ve separated each parameter onto a separate line, but
this is not necessary. Also, keep in mind that you can use any character as
a separator, not just a comma.

sandwich(prefix,root,suffix) Page 5686

The sandwich(function assembles a text item from three smaller text
items. The prefix and suffix are slapped on the ends of the root, just like a
sandwich. However, if the root is empty, the prefix and suffix are also left
off (the result is an empty text item), just as you wouldn’t make a sand-
wich without any meat.

Suppose you have a database with names and titles, and you want to dis-
play this information in a report with the titles surrounded by parenthe-
ses. The formula below could be used with an auto-wrap text object or
Text Display SuperObject.

Name+sandwich(" (",Title,")")

If the person has a title it will appear in parentheses like this: Steve
Johnson (Sales Mgr). If they don’t have a title then no parentheses will
appear. The sandwich(function is useful any time you have optional data
items combined together with punctuation in between.

strip(text) Page 5798

This function strips off leading and trailing blanks and other whitespace
(carriage returns, tabs, etc.) This function has one parameter, the item of
text that you want to strip. The function removes blanks at the beginning
or end of the text, but does not affect blanks in the middle of the text. It
also removes carriage returns, tabs, or any character with an ASCII value
less than 32.

Function Reference
Page Description

Page 1248 Panorama Handbook
stripchar(text,range) Page 5799

This function removes characters you don’t want from a text item. You
specify exactly what kinds of characters you want and don’t want
included in the final output. Text is the item of text that you want to strip.
Range specifies what kinds of characters you want to keep and what
kinds of characters you want to strip away. The range consists of one or
more pairs of characters. Each pair specifies a set of characters you want
to keep. For example, the pair AZ means that you want to keep the char-
acters from A to Z. For alphanumeric characters the set is pretty obvious.
For other types of characters you should check an ASCII chart (see “Char-
acters and ASCII Values” on page 1251). For example the pair #& speci-
fies a set of four characters: #, $, % and &. You can use the ASCII Chart
wizard to try out your character ranges, see “Showing Character Ranges
with the ASCII Wizard” on page 1255.

If a pair consists of the same character repeated twice in a row, the set is
just that single character. For instance the pair ## means you want to
keep one character: #.

The range may consist of several pairs put together. For example the
range AZaz09.. consists of four pairs, and specifies that all letters, num-
bers, and periods will be kept, with all other characters stripped away.

One handy use for this function is to quickly check if a field or variable
contains any inappropriate characters. If a field or variable changes when
you run it through the stripchar(function it must contain characters that
are not part of the specified range.

striptoalpha(text) Page 5802

This function removes everything but alphabetic letters from a text item.
Everything else (numbers, spaces, punctuation, non-English letters, etc.)
will by removed from the text.

One handy use for this function is to quickly check if a field or variable
contains all alphabetic characters. If a field or variable changes when you
run it through the striptoalpha(function it must contain non-alphabetic
characters.

striptonum(text) Page 5804

This function removes everything but numeric digits from a text item.
Everything else (letters, spaces, punctuation, non-English letters, etc.)
will by removed from the text.

One handy use for this function is to quickly check if a field or variable
contains all numeric digits. If a field or variable changes when you run it
through the striptonum(function it must contain non-numeric charac-
ters.

upper(string) Page 5877
This function converts all of the letters in the string to upper case. For
example, the formula upper(Terms) will convert net 30 to NET 30, or
c.o.d. to C.O.D. See also the lower(and upperword(functions.

upperword(string) Page 5878

The upperword(function converts the first letter of each word in the
string to upper case, and all other letters to lower case. For example the
formula upperword(State) will convert new york to New York, or will
convert VERMONT to Vermont. See also the lower and upper functions.

Function Reference
Page Description

Chapter 23:Formulas Page 1249
Converting Between Numbers and Strings

These functions convert numbers into strings and strings into numbers.

Function Reference
Page Description

asc(string) Page 5057

This function converts the first character of the string into a number
based on the ASCII value of the character. For example the formula
asc("Y") returns the value 89, while asc("Z") returns the value 90. See also
the chr(function.

chr(number) Page 5096

This function converts a number into a single character of text based on
the ASCII value of the number. The number should be an integer between
0 and 255. For example, the letter A has an ASCII value of 65, while the
letter B is 66. You can create special characters with this function; TAB is 9
and RETURN is 13. See also the asc(function.

exportcell(value) Page 5206

This function converts a value into text without any special formatting.
For numeric values this function is the same as the str(function (see
below). The advantage of this function is that it works with any kind of
value - text, numeric or date. Use this function when for some reason you
don’t know what kind of data you need to convert.

pattern(number,string) Page 5596

This function converts a number into text, using the string as an output
pattern. For example the formula pattern(Price,"$#.,##") will convert the
price 3458.23 into the string $3,458.23. The pattern adds the $ and the
comma. For more information on numeric output patterns see “Numeric
Output Patterns” on page 356.

radix(radix,text) Page 5623

This function converts a text item containing a hex, octal, or binary num-
ber into a standard Panorama number (decimal). See “NON DECIMAL
NUMBERS” on page 5540 for background information on hex, octal and
binary numbers. Radix is the base for the numbering system you are con-
verting from. Legal radix values are 2, 4, 8, 16 or 32. Or you can specify
the radix as "binary" (same as 2), "octal" (same as 8) or "hex" (short for
hexadecimal, same as 16). Text is a text item that contains the non-deci-
mal number you want to convert. This function normally returns an inte-
ger that contains the decimal (base 10) number corresponding to the hex,
octal, or binary number input to the function.

 If the radix is hex and there are more than 8 digits in the input text, or if
the radix is binary and there are more than 32 digits, this function will
return a raw binary value instead of a number. This binary value may be
of unlimited length. Like all binary values, it cannot be calculated with,
but should be handled as a text item.

Page 1250 Panorama Handbook
radixstr(radix,number) Page 5625

This function converts a number into a text item containing the equiva-
lent hex, octal, or binary number. See “NON DECIMAL NUMBERS” on
page 5540 for background information on hex, octal and binary numbers.
Radix is the base for the numbering system you are converting from.
Legal radix values are 2, 4, 8, 16 or 32. Or you can specify the radix as
"binary" (same as 2), "octal" (same as 8) or "hex" (short for hexadecimal,
same as 16). Number is the number you want to convert to hex, octal, or
binary. If the radix is 2, 16, "binary", or "hex" the number can be a raw
binary data (text) value. This function returns a text item that contains the
hex, octal, or binary number equivalent to the number (or binary data)
passed to the function. The first example converts the decimal value 256
to hexadecimal.

radixstr(16,256)

This function will calculate that 25610 is 100 hex.

Here is another example:

radixstr("binary",5)

This will calculate that 5 10 is 00000000000000000000000000000101 binary.

str(number) Page 5796
This function converts a number into text without any special formatting.
If you want to format the number (add commas, set # of digits, etc.) use
the pattern(function.

val(string) Page 5883

This function converts a string into a number. The string must start with
one or more numeric digits. Everything after the first non-numeric char-
acter will be ignored. For example, the formula val(Address) will return
the number 731 if the address is 731 N. Miller St.

exportcell(field) Page 5206

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

Function Reference
Page Description

Chapter 23:Formulas Page 1251
Characters and ASCII Values

Just as molecules are built from atoms, text is built from characters. And like an atom which can be divided
into electrons, protons, and neutrons (among others), characters also have an internal structure. Just as with
atoms, the internal structure of characters can usually be ignored, and you may want to skip the following
section if you are a beginner. Sometimes however, knowledge of the internal structure of characters can be
very helpful.

On most computer systems there are 256 possible characters. (Some Japanese and Chinese systems allow
thousands of characters, however Panorama does not currently support this.) Each character has a number
from 0 to 255. Of these 256 characters, about 200 are associated with symbols (letters, digits, punctuation,
etc.). For example, the symbol for the letter A is represented by character number 65. You can use the ASCII
Chart wizard to see a complete list of all 256 characters and their symbols.

The numbers have not been assigned to symbols arbitrarily, but have been assigned using a system called
ASCII. The number associated with a character is called the ASCII value of the character. (For you techno-
weenies, ASCII stands for American Standard Computer Interchange Interface.) If you look at the ASCII table
on the next page you’ll notice that the characters with ASCII values from 0-31 have no symbols. These charac-
ters are used for special keys like return, tab, and enter. ASCII value 32 is the space character, then we have
some punctuation. ASCII values 48 through 57 are the numeric digits 0 through 9, in order. ASCII values 65-
90 are the upper case letters A through Z, in alphabetical order. ASCII values 97-122 are the lower case letters
a through z, again in alphabetical order.

Panorama uses the ASCII values of characters when it compares two text items to see which is larger or
smaller. Since the ASCII value of B (66) is greater than the ASCII value of A (65), the text item B is “larger”
than A. However, the ASCII value of a (97) is greater than B (66), so the text item a is “larger” than B. You
have to watch out for this problem whenever you compare text that is a mixture of upper and lower case.

Working with Character Values

Usually it’s not necessary to worry about the numeric value of a particular character—you can just think of it
as a character. However, if you want to perform any kind of math on the character itself it is necessary to con-
vert the character in to a number. For example you can add one to a character value to get the next character
value (A ➛ B ➛ C etc.). Or you can calculate the number of characters between two characters.

Page 1252 Panorama Handbook
Panorama has two special functions that allow you to work with character values directly. The asc(function
converts a character to its ASCII value. The chr(function converts an ASCII value to the corresponding
character.

The following example procedure asks the user to enter a range of characters, for example A-F. It uses the asc(
function to convert the characters into the corresponding ASCII numeric values, then calculates the number
of characters in the range.

local LetterRange,StartLetter,EndLetter,LetterCount
LetterRange=""
gettext "Enter character range:",LetterRange
StartLetter=LetterRange[1,1]
EndLetter=LetterRange[-1,-1]
LetterCount=abs(asc(EndLetter)-asc(StartLetter))
message LetterRange+": "+pattern(LetterCount+1,"# character~")

If the person enters A-F the procedure will display A-F: 6 characters.

The next example procedure is similar but actually displays a list of the characters in the range. It uses the
chr(function to convert the numbers back into characters.

local LetterRange,StartLetter,EndLetter
local LetterCount,LetterBump,Letters
LetterRange=""
gettext "Enter character range:",LetterRange
StartLetter=asc(LetterRange[1,1])
EndLetter=asc(LetterRange[-1,-1])
LetterCount=EndLetter-StartLetter
LetterBump=LetterCount/abs(LetterCount)
Letters=""
loop

Letters=Letters+chr(StartLetter)
StartLetter=StartLetter+LetterBump

while StartLetter ≠EndLetter
message LetterRange+": "+Letters

If the person enters A-F the procedure will display A-F: ABCDEF. If the person enters F-A the procedure will
display F-A: FEDCBA.

Warning: Don’t confuse the asc(and chr(functions with the val(and str(functions. The asc(and
chr(functions convert single characters based on their ASCII values. The val(and str(functions convert
entire text items based on the number the characters spell out. For example asc("4") is 52, because 52 is the
ASCII value of the character “4.” On the other hand, val("4") is 4. Confused? You almost certainly want to
use val(and str(unless you are sure you know what you are doing.

Invisible Characters

The ASCII system contains a number of characters that are normally invisible. In fact, every ASCII character
with a value of 32 or lower is invisible. Normally you will not be concerned with invisible characters. How-
ever, there are three special invisible characters that do get a lot of use: space, carriage return, and tab.

The space character (ASCII value 32) is not quite invisible, because it does take up space. You can easily enter
this value by pressing the Space Bar. In a formula you can enter a space directly [" "] or using the chr(
function [chr(32)].

The carriage return character is used to start a new line of text. This character has an ASCII value of 13. You
can enter this value into a formula using the ƒ symbol (see “Special Characters” on page 1225) or as
chr(13) .

Chapter 23:Formulas Page 1253
(Trivia question: why is this character called carriage return? In a few years probably no one will remember.
In case you are already too young to remember, typewriters (and teletypes) used to place the paper on a car-
riage that moved back and forth as you typed. When you pressed the Return key the carriage would “return”
back to the beginning of the line and also advance down to the next line, hence carriage return. In fact, on old
manual typewriters this was accomplished with a lever, not a key.)

The tab character is usually not found inside data, but is often found in text files created by editors or word
processors (including the Panorama word processor). The tab character has an ASCII value of 9. You can
enter this value into a formula using the ´ symbol (see “Special Characters” on page 1225) or as chr(9) .

The ASCII Chart Wizard

The ASCII Chart wizard allows you to displays a matrix showing all 256 ASCII characters. When you click
on a character it types that character into the box at the bottom.

If you select the Decimal option then clicking on a character enters the corresponding numeric value of the
character into the box.

click on characters in matrix

to type them into this box

click on any character

to see it’s numeric equivalent

Page 1254 Panorama Handbook
Use the Hex option to see the numerical value of the character in hexadecimal (see “Raw Binary Data” on
page 1310).

HTML has special codes for many characters. Use the HTML option to see the equivalent code (if any) for a
special character.

click on any character

to see it’s hexadecimal equivalent

click on any character

to see it’s HTML equivalent

Chapter 23:Formulas Page 1255
Showing Character Ranges with the ASCII Wizard

Several Panorama features use character ranges, including field properties (see “Restricting Character Types”
on page 396), text funnels (see “Taking Strings Apart (Text Funnels)” on page 1236) and the stripchar(
function (see “String Modification Functions” on page 1246). The ASCII Chart wizard allows you to preview
a character range by selecting the Show Range option and typing the range into the box. All of the characters
in the range will be highlighted in blue. For example, the illustration below shows the range 09, which
includes all numeric characters.

Here is a more complex range that includes all the characters used in basic mathematical formulas.

You can use the ASCII Chart wizard to try out your ranges before you actually use them in a database.

Page 1256 Panorama Handbook

Chapter 23:Formulas Page 1257
Text Arrays

An array is a numbered collection of data items. Panorama includes a number of functions and statements
that treat a single text data item as if it were a numbered collection of smaller items. The smaller text data
items must be separated from each other by a delimiter, for instance a comma or carriage return.

Consider the text data item shown below. Panorama would normally treat this as a single item with a length
of 40 characters. The functions described in this section, however, can treat this text as a collection of 7 ele-
ments separated by semicolons.

white;red;orange;yellow;green;blue;black

In this example, the ; is the separator character. You can use any character you want for a separator character,
in fact, you can use different separator characters at different times. You could even build a multi-level array
by using two different separator characters.

Using the array functions and statements provided by Panorama you can extract elements from an array,
change array elements, even sort an array. Since arrays are really text, they can be stored in any variable or
any text field, and they can be edited with the data sheet, a data cell, or a Text Editor SuperObject.

There are many statements and user interface elements that work with text arrays, including lists and pop-up
menus. There are also a number of functions that generate text arrays, including functions for building lists of
files, windows, fields, choices, and data. Most of these statements, user interface elements, and functions
require that carriage returns be used as separators, so that each array element is on a separate line.

It is up to you to keep track of the fact that you are using an array and what the separator character is. Pan-
orama won’t stop you from trying to access the array of colors above as if it were delimited with commas
instead of semicolons, but you probably won’t get the results you wanted unless you use the correct separa-
tor character.

(If you are familiar with the arrays in C or Pascal, Panorama text arrays are quite a bit different, although
both are a numbered collection of items. As with anything unfamiliar, Panorama text arrays probably won’t
look as good as the ones you are used to at first. Panorama arrays do have some significant advantages
though: they don’t have to be declared in advance, each array element can be of unlimited length without
wasting space, and Panorama arrays can be directly edited. It’s also very easy to “pre-fill” a Panorama array
with a list of values.)

Picking a Separator Character

Any ASCII character can be used as a separator character, so you have 256 possible choices. Common separa-
tors include comas, semicolons, slashes, carriage returns, spaces and tabs.

It’s important to pick a separator character that will not occur in the data elements of your array. If your data
may include commas, don’t use the comma as a separator character. If the data might include carriage
returns, don’t use a carriage return. If you want to be extra sure to avoid conflicts, pick a non-printing charac-
ter. You can use the chr(function (reference page 5096) to generate non-printing characters, for example
chr(1) , chr(2) , chr(3) . Most chr(values below 32 are non-printing except for chr(9) and chr(13) ,
which correspond to tab and carriage return.

Some Panorama user interface elements and functions use text arrays as parameters or to hold a list of values.
For these applications the separator character is usually required to be a carriage return. For example, the
Pop-Up Menu SuperObject uses a carriage return delimited array to define the list of pop-up menu choices
(see “The Pop-Up Menu Formula” on page 887). The lookupall(function (reference page 5499) extracts
information from another database and places it into an array with whatever separator you specify. Consult
the documentation for each individual statement, function or SuperObject to see the exact specifications for
any arrays they may use.

Page 1258 Panorama Handbook
Working With Arrays

Panorama has about a dozen functions and procedure statements for working with arrays. These functions
are described in this table.

Function Reference
Page Description

array(text,item,sep) Page 5033

This function extracts a single data item from a text array. Text is the item
of text that contains the data you want to extract. Item is the number of
the data item you want to extract. The first item is item 1, the second is
item 2, the third item is 3, etc. Separator is the separator character for this
array. This should be a single character. For carriage return delimited
arrays, use the ¶ character (see “Special Characters” on page 1225). For
tab delimited arrays use the ¬ character.

The array(function returns a single item of text from the array. Only the
item itself is returned, the separator characters on each end are not
included. If the item does not exist (for example if you ask for item 12
from a 7 item array) the function will return empty text ("").

There are 7 VHF television stations in Los Angeles. The example proce-
dure below will convert channel numbers into the names of the stations.
For example, the procedure converts Channel 7 into KABC.

Stations=",KCBS,,KNBC,KTLA,,KABC,,KCAL,,KTTV,,KCOP"
«Channel Name»=array(Stations,7,",")

 The example uses an array called Stations. This array uses commas as a
separator character.

arraychange(text,value,item,sep) Page 5037

This function changes a single value inside a text array. Only the one item
is changed, all the other items in the array remain the same. Text is the
text array that contains the data you want to change. Value is the new
value of the data item. Item is the number of the data item you want to
change. Items are numbered starting from 1 (1,2, 3,…). This item must
already exist in the array. The arraychange(function will not add the item
if it does not exist. Sep is the separator character for this array. This
should be a single character. For carriage return delimited arrays, use the
¶ character (see “Special Characters” on page 1225). For tab delimited
arrays use the ¬ character. This function returns a copy of the text array,
with the data item changed. If you want to change the original array you
should use an assignment statement (see below).

The example procedure below will change the 5th item of the array to
Navajo White.

 Colors=arraychange(Colors,"Navajo White",5,";")

This example assumes that a field or variable named Colors already
exists.

arraydelete(text,item,count,sep) Page 5040

This function deletes one or more elements from the middle of a text
array. Text is the text array that you want to insert elements into. Item is
the spot where you want the elements to be deleted. Count is the number
of elements you want to delete from the array. Sep is the separator charac-
ter for this array. This should be a single character. For carriage return
delimited arrays, use the ¶ character (see “Special Characters” on
page 1225). For tab delimited arrays use the ¬ character. This function
returns a copy of the original text array, with the specified elements
deleted from the middle. The example procedure below will delete the
3rd item from the SpeedDial array:

 SpeedDial=arraydelete(SpeedDial),3,1,¶)

Chapter 23:Formulas Page 1259
arrayelement(text,position,sep) Page 5041

This function converts between character positions and array element
numbers in a text array. Given a character position within the overall text,
the arrayelement(function tells what array element the character is in.
For example, in the array red;blue;green the 7th character (u) is in the 2nd
array element.

This function has three parameters: text, position and sep. Text is the text
array that you are working with. Position is the position of the character
within the overall text (starting with 1 for the first character). Sep is the
separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (see “Special Charac-
ters” on page 1225). For tab delimited arrays use the ¬ character.

This function returns a number. This is the number of data element in the
array corresponding to the character position parameter. If the position
corresponds to a separator character, the function will return the element
number of the data element to the right of the separator.

The example procedure below adds a new color to the RecentColors
array. It then arbitrarily cuts off the array so that it is less than 200 charac-
ters long. The arrayelement(function makes it possible to write this pro-
cedure so that the array can be cut off without cutting an array element in
the middle.

local lastElement
RecentColors= parameter(1)+
 sandwich(¶,RecentColors,"")
lastElement=arrayelement(RecentColors,200,¶)
RecentColors=
 arrayrange(RecentColors,1,lastElement,¶)

This procedure could be useful for maintaining a pop-up menu of
recently used colors. The procedure automatically keeps the menu to a
reasonable size by lopping off old colors from the bottom if the array gets
over 200 characters long.

arrayinsert(text,item,count,sep) Page 5044

This function inserts one or more elements into the middle of a text array.
Text is the text array that you want to insert elements into. Item is the spot
where you want the new elements to be inserted. Count is the number of
blank elements you want to insert into the array. Sep is the separator
character for this array. This should be a single character. For carriage
return delimited arrays, use the ¶ character (see “Special Characters” on
page 1225). For tab delimited arrays use the ¬ character.

This function returns a copy of the original text array, with the new blank
array elements inserted into the middle. The example procedure below
will add 5 new array items to the SpeedDial array between the 2nd and
3rd array items:

SpeedDial=arrayinsert(SpeedDial),¶,3,5)

The new array items created by arrayinsert(are blank (empty). You can
fill them in with the arraychange(function.

Function Reference
Page Description

Page 1260 Panorama Handbook
arrayrange(text,start,end,sep) Page 5047

This function extracts a series of data item from a text array. Text is the
item of text that contains the data you want to extract. Start is the number
of the first data item you want to extract. Items are numbered starting
from 1 (1, 2, 3,…). End is the number of the last data item you want to
extract. Items are numbered starting from 1 (1, 2, 3,…). Sep is the separa-
tor character for this array. This should be a single character. For carriage
return delimited arrays, use the ¶ character (see “Special Characters” on
page 1225). For tab delimited arrays use the ¬ character.

 This function returns a series of items from the array. It returns the first
item, the last item, and everything in between (including any separators
that are in between). If the last item does not exist (for example if you ask
for item 12 from a 7 item array) the function will return up to the actual
last item in the array. If both requested items do not exist, the function
will return empty text ("").

This example procedure will fill the variable WeekDays with the text
Mon,Tue,Wed,Thu,Fri.

Days="Sun,Mon,Tue,Wed,Thu,Fri,Sat"
WeekDays=arrayrange(Days,2,6,",")

arrayreverse(text,sep) Page 5048

This function reverses the order of the elements in a text array. In other
words, the first element becomes the last element, the second element
becomes the second to last, etc. Text is the text array that you want to
modify. Sep is the separator character for this array. This should be a sin-
gle character. For carriage return delimited arrays, use the ¶ character
(see “Special Characters” on page 1225). For tab delimited arrays use the
¬ character.

The arrayreverse(function reverses the order of the elements of an array.
For example, the formula:

 arrayreverse("1;2;3;4",";")

will produce the array 4;3;2;1.

arrayscan(field,sep) Page 5049

This function allows the individual elements of a text array in a database
field to be exported on separate lines. Field is the name of the field that
contains the array you want to export. (You can also use a variable, but
this usually doesn’t make sense). Sep is the separator character for this
array. This should be a single character. For carriage return delimited
arrays, use the ¶ character (see “Special Characters” on page 1225). For
tab delimited arrays use the ¬ character.

This function returns one element from the array. However, unlike the
array(function, the arrayscan(modifies the way the export and
arraybuild statements work. These statements will repeat the formula
containing arrayscan(over and over again for each record. Each time, the
function will return the next element in the array, until there are no more
items.

Function Reference
Page Description

Chapter 23:Formulas Page 1261
arraysearch(array,text,start,sep) Page 5051

This function searches a text array to see if it contains a specific value.
Array is the text array that you want to search. Text is the text that you
want to search for. This parameter may contain the wildcard characters ?
and * . For example, to search for array items that start with John use
John* . To search for any array item containing Pacific use *Pacific*. The
array item must match the text exactly, including upper/lower case. For
more information on wildcard characters, see “A match B” on page 1284.
Start is the spot in the array where you want the search to begin from. If
you want to search the entire array, this parameter should be one. Sep is
the separator character for this array. This should be a single character.
For carriage return delimited arrays, use the ¶ character (see “Special
Characters” on page 1225). For tab delimited arrays use the ¬ character.

If the arraysearch(function finds an array element that matches what you
are searching for it returns the number of that array element (1, 2, 3, etc.).
If there is no matching element, the function returns 0.

arraysize(text,sep) Page 5054

This function counts the number of items in a text array. Text is the text
array that you want to count. Sep is the separator character for this array.
This should be a single character. For carriage return delimited arrays,
use the ¶ character (see “Special Characters” on page 1225). For tab
delimited arrays use the ¬ character.

This function returns a number. This is the number of elements in the
array. If there is no text in the array, the function will return one. If you
need a function that returns zero if there is no text you can use the extract
function with the last parameter set to -1 (see “String Modification Func-
tions” on page 1246).

This example uses the arraysize(function to display the number of forms
in the current database. (The dbinfo("forms,"") function creates an array
listing all the forms in the current database, separated by carriage
returns.)

message "This database contains "+
 str(arraysize(dbinfo("forms",""),¶))+" forms"

arraystrip(text,sep) Page 5056

This function removes any blank elements from a text array. Text is the
text array that you want to strip the blank elements from. Sep is the sepa-
rator character for this array. This should be a single character. For car-
riage return delimited arrays, use the ¶ character (see “Special
Characters” on page 1225). For tab delimited arrays use the ¬ character.
This function returns a copy of the original text array, with any blank
array elements removed from the array.

lineitemarray(field,separator) Page 5465

This function converts the data in a set of line item fields into a text array
(see “Text Arrays” on page 1257). Field is the line item field that contains
the data. You should put the line item field name in quotes, and it should
end with the Ω symbol (see “Special Characters” on page 1225). Separator
is the separator character for this array. This should be a single character.

This function returns a copy of the line item data packed into an array. If
the line items contain numbers or dates they are converted to text before
being added to the array.

Function Reference
Page Description

Page 1262 Panorama Handbook
HTML Tag Parsing Functions

Panorama has several functions for working with text that contains data delimited by tags. These functions
are not actually specific to HTML, and you may find other uses for them.

These functions treat a tag as three components: header, body and trailer. In this example the tag header is <,
the tag trailer is >, and the tag body is IMG SRC="happy.gif".

The tag header and trailer may be more than one character long. Here is the same tag but with only the pic-
ture name as the body. In this example the tag header is , and the tag body is
happy.gif.

The tag functions don’t care about upper or lower case, so this tag will work fine if it is .

Here are descriptions of all of the tag parsing functions.

Function Reference
Page Description

tagarray(text,header,trailer,sep) Page 5827

This function builds an array containing the body of all the tags in the
text. The header is the character or sequence of characters that appears at
the start of each tag. To extract all HTML tags the header would be <. To
extract all image tags the header would be <img or <IMG (either upper or
lower case will work). The trailer is the character or sequence of charac-
ters that appears at the end of each tag. To extract all HTML tags the
trailer would be >. Each element in the array is separated from the next
with the sep character. This character is often a carriage return (¶) or
comma, see “Text Arrays” on page 1257.

This example displays a list of all HTML tags in the variable Page. The list
will be separated by commas, for example H1,/H1,B,/B,IMG SRC="my
picture.jpeg".

message tagarray(Page,"<",">",",")

This example lists all of the pictures in the variable Page.

message tagarray(Page,"",¶)

This will list each image on a separate line, like this:

src="happy.gif"
src="rocket.jpeg"
SRC="My Picture.jpeg"
src="logo.gif"

tagcount(text,header,trailer) Page 5829

This function returns the number of tags in the text. The header is the
character or sequence of characters that appears at the start of each tag.
To count all HTML tags the header would be <. To count all image tags
the header would be <img or <IMG (either upper or lower case will
work). The trailer is the character or sequence of characters that appears
at the end of each tag. To count all HTML tags the trailer would be >.
Here is an example that uses this function to count the number of links in
an HTML document.

message "This page contains "+
 str(tagcount(Page,"<A HREF",">"))+" links."

Chapter 23:Formulas Page 1263
tagdata(text,header,trailer,number) Page 5830

This function returns the body of the specified tag. The header is the char-
acter or sequence of characters that appears at the start of each tag. To
extract an HTML tag the header would be <. To extract an image tags the
header would be <img or <IMG (either upper or lower case will work).
The trailer is the character or sequence of characters that appears at the
end of each tag. To extract an HTML tag the trailer would be >. The
number parameter specifies which tag you want: 1, 2, 3, etc. for the first,
second, third tag etc.

tagstart(text,header,trailer,number) Page 5837 These functions return the starting and ending position of the body of a
tag within a text. The header is the character or sequence of characters
that appears at the start of each tag. The trailer is the character or
sequence of characters that appears at the end of each tag. The number
parameter specifies which tag you want: 1, 2, 3, etc. for the first, second
third tag etc. This example displays 20 characters or so around the first
image tag.

message Page[tagstart(Page,"<IMG",">",1)-20,
tagend(Page,"<IMG",">",1)+20]

If the requested tag does not exist, the tagstart(and tagend(function will
return 0.

tagend(text,header,trailer,number) Page 5831

tagnumber(text,header,trailer,pos) Page 5832

This function checks to see if position is in a tag within text, and if so,
returns the number of that tag within the document (1, 2, 3). If the posi-
tion is not inside of a tag the function will return zero. The header is the
character or sequence of characters that appears at the start of each tag.
The trailer is the character or sequence of characters that appears at the
end of each tag.

Function Reference
Page Description

Page 1264 Panorama Handbook
Tag Parameter Functions

Many HTML tags contain parameters. For example, this tag has three parameters, src, align and border.

Panorama has built in functions that can help you extract a series of parameters like this. Although these
functions were designed with parsing HTML tags in mind you may find other uses for them as well.

Function Reference
Page Description

tagparameter(text,name,num) Page 5834

This function returns the value of a specified parameter in the tag. Text is
the list of parameters. If you are parsing HTML this should be the body of
the tag. Name is the name of the parameter you want to extract, including
any trailing punctuation (= for HTML tags). Either upper or lower case is
ok. For example to extract the name of the image itself from an image tag
(see example above) the name would be src= or SRC=. To extract the
alignment the name would be align= or ALIGN=. The num is in case
there is more than one parameter with the specified name, it tells Pan-
orama which one to extract (1, 2, 3, etc.)

If the parameter value is quoted (for example src="my logo.jpg" Pan-
orama will remove the quotes as it extracts the value. If the parameter
value is not quoted it will extract up to the first non-alphanumeric value.

For example, this formula will return the image file name of the first IMG
tag in a field named HTML.

tagparameter(tag(HTML,"<img",">",1),"src=",1)

If the first image tag in this text is <IMG SRC="mylogo.gif" align=left bor-
der=0> this function will return mylogo.gif.

tagparameterarray(text,name,sep) Page 5835

This function returns an array of the specified parameters in a tag. This is
useful if the same parameter may occur multiple times within the tag.
Text is the list of parameters. If you are parsing HTML this should be the
body of the tag. Name is the name of the parameter you want to extract,
including any trailing punctuation (= for HTML tags). Either upper or
lower case is ok. For example to extract the name of the image itself from
an image tag (see example above) you the name would be src= or SRC=.
To extract the alignment the name would be align= or ALIGN=. Sep is the
separator character that will be placed in between each value in the out-
put array (see “Text Arrays” on page 1257).

To illustrate this function, suppose that you have a field named HTML
that somewhere within it contains text that looks like this:

<MERGE field="Name" field="Address" field="City"
field="State">

Using this formula we can extract an array of all the field names.

tagparameterarray(tag(HTML,"<merge",">","field=",";")

With the sample data listed above this formula will return the value
Name;Address;City;State.

Chapter 23:Formulas Page 1265
HTML/URL Conversion Functions

The HTML and URL standards used on the Internet do not use standard ASCII text. Panorama includes con-
version functions for converting between standard ASCII and HTML and URL’s. These functions are very
convenient for generating HTML from a database, for example in CGI code for a web server.

Function Reference
Page Description

htmlencode(text) Page 5343

This function converts from standard ASCII to HTML. Wherever possi-
ble, special characters are converted to their HTML equivalents (for
example © is converted to ©, & is converted to &. Special char-
acters that do not have HTML equivalents are removed. (However, the
smart quote characters, “,”, ‘ and ’ are converted to regular quote charac-
ters " and '.)

To allow you to convert HTML text that contains tags, the htmlencode(
function does not convert the < and > characters. If you want to convert
these characters into their HTML equivalents use this formula:

replacemultiple(
 htmlencode(text),
 "<.>",
 "<.>",
 ".")

htmldecode(text) Page 5340
This function converts from HTML to standard ASCII, the exact opposite
of the htmlencode(function. HTML characters like © and &
are converted into the normal ASCII characters © and &.

urlencode(text) Page 5881 The urlencode(function converts standard ASCII to URL format. For
example, the text My URL would be converted to My%20URL.

urldecode(text) Page 5880 The urldecode(function converts a URL to standard ASCII format. For
example the text My%20URL would be converted to My URL.

Page 1266 Panorama Handbook
Date Arithmetic

Formulas can perform several useful calculations on dates. For example, you can calculate the number of
days between two dates, or you can add or subtract a certain number of days to a date. You can also convert a
date to text using a wide variety of formats.

Usually we think of a date in terms of years, months, and days. Formulas, however, treat dates as a certain
number of days—specifically, the number of days between that date and January 1, 4713 B.C., adjusted for
the Gregorian calendar correction in October 1582. (The date 4713 B.C. is chosen for obscure astronomical rea-
sons). For example, to a formula the date August 7, 1991 is day number 2,448,476.

Fortunately you should never have to worry about numbers like 2,448,476. The formula will automatically
convert a date field into the number of days, perform the calculation, and then convert back into a regular
date again.

Since formulas handle dates as numbers, you can use any numeric operator or function to manipulate dates.
However it doesn’t make much sense to take the square root of a date (although Panorama will let you).
There are really only two numeric operations that make sense on dates—subtracting two dates to find the
number of days in between and adding or subtracting a number of days to a date.

To calculate the number of days between two dates, just subtract one from the other. For example, the for-
mula

«Ship Date»-«Order Date»

will calculate the number of days required to process an order.

To calculate an offset from a given date, just add the number to the date. For example the formula

«Ship Date»+30

calculates the normal due date 30 days after the ship date.

Today’s Date

The today() function (reference page 5859) returns the number corresponding to today’s date, allowing you
to use today’s date in a formula. For example, to calculate the age of an invoice use a formula like this.

today()-«Ship Date»

To calculate the due date for a library book, use the formula like this.

today()+14

This formula assumes that books are checked out for two weeks.

Chapter 23:Formulas Page 1267
Converting Between Dates and Text

These functions allow you to convert a date into text, or text into a date. You should only use these functions
if you want to store the result of a date calculation in a text field instead of a date field, or if you want to
access a date that has been stored as text.

Note: Remember, formulas handle dates as numbers, so these functions actually convert numbers into text
and vice versa. It’s up to you to make sure that these numbers actually represent the correct dates.

Function Reference
Page Description

date(text) Page 5143

This function converts a text string in a date format into the number rep-
resenting that date. Use this function to include a constant date in your
formula, for example date("12/9/1979"). You should also use this func-
tion to access dates that have been stored in text fields (but why are you
doing that in the first place?).

Several formats are supported, including mm/dd/yy, mm/dd/yyyy,
Month dd, yyyy, and Mon dd, yyyy. Dates in the current week can be rep-
resented by the name of the day, for instance Tuesday or Fri. Dates in the
previous or upcoming week can be represented by adding the words last
or next, for example last friday or next wed.

datepattern(number,pattern) Page 5145

This function converts a number representing a date into a formatted text
string. The pattern parameter is an output pattern telling the function
how to format the date. For more information on date output patterns,
see “Date Output Patterns” on page 361.

Use the datepattern(function to store a date in a text field, or to display a
formatted date in an auto-wrap text object or Text Display SuperObject.
For example, the formula:

datepattern(«Ship Date»,"Month ddnth, yyyy")

can be used to display the date an order was shipped in the format May
12th, 2003.

exportcell(field) Page 5206

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

Page 1268 Panorama Handbook
Date Functions

These functions perform various calculations and conversions on date values. Unless specified otherwise the
date is always processed as a numeric value (see “Date Arithmetic” on page 1266).

Function Reference
Page Description

dayofweek(date) Page 5146

This function computes the day of the week (0-6) of a date, with Sunday
being 0, Monday 1, etc. The function returns a number from 0 to 6. The
days of the week are:

0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

The procedure below uses the dayofweek(function to select all weekday
records (monday through friday).

 select dayofweek(Date) ≥1 and dayofweek(Date) ≤5

month1st(date) Page 5529

This function computes the first day of a month. For example, if the date
passed to this function is October 18, 1997, this function will return the
date October 1, 1997. The date is returned as a number.

The example procedure below uses this function to select the orders
placed this month, then displays the count.

select OrderDate ≥month1st(today()) and
 OrderDate<month1st(today())+monthlength(today())
message str(info("records"))+" orders this month"

monthlength(date) Page 5530

This function computes the length (number of days) of a month. For
example, if the date passed to this function is October 18, 1997, this func-
tion will return 31, the number of days in October. This function knows
about leap years and adjusts the length of February accordingly.

The example procedure below uses this function to select the orders
placed this month, then displays the count.

select OrderDate ≥month1st(today()) and
 OrderDate<month1st(today())+monthlength(today())
message str(info("records"))+" orders this month"

monthmath(date,offset) Page 5531

This function takes a date and computes another date that is one or
months before or after the original date. Date is a number representing
the original date. Offset is the number of months that you want to add or
subtract to the original date. Use a positive number to move forward in
time, a negative number to go backwards. For example, if you offset the
date May 12, 1997 by 2 (two months forward) the result is July 12, 1997. If
you offset the same original date by -2 (two months backward) the result
is March 12, 1997.

If the new date does not exist because a month does not have enough
days in it, the monthmath(function will pick the last day of the month.
For example, if you offset March 31 by 1 month the result is April 30. If
the new month lands in February the function knows about leap years
and adjusts accordingly.

This example calculates a renewal date exactly one year from today.

 monthmath(today(),12)

Chapter 23:Formulas Page 1269
quarter1st(date) Page 5620
This function computes the first day of a quarter. For example, if the date
passed to this function is August 18, 1997, this function will return the
date July 1, 1997. The date is returned as a number.

today() Page 5859 This function returns today’s date (assuming, of course, that your com-
puter clock has been set correctly).

week1st(date) Page 5887

This function computes the first day of a week (Sunday). For example, if
the date passed to this function is July 12, 1995 (a Wednesday), this func-
tion will return the date July 9, 1997 (a Sunday). The date is returned as a
number.

year1st(date) Page 5909

This function computes the first day of a year. For example, if the date
passed to this function is July 12, 1995, this function will return the date
January 1, 1995. The date is returned as a number.

The example below calculates the number of days remaining in the cur-
rent year.

yearfirst(year1st(today())+366)-today()

Function Reference
Page Description

Page 1270 Panorama Handbook
Calendar Functions

The functions described in this section facilitate the creation of monthly calendars like this.

See “Building a Calendar” on page 975 for step-by-step instructions on building a calendar like this.

Function Reference
Page Description

calendarday(date,boxnumber) Page 5081

This function is designed to help in creating monthly calendars. A stan-
dard monthly calendar has 6 rows and 7 columns (Sunday through Satur-
day) for a total of 42 boxes. For any given month from 28 to 31 of these
boxes will be valid dates. The calendarday(function calculates what
number from 1 to 31 (if any) should be displayed in one of these 42 boxes.

This function has two parameters: date and boxnumber. Date is any date
in the month being displayed. Boxnumber is the box within the monthly
calendar being displayed. The boxes are numbered from 1 to 42, starting
with the upper left hand corner. The table below shows the position of all
42 monthly calendar boxes.

 S M T W T F S

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31 32 33 34 35
 36 37 38 39 40 41 42

This function returns a number from 1 to 31, or zero if the specified calen-
dar box does not contain a day in this month.

use calendarday(function to determine number for each box

use calendardate(function
to determine date value
for each box

Chapter 23:Formulas Page 1271
calendardate(date,boxnumber) Page 5079

This function is designed to help in creating monthly calendars. A stan-
dard monthly calendar has 6 rows and 7 columns (Sunday through Satur-
day) for a total of 42 boxes. For any given month from 28 to 31 of these
boxes will be valid dates. The calendarday(function calculates what date
corresponds to one of these 42 boxes.

 This function has two parameters: date and boxnumber. Date is any date
in the month being displayed. Boxnumber is the box within the monthly
calendar being displayed. The boxes are numbered from 1 to 42, starting
with the upper left hand corner. The table below shows the position of all
42 monthly calendar boxes.

 S M T W T F S

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31 32 33 34 35
 36 37 38 39 40 41 42

This function returns a date value (a number), or zero if the specified cal-
endar box does not contain a day in this month.

The output of the calendardate(function is usually fed into a lookupall(,
lookupcalendar(, or lookuprtime(function. The last two functions can be
used to lookup the events (appointments, to-do’s, etc.) that occur on a
particular day.

lookupcalendar(

file,

reminderField,

date,

dataField,

separator)

Page 5501

This function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the date.
Each item in the text array contains the value extracted from the
dataField for that record.

This function has five parameters: file, reminderField, date, dataField and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename") .
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 1277). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. DataField is the name of the
field that you want to retrieve data from. For example if you want to
retrieve appointment information, this should be the name of the field
that contains that information. This must be a field in the database speci-
fied by the first parameter. Separator is the separator character for the text
array you are building (see “Text Arrays” on page 1257).

The function returns a text array from all the records in the specified data-
base where the reminderField and date match. This example returns a list
of today’s reminders.

lookupcalendar("Reminders",When,today(),Message,¶)

Function Reference
Page Description

Page 1272 Panorama Handbook
lookuprtime(

file,

reminderField,

date,

pattern,

separator)

Page 5506

This function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the
date. Each item in the text array contains the time of the corresponding
reminder.

This function has five parameters: file, reminderField, date, pattern and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename") .
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 1277). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. Pattern is the pattern you
want to use to format the time. See the timepattern(function for details
(reference page 5858). Separator is the separator character for the text
array you are building (see “Text Arrays” on page 1257).

The function returns a text array from all the records where the reminder-
Field and date match. The text array contains the times for the reminders
that match.

lookuprtypes(

file,

reminderField,

date,

pattern,

separator)

Page 5508

The lookuprtypes(function builds a text array containing one item for
every record in the target database where the date in the reminderField
matches the date. Each item in the text array contains the type of the cor-
responding reminder, either "a" (appointment) or "t" (to-do).

 This function has five parameters: file, reminderField, date, pattern and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename") .
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 1277). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. Pattern is not used, and
should be "". Separator is the separator character for the text array you are
building (see “Text Arrays” on page 1257).

The function returns a text array from all the records where the reminder-
Field and date match. Each element of the text array contains either "a"
or "t" for the reminders that match.

Function Reference
Page Description

Chapter 23:Formulas Page 1273
Time Arithmetic

To Panorama, time is not hours, minutes, and seconds, but simply seconds. To be precise, a time is the num-
ber of seconds since midnight. For example, the time 4:32 AM is 16,320 seconds after midnight. As you can
see, a Panorama time is really a number in disguise. Since times are numbers, it’s easy to compare them, sort
them, or find the difference between them (number of seconds).

Converting Between Times and Text

Unlike dates, Panorama does not automatically provide a time data type that automatically converts a date in
text format into a number. You must use a function to convert time in text format into seconds before you can
do math calculations with the time, and use another function to convert back.

Function Reference
Page Description

now() Page 5545 This function returns the current time (number of seconds since mid-
night). Of course the clock on your computer must be set correctly!

seconds(text) Page 5706

This function converts text into a number representing a time. The func-
tion has one parameter — the text that you want to convert to a number
representing a time. If the text includes and AM or PM suffix, the number
of seconds is calculated from midnight (12 A.M.), otherwise it is calcu-
lated from 0:00:00 (elapsed time). The text must contain a valid time. Here
are some examples of valid times:

4:13 PM
11:00 AM
2:30
18:45

This function returns a number representing the time. The number is the
number of seconds since midnight. For example, if the time is 10:23 AM
this function will return the number 37,380.

timepattern(number,pattern) Page 5858

This function converts a number representing a time into text. The func-
tion uses a pattern to control how the date is formatted.

The function has two parameters: number and pattern. Number is the
number that you want to convert to text. This number must be the num-
ber of seconds since midnight. Pattern is text that contains a pattern for
formatting the date. The pattern is assembled from four components: hh
(hours), mm (minutes) ss (seconds), and am/pm. Some of the more com-
mon time patterns are listed here:

Pattern Converted Text
"hh:mm:ss am/pm" 4:32:17 pm
"hh:mm am/pm" 4:32 pm
"hh:mm:ss" 16:32:17

 If am/pm is left off the pattern the time will be formatted in 24 hour for-
mat, as shown on the last line of the table above. You should also leave off
am/pm for converting elapsed times.

Page 1274 Panorama Handbook
Time Calculations

Once time has been converted into seconds you can perform arithmetic on it. For example, to calculate the
number of hours worked from a time card use a formula like this (this formula assumes that In and Out are
text fields containing times).

(seconds(Out)-seconds(In))/3600

(The division by 3600 converts the result into hours.)

To find out when a task will be finished that takes 2 1⁄2 hours to complete, use the formula

seconds(«Start Time»)+seconds("2:30")

time(text) Page 5852

This function converts text into a number representing a time. The func-
tion has one parameter — the text that you want to convert to a number
representing a time. The time function allows you to leave out the colons
in the time, and also allows you to leave off the am/pm. Here are some
examples of valid times:

4:13 PM
11:00 AM
2:30
18:45
230
4p
midnight
noon
afternoon
evening
night
nite

The time(function is very lenient about the format you use to enter the
time. It will accept a time without colons, for example 425 pm instead of
4:25 pm. If there is no am or pm the time function will try to make an
intelligent guess. For example, 230 is almost certainly 2:30 pm, not 2:30
am. By default, the time(function assumes that any time from 6:00 to
11:59 is AM, and any time from 12:00 to 5:59 is PM, but you can change
these assumptions with the timedefaults statement (reference page 5855).

The time(function will also convert “named” times: noon, midnight,
morning, afternoon, evening, and night. This function assumes that
morning is 9:00 am, afternoon is 1:00 pm, evening is 6:00 pm, and night is
10:00 pm. These assumptions can be changed with the timedefaults state-
ment (reference page 5855).

Function Reference
Page Description

Chapter 23:Formulas Page 1275
Simple addition and subtraction does not compensate for time wrapping around midnight. For example, if
you want to calculate the length of a shift that begins at 11 P.M. and ends at 7 A.M., you must add 24 hours to
7AM before subtracting the times. To solve this problem you can use one of the functions described below, or
you can use a SuperDate, which combines time and date into a single number (see “SuperDates (combined
date and time)” on page 1276).

Function Reference
Page Description

time24(time) Page 5854

This function takes a time and makes sure it falls within a 24 hour period.
If the time is less than 24 hours, it is unchanged. If the time is greater than
24 hours, it is converted to the equivalent time in a 24 hour period (for
example 30:00:00 is converted to 6:00:00).

The time24(function can help with calculations of an ending time from a
start time and duration. The basic formula for such a calculation is shown
here.

EndTime=StartTime+Duration

This formula works fine unless the interval extends over midnight. The
time24(function adjusts the result to make sure it starts over at zero as it
crosses midnight.

EndTime=time24(StartTime+Duration)

This formula will correctly calculate that 10:30 PM + 4 hours is 2:30 AM.

timedifference(start,end) Page 5856

This function calculates the difference between two times. It works cor-
rectly even if the interval between the two times crosses over midnight.
This function returns a time interval between -12 and +12 hours. See also
the timeinterval(function, which returns a time interval between 0 and 24
hours.

There are two parameters, start and end. Start is a number (number of
seconds) representing the starting point of the time interval. End is a
number (number of seconds) representing the ending point of the time
interval. This function returns the number of seconds between the two
times. For example, if the start time is 9:30 PM and the end time is 2:05
AM, the difference would be 4:35. But if the parameters are reversed and
the start is 2:05 AM and the end is 9:30 PM, the difference is -4:35. If the
result is positive, the end is after the start. But if the result is negative, the
start is after the end.

timeinterval(start,end) Page 5857

This function calculates the time interval between two times. It works
correctly even if the interval between the two times crosses over mid-
night. This function returns a time interval between 0 and 24 hours. See
also the timedifference(function, which returns a time interval between -
12 and +12 hours.

There are two parameters, start and end. Start is a number (number of
seconds) representing the starting point of the time interval. End is a
number (number of seconds) representing the ending point of the time
interval. This function returns the number of seconds between the two
times. For example, if the start tine is 9:30 PM and the end time is 2:05
AM, the interval would be 4:35. But if the parameters are reversed and
the start time is 2:05 AM and the end time is 9:30 PM, the interval is 19:25.

Page 1276 Panorama Handbook
Calculating Time Intervals Smaller Than One Second

The info("tickcount") function can be used to calculate time intervals down to 1/60th of a second
(0.0165 second). This function returns the number of 1/60th second intervals since the computer was turned
on. Here is an example that uses this function to delay for 1/4 second.

local beginDelay
beginDelay=info("tickcount")
loop

nop
while info("tickcount")<beginDelay+15

This loop will delay for 1/4 second (plus or minus 1/60th second) on any computer, no matter what the pro-
cessor speed.

SuperDates (combined date and time)

SuperDates combine the date and time into a single number…the number of seconds since January 1, 1904.
SuperDates make it easy to calculate time intervals across multiple days. However, SuperDates take up more
storage than regular dates, and are not as easy to work with. In addition, SuperDates are limited to dates
between 1904 and 2040.

Panorama has three functions for working with SuperDates.

Function Reference
Page Description

superdate(date,time) Page 5819

This function converts a regular date and a regular time into a superdate.
The date parameter is a regular Panorama date (see “Converting Between
Dates and Text” on page 1267). This date must be between 1904 and 2040
A.D. The time parameter is the number of seconds since midnight, usu-
ally computed with the seconds(or time(functions (see “Converting
Between Times and Text” on page 1273). The result is a single value that
combines both the date and time into a single number that can be used
for multi-day calculations.

regulardate(number) Page 5640

This function extracts a regular date (number of days from January 1,
4713 B.C.) from a superdate. You can then format this date with the date-
pattern(function (see “Converting Between Dates and Text” on
page 1267), as is shown in this example (which assumes that the field or
variable Arrival contains a SuperDate value).

datepattern(regulardate(Arrival),"Month dd, yyyy")

regulartime(number) Page 5641

This function extracts a regular Panorama time (seconds since midnight)
from a SuperDate. You can then format this date with the timepattern(
function (see “Converting Between Times and Text” on page 1273), as is
shown in this example (which assumes that the field or variable Arrival
contains a SuperDate value).

timepattern(regulartime(Arrival),"hh:mm am/pm")

Chapter 23:Formulas Page 1277
Reminders

A reminder is a special data type that holds scheduling information. Reminders are usually used in calendar
database applications. A reminder is a raw binary data item 30 bytes long (stored in a text field or variable)
and contains the following information:

• The reminder type (either appointment or to-do)

• The reminder date, or recurring date information (july 12, every tuesday, etc.)

• The reminder time (3:30pm, 7:20am, etc.)

• Alarm status

• Completion status (to-do only)

• Priority (to-do only)

Notice that the reminder only contains scheduling information. It does not contain any message or other
information about the event. If there is a message associated with a reminder (for example, Lunch with Bob)
it should be stored in a separate field or variable.

Although reminders can be kept in a variable, they are usually kept in a database field. Here’s what reminder
data looks like in the data sheet.

As you can see, reminders don’t look like much in the data sheet. They are usually displayed in a form using
the remindercaption(function (see “Reminder Functions” on page 1280).

Reminders can also be displayed in a monthly calendar format. See “Building a Calendar” on page 975 for
step by step instructions on setting up this format using a Super Matrix object.

reminders

Page 1278 Panorama Handbook
Appointments vs. To-Do’s

There are two different types of reminders: Appointments and To-do’s. Appointment reminders are used for
anything that has a definite, fixed, time: appointments, birthdays, meetings, etc. Once the time has passed the
appointment is no longer relevant. For example, it won’t do much good to be reminded that your spouse‘s
birthday was yesterday!

To-do reminders have a completion status as well as a time and date. For example, suppose you set up a to-
do reminder to order parts on Monday. If you don’t get around to it, you’ll still want it on your to-do list on
Tuesday, and again on Wednesday etc. until you actually do order the parts. To-do reminders remain active
until the task is completed (or at least it is marked as completed!)

Creating and Modifying a Reminder

Although reminders can be in a variable, they are usually kept in a database field. For the following example,
we are going to assume that we have a database that contains fields named Reminder and Message. Both of
these must be text fields.

To create a new reminder, you’ll need to add a new record to the database, then use the buildreminder
statement to allow the user to edit the reminder (see “BUILDREMINDER” on page 5075). Here’s a procedure
to do that (see “Writing a Procedure from Scratch” on page 1357).

addrecord
buildreminder today(),now(),0,Reminder
reminder Reminder,Message

The buildreminder statement creates a new reminder. This statement has four parameters:

buildreminder date , time , type , field

The first parameter, date, is the date for this reminder. Since usually you are going to have the user edit the
reminder right away, this is just a default date to get them started. In the example above we used today’s
date.

The second parameter, time, is the time for this reminder. Again, this is usually just a default until the user
edits the time. In the example above we used the current time.

The third parameter, type, specifies whether this is an appointment (0) or a to-do reminder (1).

The fourth parameter, field, specifies what field the new reminder should be placed into.

Another way to create a new reminder is with the reminder(function (see “REMINDER(” on page 5645).
This is similar to the buildreminder statement, but with an important difference. The function has three
parameters:

reminder(date , time , type)

The first parameter specifies the date for the new reminder. However, do not use the date data type here. This
function wants to see text that describes the date, for example "2/7/96", "july 3", or "last tuesday".

The second parameter specifies the time for the new reminder. However, do not use a number here. This
function wants to see text that describes the time, for example "5:20 pm".

The third parameter specifies whether this new reminder should be an appointment ("a") or a to-do reminder
("t").

Here is our example rewritten to use the reminder(function:

addrecord
Reminder=reminder("today","12:00 pm","a")
reminder Reminder,Message

Chapter 23:Formulas Page 1279
The reminder statement is used to edit reminders. This statement displays a dialog that allows the user to
set up all the reminder information: date, time, message, alarm status, etc. The reminder statement has two
parameters: the field containing the reminder, and the field containing the message.

Any time the user wants to edit a reminder the reminder statement should be used. You may want to set up a
procedure that gets triggered whenever the user double clicks on the reminder display. This procedure only
needs a single line:

reminder Reminder,Message

The reminder dialog has a subdialog for setting up repeating reminders.

Using this subdialog you can set up reminders that repeat every day, every week, every month, every quarter
or once per year.

Page 1280 Panorama Handbook
Reminder Functions

The functions listed below can build and work with reminders.

Function Reference
Page Description

reminder(date,time,type) Page 5642

This function builds a new reminder. There are three parameters: date,
time and type. Date is the date for the new reminder (the function cannot
create recurring reminders). However, you should not use a number here
as you do with most date functions. You should use text that describes
the date, for example "5/25/03" or "next tuesday". Time is the time for the
new reminder. However, you should not use a number here as you do
with most time functions. You should use text that describes the time, for
example "5:22 pm".Type is the type of the new reminder: "a" for appoint-
ments or "t" for to-do’s.

This example adds a new reminder next tuesday at 2pm. The procedure
stores this reminder in a field called Schedule:

addrecord
Schedule=reminder("next tue","2:00 pm","a")

Another way to build a reminder is with the buildreminder statement,
see reference page 5075. You can also edit a reminder with a user friendly
dialog using the reminder statement (reference page 5642). This dialog
allows you to set up recurring reminders (every tuesday, 15th of each
month, etc.) and to configure alarms.

remindercaption(reminder) Page 5646

This function extracts the date from a reminder as formatted text that
describes when the reminder will occur. The table below shows typical
examples of how different reminder frequencies will be formatted by this
function:

Once only reminder: Tuesday, May 16th, 2004
Annual reminder: August 8th of each year
Quarterly reminder: First day of each quarter
Monthly reminder: 5th day of each month
 Last day of each month
 2nd Wed of each month
Weekly reminder: Tue of each week
Daily reminder: Every day

The formula below displays the reminder date in a field called Schedule.
This formula could be used in an auto-wrap text object or a Text Display
SuperObject™.

remindercaption(Schedule)

remindercompare(reminder,date) Page 5647

This function checks to see if a reminder occurs on a specified date.
Reminder is the reminder you want to compare. Date is the date you
want to compare with the reminder. This function returns either true or
false. It will return true if the reminder will occurs on the specified date,
including a repeating reminder that falls on that date.

The example procedure below uses this function to select all reminders
that will occur on next tuesday.

select remindercompare(Schedule,date("next tue"))

Chapter 23:Formulas Page 1281
Alarms

If you have the optional Team Alarm extension installed (Mac OS only), you can be notified of your remind-
ers even when Panorama is not currently running. To do this, the Team Alarm extension keeps a separate pri-
vate list of pending alarms. This list is in a special format that cannot be accessed by Panorama. However, this
extra alarms database is updated automatically when a reminder is updated with the reminder statement
(see “REMINDER” on page 5642). However, if you modify a reminder yourself without using the reminder
statement, you’ll need to make sure the Team Alarm list is also updated. There are three statements for doing
this: alarmedit (see “ALARMEDIT” on page 5020), alarmdelete (see “ALARMDELETE” on page 5019),
and alarmreset (see “ALARMRESET” on page 5021).

reminderdate(reminder) Page 5648

This function extracts the date from a reminder. If a reminder repeats, the
function will try to come up with the most appropriate single date. The
table below shows how different reminder frequencies will be handled by
this function:

Once only reminder: Actual date
Annual reminder: Next occurence of this reminder
Quarterly reminder: 0
Monthly reminder: 0
Weekly reminder: 0
Daily reminder: 0

reminderpriority(reminder) Page 5649
This function extracts the priority of a to-do reminder (completed/not
completed) from a reminder. The function returns a number from 0 to 3: 0
for the lowest priority to 3 for the highest priority.

remindertime(reminder) Page 5650
This function extracts the time (number of seconds since midnight) from
a reminder. The result of this function can be used with functions like
timepattern((see “Converting Between Times and Text” on page 1273).

remindertodo(reminder) Page 5651

This function extracts the status of a to-do reminder (completed/not
completed) from a reminder. The function returns a number: 0 if the to-do
has not been completed (or the reminder is an appointment type), or 1 if
the to-do has been completed.

remindertype(reminder) Page 5652
This function extracts the type (to-do or appointment) from a reminder.
This function returns a number: 0 if the reminder is an appointment type,
or 1 if it is a to-do.

Function Reference
Page Description

Page 1282 Panorama Handbook
True/False Formulas

In Panorama as in most programming languages, control flow decisions are made on the basis of formulas
that are either true or false. The most basic true/false formula compares two values to see if they are equal.

PaymentMethod="C.O.D."

This formula will compare the value in the field PaymentMethod with C.O.D. The result will be true if Pay-
mentMethod is C.O.D., and false if it contains anything else (for example Check, Cash, Visa, etc.).

Comparison Operators

Panorama has about a dozen different operators that can compare two values and produce a true false result.
You can type these operators in yourself (see “Special Characters” on page 1225), or you can use the Operator
sub-menu in the Function menu to type in the symbols for you. The table below lists the universal compari-
son operators. These comparison operators will work with any type of data: text, numeric, or date.

All of the above operators require that A and B be the same data type. In other words, you cannot directly
compare numbers to text, or text to dates. If A and B are different types you must convert them to the same
type before comparing them, using the str(, val(, pattern(, date(or datepattern(functions. See “Converting
Between Numbers and Strings” on page 1249 and “Converting Between Dates and Text” on page 1267 for
more information on these functions.

Panorama also has a number of specialized comparison operators that work only with the text data type.

Each of these operators deserves a more complete explanation, so here they are.

Operator Example True/False Meaning Notes

= A=B is A equal to B?

≠ A≠B is A not equal to B? Not available on PC

<> A<>B is A not equal to B?

> A>B is A greater than B?

≥ A≥B is A greater than or equal to B? Not available on PC

>= A>=B is A greater than or equal to B?

< A<B is A less than B?

≤ A≤B is A less than or equal to B? Not available on PC

<= A<=B is A less than or equal to B?

Operator Example True/False Meaning

beginswith A beginswith B does A begins with B?

endswith A endswith B does A end with B?

contains A contains B does A contain B?

notcontains A notcontains B does A not contain B?

soundslike A soundslike B does A sound like B (phonetically)?

match A match B does A match the wildcard pattern in B
(disregarding upper/lower case)?

matchexact A matchexact B does A exactly match the wildcard pattern in B?

notmatch A notmatch B
does A not match the wildcard pattern in B

(disregarding upper/lower case)?

notmatchexact A notmatch B does A not exactly match the wildcard pattern in B?

Chapter 23:Formulas Page 1283
A beginswith B

This operator checks to see if the text in A begins with the characters in B. For example, the formula below
will determine if the Name begins with the letters Dr. .

Name beginswith "Dr."

This formula will be true if the name is Dr. Robert Johnson, and false if the name is Mark Reynolds.

Note: The beginswith operator does not worry about upper or lower case, so DR. ROBERT JOHNSON or dr.
robert johnson will also produce true results. If upper and lower case are important to you use the
matchexact operator.

A endswith B

This operator checks to see if the text in A ends with the characters in B. For example, the formula below will
determine if the Name ends with the letters D.D.S. .

Name endswith "D.D.S."

This formula will be true if the name is Ronald Nelson, D.D.S, and false if the name is Mark Reynolds.

Note: The endswith operator does not worry about upper or lower case, so ronald nelson, d.d.s. would also
produce a true result. If upper and lower case are important to you use the matchexact operator.

A contains B

This operator checks to see if the text in A contains the characters in B. For example, the formula below will
determine if the Address contains the letters box.

Address contains "box"

This formula will be true if the address is P.O. Box 5328, and false if the address is 6389 E. Wilson Blvd.

Note: The contains operator does not worry about upper or lower case, so P.O. BOX 5328 and p.o. box 5328
would also produce true results. If upper and lower case are important to you use the matchexact operator.

A notcontains B

This operator checks to see if the text in A does not contain the characters in B. This is the exact opposite of
the contains operator. For example, the formula below will determine if the Address contains the letters box.

Address notcontains "box"

This formula will be true if the address is 6389 E. Wilson Blvd, and false if the address is P.O. Box 5328.

Note: This same function could also be performed by combining the not operator with the contains operator
in the formula: not (Address contains "box") .

A soundslike B

This operator checks to see if the text in A “sounds like” the text in B. For example, the formula below will
determine if the LastName sounds like the name Smith.

LastName soundslike "Smith"

This formula will be true if the name is Smith, Smyth or Smythe, and false if the name is Jones or Williams.

The method Panorama uses to determine whether two values sound alike is called “soundex.” This tech-
nique is not very exact, and often will produce extra matches that you might not think really sound similar.
However, it almost never fails to match on names that do sound similar, so it is a good starting point when
you are not sure of an exact spelling.

The soundex technique does require that the first letter of the two values match. For example even though we
think they sound alike, Christy and Kristy will not match because the first letter is different.

Page 1284 Panorama Handbook
A match B

This operator checks to see if the text in A matches a pattern you specify in B. The pattern allows you to set
up very flexible “wildcard” matches where some characters must match and some don’t have to.

The pattern should combine normal characters, which must match the text in A, and wildcard characters: ?
and *. The ? wildcard character will match any character. The * wildcard character (asterisk) will match a
variable number of characters. The best way to understand wildcard matches is probably to look at a few
examples.

Our first example uses the pattern j*johnson. With this pattern the name must begin with j (or J) and end with
johnson (or Johnson, etc.) The characters in between don’t matter.

Name match "j*johnson"

This formula will produce a true result for names like Jim Johnson, Jack Johnson, Joe Johnson, etc. The for-
mula will also be true for names like J346 Ujohnson or J@#opcjohnson.

The second example uses the pattern 926??. With this pattern the zip code must begin with 926 and must be 5
digits long. (Our example assumes that ZipCode is a text field, not a numeric field.)

ZipCode match "926??"

This formula will produce a true result for zip codes like 92631 or 92685 but a false result for zip codes like
89324 or 92685-0301. Here’s a variation that will work with 5 or 9 digit zip codes. The ?? characters mean that
there must be at least five digits, while the * means that any extra characters are ok.

ZipCode match "926??*"

This formula will produce a true result for zip codes like 92631, 92685 or 92685-0301, but a false result for 926
or 9262.

Don’t forget that a space is a normal character. The example below checks for people with a middle initial.
The pattern looks for any number of characters followed by a space, followed by a single character, followed
by a period, followed by another space, followed by any number of characters.

Name match "* ?. *"

This formula will produce a true result for Robert E. Lee or Winston O. Link, but a false result for Frank Tesh,
Billy Martin, or Sara Jessica Parkman.

The match operator can be used to simulate the beginswith, endswith and contains operators. The table
below shows the equivalent match formulas for each of these operators.

Note: The match operator does not worry about upper or lower case. If upper and lower case are important
to you, use the matchexact operator.

These formulas… are the same as these.

A match B+"*" A beginswith B

A match "*"+B A endswith B

A match "*"+B+"*" A contains B

Chapter 23:Formulas Page 1285
A matchexact B

This operator checks to see if the text in A matches a pattern you specify in B. This operator works exactly the
same as the match operator, except that the normal characters must match exactly, including upper and lower
case. For example, the formula below

Name matchexact "J*Johnson"

will produce a true result for Jeff Johnson, but a false result for JEFF JOHNSON. (However, JEFF Johnson
would produce a true result.)

You can use the matchexact operator instead of beginswith, endswith, or contains if you need an exact upper
and lower case match.

A notmatch B

A notmatchexact B

These operators are the exact opposite of match and matchexact.

A like B

This operator checks to see if the text in A matches a pattern you specify in B. This operator is similar to the
matchexact operator, but it uses different wildcard characters: % and _ instead of * and ? Here are some
examples showing both formats:

Name matchexact "J*Johnson"
Name like "J%Johnson"

Zip matchexact "926??*"
Zip like "926__%"

The like operator is included for compatibility with SQL servers. The like operator can be used for selecting a
subset from a SQL master file, the match operator cannot.

Combining Comparisons

The basic comparisons described in the previous section can be combined together for more complicated
decisions. There are four basic operators that can combine or modify decisions: and, or, xor, and not.

A and B

The and operator combines two true/false formulas together so that the result is only true if both formulas
are true. The example procedure below determines if a person is a teenager.

if Age ≥13 and Age<20
Status="Teenager"

endif

The result of the formula is only true if the person is 13 or older and less than 20.

Operator Sample Description

and A and B true if both A and B are true

or A or B true if either A or B are true

xor A xor B true if A and B are different

not not A true if A is false

Page 1286 Panorama Handbook
A or B

The or operator combines two true/false formulas together so that the result is true if either one of the two
formulas are true. The example below determines if a transaction is being paid with a credit card.

if PaymentMethod="Visa" or PaymentMethod="MasterCard"
Terms="Credit Card"

endif

The result of the formula is only true if the payment method is Visa or MasterCard.

Notice that each side of the or operator must contain a complete formula. The formula below looks right in
English, but will not work in Panorama. The example below is WRONG:

if PaymentMethod="Visa" or "MasterCard" /* WILL NOT WORK !! */

There must be a comparison on both sides of the or, as shown in the first example.

A xor B

The xor (short for exclusive-or) operator is a bit tricky. Xor combines two true/false formulas together so that
the result is true if one of the two formulas is true, but false if both are true or both are false. Another way to
put it is that the result will be true if A and B are different, but false if they are the same. The example below
determines if two shoes are a pair.

if Shoe1="Left" xor Shoe2="Left"
message "These shoes are a pair"

endif

The result of the formula is only true if one shoe is Left and the other shoe is Right (or to be more precise, not
Left).

not A

The not operator reverses a true-false formula. If the result was true, now it will be false. If it was false, now it
will be true.

if (not (Shoe1="Left" xor Shoe2="Left"))
message "These shoes are not a pair!"

endif

Note: This example shows that if not is used as the very first operator in a formula in a procedure, you must
surround the entire formula with an extra pair of parentheses. If not is in the middle of the formula the extra
parentheses are not necessary. The parentheses are also not necessary if the formula is not in a procedure (in
the Design Sheet or a Formula Fill dialog, for example).

Equals Comparison vs. Assignment

If you have skipped ahead to read about procedures you know that the equals sign is used to assign a value
to a field or variable. The example formula we used earlier to compare two values:

PaymentMethod="C.O.D."

would also be the same formula used to assign the value C.O.D. to the field or variable PaymentMethod. At
first glance this may appear ambiguous…the same formula is used to compare two values and to assign a
value. How do we know when we are assigning and when we are comparing? The answer lies in the context
in which the formula is found.

Chapter 23:Formulas Page 1287
In a procedure, an assignment is always by itself, not part of a larger statement. A true-false formula is always
part of another statement, for example if , case , until , while , stoploopif , repeatloopif , find ,
select . Here’s an example that shows two formulas that look almost the same, but one is a true-false for-
mula and one is an assignment.

if PaymentMethod="C.O.D."
ShippingMethod="UPS"

endif

The first formula, PaymentMethod="C.O.D." , is part of the if statement. This formula means: Is the field
(or variable) PaymentMethod equal to C.O.D. (true/false)?

The second formula, ShippingMethod="UPS" , is not part of any statement, but stands alone, so this is an
assignment. The statement means: Take the value UPS and copy it into the field or variable named Shipping-
Method.

If an assignment has more than one equals sign, the first equals sign is for the assignment and the rest are for
comparisons. The example assignment below compares B and C. If they are equal (true) the value -1 will be
copied into A. If they are not equal (false) the value 0 will be copied into A.

A=B=C

In other words, A becomes the result of the comparison between B=C, or A = (B=C) .

True/False Values

For purposes of calculation, Panorama treats true and false as numbers: true is -1 and false is zero. Like any
other number, you can store a true/false value in a field or variable and then use it later. The example below
calculates whether a person is a teenager, then uses that information later.

local Teenager
Teenager=Age ≥13 and Age<20
...
if Teenager

Price=4.50
else

Price=6.00
endif

Notice that the if statement doesn’t need to compare, it simply uses the result of the comparison that was
calculated earlier. In fact, the if statement (and all other statements that use true/false logic) can use any for-
mula that produces a numeric integer result. The value 0 will be regarded as false, and any non-zero value
will be regarded as true. The example below will be true if the length of the name is non-zero.

if length(Name)
yesno "Is this a home address?"
...

endif

The first line of this example could also have been written if length(Name)›0 . The result is the same
either way.

The ? Function

The ?(function allows a formula to make a decision. Will it be door number 1 or door number 2? The function
uses a true-false value to pick from one of two values. The syntax for this function is like this.

?(decision-value,true-value,false-value)

The first parameter, decision-value, is used to pick which of the two choices will be returned as the final
value, the true-value or the false-value.

Page 1288 Panorama Handbook
For example, the formula below can be used to calculate a 10% discount if the quantity is 100 or more—

?(Qty<100 , Price , Price*0.9)

The decision is based on the comparison Qty<100 . If Qty is less than 100, the ? function picks the second
parameter, Price . But if the quantity is 100 or more, the ? function will pick the third parameter,
Price*0.9 , for a 10% discount.

If you need to pick from three or more choices you can nest several ? functions together. For example, this for-
mula shows how you can add a third discount level (20% for quantities of 500 or more)—

?(Qty<100 , Price , ?(Qty<500 , Price*0.9 , Price*0.8))

Although these examples have used numeric data, text can also be used for either the true-false logic or the
choices. The formula below, for example, could be used by a movie theater to check if a person is a child or an
adult.

?(Age ≤12 , "Child" , "Adult")

Note: The ? function always evaluates all three parameters you give it, even though it really uses only two of
the parameters. This means that you cannot use the ? function to avoid errors (for example divide by zero
errors) because the error will happen before the ? function decides which parameter to use (use the divzero(
function to avoid divide by zero problems).

Chapter 23:Formulas Page 1289
Linking With Another Database

Many database applications require multiple database files working together. For example, organizing a
company’s order entry operations usually requires an invoice file, an inventory/price list file, and possibly a
customer file. The primary method for accessing information in other databases is the lookup(function (and
other related functions). This function can search for and retrieve information from any open database. Need
to look up a price or a customer’s credit limit? Chances are the lookup(function is the tool for the job.

When you look up information manually (for example, looking up someone’s number in the phone book),
you are actually performing a multi-step process. You start with one piece of information—a person’s name,
for example. The first step is to locate the correct phone book. Once you’ve located the correct book, you must
search through it to find the name of the person you are looking for. When you find the name, the final step is
to copy down the person’s phone number.

Panorama’s lookup(function follows a similar process when it looks up data. For example, suppose you
want to find out the number of calories in an orange using the database shown here.

Here is the formula for looking up the number of calories in an orange. The parameters to the lookup contain
all the information necessary to locate the information.

The first parameter is called the lookup database. It tells Panorama what database to look in for the informa-
tion, in this case Groceries.

The second and third database tell Panorama how to search for the data you want. In this case Panorama is
being told to “search through the Fruit column until you find Orange.” The field to look in (in this case Fruit)
is called the lookup key field. The data to look for (in this case Orange) is called the lookup data value. By
the way, Panorama is very picky about the lookup data value. It must exactly match the value in the data-
base, or Panorama won’t find a match. In this case only Orange will work — not orange or ORANGE or even
oRaNGe!

At this point we come to a fork in the road. Perhaps Panorama found Orange in the database, perhaps not. If
it did the fourth parameter tells Panorama what to do next. This fourth parameter is called the lookup data
field, and it may be any field in the lookup database. In this case it is Calories, so Panorama will lookup the
value in the Calories field (70) and return it as the result of the function.

lookup database

lookup key field
lookup key value

lookup data field lookup default value

lookup summary level
(almost always zero)

Page 1290 Panorama Handbook
What if Panorama didn’t find Orange in the database? In that case Panorama simply returns the value of the
fifth parameter, the lookup default value. In this case the default value is 0. The default value should match
the data type of the lookup data field. Since Calories is a numeric field, the default is also numeric. If the
lookup data field had been a text field (for instance Serving Size) the default would need to be text (for exam-
ple "").

The sixth and final parameter to the lookup function is the lookup summary level. This is the minimum sum-
mary level to be searched within the lookup database. Usually the lookup summary level is zero so that the
entire lookup database will be searched. If the level is set to 1 through 7, only summary records will be
searched. This is useful if you want to look up summary information (see “3-Step Summarizing” on
page 453) while ignoring the raw data.

In this example the end result of the lookup is the value 70. The lookup(function is often used by itself, but a
more complicated formula can take this value and perform additional computations. If the result of the
lookup is a text value then all of the text functions described earlier in this chapter can be used to modify the
result.

The Lookup Wizard

Since the lookup(function is kind of picky about all of it’s parameters we’ve provided a “fill-in-the-blanks”
dialog to help build the function. To open this dialog simply pull down the Functions Menu and choose
lookup(…).

Chapter 23:Formulas Page 1291
Now the lookup wizard dialog appears.

To create the lookup function, start at the top of the dialog and work your way down. Start by selecting the
database to lookup from (in this case Groceries).

Page 1292 Panorama Handbook
Next, choose the data you want to retrieve (the lookup data field, which will become the fourth parameter to
the lookup function). In this case we want to retrieve the number of Calories.

The next step is to choose the lookup key field, which in this case is Fruit.

Chapter 23:Formulas Page 1293
Finally, choose the field containing the lookup key value. If there is no such field (perhaps the value is in a
variable) then just choose any field and adjust the formula once the wizard is finished.

Once you’ve made all of the selections press OK to generate the finished formula.

Type Mismatch Problems

One of the most common problems when setting up a lookup function is type mismatches. With some careful
thought, however, you can avoid these problems.

The first source of type mismatch problems is the lookup key field and the lookup key value. The field and
value must be the same type of data. In other words, if the lookup key field is numeric, the lookup key value
must be numeric also. If necessary, you can convert a text key value into numeric with the val(function, or
you can convert a numeric key value into text with the str(function (see “Converting Between Numbers
and Strings” on page 1249 for details on both of these functions).

lookup("Catalog","Part#",val(Item),"Price",0,0)

Another source of type mismatch problems is the lookup data field. This field must have the same type of
data as the field you want to store the result in. For example if you look up a price, the result must be stored
in a numeric field.

If you need to store a numeric value in a text field, use the str(function to convert the value. The str(function
should go outside the entire lookup function, for example

str(lookup("Catalog","Item",Desc,"Price",0,0))

Another source for type mismatch problems is the lookup default value. The default value should be the
same type as the lookup data field. If the lookup data field is numeric, the default should be numeric (for
example 0 or 100). If the lookup data field is text, the default should also be text (for example "" or "n/a").

Page 1294 Panorama Handbook
Lookup Variations

There are actually several different variations of the lookup function. All of the variations have the same six
parameters. The standard lookup function locates the first occurrence of the key (nearest to the beginning of
the file).

Looking Up Rates in a Rate Table

The table(function is designed for looking up rates from a table. For example, this function can be used to
look up shipping rates, tax rates, discount rates, or any kind of stepped rate where the rate changes according
to a sliding scale.

To illustrate this function, consider this shipping rate database.

For packages from 0 to 49.99 pounds the rate is 2.50 per pound. For packages from 50 to 99.99 pounds the rate
is 2.35 per pound, from 100 to 249.99 the rate is 2.25 etc. Suppose we use a regular lookup function to look up
the weight, like this.

lookup("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

Function Reference
Page Description

lookup(Page 5497
This function searches for the first occurrence of the value within the
lookup database. If there is more than one copy of the value in the data-
base this function will find the one closest to the top.

lookuplast(Page 5502

This function searches for the last occurrence of the value within the
lookup database. If there is more than one copy of the value in the data-
base this function will find the one closest to the bottom. However, there
is one exception. If you are looking up within the current database Pan-
orama will skip the current record. If the current record matches the key
value then Panorama will skip backwards to the next matching record.

lookupselected(Page 5510

This function searches for the first occurrence of the value within the
selected records in the lookup database. Unselected (invisible) records are
ignored. If there is more than one copy of the value within the selected
records this function will find the one closest to the top.

lookuplastselected(Page 5504

This function searches for the last occurrence of the value within the
selected records in the lookup database. Unselected (invisible) records are
ignored. If there is more than one copy of the value within the selected
records this function will find the one closest to the bottom.

table(Page 5824

The table function allows you to lookup data by an approximate match
instead of exact match. If the table function does not find an exact match,
it uses the next lower value. A common example is a shipping rate table.
Rate tables do not have an entry for every possible weight. Instead, the
table only lists weights where the shipping rate changes. For example,
suppose a rate table contains entries for 100 pounds and 250 pounds, and
you have a 158 pound package. The table function will return the rate for
the next lower value, in this case the 100 pound rate.

Chapter 23:Formulas Page 1295
This formula will work fine for weights that appear in the table like 50, 100 and 250. But for other weights like
47 or 182 the formula will return the default value, zero. To fix this, use the table function instead of the
lookup function.

table("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

The table function will return the closest lower match. This means that if the PackageWeight is 3, 17 or 42 the
formula will return 2.50. If the PackageWeight is 110 or 246 the formula will return 2.25, etc. Here is a com-
plete formula that calculates the shipping cost for any package.

PackageWeight*table("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

The formula looks up the rate per pound and then multiplies that rate by the package weight.

Looking Up Multiple Fields From One Record

Sometimes you may need to lookup several fields in the same record. For example, when you lookup some-
one’s address you may also want to lookup their city, state, zip code, phone number and recent purchasing
history. In a procedure one way to do this is with multiple lookup(functions, like this.

Address=lookup("Customers",Company,Company,Address,"",0)
City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,ZipCode,"",0)
Phone=lookup("Customers",Company,Company,"Phone#","",0)

When a procedure contains several lookup(in a row for the same thing like this Panorama doesn’t actually
search the database over and over again. Instead it notices that it is searching for the same item and simply
grabs the data from the record it has already found.

To make multiple field lookups even faster you can use the speedcopy statement (see “SPEEDCOPY” on
page 5781). (Remember, since this is a statement it can only be used within a procedure, see “Procedures” on
page 1345). The speedcopy statement can transfer many fields at once, but only if the fields to be copied in
the two databases match exactly. The fields to be copied must appear in exactly the same order in both data-
bases, and the fields must have the same data types. With all these restrictions, you may be surprised to find
out that the fields do not have to have the same names!

Here’s how speedcopy works. Before you use speedcopy , you must perform an assignment with a
lookup(function (or a variation of the lookup(function: lookuplast(, lookupselected(, etc., see
“Lookup Variations” on page 1294). The lookup(function locates the record containing the information to
be copied. Once the record has been located the speedcopy statement can be used to copy the additional
data.

The speedcopy statement has three parameters.

speedcopy FirstAssignField , LastAssignField , FirstTargetField

The first two parameters are fields in the current database. The last parameter is a field in the target database.
All of these field names should be surrounded by quotes (for example "Name" , not Name). Speedcopy starts
by converting these field names into field numbers. For example, if a field would be the third column in the
data sheet, it is field #3.

Once speedcopy has converted the field names into numbers, it starts copying data. Suppose the
FirstAssignField was field number 3, and the FirstTargetField was field number 8. Speedcopy will start by
copying field #8 in the target database into field #3 in the current database. Then it will copy field #9 in the
target database into field #4 in the current database. It will continue copying fields until it has copied some-
thing into the LastAssignField.

Page 1296 Panorama Handbook
To show a specific example, suppose we have two databases, Organizer and Customers, with the fields listed
below:

The procedure below will quickly copy the Address, City, State, Zip and Phone fields from the Customers
database to the Organizer database.

Address=lookup("Customers",Company,Company,Address,"",0)
if Address<>""

speedcopy "City","Phone","City"
endif

Let’s take a close look at how this procedure works. The first line attempts to lookup the Address from the
Customer database. If this lookup fails, the procedure is finished. However, if the lookup succeeds the proce-
dure continues with the speedcopy statement.

The first parameter of the speedcopy statement is City, which is field #5 in the current database (Organizer).
The second parameter is Phone, which is field #8 in the current database. The final parameter is City, which is
field #3 in the target database (Customers).

In this example speedcopy will copy 4 fields from Customers into Organizer, as shown by the blue arrows
in this table. The green arrow represents the original lookup(.

As speedcopy moves data from one database to another, it doesn’t make any kind of checks on the data. If
the fields aren’t really in the same order, speedcopy will cheerfully copy them in the wrong order. Even
worse, if you try to copy a numeric field into a text field or a text field into a numeric field, speedcopy will
not object, but will speedily turn your current database into swiss cheese. The moral of the story is to use the
speedcopy statement very carefully. Like any sharp instrument you want to make sure it is pointed in the
right direction before you use it.

Organizer Customers

1 Name Company

2 Title Address

3 Company City

4 Address State

5 City ZipCode

6 State Phone#

7 Zip Fax#

8 Phone Cust#

Organizer Customers

1 Name Company

2 Title Address

3 Company City

4 Address State

5 City ZipCode

6 State Phone#

7 Zip Fax#

8 Phone Cust#

Chapter 23:Formulas Page 1297
The GrabData Function

The grabdata(function (reference page 5324) grabs the contents of a field in the current record of any open
database. You can grab data from the current database, or from another database. The function has two
parameters — the name of the database to grab from and the name of the field within that database. For
example here is the formula to look up the number of calories of the currently selected fruit.

grabdata("Groceries",Calories)

The value returned by this function will change depending on what record is active in the Groceries database.

Looking Up Multiple Values at Once

The normal lookup functions return only a single value even if many records in the lookup database match
the key value. The lookupall(function (reference page 5499) builds a text array containing one item for every
record in the target database that matches. The function has five parameters. The first four parameters are the
same as the other lookups: lookup database, lookup key field, lookup key value and data field (see “Linking
With Another Database” on page 1289). The fifth parameter is the separator character for the array that is
constructed (see “Text Arrays” on page 1257). Unlike most text array functions, the lookupall(function
allows the separator to have more than one character. For example, you could use ", " to place a comma and
space between each item.

To illustrate this function, consider this database of hotels.

Using the lookupall(function we can create a procedure that lists all of the hotels in Winter Park.

lookup database

lookup key field
lookup key value

lookup data field array separator

Page 1298 Panorama Handbook
When you run this procedure it displays a list of all of the hotels in Winter Park, like this.

Of course you might want to list cities other than Winter Park. Here’s a modified version of this formula that
lists the hotels in whatever the current city is.

lookupall("Colorado Hotels",City,City,Hotel,", ")

Of course you could also display the list of hotels in an auto-wrap text object or Text Display SuperObject.
The list would update automatically as you moved from record to record.

In our hotel example the lookup data field is a text field (Hotel). However, the lookupall(function will also
work with numeric and date data fields. If the field is numeric or date it will be converted to text before it is
added to the array. In this illustration three different lookupall(functions are used to display the hotel name,
phone number, and rate.

When switched to Data Access mode you can see that all of the rates have been converted to text and
appended together, one per line.

Chapter 23:Formulas Page 1299
As you switch to a different record the form updates automatically.

In this case the lookup is from the current database, but any open database can be used.

Linking Clairvoyance to the Lookup Key Field

Panorama’s Clairvoyance feature anticipates what you are about to type by scanning the entries you have
already made in the same database. When you are working with multiple files, you can configure Clairvoy-
ance so that it scans the entries in another database instead (see “Clairvoyance® Across Multiple Files” on
page 389). This is called linking clairvoyance to another field.

There are two reasons for linking clairvoyance to another field. Clairvoyance cannot anticipate values until
they have been typed in at least once. If all the possible values have already been entered into another data-
base, Clairvoyance can start working immediately by looking into the other database.

Another advantage is speed. If your price list contains 200 records and your invoice database contains 2000
records, Clairvoyance can scan the price list 10 times faster. As your database gets larger, this speed difference
may become noticeable.

To set up a clairvoyance link to another field, use the design sheet. Click on the name of the field you want to
set up. Then choose Set Up Link from the Special Menu. Choose the database you want to link to, and the
field within that database.

Page 1300 Panorama Handbook
Press OK to enter the link into the design sheet. Like all other design sheet options, the link does not actually
take effect until you tell Panorama to create a new generation. In the design sheet shown below five fields
have been linked to the Fruit field in the Groceries database.

When you are editing data within a field that has a clairvoyance link set up, clairvoyance checks the charac-
ters you type against the data in the second database. When it finds a possible match, it enters the rest of the
value for you.

Looking Up Data in the Current File

You can use the lookuplast(function to look up the previous entry, with the same value, in the same database.
For example, in a checkbook database you can automate repetitive payments by looking up the previous pay-
ment to the same company. By using the info("database") function to look up the database name you can
make sure that the formula will continue to work even if the database is renamed.

lookuplast(info("database"),PayTo,PayTo,Amount,0,0)

Suppose that your last check to Pacific Mutual was $178.34. Using the formula above you could automati-
cally enter this value the next time you write a check to this company.

Another application for looking up data in the current file is locating summary information further down in
the database. To do this, set the lookup summary level to a non-zero value so that only summary records will
be located.

Chapter 23:Formulas Page 1301
Zip Code Lookup

If you have purchased Panorama’s optional zip code dictionary you can lookup the city, county and state of a
zip code using the functions listed in the table below.

For more information about purchasing this optional package please visit our web site, www.provue.com.

Note: If you have purchased Panorama’s optional spelling dictionary, you can lookup a list of words using
the wordlist statement in a procedure. See “WORDLIST” on page 5904 for details.

Graphic Co-Ordinates

Many Panorama operations refer to locations on the screen, within a window, or within a form. The Macin-
tosh uses an X-Y co-ordinate system to define locations. This X-Y system divides any area into an invisible
grid of criss-crossing lines. There are 72 lines per inch. Each point where the lines intersect is identified by
two numbers, the vertical and the horizontal position. The numbers increase as you move down and to the
right. The illustration below shows a greatly expanded view of the X-Y coordinate system with several sam-
ple points.

See “GRAPHIC COORDINATES” on page 5327 for more information about co-ordinates.

Function Reference
Page Description

city(zip) Page 5098

This function looks up a zip code and returns the name of the city for that
zip code. The zip code may be either a number or text. For example the
formula city(92831) will return the city name Fullerton, while the for-
mula city("92648") will return Huntington Beach. If there is more
than one possible name, the function returns the primary zip code name
as defined by the US Post Office. If the zip code is not a valid zip code the
function will return an empty string (""). If the zip code dictionary has not
been installed the function will return --.

county(zip) Page 5129

This function looks up a zip code and returns the name of the county for
that zip code. The zip code may be either a number or text. For example
the formula city(92831) will return the county name Orange, while
the formula county("95234") will return San Joaquin. If the zip code
is not a valid zip code the function will return an empty string (""). If the
zip code dictionary has not been installed the function will return --.

state(zip) Page 5790

This function looks up a zip code and returns the two letter abbreviation
for the name of the state the zip code is in. The zip code may be either a
number or text. For example the formula state(92831) will return the
state abbreviation CA, while the formula state("15234") will return
PA. If the zip code dictionary has not been installed the function will
return --.

Page 1302 Panorama Handbook
Points

A point is a spot on the X-Y grid. A point has two elements, the vertical position and the horizontal position.
Each position is a number (integer) between -32,767 and +32,767. A point combines these two numbers into a
single number. Functions that work with points are listed in the table below.

Function Reference
Page Description

point(v,h) Page 5603

This function combines vertical and horizontal co-ordinates into a single
number that describes the position of a point. V is the vertical position of
the point. This must be a number between -32,768 and +32,767. (Unlike
standard cartesian co-ordinates, positive is down and negative is up.) H
is the horizontal position of the point. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right
and negative is left.) All dimensions are in pixels (1 pixel=1/72 inch).

The function returns a number (an integer) that describes the location of
the point. You can use this number in any function or statement that
accepts a point as a parameter.

 The greatly magnified illustration below shows several sample points
and the functions used to create them. Note that the actual point “hangs”
down and to the right of the co-ordinate grid lines.

Chapter 23:Formulas Page 1303
h(point) Page 5335

This function extracts the horizontal position from a point. The result is a
number (an integer) that describes the horizontal position of the point.
This number will be between -32,768 and +32,767. (Like standard carte-
sian co-ordinates, positive is right and negative is left.)

v(point) Page 5882

This function extracts the vertical position from a point. The result is a
number (an integer) that describes the vertical position of the point. This
number will be between -32,768 and +32,767. (Unlike standard cartesian
co-ordinates, positive is down and negative is up.)

info("click") Page 5361 This function returns the location of the last mouse click in screen relative
co-ordinates.

info("mouse") Page 5395 This function returns the current location of the mouse in screen relative
co-ordinates.

xytoxy(point,from,to) Page 5907

This function converts a point or rectangle from one co-ordinate system
to another. There are three possible co-ordinate systems: Screen Relative,
Window Relative, and Form Relative (see “GRAPHIC COORDINATES”
on page 5327 for illustrations of these three systems).

The function has three parameters: point, from and to. Point is the point
or rectangle that you want to convert to another co-ordinate system.
From is the current co-ordinate system for the point, while to is the new
co-ordinate system. The three options for these parameters are:

"Screen" (may be abbreviated "S" or "s")
"Window" (may be abbreviated "W" or "w")
"Form" (may be abbreviated "F" or "f")

This function returns a new, translated point that has been converted to a
different co-ordinate system (for example screen relative to window rela-
tive). (Note: This function can work with rectangles as well as points —
see the next section.)

Function Reference
Page Description

Page 1304 Panorama Handbook
Rectangles

A rectangle is a simply box laid out on the X-Y grid. A rectangle is defined by four co-ordinates: top, left, bot-
tom, right. The rectangle data type stores these four co-ordinates as raw binary data in an 8 byte text data
item (see “Raw Binary Data” on page 1310).

Don’t confuse the rectangles described in this section with rectangles that are graphic objects in a form. The
rectangle data type merely describes an imaginary rectangle on the X-Y grid. This may correspond to a rect-
angle that is actually visible, but not necessarily.

Function Reference
Page Description

rectangle(top,left,bottom,right) Page 5628

This function defines a rectangle from four dimensions: top, left, bottom
and right. These parameters specify the location of the edges of the rect-
angle. All measurements are in pixels (1 pixel = 1/72 inch). The formula
below creates a rectangle that is 4 pixels high and 6 pixels wide.

rectangle(7,6,11,12)

Here is a magnified view of this rectangle.

rectanglesize(top,left,height,width) Page 5633

This function defines a rectangle from four dimensions: top, left, height
and width. All measurements are in pixels (1 pixel = 1/72 inch). The
height and width must be numbers between 0 and +32,767. The formula
below creates a rectangle that is 4 pixels high and 6 pixels wide.

rectanglesize(7,6,4,6)

Here is a magnified view of this rectangle.

Chapter 23:Formulas Page 1305
rtop(rectangle) Page 5682
This function extracts the position of the top edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the top edge of the rectangle (in pixels).

rleft(rectangle) Page 5677
This function extracts the position of the left edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the left edge of the rectangle (in pixels).

rbottom(rectangle) Page 5627
This function extracts the position of the bottom edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the bottom edge of the rectangle (in pixels).

rright(rectangle) Page 5680
This function extracts the position of the right edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the right edge of the rectangle (in pixels).

rheight(rectangle) Page 5675
This function computes the height of a rectangle. The function returns a
number between 0 and 65535. This value is the height of the rectangle (in
pixels).

rwidth(rectangle) Page 5685
This function computes the width of a rectangle. The function returns a
number between 0 and 65535. This value is the width of the rectangle (in
pixels).

xytoxy(rect,from,to) Page 5907

This function converts a point or rectangle from one co-ordinate system
to another. There are three possible co-ordinate systems: Screen Relative,
Window Relative, and Form Relative (see “GRAPHIC COORDINATES”
on page 5327 for illustrations of these three systems).

The function has three parameters: rect, from and to. Rect is the point or
rectangle that you want to convert to another co-ordinate system. From is
the current co-ordinate system for the point, while to is the new co-ordi-
nate system. The three options for these parameters are:

"Screen" (may be abbreviated "S" or "s")
"Window" (may be abbreviated "W" or "w")
"Form" (may be abbreviated "F" or "f")

This function returns a new, translated rectangle that has been converted
to a different co-ordinate system (for example screen relative to window
relative). (Note: This function can work with points as well as rectangles
— see the previous section.)

unionrectangle(rect1,rect2) Page 5865

This function defines a rectangle by combining two rectangles. The new
rectangle is large enough to exactly cover both of the input rectangles.
The illustration below shows how this function combines two rectangles,
defining a third rectangle that covers the original two rectangles.

Function Reference
Page Description

Page 1306 Panorama Handbook
intersectionrectangle(rect1,rect2) Page 5456

This function defines a rectangle by combining two rectangles. The new
rectangle is the area where the two rectangles overlap (if any). If the two
rectangles do not touch each other the function will return an empty rect-
angle (same as rectangle(0,0,0,0)).

The illustration below shows how this function combines two rectangles,
creating a third rectangle where the original two rectangles overlap:

inrectangle(point,rectangle) Page 5450

This function checks to see if a point is inside a rectangle. There are two
parameters: point and rectangle. The result is true or false. If the point is
inside the rectangle, the function returns true (-1). If the point is not
inside the rectangle, the function returns false (0). You can use this func-
tion with the if statement (see “IF Statements” on page 1378) and the ?(
function (see “The ? Function” on page 1287).

The illustration below shows a rectangle and several points. Green points
are inside the rectangle, purple points are not. Notice that points on the
top and left edge of the rectangle are considered inside. Points on the bot-
tom and right edge are considered outside.

Function Reference
Page Description

Chapter 23:Formulas Page 1307
rectanglecenter(largrect,smallrect) Page 5632

This function adjusts a small rectangle so that it is centered inside of a
larger rectangle. Largerect is a large rectangle. How large is large? Well, it
should at least be larger than the smallrect rectangle. Smallrect is a small
rectangle. How small is small? Well, it should at least be small enough to
fit inside the largerect rectangle, although the function will do its best to
center it even if it does not fit.

The formula below creates a 1 inch square rectangle that is centered
within the current screen dimensions.

rectanglecenter(
 info("screenrectangle"),
 rectanglesize(0,0,72,72))

rectangleadjust(
rect,
∆top,
∆left,

∆bottom,
∆right)

Page 5630

This function adjusts all four edges of a rectangle independently. There
are five parameters: rect,∆top, ∆left, ∆bottom and ∆right. Rect is the origi-
nal rectangle. The other four parameters are the distance each edge
should be moved, which should be a number between -32,768 and
+32,767.

The formula below creates a rectangle that is inset 20 pixels from all four
edges of the screen.

rectangleadjust(
 info("screenrectangle"),20,20,-20,-20)

 The formula below creates a rectangle that is the same size as the button
rectangle but shifted 1 inch (72 pixels) to the right.

rectangleadjust(
 info("buttonrectangle") ,0,72,0,72)

adjustxy(

rectangle,

boundary,

deltav,

deltah)

Page 5017

This function adjusts the four corners of a rectangle. However, only cor-
ners that are inside a boundary are adjusted. Corners outside the bound-
ary are left alone.

There are four parameters: rectangle, boundary, deltav and deltah.
Rectangle is the rectangle that is being adjusted. Boundary is a rectangle
describing the area to be adjusted. Only points inside this rectangle will
be adjusted. Deltav is the vertical distance each corner inside the bound-
ary should be adjusted. Deltah is the horizontal distance each corner
inside the boundary should be adjusted.

info("buttonrectangle") Page 5358

This function returns a rectangle defining the edges of the button that
was clicked on (needless to say, this function should be used in a proce-
dure that is triggered by a button). The rectangle is in screen relative coor-
dinates (use the xytoxy(function to convert to window or form relative
co-ordinates).

info("cursorrectangle") Page 5362
This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy(function to convert to window or form relative co-ordinates).

info("screenrectangle") Page 5411
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

info("windowrectangle") Page 5443 This function returns a rectangle defining the edges of the current win-
dow. The rectangle is in screen relative coordinates.

Function Reference
Page Description

Page 1308 Panorama Handbook
Colors

We think of colors as the spectrum of the rainbow, but the computer builds up all colors from just three: red,
green, and blue. By varying the relative intensity of these three colors the computer can generate all the colors
of the rainbow. A Panorama color data item combines red, green and blue intensity values into a single data
item. Color intensity is measured on a scale from 0 (completely dark) to 65,535 (full brightness). Values in
between denote intermediate intensity. The table below shows a small sample of the colors that are possible.

Another way to specify a color is the HSB, or Hue, Saturation, Brightness system. Like the RGB system, the
HSB system uses three numbers from 0 to 65,535 to describe a color. However, the three components have dif-
ferent meanings in this system.

The Hue component specifies where this color falls in the spectrum. If you are familiar with the standard
Apple color picker, the Hue would specify the angle of the color from the center of the wheel.

The Saturation component refers to how intense this color is. Is it a very intense deep color, or is it a soft pas-
tel color, or somewhere in between? Again using the standard Apple color picker, the Saturation would spec-
ify the distance of the color from the center of the wheel.

RED GREEN BLUE COLOR SAMPLE

0 0 0 Black

65535 65535 65535 White

15000 15000 15000 Dark Gray

45000 45000 45000 Light Gray

65535 0 0 Pure Red

0 65535 0 Pure Green

0 0 65535 Pure Blue

65535 0 65535 Purple

65535 65535 0 Yellow

0 65535 65535 Cyan

3441 4276 32336 Dark Blue

39235 30211 30211 Brown

24367 23356 31931 Light Green

65535 23356 2936 Orange

Chapter 23:Formulas Page 1309
The Brightness component refers to how light or dark the color is. Is the color very bright, or is it almost
black? This sounds similar to Saturation, but it isn’t. Imagine a blue ball under a white light. As the light gets
dimmer, the Hue and Saturation of the color don’t change, but the Brightness does.

A color in a field or variable is just a piece of data that describes a color…you can’t actually see the color.
However, some SuperObjects allow you to control their color using a color data item, and you can look at or
modify the color of any graphic object in a form using the functions and statements listed below.

Function Reference
Page Description

rgb(red,blue,green) Page 5674

This function creates a color by combining red, green, and blue primary
colors. Red is the intensity of the red component of this color. This must
be a number from 0 (black) to 65535 (full intensity). Green is the intensity
of the green component of this color. This must be a number from 0
(black) to 65535 (full intensity). Blue is the intensity of the blue compo-
nent of this color. This must be a number from 0 (black) to 65535 (full
intensity).

hsb(hue,saturation,brightness) Page 5344

This function creates a color by combining hue, saturation, and bright-
ness components. Hue specifies where this color falls in the spectrum.
This must be a number from 0 to 65535. Saturation specifies how intense
this color is. Is it a very intense deep color, or is it a soft pastel color, or
somewhere in between? This must be a number from 0 (black) to 65535
(full intensity). Brightness specifies how light or dark the color is. Is the
color very bright, or is it almost black? This sounds similar to Saturation,
but it isn’t. Imagine a blue ball under a white light. As the light gets dim-
mer, the Hue and Saturation of the color don’t change, but the Brightness
does. This must be a number from 0 (black) to 65535 (full intensity).

red(color) Page 5635

This function extracts the red intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the red intensity of the color (in percent, from 0 to 100%).

red(HighlightColor)*100/65535

green(color) Page 5330

This function extracts the green intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the green intensity of the color (in percent, from 0 to 100%).

green(HighlightColor)*100/65535

blue(color) Page 5073

This function extracts the blue intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the blue intensity of the color (in percent, from 0 to 100%).

blue(HighlightColor)*100/65535

hue(color) Page 5344 This function extracts the hue value from a color. Hue specifies where this
color falls in the spectrum. This is a number from 0 to 65535.

saturation(color) Page 5688

This function extracts the saturation intensity from a color. Saturation
specifies how intense this color is. Is it a very intense deep color, or is it a
soft pastel color, or somewhere in between? This is a number from 0
(black) to 65535 (full saturation).

brightness(color) Page 5074

This function extracts the brightness of a color. Brightness specifies how
light or dark the color is. Is the color very bright, or is it almost black?
This sounds similar to Saturation, but it isn’t. Imagine a blue ball under a
white light. As the light gets dimmer, the Hue and Saturation of the color
don’t change, but the Brightness does. The brightness value is a number
from 0 (black) to 65535 (full brightness).

Page 1310 Panorama Handbook
If you are writing a procedure there are also two procedure statements that deal with color. The colorwheel
statement (see “COLORWHEEL” on page 5116) opens a dialog for picking a color. The formcolor statement
(see “FORMCOLOR” on page 5259) changes the background color of the current form.

Raw Binary Data

At the core, computers work with 1’s and 0’s, on and off, true and false. This is called binary data, because
there are only two options. Fortunately, Panorama users don’t ever have to deal with raw binary data. The
programmers take the 1’s and 0’s and give them structure to create text, numbers, pictures, and other com-
plex elements.

It’s not much fun, and it’s rarely necessary, but Panorama does allow a programmer to work with raw,
unstructured, binary data: 1’s and 0’s. When you work with raw binary data it will always be in a text field or
variable. Panorama normally interprets text as a series of characters. The functions listed in this section, how-
ever, do not interpret the binary data as characters. Instead, they allow you to directly access and manipulate
the 1’s and 0’s. Panorama uses the text data type to hold raw binary data because text may be of any length
and places no restrictions on the binary information that is placed in it. (However, the text may look very
strange if you display it in the data sheet or on a form.)

Note: Panorama never requires you to use raw binary data. However, raw binary data may be useful for
working with data from the operating system or with data generated by another program (or to generate
data for another program). If you don’t already know you need to use raw binary data, you can probably skip
this section (unless you are curious). If you are a C, Java or Pascal programmer, these functions let you work
with virtually any data structure you can cook up.

The functions that work with binary data are listed in the table below.

info("formcolor") Page 5375
This function returns the background color of the current form. If the cur-
rent window does not contain a form, the function will return empty text
("").

Function Reference
Page Description

byte(number) Page 5076

This function converts a number into a single byte of binary data. (Note:
the byte(function is basically the same as the chr(function.) The number
parameter must be between 0 and 255. This function converts the number
into a single byte of binary data (8 bits).

word(number) Page 5903

This function converts a number into a single word (2 bytes) of binary
data. Number is the value that you want to convert into a binary number.
This value must be between 0 and 65,535. This function converts the
number into a two bytes of binary data (16 bits).

longword(number) Page 5496

This function converts a number into a single longword (4 bytes) of
binary data. Number is the value that you want to convert into a binary
number. This value must be an integer. This function converts the num-
ber into a four bytes of binary data (32 bits).

binaryvalue(data) Page 5072

This function converts binary data (a byte, word, or longword) into a
number. Data is the binary value that you want to convert into a number.
This value must be a byte, a word (2 bytes) or a longword (4 bytes). The
result is an integer.

Function Reference
Page Description

Chapter 23:Formulas Page 1311
textstuff(text,new,position) Page 5850

This function replaces one or more characters in the middle of a piece of
text. Text is the original text data item that contains one or more charac-
ters you want to replace. New is the new text that you want to use to
replace characters in the original text data item. Position is the location
within the original text where you want to replace text. The position is a
number starting with zero. The function returns a copy of the original
text item with one or more characters replaced.

This example replaces two characters in a 24 character text item.

 textstuff("Temperature: 87 degrees"," 92",13)

The operation of this formula is shown in the table below.

 Original Text: Temperature: 87 degrees

 New Text: 92
 Position: 13

 Result (TEMP): Temperature: 92 degrees

If the new text is positioned beyond the end of the original text, the char-
acters in between are undefined.

textstuff("Temp:"," 92",13)

The operation of this formula is shown in the table below.

 Original Text: Temp:

 New Text: 92
 Position: 13

 -----------------------------x--------
 Result (TEMP): Temp: \#ø•º¢ ∏ƒ92

 The characters in between (in orange) may be anything. (Of course you
could use another textstuff(function to fill them in, or you could add
characters to the original text before using textstuff(in the first place.)

string255(text,space) Page 5797

This function converts text into a Pascal string. A Pascal String is a special
text format that is sometimes used by the Macintosh ROM's (also called a
String255 or Str255 because the text is limited to a maximum length of 255
characters). (Pascal is the name of a computer language, which in turn is
named after a famous mathematician.)

The function has two parameters: text and space. Text is the text that you
want to convert into a Pascal string. This text should be less than 255
characters long. Space is a number defining the amount of space taken up
by the Pascal string. If space is zero, the string may be up to 255 charac-
ters, and is not padded. If space is from 1 to 255, the string255(function
makes sure that the string takes up exactly this amount of space. If the
string is too long, it will be cut off. If the string is too short, it will be pad-
ded with nulls (bytes containing zeroes).

The function returns a text data item containing a Pascal string.

Function Reference
Page Description

Page 1312 Panorama Handbook
text255(data) Page 5848

This function converts binary data containing a Pascal String into regular
text. A Pascal String is a special text format that is sometimes used by the
Macintosh ROM's (also called a String255 or Str255 because the text is
limited to a maximum length of 255 characters). (Pascal is the name of a
computer language, which in turn is named after a famous mathemati-
cian.) The function returns the text equivalent of the Pascal String passed
to it.

radix(radix,text) Page 5623

This function converts a text item containing a hex, octal, or binary num-
ber into a standard Panorama number (decimal). See “NON DECIMAL
NUMBERS” on page 5540 for background information on hex, octal and
binary numbers. Radix is the base for the numbering system you are con-
verting from. Legal radix values are 2, 4, 8, 16 or 32. Or you can specify
the radix as "binary" (same as 2), "octal" (same as 8) or "hex" (short for
hexadecimal, same as 16). Text is a text item that contains the non-deci-
mal number you want to convert. This function normally returns an inte-
ger that contains the decimal (base 10) number corresponding to the hex,
octal, or binary number input to the function.

 If the radix is hex and there are more than 8 digits in the input text, or if
the radix is binary and there are more than 32 digits, this function will
return a raw binary value instead of a number. This binary value may be
of unlimited length. Like all binary values, it cannot be calculated with,
but should be handled as a text item.

radixstr(radix,number) Page 5625

This function converts a number into a text item containing the equiva-
lent hex, octal, or binary number. See “NON DECIMAL NUMBERS” on
page 5540 for background information on hex, octal and binary numbers.
Radix is the base for the numbering system you are converting from.
Legal radix values are 2, 4, 8, 16 or 32. Or you can specify the radix as
"binary" (same as 2), "octal" (same as 8) or "hex" (short for hexadecimal,
same as 16). Number is the number you want to convert to hex, octal, or
binary. If the radix is 2, 16, "binary", or "hex" the number can be a raw
binary data (text) value. This function returns a text item that contains the
hex, octal, or binary number equivalent to the number (or binary data)
passed to the function. The first example converts the decimal value 256
to hexadecimal.

radixstr(16,256)

This function will calculate that 25610 is 100 hex.

Here is another example:

radixstr("binary",5)

This will calculate that 5 10 is 00000000000000000000000000000101 binary.

Function Reference
Page Description

Chapter 23:Formulas Page 1313
The RPN Programmer’s Calculator

Panorama includes a built in calculator that can perform calculations in decimal (base 10), hexadecimal (base
16), octal (base 8) and binary (base 2). To open this calculator choose the RPN Programmer’s Calculator from
the Wizard menu.

Converting Between Different Bases

The calculator can be used to convert numbers from decimal to hex, hex to decimal, or in fact from any of the
four supported bases into any other. For example, suppose you want to convert the number 489 (decimal)
into hex. Start by pressing the dec (for decimal) button, then enter 489, then press the hex button. The result is
1E9 (remember, hexadecimal numbers may include the digis A-F in addition to 0-9). If you wanted to see the
same number in binary you would press the bin button You can change the number base at any time.

Press the dec button Enter 489 Press the hex button Press the bin button

Page 1314 Panorama Handbook
Calculations with Reverse Polish Notation

RPN is a variation on a parentheses-free mathematical logic known as "Polish Notation," developed by the
Polish logician Jan Lukasiewicz (1878-1956). Over the years the most popular calculators in business and sci-
ence have been HP calculators. These feature Reverse Polish Notation, especially the HP-12C business calcu-
lators and the HP-41 series. Texas Instruments was the other big player in calculators, and their machines
used algebraic notation. You were either an RPN supporter, walking around with the motto ENTER > = (RPN
is greater than Algebraic) emblazoned on T-shirts, or you were a TI algebraic "heretic." Here at ProVUE we
were weaned on the original HP-35 scientific calculator in the late 70’s, so our programmer’s calculator uses
Reverse Polish Notation.

With RPN, numbers are entered or "stacked" in the register. RPN is implemented by means of a numeric
stack, the enter key, and the convention of "postfix operators." Postfix operators simply means that the user
specifies the operation to be performed after the entry of numbers, instead of in the middle. For example,
suppose you wanted to add 489+372. Here’s how you do this with the RPN calculator.

According to HP, “RPN is an effective way to deal with arithmetic expressions in programming. RPN makes
it possible to perform compound calculations with a minimum of special symbols and no punctuation. Num-
bers are stored in the register. With the elimination of parentheses and the consistency of the entry method,
the calculator accepts more of the problem-solving burden, reducing the user's time and effort.”

Enter 489 Press the enter button Enter 372 Press the + button

Chapter 23:Formulas Page 1315
The RPN system eliminates the need for parentheses. Here’s how you would calculate (6+3)*(5+2).

Performing this calculation in RPN requires only 9 keystrokes, vs. 11 using conventional algebraic notation.
Ok, so it’s a religious issue. So sue me (and all my RPN loving cronies)!

The purple area shows the numeric stack, where internediate results are stored. You can expand the calcula-
tor window to see more entries in this numeric stack.

Enter 6 and press enter Enter 3 Press the + button Enter 5 and press enter

Enter 2 Press the + button Press the * button

Page 1316 Panorama Handbook
Boolean Operators

The four buttons on the right (mod, xor, or and and) are the boolean functions. These combine two numbers
on a bit by bit basis. The table below explains each of these functions. The example numbers (A, B and Result)
are in binary, but these operators will work in any number base..

This example shows how to calculate the remainder when dividing 63 by 8.

The remainder is 7.

Operator Description A B Result

and For each bit in A and B, the result will be 1 if both A
and B are 1. It will be 0 if either A or B are zero. 10110 00101 00100

or For each bit in A and B, the result will be 1 if either A
or B is 1. It will be 0 if both A and B are zero. 10110 00101 10111

xor For each bit in A and B, the result will be 1 if A and B
are different. It will be 0 if both A and B are the same. 10110 00101 10011

mod This operator computes the remainder when dividing
A by B 10110 00101 10

Enter 63 and press enter Enter 8 Press the mod button

Chapter 23:Formulas Page 1317
Disk Files and Folders

Panorama formulas can directly access files and directories on the disk. The functions below read informa-
tion from the disk. For a more detailed discussion of file i/o, including writing to files, see “Directly Reading
and Writing Disk Files” on page 1519.

Function Reference
Page Description

folder(path) Page 5256

This function creates a binary data item that unambiguously describes
the location of a folder on the hard disk. This pathid can be used in other
functions and statements. Path is a complete description of the path to
this folder. On the Macintosh a path looks like this:

My Disk:System Folder:Extensions:

On a Windows computer a path looks like this:

C:\Windows\Temporary

This function returns a 6 byte binary data item that unambiguously
describes the location of the folder. However, if the folder does not exist
the function returns an empty binary data item ("").

folderpath(pathid) Page 5257

This function takes a six byte pathid (see the folder(function above) and
converts it to a textual description of the path to that folder. A pathid is a
binary data item that unambiguously describes the location of a folder on
the hard disk. Pathid’s are created by the folder(and dbinfo(functions,
and the openfiledialog and savefiledialog statements.

The function returns complete a description of the path to this folder. On
the Macintosh a path looks like this:

My Disk:System Folder:Extensions:

On a Windows computer a path looks like this:

C:\Windows\Temporary

Page 1318 Panorama Handbook
fileload(folder,file) Page 5228

This function reads the entire contents of any file on disk. It is especially
useful for reading text files. Folder is a pathid that unambiguously
describes the location of the folder. A pathid is a binary data item that
unambiguously describes the location of a folder on the hard disk.
pathid’s are created by the folder(and dbinfo(functions, and the open-
filedialog and savefiledialog statements. If this parameter is empty text
("") the folder containing the current database is assumed. File is the
name of the file that is to be read.

This function returns the entire contents of the file as an item of text.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The fileload(function
reads the data fork, but not the resource fork. You can read the resource
fork by using a special statement, see “Reading and Writing Resource
Forks” on page 1525.)

This example reads a file named Report.txt. This file must be in the same
folder as the current database.

fileload("","Report.txt")

The example below reads the contents of the Macintosh notebook file.

fileload(info("systemfolder"),"Note Pad File")

On Macintosh systems you must be careful when reading large files —
the file must fit in Scratch Memory (see “Changing Scratch Memory Size
(Macintosh)” on page 273). For very large files you may need to read in
only a portion at a time using the fileloadpartial(function (see below).

fileloadpartial(folder,file,start,len) Page 5230

This function reads a portion of the contents of any file on disk. It is espe-
cially useful for reading text files. Folder is a pathid that unambiguously
describes the location of the folder. A pathid is a binary data item that
unambiguously describes the location of a folder on the hard disk.
pathid’s are created by the folder(and dbinfo(functions, and the open-
filedialog and savefiledialog statements. If this parameter is empty text
("") the folder containing the current database is assumed. File is the
name of the file that is to be read. Start is the first byte (character) of the
file that should be read. This function assumes bytes in the file are num-
bered starting from 0. Len is the number of bytes that should be read.

The function returns a portion of the contents of the file as an item of text.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The fileloadpartial(func-
tion reads the data fork, but not the resource fork. You can read the
resource fork by using a special statement, see “Reading and Writing
Resource Forks” on page 1525.)

filesize(folder,file) Page 5235

This function determines the size of any file on disk. Folder is a pathid
that unambiguously describes the location of the folder. A pathid is a
binary data item that unambiguously describes the location of a folder on
the hard disk. pathid’s are created by the folder(and dbinfo(functions,
and the openfiledialog and savefiledialog statements. If this parameter is
empty text ("") the folder containing the current database is assumed. File
is the name of the file that is to be measured.

 This function returns a number—the size of the entire contents of the file.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The filesize(function reads
the size of the data fork, but not the resource fork.)

The example below determines the size of the Macintosh notebook file.

filesize(info("systemfolder"),"Note Pad File")

Function Reference
Page Description

Chapter 23:Formulas Page 1319
fileinfo(folder,file) Page 5226

This function gets information about a file (or folder) on the disk, includ-
ing the size, creation and modification date and time, type, creator and
lock status. Folder is a pathid that unambiguously describes the location
of the folder. A pathid is a binary data item that unambiguously
describes the location of a folder on the hard disk. pathid’s are created by
the folder(and dbinfo(functions, and the openfiledialog and savefiledia-
log statements. If this parameter is empty text ("") the folder containing
the current database is assumed. File is the name of the file that you are
requesting information about.

This function returns a text array with 8 elements separated by carriage
returns. (However, if the specified file does not exist it returns empty text
("")). The eight elements are:

1) Type of item. This is either "File" or "Folder"

2) Type (4 bytes) and Creator (4 bytes). Here are some typical Type/Cre-
ator values.

ZEPDKASX Panorama database
KSETKASX Panorama file set
APPLKASX Panorama application
CWWPBOBO ClarisWorks word processing file
STAKWILD Hypercard Stack
TIFF8BIM TIFF file (Photoshop)
EPSFART3 Adobe Illustrator (version 3)

This is only a small sample of the types and creators you will find on your
hard disk.

3) Creation Date in internal Panorama format. Although this is a number,
it has been converted to text. If you convert the number back to text you
can format the date with datepattern(.

4) Creation Time in seconds since midnight. Although this is a number, it
has been converted to text. If you convert the number back to text you
can format the time with timepattern(.

5) Modification Date in internal Panorama format. Although this is a
number, it has been converted to text. If you convert the number back to
text you can format the date with datepattern(.

6) Modification Time in seconds since midnight. Although this is a num-
ber, it has been converted to text. If you convert the number back to text
you can format the time with timepattern(.

7) File size in bytes. (Or if the specified file is actually a directory, this is
the number of files in directory

8) File status: This is either "Locked" or "Unlocked".

Function Reference
Page Description

Page 1320 Panorama Handbook
listfiles(folder,filter) Page 5473

This function builds a text array listing the files in a folder. Folder is a
pathid that unambiguously describes the location of the folder. A pathid
is a binary data item that unambiguously describes the location of a
folder on the hard disk. pathid’s are created by the folder(and dbinfo(
functions, and the openfiledialog and savefiledialog statements. If this
parameter is empty text ("") the folder containing the current database is
assumed. Filter is a text item that specifies what type (or types) of files
(and folders) to list. If this is an empty text item ("") all files will be listed.
Otherwise the type parameter should be a series of one or more 8 charac-
ter sections. The first four characters are the file type, the second four are
the file creator. You can also use the ? character if you do not care what a
character is. Here are some useful file types:

TEXT???? list all text files
APPL???? list all applications
????KASX list all Panorama database files

 You can combine more than one specification into a filter, for example
TEXT????????KASX to list all text files and Panorama database files.

The listfiles(function normally does not list folders. However, if you pre-
cede the filter specification with the ƒ (option-F) character the function
will list folders as well as files. For example:

ƒTEXT????
 list all text files and folders
ƒ????KASXTEXT????
 list databases, text files, and folders

If the filter is empty ("") then ALL files and folders will be included.

The function returns a carriage return separated text array. Each item con-
tains a single file name.

info("systemfolder") Page 5426
This function returns a pathid that unambiguously describes the location
of the system folder. This pathid can be used in other functions and state-
ments.

info("panoramafolder") Page 5402
This function returns a pathid that unambiguously describes the location
of the folder containing the Panorama application. This pathid can be
used in other functions and statements.

Function Reference
Page Description

Chapter 23:Formulas Page 1321
Resource Files

The Macintosh has a special kind of file, called a resource file, for storing multiple chunks of information in a
single file. Each chunk of information is called a resource. Each resource may be anything from a single char-
acter to tens of thousands of bytes of information. (By the way, Panorama has a special facility to allow
resource files to be used even on Windows systems. On Windows these files have the extension .RSR).

Each resource is identified by its type and ID. The type is a four letter designation that identifies what type of
data is stored in that resource. There are hundreds of different types of resources, with more new types being
created all the time. However, the most common types were defined by Apple in 1984 and are still in use
today. This table describes some of the most common types.

The resource ID is simply a number between 0 and 65535.

Just as a file is identified by its folder and file name, a resource is identified by its type and ID. For example,
you may refer to a resource as MENU 97 or ICON 2544.

In addition to a type and ID, a resource may also have a name. However, the name is completely optional. If
a resource does have a name, you can identify the resource by its type and name as well as by its type and ID.
For example you may refer to a resource as ICON 2544 or as ICON Empty Trash Can.

Type Description

MENU List of the items in a menu

DLOG Description of a dialog

DITL Description of the items within a
dialog

STR Single item of text

STR# Multiple items of text

PICT Picture

ICON Icon

ICN# Multiple icons

cicn Color icon

CURS Cursor (mouse pointer)

Page 1322 Panorama Handbook
Before the data in a resource file can be accessed the file must be opened with the openresource statement
(see “OPENRESOURCE” on page 5577). To learn more about how to create, modify and use resources see
“Working with Resources” on page 1532. The functions that allow you to work with resources are described
in the table below.

Function Reference
Page Description

resourcetypes() Page 5667

This function creates a text array containing a list of the resource types in
all currently open resource files. The result of this function is a carriage
return delimited text array. Each element in the array contains a resource
type. Each resource type is a four letter text item, for example "STR " (Pas-
cal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dialog
items), "MENU" (menu).

You can use this function to check if a particular resource type exists, or
you can use the function with a pop-up menu or List SuperObject™ to
allow the user to select a type of resource for any reason. The formula
below will create a text array with resource types.

resourcetypes()

The result of this formula will be a list of resource types something like
this:

 CNTL
 CURS
 INIT
 KCHR
 LDEF
 MACA
 TPLT
 SIZE
 dctb
 TEXT
 STR#
 PICT
 PAT#
 MENU

 As you can see, the resource types are not listed in any particular order.

resources(type) Page 5666

This function creates a text array containing a list of resources of a partic-
ular type. Type is the resource type. This must be a four letter text item.
Standard resource types include "STR " (Pascal String), "STR#" (multiple
strings), "DLOG" (dialog), "DITL" (dialog items), "MENU" (menu).

This function returns a text array containing a carriage return delimited
list of all the resources of the specified type. Each element of this list is
itself a tab delimited array. The first item is the resource item number. The
second item is the resource name (if any).

This example builds a list of the TEXT resources in the currently open
resource files. (The currently open resource files include Panorama itself
and the Macintosh system file, as well as any resource files you have
opened with the openresource statement.)

resources("TEXT")

 The result will be an array like this.

 2001 Error Messages
 2002 Command List
 2003 Conversion Options

Chapter 23:Formulas Page 1323
getresource(type,id) Page 5308

This function gets a resource from an open resource file and copies it into
a variable. Type is the resource type. This must be a four letter text item.
Standard resource types include "STR " (Pascal String), "STR#" (multiple
strings), "DLOG" (dialog), "DITL" (dialog items), "MENU" (menu). ID is
the identification for the resource. The resource id can be a number (from
0 to 65,535) or a name (a text item).

The function returns whatever binary data is in the specified resource.

 This example procedure loads the contents of TEXT resource # 415 into
the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT",415)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple loads the contents of the TEXT resource named Thank You #2 into the
field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT","Thank You #2")

getstring(type,id) Page 5311

This function gets a text resource from an open resource file and copies it
into a variable. Type is the resource type. This must be a four letter text
item. You can specify any resource type you like here, but strings are usu-
ally stored in resources of type "STR " (Pascal String). (If you specify "" for
the type, Panorama will assume "STR ".) ID is the identification for the
resource. The resource id can be a number (from 0 to 65,535) or a name (a
text item).

The function returns whatever text is in the specified resource.

This example procedure displays the contents of STR resource # 1296.

openresource "Accounting Messages"
message getstring("",1296)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple displays the text in the Overflow Error resource.

openresource "Accounting Messages"
message getstring("","Overflow Error")

Function Reference
Page Description

Page 1324 Panorama Handbook
getnstring(type,id,number) Page 5304

This function gets a text resource from an open resource file and copies it
into a variable. The string is extracted from a STR# resource, which holds
a collection of multiple strings in each resource. Type is the resource type.
This must be a four letter text item. You can specify any resource type you
like here, but strings are usually stored in resources of type "STR#" (mul-
tiple Pascal Strings). (If you specify "" for the type, Panorama will assume
"STR#".) ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). Number is the number
of the string item within the collection. For example, if the collection con-
tains 6 strings they will be numbered 0, 1, 2, 3, 4, and 5.

This function returns whatever text is in the specified item within the
specified resource collection.

This example procedure displays the contents of STR# resource # 693
item 12.

openresource "Accounting Messages"
message getnstring("",1296,11)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple displays the 12th item in the Errors collection.

openresource "Accounting Messages"
message getnstring("","Errors",11)

getstringmatch(type,id,text) Page 5312

This function searches through a collection of multiple strings in a STR#
resource. If it finds a match with the text you supply, it returns the num-
ber of the text item within the collection. Type is the resource type. This
must be a four letter text item. You can specify any resource type you like
here, but strings are usually stored in resources of type "STR#" (multiple
Pascal Strings). (If you specify "" for the type, Panorama will assume
"STR#".) ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). Text is the text you
want to search for. For a match, this text must be exactly the same as one
of the text items in the STR# collection.

This function returns a number. If the text does not match any of the text
items in the STR# collection, the function will return 0. If there is a match,
the function will return the number of the item that matched, starting
with 1 for the first item. (Notice that this numbering system is different
than the getnstring(function, which starts with 0 for the first item.)

Function Reference
Page Description

Chapter 23:Formulas Page 1325
Import/Export Functions

These functions may be used to customize the import and export of data.

Function Reference
Page Description

import() Page 5349

This function returns a line of imported data. This function only works in
conjunction with the importusing (see “IMPORTUSING” on
page 5352) and arrayfilter statements (see “ARRAYFILTER” on
page 5042).

The import(function returns a line of text. When it is used with the
importusing statement, the import() function returns the contents of
the line that is currently being imported. Using this function you can pro-
cess and re-arrange the data as it is being imported.

When it is used with the arrayfilter statement, the import() function
returns the individual array element currently being processed. Using
this function you can process the data in each array element.

When it is used at any other time, the import() function returns empty
text.

importcell(colNumber) Page 5350

This function returns one cell of imported data. This function only works
in conjunction with the importusing statement (see “IMPORTUSING”
on page 5352). ColNumber is the column of data from the imported text
that you want to return. The text being imported is separated into col-
umns by either tabs or commas. The first column is column 0, the next is
column 1, etc.

The importcell(function always returns text. When it is used with the
importusing statement, the importcell(function returns the contents of
the specified column from the line that is currently being imported. If the
text being imported is comma delimited, the importcell(function will
strip off any quotes around the data before returning it. Using this func-
tion you can process and re-arrange the data as it is being imported.

When it is used at any other time, the importcell(function returns empty
text. It will also return empty text if you specify a column number that
does not exist in the text being imported.

exportline() Page 5207

This function generates a tab delimited line of data containing all the
fields in the current record. This function is designed to be used with the
export (see “EXPORT” on page 5204) and arraybuild (see “ARRAY-
BUILD” on page 5035) statements, but may actually be used anywhere.

The function returns a a tab delimited line of data containing all the fields
in the current record. Any non-text fields (numeric, date) will be con-
verted to text as they are placed into the tab delimited line. The tab delim-
ited line does NOT include a carriage return on the end.

exportcell(field) Page 5206

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

Page 1326 Panorama Handbook
System and Database Information Functions

The functions described in this section allow a formula to access information about the computer system and
about the current database.

System Information

These functions return information about the computer system — the keyboard, mouse, memory, clipboard
and Panorama itself.

Function Reference
Page Description

clipboard() Page 5104 This function returns whatever text or value is currently on the clipboard.

info("abort") Page 5354

The info("abort") function returns true if the user has pressed Command-
Period (Macintosh) or Control-Period (Windows). You should use this
procedure if you have used the disableabort statement and want to check
for Command/Control-Period yourself.

info("click") Page 5361 This function returns the location of the last mouse click in screen relative
co-ordinates.

info("dialogtrigger") Page 5367
This function returns the name of the last button pressed in a dialog.
(Note: This function does not work with standard system dialogs like the
Open and Save As dialogs.)

info("error") Page 5370
This function can be used after an if error statement. It returns the
error message that would have been displayed if the error had not been
trapped by if error.

info("freememory") Page 5379 This function calculates how much free database memory is available
(this does not include scratch memory).

info("files") Page 5373 This function builds a carriage return separated text array containing a
list of all the currently open database files.

info("keyboard") Page 5382 This function returns the last key that was pressed.

info("keycode") Page 5383

This function returns a special numeric code that represents last key that
was pressed. This code is unique for every key in the keyboard. For
example, the info("keycode") will return a different value for the 1 key on
the numeric keypad and the 1 key above the Q key. See the reference page
for a complete list of the numeric codes.

Chapter 23:Formulas Page 1327
info("modifiers") Page 5394

This function returns the status of the modifier keys. The five different
possible modifier keys are.

"shift"
"capslock"
"option" (returned when ALT key pressed on PC)
"command" (returned when Control key pressed on PC)
"control" (returned when Right Mouse button clicked
 on PC)

The info("modifiers) function also returns the status of the last mouse
click. If the last mouse click was a double click, info("modifiers") will
return "doubleclick". If the last mouse click was a triple click, info("modi-
fiers") will return "tripleclick".

If more than one modifier key is active the function will return all of them
strung together like this:

 "shift option"

You should check for a specific modifier with the contains operator.

This example opens the Status form if the user double clicks on a button.

if info("modifiers") contains "double"
 openform "Status"
endif

info("mouse") Page 5395 This function returns the current location of the mouse in screen relative
co-ordinates.

info("mousedown") Page 5396 This function returns true or false depending on whether or not the
mouse is currently down.

info("mousestilldown") Page 5397
This function returns true or false depending on whether or not the
mouse is currently down and has not been let up since the button was
pressed.

info("panoramafolder") Page 5402
This function returns the folder id (see “Disk Files and Folders” on
page 1317) of the folder containing the currently running copy of Pan-
orama. This folder id can be used in other functions and statements.

info("panoramatoolsfolder") Page 5404

This function returns the folder id (see “Disk Files and Folders” on
page 1317) of the System:Prefs:Panorama Tools folder, if any. If there is no
such folder (for example on PC systems) it returns the folder that contains
Panorama itself.

info("panoramaname") Page 5403
This function returns the name of the currently running copy of Pan-
orama. In other words, if you have renamed your copy of Panorama this
function will tell what the name is.

info("scratchmemory") Page 5410

This function returns the amount of memory allocated for scratch mem-
ory (“Changing Scratch Memory Size (Macintosh)” on page 273). On PC
systems it always returns 1000000 (one million).

The procedure below checks to make sure that at least 350K of scratch
memory is allocated.

if info("scratchmemory")<350000
 scratchmemory 350000
endif

info("screenrectangle") Page 5411
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

Function Reference
Page Description

Page 1328 Panorama Handbook
info("systemfolder") Page 5426
This function returns folder id (see “Disk Files and Folders” on
page 1317) of the system folder (Mac OS). This folder id can be used in
other functions and statements.

info("trigger") Page 5430

This function returns information about how the current procedure was
triggered. If the procedure was triggered by data entry this function will
return the word Key followed by a period and then the key that actually
triggered the procedure:

Key.return
Key.enter
Key.tab

If the procedure was triggered by a button, the function will return the
word Button followed by a period and then the name of the button, for
example:

Button.Save
Button.Calculate Tax
Button.Show Chart

If the procedure was triggered by a custom menu, the function will return
the word Menu followed by a period, the name of the menu, another
period, and then the menu item. Here are some examples:

Menu.Accounting.Aging
Menu.Letter.New

info("version") Page 5437

This function returns the version of the currently running copy of Pan-
orama. The version number is returned as text, for example 3.5.1. If you
want to extract only a portion of the version number you can use the
array or array functions. This example will extract the first two numbers
of the version. The result will be something like 3.5 or 4.0.

arrayrange(info("version"),1,2,".")

info("volumes") Page 5438 This function returns a carriage return delimited array containing the
name of each volume (disk) currently mounted on this computer.

parameter(number) Page 5589

This function is used to transfer data between a main procedure and a
subroutine. The main procedure can set up one or more data item param-
eters as part of the call statement (see “CALL” on page 5083). The subrou-
tine can retrieve and use these data items using the parameter(function.
Number is a number specifying what parameter you want to retrieve. All
parameters are numbered, starting with 1 (1, 2,3, 4, etc.). The function
returns a data item. This data item may be text or numeric, depending on
what kind of data is passed to the subroutine.

Function Reference
Page Description

Chapter 23:Formulas Page 1329
User Information

These functions return information about the person that is currently using the computer. The last three func-
tions can only return useful information if the person has logged in. To learn more about setting up users and
database security see the Panorama Database Security Supplement, which is available separately from Pro-
VUE for a small charge.

Function Reference
Page Description

info("user") Page 5433

This function returns the name of the user of this computer. On Mac OS
computers this is the Owner Name which is set with the File Sharing
control panel.

On Windows computers this function always returns an empty string ("").

info("userid") Page 5434

This function works with the Panorama security system. It returns the id
(usually initials or the first name) the user has logged in under. If the user
has not logged in, this function will return empty text (""). For example,
the formula below could be used in a report header (in an auto-wrap text
object or Text Display SuperObject™ to show who printed the report and
when.

"Printed by: "+info("userid")+
 " @"+timepattern(now(),"hh:mm am/pm")

info("userlevel") Page 5435

This function works with the Panorama security system. It returns the
current user level for this user, a number from 0 to 255. If the user has not
logged in, this function will return 0. The example procedure below only
allows users with access levels of 25 or higher to use the rest of the proce-
dure.

if info("userlevel")<25
 message "Sorry, your access level "+
 "does not allow this operation"
 stop
endif
…
… (rest of procedure)
…

info("username") Page 5436

This function works with the Panorama security system. It returns the
name the user has logged in under. If the user has not logged in, this
function will return empty text (""). The formula below could be used in a
report header (in an auto-wrap text object or Text Display SuperObject™
to show who printed the report and when.

"Printed by: "+info("username")+
 " @"+timepattern(now(),"hh:mm am/pm")

Page 1330 Panorama Handbook
Variable Information

These functions allow a formula to determine what variables are currently available and to access variables in
other databases.

Function Reference
Page Description

grabfilevariable(file,variable) Page 5325

This function makes it possible to access a fileglobal (see “FILEGLO-
BAL” on page 5224) or permanent (see “PERMANENT” on page 5599)
variable from other databases. (Usually these variables can only be
accessed from the database in which they were created.) File is the name
of the database that contains the fileglobal or permanent variable.
Note: This database must currently be open! Variable is the name of the
variable you want to access. In general, this variable name must be
enclosed in quotes (unless you are using a formula to calculate the name).

The result of this function is whatever value that is contained in the spec-
ified variable. This may be text or numeric.

grabwindowvariable(
window,variable) Page 5326

This function makes it possible to access a windoglobal variable (see
“WINDOWGLOBAL” on page 5892) in a different window from the one
in which it was created. Window is the name of the window in which the
variable was created. (Of course the window must be open!) Variable is
the name of the variable you want to access. In general, this variable
name must be enclosed in quotes (unless you are using a formula to cal-
culate the name).

The result of this function is whatever value that is contained in the spec-
ified variable. This may be text or numeric.

info("filevariables") Page 5374 This function builds a carriage return separated text array containing a
list of the currently allocated fileglobal variables in the current database.

info("globalvariables") Page 5380 This function builds a carriage return separated text array containing a
list of the currently allocated global variables.

info("localvariables") Page 5386 This function builds a carriage return separated text array containing a
list of the currently allocated local variables.

info("windowvariables") Page 5446 This function builds a carriage return separated text array containing a
list of the currently allocated window variables for the current window.

Chapter 23:Formulas Page 1331
Database Information

These functions return information about the currently active database.

Function Reference
Page Description

datatype(fieldvariablename) Page 5139

This function determines what kind of data is in a field or variable: text,
number, etc. Fieldvariablename is the name of the field or variable that
you want to get information about. To get information about a variable
the variable name must be enclosed in quotes. The quotes are optional
when accessing information about a field. The function returns the type
of data from the list below:

Text
Compressed (Choice)
Picture
Date
Floating Point
Integer
Fixed 1 Digit (#.#)
Fixed 2 Digits (#.##)
Fixed 3 Digits (#.###)
Fixed 4 Digits (#.####)

Note: The Compressed, Picture, and Date types can only occur if the
datatype(function is used with a field as the parameter. Variables cannot
contain data of these types (for a date, the data type is Integer).

dbinfo(option,database,) Page 5147

This function gets information about a database: what forms it contains,
what fields, what flash art pictures, etc. There are two parameters: option
and database.

Database is the name of the database you want to get information about.
This must be a database that is currently open. If you want to get infor-
mation about the current database you can use the info("databasename")
function or simply use empty text ("").

Option controls what kind of information this function will retrieve.
There are about a half dozen possible options: "fields", "forms",
"procedures", "crosstabs", "flash art", "folder", "level" and "autosave". The
"fields" option produces a text array (with carriage return separators)
containing a list of the fields in the database. (If a field name contains car-
riage returns, they are converted to spaces before being placed into the
array.) The "forms" option produces a text array (with carriage return
separators) containing a list of the forms in the database. The
"procedures" option produces a text array (with carriage return separa-
tors) containing a list of the procedures in the database. The "crosstabs"
option produces a text array (with carriage return separators) containing
a list of the crosstabs in the database. The "flash art" option produces a
text array (with carriage return separators) containing a list of the flash
art in the database’s Flash Art™ gallery. The "folder" option produces a
folder id for the folder containing the database. (See “Disk Files and Fold-
ers” on page 1317.) The "level" option returns a number that indicates the
privilege level for this database: 0 = author mode, 1 = user mode, or 2 =
custom mode. The "autosave" option returns the number of minutes
between automatic saves, or zero if the auto-save option is turned off.
(See also “SETAUTOSAVE” on page 5736.)

This example uses dbinfo(to calculate the number of forms in the current
database.

arraysize(dbinfo("forms",""),¶))

Page 1332 Panorama Handbook
fieldmax(fieldname) Page 5216

This function returns the maximum number of characters that can be
stored in a field. If this is not an SQL client database, this number is
always 65535. If this is an SQL client, this function returns the length of
the corresponding SQL field in the server database.

fieldstyle(fieldname) Page 5218

This function determines the style and color of a field (see “Data Style
and Color” on page 532). Fieldname is the name of the field that you
want to determine the style of. The function returns a text data item list-
ing all the styles that apply to this field in the current record. The possible
styles are:

bold
italic
underline
shadow
black
red
green
blue
cyan
magenta
yellow

The example below selects all the records where the name is bold.

select fieldstyle(Name)="bold"

 It there is more than one style for a cell, this function will list each one.
The example below will select all records where the name is italic, even if
other styles also apply (for example bold italic or underline italic).

select fieldstyle(Name) contains "italic"

 This final example selects all the records where the name is plain (no
styles at all).

 select fieldstyle(Name)=""

listchoices(field,separator) Page 5472

This function builds a text array containing a list of all the values stored
in a specified field. (Note: this function is not related to the choices data
type.) There are two parameters: field and separator. Field is the name of
the field that contains the values you want to build a list of. Separator is
the separator character for the text array you are building (see “Text
Arrays” on page 1257).

The lischoices(function scans the specified field and builds a list of all the
values stored in that field. The list is returned in the format of a text array.
Here is a formula that builds a list of the states in the current database.

listchoices(State,¶)

Function Reference
Page Description

Chapter 23:Formulas Page 1333
seq() Page 5724

This function returns a sequential numbers (1, 2, 3, etc.). This function
only works in conjunction with the formulafill , select , find and
arrayfilter statements.

When it is used with the formulafill , find or select statements (see
“FORMULAFILL” on page 5271, “FIND” on page 5242, and “SELECT”
on page 5707), the seq() function return a sequential number for each
record (the first selected record is 1, the second is 2, etc.).

When it is used with the arrayfilter statement (see “ARRAYFILTER”
on page 5042), the seq() function returns a sequential number for each
element in the array being processed (the first array element is 1, the sec-
ond is 2, the third is 3, etc.).

When it is used at any other time, the seq() function returns the number 1.

This procedure uses the seq() function to select the first 10 records in the
database:

select seq() ≤10

uniqueid(field,root) Page 5867

This function is designed for generating unique ID codes for each record
in a database. The function generates ID codes with a text root and a
numeric suffix (for example Jeff261). By using the machine name as the
text root you can guarantee that the ID will be unique even for multiple
copies of the database on different machines.

The function has one parameters: field and root. Field is the name of the
field that will contain the ID code. The function needs to know the name
of this field so that it can scan the field to find an ID code that has not
been used yet. The field name should be surrounded by quotes. For
example, if the name of the field is ID, you should use "ID" as the param-
eter. Root is the text root that the ID code will be based on. This root may
contain any kind of character, but it should not end with a numeric digit.
To get a root that will be unique for each different computer you have,
use the info("user") function for the root. This function returns the
user name specified in the Sharing Setup control panel.

Although you may find other uses for it, the uniqueid(function was
designed specifically for creating unique Smart Merge serial numbers.
Whenever a new record is added to a database that supports Smart
Merge you must make sure that the ID and Modified fields are filled in.
The best way to do this is to add a .AddRecord automatic procedure to
your database. The two lines shown below will fill in the proper values.

Modified=superdate(today(), now())
ID=uniqueid("ID",info("user"))

The uniqueid(function will scan the ID field to find the next serial num-
ber available. For example, if you are using a computer with a user name
of Sam and the highest Sam serial number is 296, the uniqueid(function
will return the value Sam297.

info("bof") Page 5357 This function returns true if the database is currently on the first visible
record. (Note: "bof" stands for "beginning of file".)

info("changes") Page 5360 This function returns the number of changes that have been made to the
current database since the last time it was saved.

info("cursorrectangle") Page 5362

This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy((see “Rectangles” on page 1304) function to convert to window or
form relative co-ordinates).

info("databasename") Page 5364 This function returns the name of the current database. If the database
name has a .pan suffix, that suffix is not included.

Function Reference
Page Description

Page 1334 Panorama Handbook
info("datatype") Page 5365

This function returns the data type of the current field. The function
returns a number from 0 to 10:

 0 Text
 1 Choice
 2 Choice
 3 Picture
 4 Date
 5 Floating Point
 6 Integer
 7 Fixed 1 Digit (#.#)
 8 Fixed 2 Digits (#.##)
 9 Fixed 3 Digits (#.###)
10 Fixed 4 Digits (#.####)

info("empty") Page 5368

This function returns true or false depending on the result of the last
select operation. If no records were selected the function will return true,
otherwise it will return false. The procedure below selects all records that
are "Ready", whatever that means. If there are any ready records, the pro-
cedure prints them.

select Status="Ready"
if info("empty")

 message "Nothing ready today!"
 stop

endif
print dialog
field Status
formulafill "Printed"

info("eof") Page 5369 This function returns true if the database is currently on the last visible
record. (Note: "eof" stands for "end of file".)

info("expandable") Page 5371
This function checks to see if the current record is a collapsed summary
record. It returns true if the record is a collapsed summary record, false if
it is a data record or an already expanded summary record.

info("fieldname") Page 5372 This function returns the name of the current field.

info("found") Page 5378

This function returns true or false depending on the result of the last
find or next statement (see “FIND” on page 5242). If the last find or
next found something, this function will return true. Otherwise it will
return false.

info("records") Page 5407

This function returns the total number of records in the current database.
To find out the number of selected records, use info("selected")
(see below).

This example checks to see if all records are selected. If some records are
not selected, the procedure does a selectall statement.

if info("selected") <info("records")
 selectall
endif

info("selected") Page 5412
This function returns the number of selected records in the current data-
base. To find out the total number of records, use info("records")
(see above).

Function Reference
Page Description

Chapter 23:Formulas Page 1335
info("stopped") Page 5423

This function returns true or false depending on the result of the last
uprecord , downrecord , left or right statement. If the statement
could not move the active cell because the active cell was already as far as
it could go, the function will return true. Otherwise it will return false.

info("summary") Page 5425 This function returns the summary level of the current record, from 0
(data record) to 7 (see “3-Step Summarizing” on page 453).

info("tabdown") Page 5427 This function returns true if the tab down option is on, false if the tab
down option is off (see “Tab Down” on page 381).

Function Reference
Page Description

Page 1336 Panorama Handbook
Window, Form and Report Information

These functions return information about the current database and its windows, forms reports and objects.

Function Reference
Page Description

extrapages(pagelist) Page 5210

This function is used to control the printing of extra pages This function
must be used in an auto-wrap text object, it has no effect in any other sit-
uation. Pagelist is a text item listing the extra pages that should be
printed. For example, if you want to print data tiles 3 and 5 the page list
should be "35". See “Selectively Printing Multiple Pages per Record” on
page 1121.

findwindow(point) Page 5247

This function checks to see if a point (in screen relative co-ordinates) is
inside any Panorama window. If it is inside a window, this function
returns the name of the window. Point is a point, which must be in screen
relative co-ordinates. All measurements are in pixels (1 pixel = 1/72 inch).

The function returns a text item. If the point is inside a Panorama win-
dow, the function returns the name of the window. You can use the win-
dow statement to bring this window to the top. If the point is not inside
any Panorama window the function returns empty text ("").

This illustration shows a window and two points. The green point is
inside the window, so the findwindow(function will return the window
name, in this case Sample:Form. The purple point is not inside the win-
dow, so the findwindow(function will return "".

Chapter 23:Formulas Page 1337
formtype(database,form) Page 5267

This function returns the form type (a number) for any form in any open
database. The form type is a number that you can set up using the Form
Comment dialog in the Setup menu (see “Form Comments” on
page 1733). Database is the name of the database that contains the form.
The database must be currently open. If this parameter is empty text ("")
the current database is assumed. Form is the name of the form.

This function returns a number (integer) from 0 to 255. The value of this
number depends on the Primary Purpose of Form area of the Form Com-
ment dialog (in the graphics mode Setup Menu.) There are predefined
radio buttons for 1) Data Entry, 2) Printing, and 3) Dialog and other. Or
you may enter any value from 0 to 255 in the Custom area. The default
value of a form is 0 (unknown).

listwindows(file) Page 5475

This function builds a text array containing a list of all the open windows
associated with a particular file. File is the name of the database file that
you want to list the windows of. This should be the name of an open
database. If the file parameter is empty ("") the listwindows(function will
list all open windows, no matter what database they are in.

The function scans the windows and builds a text array using carriage
returns (¶) as separators (see “Text Arrays” on page 1257). The windows
are listed in order from front to back.

Function Reference
Page Description

Page 1338 Panorama Handbook
objectinfo(option) Page 5554

This function returns information about a graphic object: its location, size,
color, font, etc. This function must be used in combination with either the
object (see “OBJECT” on page 5552), selectobjects (see “SELEC-
TOBJECTS” on page 5718) or changeobjects (see “CHANGEOB-
JECTS” on page 5094) statement.

Option is the type of information you want to retreive about an object.
You must pick the option from the list below:

objectinfo("rectangle")
objectinfo("ID")
objectinfo("name")
objectinfo("fieldname")
objectinfo("type")
objectinfo("custom")
objectinfo("font")
objectinfo("textsize")
objectinfo("textstyle")
objectinfo("alignment")
objectinfo("color")
objectinfo("selected")
objectinfo("locked")
objectinfo("expandable")
objectinfo("expandshrink")
objectinfo("tile")
objectinfo("text")
objectinfo("fillpattern")
objectinfo("linepattern")
objectinfo("linewidth")
objectinfo("count")
objectinfo("boundary")

See the reference page for details on each of these options.

overflow() Page 5584

This function is used with auto-wrap text objects and an overflow report
tile to print text or graphics that won’t fit on a single page. For example,
you can use this function to help print multiple page letters. See “Printing
Data that Overflows a Page” on page 1122 for more information on using
this function.

Function Reference
Page Description

Chapter 23:Formulas Page 1339
textdisplay(color,style) Page 5849

This function works with Text Display SuperObjects™. By using this
function as the first part of the formula in a Text Display SuperObject™
you can control the color and style of the text on the fly (see “Controlling
Text Display Color and Style on the Fly” on page 669). For example, you
can automatically display all negative numbers in red. (Advanced note:
The textdisplay(function actually generates a special header that is inter-
cepted and removed by the Text Display SuperObject™. The header con-
tains information the Text Display SuperObject™ uses to select the style
and color.)

This function has two parameters: color and style. Color is the color that
should be used to display the text. See the rgb(function. If you pass "" for
this parameter the text will be displayed in the normal color for this
object. Style is the style or combination styles that should be used to dis-
play the text. For a single style by itself simply use the name of the style:
"Plain", "Bold", "Italic", "Underline", "Outline" or
"Shadow" . If you want to combine multiple styles together you must
specify the style numerically. Add up the numbers for the styles you want
from the table listed below. For example, for bold italic text the style
should be 3.

 0 Plain
 1 Bold
 2 Italic
 4 Underline
 8 Outline
 16 Shadow

info("activesuperobject") Page 5355
This function returns the name of the currently active text editor or word
processor SuperObject, if any. If no such object is currently being edited,
the function returns empty text ("").

info("buttonrectangle") Page 5358

This function returns a rectangle defining the edges of the button that
was clicked on (needless to say, this function should be used in a proce-
dure that is triggered by a button). The rectangle is in screen relative coor-
dinates (use the xytoxy(function to convert to window or form relative
co-ordinates).

info("cursorrectangle") Page 5362

This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy((see “Rectangles” on page 1304) function to convert to window or
form relative co-ordinates).

info("formcolor") Page 5375
This function returns the background color of the current form (see “Col-
ors” on page 1308). If the current window does not contain a form, the
function will return empty text ("").

info("formcomment") Page 5376 This function returns the form comment that has been set up for the cur-
rently open form (if any). See “Form Comments” on page 1733.

info("formname") Page 5377 This function returns the name of the current form. If the current window
does not contain a form, the function will return empty text ("").

Function Reference
Page Description

Page 1340 Panorama Handbook
info("matrixcell") Page 5388

This function is designed to be used with Matrix SuperObjects™ (see
“Matrix Formulas (What cell is this?)” on page 972). The function returns
the cell number within the matrix, starting with 1 in the upper left hand
corner. If the matrix order is horizontal, then the cell numbers will be con-
secutively numbered from left to right in each row. If the matrix order is
vertical, then the cell numbers will be consecutively numbered from top
to bottom in each column.

The illustration shows two matrixes with the cell number displayed in
the upper right hand corner. The matrix on the left has vertical cell order,
the matrix on the right has horizontal cell order.

info("matrixcolumn") Page 5389

This function is designed to be used with matrix SuperObjects™ (see
“Super Matrix Objects” on page 958). The function returns the column
number, starting with 1 for the left hand column and increasing by one
for each column to the right.

The illustration shows the columns and rows for a Matrix SuperObject.

info("matrixrow") Page 5391

This function is designed to be used with matrix SuperObjects™. The
function returns the row number, starting with 1 for the top and increas-
ing by one for each row as you go down.

The illustration above the columns and rows for a matrix SuperObject.

info("maximumwindow") Page 5392
This function returns the largest possible rectangle for this window. This
can be controlled by setting up an Auto Grow SuperObject for this win-
dow (see “Maximum Window Size” on page 947).

info("minimumwindow") Page 5393
This function returns the smallest possible rectangle for this window.
This can be controlled by setting up an Auto Grow SuperObject for this
window (see “Maximum Window Size” on page 947).

info("pagenumber") Page 5400

When printing, this function returns the current report page number. This
function is designed to be used as part of an auto-wrap text object or Text
Display SuperObject™ in a report form. See “Page Numbers” on
page 1106.

info("reportcolumns") Page 5408

This function returns the number and direction of report columns that
have been set up for the currently open form (if any). The function
returns a text string that contains the number of columns followed by the
direction, for example "3 Down" or "2 Across". See “Controlling the Num-
ber of Columns” on page 1147.

info("rulers") Page 5409
This function returns the current measurement units for the ruler in this
form. The function may return five possible values: Inches, Centimeters,
Pixels, Deca-Pica, or Deca-Elite. See “Rulers” on page 563.

Function Reference
Page Description

Chapter 23:Formulas Page 1341
info("screenrectangle") Page 5411
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

info("typeofwindow") Page 5432

This function determines what type of window the current window is.
The window may be one of the types listed below:

Data Sheet
Form (Data Mode)
Draw (Graphics Mode)
View As List
Design Sheet
Cross Tab Sheet
Floating Input Window
Procedure
Flash Art Gallery
Clipboard
Memory Usage
Print Preview

info("windowbox") Page 5439

This function returns the dimensions of the current window in screen rel-
ative co-ordinates. All four dimensions are returned in a text string, for
example "34 123 490 630". This is a “classic” Panorama function that is
retained for compatibility with older databases. For new applications we
recommend using the info("windowrectangle") function (see
below).

info("windowdepth") Page 5440

This function returns the pixel depth of the current window. This table
shows the possible values:

 1 Black and White
 2 4 color
 4 16 color
 8 256 color
16 Thousands of colors
32 Millions of colors

 If the window crosses over two monitors with different pixel depths, the
info("windowdepth") function will return the lower value.

The formula below could be used in a Flash Art object. If this is a black
and white monitor it displays the picture bwSky, otherwise it displays the
picture Sky.

?(info("windowdepth)=1,"bwSky","Sky")

info("windowname") Page 5442 This function returns the name of the current window.

info("windowrectangle") Page 5443
This function returns a rectangle (see “Rectangles” on page 1304) defin-
ing the edges of the current window. The rectangle is in screen relative
coordinates.

info("windows") Page 5444
This function builds a carriage return separated text array (see “Text
Arrays” on page 1257) containing a list of all the currently open win-
dows. The windows are listed in order from front to back.

Function Reference
Page Description

Page 1342 Panorama Handbook
SQL Database Information

These functions provide information about the SQL database associated with the current Panorama database
(if any).

info("windowtype") Page 5445

This function determines what number type the current window is. The
window number may be one of the listed below:

 2 = Data Sheet
 5 = Form (Data Mode)
 6 = Draw (Graphics Mode)
15 = View As List
 7 = Design Sheet
10 = Cross Tab Sheet
 1 = Desk Accessory
 3 = Floating Input Window
 8 = Procedure
11 = Flash Art Gallery
13 = Clipboard
12 = Memory Usage
14 = Print Preview

Function Reference
Page Description

info("plugandrun") Page 5405

This function tells how Panorama will resolve conflicts between the client
and server when the client database is reconnected to the server after
being used off line. There are four possible modes:

off This is the value that will be returned if this is a single user Panorama
database that is not linked to an SQL server database.

client This means that if a record has been modified by both the client
and the server, the clients changes will be kept and the servers changes
will be discarded.

server This means that if a record has been modified by both the client
and the server, the servers changes will be kept and the clients changes
will be discarded.

manual This means that if a record has been modified by both the client
and the server, the user will be presented with a list of the changed record
and allowed to "cherry pick" which records to keep.

info("serverfile") Page 5417 This function returns the name of the SQL database linked to this Pan-
orama database, if any.

info("serverrecordid") Page 5418

This function returns the internal serial number on the server of the cur-
rent Panorama record. This number is guaranteed to be unique in this
database if this is a SQL connected database. If this is a standalone data-
base, this function will return zero for all records. This function will also
return zero for new records created while disconnected to the server.
These new records are not assigned an internal serial number until the
next time the database is synchronized with the server.

Function Reference
Page Description

Chapter 23:Formulas Page 1343
info("serverrecordts") Page 5419

This function returns the internal "time stamp" number Panorama uses to
determine which records need to be synchronized. By itself, this number
is basically meaningless. However, if the time stamp for record A is
higher than record B, then record A was edited later than record B. If this
is a standalone database, this function will return zero for all records.
This function will also return zero for new records created while discon-
nected to the server. These new records are not assigned an internal time
stamp until the next time the database is synchronized with the server.

This function is intended for debugging purposes only. It is included here
for completeness. However, it could possibly have useful non-debugging
purposes.

info("serverstatus") Page 5420

This function returns the connection status of the SQL database linked to
this Panorama database, if any. There are four possible values:

Standalone (Read/Write) This is the value that will be returned if this is a
single user Panorama database that is not linked to an SQL server data-
base.

Connected (Read/Write) This is the value that will be returned if this is a
multi user Panorama database that is linked to an SQL server database,
and the link is currently open with full record locking.

No Connection (Read/Only) This is the value that will be returned if this
is a multi user Panorama database but there is currently no network con-
nection to the SQL server database. For example the user might be using
this database on a laptop computer with no connection to the server. This
database does not allow off-line editing, so the database cannot be edited.

Standalone (Read/Write) This is the value that will be returned if this is a
multi user Panorama database but there is currently no network connec-
tion to the SQL server database. For example the user might be using this
database on a laptop computer with no connection to the server. This
database does allow off-line editing, so the database may be edited. The
changes made off-line will be saved and synchronized the next time the
server is available.

info("servertimeout") Page 5421

This function returns the maximum time Panorama will keep a record
locked with no keyboard or mouse activity. This timeout can help prevent
a user from starting to edit a record and then walking away from the
computer and leaving the record locked and unavailable to other users
indefinitely. The time interval is specified in seconds. A timeout value of
zero indicates no timeout (infinite time).

info("subsetformula") Page 5424

The info("subsetformula") function returns the formula used to extract
the current local subset from the server database. If the local database
contains a copy of the entire server database (select all) the result will be
an empty string ("").

Function Reference
Page Description

Page 1344 Panorama Handbook

Chapter 24: Procedures

Right out of the box, Panorama is a very flexible program. Its built in menus and tools bring incredible power
to your fingertips. In spite of this power, however, Panorama is a general purpose tool. To get the most out of
Panorama you’ll want to customize it to meet the specific needs of your business or industry. Doing this takes
an up front investment of time and/or money. But if done properly, the payoff can be huge—a tool optimized
specifically for running and organizing your business or life, not someone else’s idea of how things should be
done. You’ll save time, reduce errors, and look more professional to your customers, vendors, employees
and/or supervisors.

Programming Isn’t Magic!

If you’ve never programmed before, the idea of programming may seem like magic. But really there’s noth-
ing magic about it at all. Programming doesn’t really add any new features or capabilities to Panorama. Any-
thing that can be done with programming can also be done manually with Panorama’s standard menus and
tools.

If programming doesn’t add any new features, what is it for? Many database tasks take more than one step to
complete. To set up a report, for example, you may need to select certain information, sort the database, and
perform calculations. A program allows you to define such a sequence of steps in advance. Once the
sequence of steps is defined, you don’t have to perform that sequence of steps manually any more. Simply
ask the computer and it will perform the steps for you, flawlessly and at the highest possible speed. This lets
the computer do what it does best, remember things accurately, and frees your mind for more important
tasks. Eventually you can teach Panorama all the everyday tasks you need for running your organization. Of
course every journey begins with a single step, so let’s get started!

Introduction to (Panorama) Programming

The next few pages introduce the fundamentals of programming with Panorama. You’ll learn how complex
programs are assembled from a series of small steps, and you‘ll learn the nuts and bolts of actually creating
and using programs. If you are experienced with other programming languages like C or Basic, much of this
material will be familiar to you already. If not, welcome to the exciting world of computer programming!

Page 1346 Panorama Handbook
Procedures

A complete program is assembled by combining a series of steps together so that they perform a complete
task. In Panorama this complete series of steps is called a procedure. Each procedure performs a complete
task from start to finish.

Each database can contain many procedures—one for each task that needs to get done in that database. To
help keep all these procedures straight, Panorama requires you to give each procedure a unique name. The
procedure name is used whenever you need to refer to the procedure—in a menu, a button, etc. All of the
procedures in a database are listed in the View menu.

You can view a procedure by selecting it from this menu (“Switching Between Views” on page 302). You can
also open the procedure in a new window (see “Opening More Than One Window Per Database” on
page 303) by holding down either the Control key (Macintosh) or the Alt key (Windows) while you select the
procedure from the View menu.

Statements

As mentioned in the previous section, a procedure is simply a series of steps. Programmers have a special
name for these steps—they call them statements. Each statement is simply a single step to be performed by
the computer. Most statements start with a special word (sometimes called a command or keyword) that tells
Panorama what the statement should do, for example SortUp , Select , Print , Open. Panorama under-
stands several hundred different keywords that perform a wide variety of operations.

A statement may consist of a keyword all by itself, for example SortUp or CloseWindow . However, many
keywords also require additional options, for example Open "MyDatabase" or Select Price>200 .
These additional options are called parameters. If a keyword uses parameters, they must follow the keyword
in the program.

(Note to experienced programmers: Unlike many programming languages, Panorama’s keywords or com-
mands are not reserved words. This means, for example, that you can use a database column named Print or
create a variable named Open. These names are perfectly OK in Panorama’s programming language. How-
ever, using keywords in this way could easily result in programs that are very confusing to read, so we rec-
ommend that you avoid keywords when you are defining fields and variables.)

procedures in this database

Chapter 24:Procedures Page 1347
A Simple Procedure in Action

Let’s take a look at a simple procedure and see how it works. This procedure is part of a Checkbook database
and contains six statements. In this procedure each statement is on it’s own line, but as you’ll see later this is
not necessary.

To use a procedure you need to trigger it somehow. The most straightfoward method is to simply select the
procedure from the Action menu.

Once the procedure is triggered Panorama begins performing the steps in the procedure. You can watch as
Panorama rapidly performs each step, kind of like a fast action “Keystone Kops” movie.

Page 1348 Panorama Handbook
Let’s take a look at how Panorama performs each of the steps in our sample procedure, starting with step
number 1.

select Debit>0

This first statement selects a subset of the data. Panorama performs this step exactly as if you had chosen the
Find/Select command (see “The Find/Select Dialog” on page 435) and filled in the dialog like this. (However
since Panorama already knows what to do it doesn’t actually display this dialog.)

The result of this step is that a subset of the database is now selected.

step #1

Chapter 24:Procedures Page 1349
On to step number 2.

field Category

Many Panorama operations require you to click on a field before you perform an operation. For example, to
sort or group by a particular column you would first click anywhere in the column. In a procedure this is
accomplished with the field statement. If you watch quickly you’ll see the cursor jump over to the Cate-
gory column as Panorama performs this step.

step #2

Page 1350 Panorama Handbook
Now Panorama is ready for step number 3.

groupup

This statement tells Panorama to group the database, just as if you had selected Group Up from the Math
menu (see “STEP 1 - GROUP” on page 459).

step #3

Chapter 24:Procedures Page 1351
On to step number 4.

field Debit

If we were performing this sequence of steps manually we would now click on the Debit column.

step #4

Page 1352 Panorama Handbook
Next is step number 5.

total

This statement is the same as choosing the Total command from the Math menu (see “Total” on page 463).

step #5

Chapter 24:Procedures Page 1353
And now for the final step, number 6.

outlinelevel 1

This statement is the same as choosing the Outline Level command from the Sort menu (see “The Outline
Level” on page 469). The parameter on this statement, 1, tells Panorama to simulate pressing the 1 button in
the dialog. (Once again, since Panorama already knows what to do it doesn’t actually display the dialog.)

Here’s the final result after all six statements have completed.

Pretty simple, is it not? This is the basic operation of any procedure — first the procedure is triggered, then
Panorama performs each statement from top to bottom. (Later you’ll learn several ways to change the top to
bottom order when it is necessary, see “Control Flow” on page 1376.)

Creating a Procedure with the Recorder

A basic procedure like the one in the last section is very easy to create with Panorama’s built in procedure
recorder. The procedure recorder is like a tape recorder that records your actions as you work. Recording a
procedure is a four step process— 1) start the recorder, 2) perform the steps while Panorama records, 3) stop
the recorder, and 4) give the new procedure a name.

step #6

Page 1354 Panorama Handbook
To start the procedure recorder, click the Record Procedure tool (available in the Data Sheet and Form tool
palettes (unless you are in Graphics Mode)).

The “reels” on the recorder tool will begin to spin. This lets you know that Panorama is recording your
actions.

Once the recorder is running just continue to use Panorama normally. Panorama will record every menu
command or tool that you use. To demonstrate the recorder we’ll create a short procedure that calculates the
grand total. Start by clicking anywhere in the Debit field.

tape reels spin when recorder is on

Chapter 24:Procedures Page 1355
Next choose Total from the Math menu. Panorama calculates the total.

Our simple procedure is complete. To stop the recorder, click on the Record Procedure tool again. The “reels”
will rewind and stop and a dialog box appears. This dialog box allows you to give your new procedure a
name, up to 25 characters. Pick a name that will help you remember what the procedure does, for example
Print Invoices or Balance Checkbook.

Once you have entered the name, press Create Procedure.

Tip: There are five characters you should not use in a procedure name unless you know what you are doing.
The five characters are: ^ ; < (/. Later in this manual you’ll learn how these characters can be used to cre-
ate special effects in the Action Menu (see “Action Menu Options” on page 1442).

Once you have given the recording a name, the new procedure is added to the end of the Action Menu. (If the
database doesn’t already have a Action Menu, it will be created.)

Page 1356 Panorama Handbook
You can play back your new procedure at any time by selecting it from the Action Menu. To view the state-
ments in the new procedure you can open it with the View menu (hold down the Control key (Mac) or Alt
key (PC) to open the procedure in it’s own new window.)

Our simple recording contains two steps. You can use the procedure “as is” or you can customize it further.

Recording Mouse Clicks

Panorama does not normally consider clicking the mouse to be a step—clicking the mouse is not a menu
command or tool. However, if you click on a different window or a different field within the current window,
Panorama will record that step. The recorder will ignore all other mouse clicks (for example, clicking on the
scroll bar, dragging a window to a new position or changing the size of a window, etc.).

Panorama never records the row position of a click. If you look back at the previous section you’ll notice that
I clicked on check number 1915 when I recorded the procedure. However, this information was not recorded.
When the procedure is played back Panorama will not move to check number 1915, but will stay on whatever
check it is already on. The total statement doesn’t care as long as the column (field) is correct.

If you do want Panorama to move to a specific record you’ll need to use the find statement (see “FIND” on
page 5242). You can either create this during recording using the Find/Select dialog (see “The Find/Select
Dialog” on page 435) or simply by typing it into the procedure window. Here’s a modified version of the pro-
cedure that moves to check number 1915.

Of course this example doesn’t make much sense because Panorama will only be on check number 1915 for a
fraction of a second before the total statement makes Panorama jump to the end of the database.

Non Recordable Menus and Tools

A couple of pages ago we told you that Panorama records every menu and tool when the recorder is on.
Sorry, but that was a lie. Some menus and tools are not recordable. Most commands and tools that work with
graphics cannot be used. For example, Sort Up, Insert Record, and Print can be used as steps in a procedure,
but Bring to Front, Oval, and Align cannot. In general, only actions that affect data can be included in a pro-
cedure. If the recorder is on and you attempt to use a menu command or tool that cannot be used as a step in
a procedure, Panorama will alert you.

Chapter 24:Procedures Page 1357
As long as you stick with the Data Sheet and Data Access Mode Forms you’ll usually be fine.

Recording Data Entry

Panorama doesn’t do a very good job of recording data entry. Instead of using the recorder we recommend
that you use assignment statements to perform data entry, as shown in this example.

You cannot record these assignment statements, you have to type them in manually. See “Assignment State-
ments” on page 1367 for more information on assignment statements.

Writing a Procedure from Scratch

If you want to write a procedure from scratch (instead of using the recorder), the first step is to create a new,
empty procedure. To do this select New Procedure from the View menu.

Selecting New Procedure normally creates the new procedure in the same window you are currently in. It’s
often convenient to create the new procedure in a new, separate window, leaving the original window open.
That way you can easily flip back and forth between your database window (data sheet or form) and the pro-
cedure window. To open the new procedure in a separate window hold down the Control key (Macintosh) or
Alt key (Windows) as you click on the View menu.

After you select New Procedure this dialog appears.

Page 1358 Panorama Handbook
Type in the name of the new procedure, then press OK. The name may be up to 25 characters long, and must
be unique within this database. Tip: There are five characters you should not use in a procedure name unless
you know what you are doing. The five characters are: ^ ; < (/. Later in this manual you’ll learn how these
characters can be used to create special effects in the Action Menu (see “Action Menu Options” on
page 1442).

After you press the OK button a new, empty procedure is created, and the window switches to show you this
new procedure. If you held down the Control key (Mac) or Alt key (Windows) the new procedure will open
in a new window just below and to the right of the original window, like this.

original window (in this case, the data sheet)

new procedure window

Chapter 24:Procedures Page 1359
Writing Statements

Once you have created an empty procedure you can start adding statements to the procedure. If you know
the keywords for the statements you want to use, just type them in. For example, if you want to sort the data-
base in ascending order just type in the statement SortUp . By the way, the capitalization of statements
doesn’t matter, so you could also type sortup , SORTUP, or even SoRTuP. However, keywords are always a
single word with no blanks, so sort up will not work.

If you don’t know the exact keywords for the operations you want the procedure to perform, you have a cou-
ple of choices. You could look up the keyword in this manual, then type it in from the keyboard. Or you could
locate the keyword in the Commands menu and let Panorama type in the keyword for you.

You’ll still have to type in any options and parameters yourself, but the Commands menu will type in place-
holders for these values to help remind you that they are necessary (we’ll talk more about options and
parameters later).

statement typed in by Commands menu

parameter placeholders – replace with actual parameters

Page 1360 Panorama Handbook
Here is the finished statement with the actual parameters typed in.

Here is the completed procedure.

This procedure has three statements. The local statement creates a local variable named whatname. The
gettext statement displays a dialog asking to enter a name. Whatever is typed in is placed in the whatname
variable. The find statement searches the database to locate the requested name.

Trying Out a Procedure

You can’t try out a procedure in the procedure window — you have to switch to a window that contains data.
Any window that allows you to display and edit data will do (as long as it is in the same database). If you
opened the procedure in it’s own separate window you can simply click on the original window to bring it
forward. If you opened the procedure the same window you’ll need to use the View menu to switch back to
the data sheet or a form.

Once the data sheet or form window is open and on top, check out the Action menu. You’ll see your new pro-
cedure listed at the bottom of the menu. (Later you’ll learn how to customize the Action menu, see “Action
Menu Options” on page 1442).

In this case the new Find Attendee procedure was the first procedure added to the database, so it’s the only
item in the Action menu. To try out the procedure, select Find Attendee from the menu. Panorama begins
performing the steps in the procedure, starting with the topmost statement.

local whatname

This statement allocates a local variable named whatname for temporary storage (see “Variables” on
page 1221). This operation is completely invisible.

Chapter 24:Procedures Page 1361
On to step 2 —

GetText "Enter Name:",whatname

This statement displays a dialog asking the user to type in some text.

Enter the name you want to search for.

When you press OK the dialog disappears and the procedure continues on with the next statement. Before it
does, however, it copies the text that was typed in into the variable named whatname.

find «First Name»+" "+«Last Name»+" "+«Company Name» contains whatname

This final statement searches three fields in the database to see if they contain whatever text was typed in (see
“Comparison Operators” on page 1282). This database does contain the name wendover, so Panorama jumps
to that record. The name is circled in the illustration below to make it more clear.

Now you have an easy way to locate any person in this database without having to bother with the Find/
Select dialog.

Page 1362 Panorama Handbook
Tip: It’s easy to create a procedure that will search in every field in the entire database. The procedure shown
below will work in any database, and always searches every field.

The secret is the exportline(function (see “EXPORTLINE(” on page 5207), which concatenates every field
in the database together (even numeric and date fields). Try it out for yourself.

Checking for Mistakes

If you write a procedure yourself without using the recorder, you may make a mistake. You might misspell a
keyword, forget to include a parameter, leave off a closing parenthesis, etc. Panorama will not let you use a
procedure until you find and fix all of these mistakes.

To help you find these mistakes Panorama provides the Check Procedure tool or menu command (Edit
menu).

Chapter 24:Procedures Page 1363
This tool scans the procedure looking for misspelled keywords and other mistakes. If it finds an error the sta-
tus bar turns red and contains a description of the error.

Choose Select Error from the Edit menu if you would like Panorama to attempt to highlight the location of
the error for you.

Page 1364 Panorama Handbook
Panorama will identify the spot where it thinks the error occured (see “Mysterious Errors” on page 1364).

Correct the error, then use the Check Procedure tool again to see if there are any more mistakes. Repeat this
process until the Check Procedure tool no longer finds any mistakes in your procedure. (Note: Panorama
also automatically checks your procedure whenever you click on another window, save the database, switch
to another view, or close the window containing the procedure.)

Mysterious Errors

Usually the Check Procedure tool in combination with Select Error is able to pinpoint the exact spot where
the mistake in your procedure is located. Some types of mistakes, however, are not detectable right away, so
Panorama actually will highlight the wrong spot in the procedure. Usually this is caused by a missing endif
statement, mismatched parentheses, or mismatched quotes. If Panorama tells you that there is an error but
the spot highlighted looks ok to you, check carefully above the spot where the error was flagged. The actual
error may be many lines above the spot Panorama has flagged. If you still can’t find the error, try splitting the
procedure into several smaller procedures and checking each piece separately until you find the section con-
taining the error.

Closing the Window When a Procedure is Finished

When you have finished writing a procedure you’ll probably want to close the window for that procedure. If
it is in a separate window, just click on the close box. If it is the only window for the database use the View
Menu to flip to another view. You don’t have to close the procedure window to use the procedure, but when
you are sure it is working properly you will probably want to close it just to cut down on window clutter.

Re-Opening a Procedure

You can change any procedure at any time. Simply open the procedure with the View Menu, then make the
changes. Don’t forget that you can hold down the Control key (Macintosh) or Alt key (Windows) to make the
procedure open into it’s own separate window.

no such statement as “gerbil”

Chapter 24:Procedures Page 1365
Font and Size

The Font and Size submenus (Edit Menu) allow you to change font and size of the procedures in this data-
base. The font and size are always the same for every procedure in the database—you cannot set different
procedures in the same database to different fonts or sizes.)

If you are using a Windows system we recommend that you stick with one of the four fonts installed with
Panorama: Alpine, Block, City or Yankee (the default is Alpine 12). These fonts are designed to be able to dis-
play some of the special characters used by Panorama that are not normally available on Windows systems
(≠, ≤, ≥ etc.)

Adding a Recording to an Existing Procedure

Earlier you learned how to create a new procedure by recording (see “Creating a Procedure with the
Recorder” on page 1353). It’s also possible to use the recorder to add statements to an existing procedure. To
do this, start the recorder normally, and record the steps you want to include. When the steps have been com-
pleted click on the recorder again to stop the recording. When Panorama asks you what name you want to
give the new procedure, click the Cancel button.

Page 1366 Panorama Handbook
Now go to your procedure window and click on the spot where you want the recording to be inserted. Then
choose the Paste Recording tool.

Panorama will insert the recording into the procedure. If necessary you can edit the recorded statements or
use them “as is.”

click to insert recording here

Chapter 24:Procedures Page 1367
Data Flow

The purpose of almost any program is to organize and channel data. Since Panorama is a database, this is
even more true for programs written in Panorama. This section discusses the techniques for storing and
manipulating data within a procedure.

Assignment Statements

An assignment statement computes a value (text or numeric) and stores that value somewhere. Unlike every
other statement, an assignment statement has no specific keyword that identifies the statement. Assignment
statements always have the format shown below:

<data storage location> = <formula>

The first part of the assignment statement is the data storage location. This is the final destination for the data
that is being moved. In fact, sometimes the data storage location is simply called the destination of the
assignment. The data storage location may be a variable, a field in the currently active record, or the clip-
board.

The next part of the assignment statement is the equals symbol. This identifies this statement as an assign-
ment statement.

After the equals symbol is the formula. The formula produces the data that will be stored in the data storage
location. The formula may simply take a variable or field and pass it along, or it may process, calculate or fil-
ter the data before it passes it along to be stored in the data storage location.

Here‘s a simple assignment statement that takes the contents of B and moves it into A. After this statement is
finished both A and B will contain the same value.

A=B

More complicated assignment statements may combine multiple fields or variables, and they may process
the data in some way. An assignment statement may also take a constant value and store it. Here are some
examples:

A=B*C

Name=upper(myName)

City="San Francisco"

In each case, the process is the same. First Panorama calculates the formula to produce a data value. Then it
stores the data value in a data storage location.

Triggering Automatic Calculations

A database can be set up so that when a field is modified by the user, one or more formulas are automatically
calculated (see “Automatic Calculations” on page 406). When an assignment statement modifies a field, how-
ever, these formulas are not automatically calculated. This is to give the procedure programmer the ultimate
control over all calculations that occur during the procedure.

If you as the programmer would like the automatic calculations to be performed during an assignment, add
an extra equal symbol to the assignment. The two equal symbols must be adjacent with no spaces between
them, like this:

Price Ω==19.95

In this example, storing the value 19.95 will most likely trigger several additional calculations to compute the
total for this line item and the total for the entire invoice.

Page 1368 Panorama Handbook
The Define Statement

The define statement is a special kind of assignment statement. This statement defines a value for a vari-
able, but only if that variable doesn’t already have a value. In other words, this statement will initialize the
variable if the variable’s value has not been defined yet, but if the variable already has a value it will not
touch the value.

The define statement has two parameters: the name of the variable and the value for the variable.

 define <variable>,<value>

The example shown below will initialize the variables DefaultAreaCode and TaxRate unless they have
already been initialized.

global DefaultAreaCode,TaxRate
define DefaultAreaCode,"714"
define TaxRate,4.25

Chapter 24:Procedures Page 1369
Variables

A variable is a place in the computer where an item of data can be stored, kind of like a storage bin for a
value. Variables may be created by procedures or by SuperObjects. Most procedures will use one or more
variables to hold and transfer data as the program runs. Use a variable whenever you need to store a single
data item so that you can use it later. Unlike a field, the value variable doesn’t change as you move from
record to record, or, in the case of a global variable, even when you move from database to database.

Creating a Variable

Panorama has five different statements for creating variables within a procedure. The most common one is
the local statement (see “LOCAL” on page 5486), which generates temporary variables that only last until
the procedure is finished. This statement should be followed by a list of the variables to be created, with each
name separated from the next by a comma. This example creates four variables. Because these variables were
created with the local statement they are called local variables.

local alpha,gamma,delta,sigma

Creating a variable is kind of like surveying a lot on empty land. Once the land is surveyed you know where
it is, but the land is still empty until something is built on it. A new variable is like an empty plot of land that
has just been surveyed — it has an address (the name) but it doesn’t have any data yet.

By the way, Panorama allows any sequence of characters to be used as a variable name. However, if the vari-
able name contains any punctuation (including spaces) it must be surrounded by the chevron characters «
and ». (On the Macintosh press Option-\ to create the « chevron character and Shift-Option-\ to create the »
chevron character. On Windows systems press Alt-0171 to create the « chevron character and Alt-0187 to cre-
ate the » chevron character.) Here are some examples of typical variable names:

X

birthDay

Counter

«Tax Rate»

«PrimeRate%»

A variable name must be spelled exactly the same way every time, including upper and lower case. The vari-
able name birthDay is not the same as Birthday or birthday. In fact, you could create three different variables
using these three different names (although this is not recommended because it would be very confusing).

By the way, it’s always ok to use chevrons around a variable name, even if the name doesn’t have any punc-
tuation. «Counter» is exactly the same as Counter, and they can be used interchangeably. So if you have any
doubts about whether or not chevrons are necessary, go ahead and use them. No harm, no foul.

Note: Some programming languages require you to create all variables first, before any other statements.
Panorama isn’t that picky. You can create new variables anywhere in the program. Here is a procedure that
creates four variables, does some work, then creates two more variables.

local alpha,gamma,delta,sigma
alpha=4
gamma="blue"
delta=alpha*3
sigma=delta/alpha

local epsilon,omega
epsilon=0.01
omega="z"

By the way, the indentation is not necessary, it’s simply to make the local statements easier to see.

Page 1370 Panorama Handbook
Assigning a Value to a Variable

Once a variable has been created you can assign a value to it. This is done by putting the variable on the left
side of an assignment statement (see “Assignment Statements” on page 1367) like this.

alpha=4

gamma="blue"

delta=alpha*3

sigma=delta/alpha

A new value can be assigned to a variable at any time. You can assign a value to a variable once or over and
over again a million times. The new value does not have to have anything to do with the old value — you can
store a number in a variable that originally held text or vice versa — Panorama doesn’t care. This line of text
assigns the number 400 to the gamma variable, which originally had a text value stored in it.

gamma=400

Some programming languages allow you to assign a value to a variable without having to create the variable
first. Panorama’s programming language does not allow this. For example, this procedure creates four vari-
ables, then attempts to store a value into a fifth variable, sigmi.

local alpha,gamma,delta,sigma
sigmi=200

When you run this procedure Panorama will complain. Picky picky picky!

In this case the problem is probably a typo, and the variable name in the assignment needs to be corrected. If
this really is a separate variable you must create it first.

Using a Variable in a Formula

Once a variable has been assigned a value you can use it in a formula. A variable may be used anywhere a
field or constant may be used. Here are some typical examples.

alpha*sigma

gamma+" action"

4*alpha/(delta+20)

See “Formula Grammar” on page 1211 to learn more about using variables in a formula.

Chapter 24:Procedures Page 1371
The Birth and Death of a Local Variable

When a lot is surveyed, that lot usually exists more or less forever (barring wars or natural disasters). A local
variable, however, is not nearly that permanent. In fact, local variables only exist until the end of the proce-
dure that they are created in. When the procedure finishes, Panorama checks to see if it created any local vari-
ables. If it did, the values in these variables are dumped out and all record of the variables are destroyed, just
as if they had never existed in the first place. It’s kind of as if you went down to the county recorder’s office
and burned all the survey records for a tract of land.

Why are the local variables destroyed? Two reasons. First, they take up memory that is no longer needed and
can be used for other things. Secondly, this allows different procedures to use the same variable names with-
out having to worry about conflicting with each other. Suppose procedure A and procedure B both have a
local variable named gamma. Since the variable is destroyed when each procedure finishes, neither proce-
dure needs to worry about the other. Each happily creates and uses it’s own copy of gamma, which is then
destroyed before it can interfere with any other procedure.

Note; If you are an experienced programmer you may be wondering about recursion at this point. If you
can’t resist, you can jump ahead to “Recursive Subroutines” on page 1393.

Long Life Variables

Sometimes, of course, you won’t want a variable to be destroyed when the procedure is finished. Panorama
actually has five different kinds of variables, each with different life cycles (local, window, fileglobal, global
and permanent). You’ve already learned about local variables. The next most common type of variable is a
fileglobal variable, which I’m sure you’ll be surprised to learn is created with the fileglobal statement
(see “FILEGLOBAL” on page 5224). Just as with the local statement, the fileglobal statement is followed by a
list of variables to create. This statement creates two variables.

fileglobal Speed,Direction

Unlike a local variable, a fileglobal variable isn’t destroyed when the procedure is finished. It hangs around
and can be used over and over again. However, fileglobal variables don’t last forever. When the database is
closed, the values in these variables are dumped and the variables themselves are destroyed.

As you might guess, a permanent variable has a very long life. However, the life of a permanent variable is
not continuous but interrupted. When the database is closed any permanent variables associated with that
database are destroyed. However, before the variables are destroyed the values are stored in the database
itself. When the database is re-opened later Panorama automatically re-creates the permanent variables
again. (Note: You must save the database. Just as with data in database fields, Panorama only saves perma-
nent variables when the database is saved.)

Another type of long life variable is a global variable. A global variable is not destroyed even when the data-
base that created it is closed. It’s almost immortal. However, when you Quit from Panorama, that’s the end of
the road for global variables. They are not re-created automatically the next time Panorama opens.

A specialized kind of variable is a window variable. This kind of variable is attached to whatever window
was open and on top when it was created. When that window is closed, the variable is dumped. Poof! Win-
dow variables are usually used with clonable forms (see “Window Clones” on page 1556).

Destroying a Variable

If necessary you can use the undefine statement to destroy any variable at any time (see “UNDEFINE” on
page 5863). When you use this statement the variable (or variables) is completely destroyed as if it had never
been created in the first place. This example destroys the varaiables Speed and Direction.

undefine Speed,Direction

Page 1372 Panorama Handbook
You can destroy any kind of variable. If a variable can be accessed, it can be destroyed. Before you destroy a
permanent variable, however, you should first make in un-permanent, like this:

unpermanent timeStamp
undefine timeStamp

It’s rarely necessary to destroy a variable yourself. Panorama automatically destroys local variables when the
procedure open, destroys fileglobal variables when the file is closed, and destroys windowglobal variables
when the window is closed.

Variable Accessibility

Just because a variable exists doesn’t mean you can access it. Many types of variables are “attached” to a file
or a window and are only available when that file or window is active. When the file or window isn’t active,
these variables are “dormant.” They still exist (and take up memory), but you cannot access or modify them
until the file or window they are attached to becomes active again.

Fileglobal and permanent variables are attached to the file that was active when they were created.
When this file is open and on top, the variables are accessible and can be used in a formula or modified with
an assignment statement. When some other file is on top these variables are dormant and cannot be used.

The beauty of this system is that it allows you to create variables without worrying about conflicting with
other databases. Consider the two fileglobal variables created in the previous section, Speed and Direction.
What if some other open database also has variables with these names? As long as both databases use fileglo-
bal variables instead of global variables (see below) they’ll both be all right. Each will have their own separate
Speed and Direction variables. When database A is active it’s variables will also be active while B’s are dor-
mant. When database B is active A’s variables become dormant. Essentially Panorama will keep two com-
pletely separate sets of Speed and Direction variables, each with their own values.

Windowglobal variables are attached to the window that was active when they were created. You can have
multiple cloned windows that use the same variable name but actually each has it’s own separate variable
that is only active when the window is on top (see “Window Clones” on page 1556).

Global variables are always active, no matter what file or window is on top. This is great if you need to have
data that is accessible anywhere at any time. But be careful! If two different databases use the same global
variable they had better be co-operating with each other! Remember thay you may open databases that were
created by other people. Who knows what global variable names they will use? If you do need to use global
variables we recommend that you use very long descriptive names like ProTechSpeed or AcmeSalesTaxRate.
Names like this are more likely to be unique and not conflict with anyone elses global variable names.

Accessing “Dormant” Variables

Fileglobal, permanent and window variables are normally “dormant” when the file or window they are asso-
ciated with is not open and on top (see “Variable Accessibility” on page 1372). However, it is possible to
access the values in these dormant variables with special functions. The grabfilevariable(function (see
“GRABFILEVARIABLE(” on page 5325) can grab the value of a value even if it is dormant. The function
below will grab the value of the Speed fileglobal variable even if the Transpac Race database is not on top (it
must be open, however). Notice that the variable name ("Speed") must be in quotes .

grabfilevariable("Transpac Race","Speed")

The grabwindowvariable(function is similar (see “GRABWINDOWVARIABLE(” on page 5326) except
that it grabs the value of windowglobal variables for windows that are not on top.

Chapter 24:Procedures Page 1373
“Hidden” Variables and Fields

You may wonder what happens if two or more variables are both accessible and have the same name. For
example, what if the current database has a fileglobal variable named Grok and there is also a global variable
named Grok. In this case the global variable is “hidden” behind the fileglobal variable and cannot be
accessed. The global variable will remain hidden as long as this database is active. The table below shows
how different types of variables can hide other types of variables.

As the table shows, variables can also hide database fields if they have the same name. This can especially be
a problem with global variables, which can interfere with any field in any database. (By interfere we mean
that the field will not be accessible in a formula.) Be sure to avoid global variable names like Name, Address,
State, Amount, or any name that might be likely to be used as a database field.

Accessing Variables In Form Objects (Text or Images)

Several different form objects can display the results of a formula.

As long as it is accessible (see “Variable Accessibility” on page 1372) a variable can be used in the formulas
for any of these objects. For example, a Text Display SuperObject may display any global variable, any file-
global or permanent variable created in the same file, or any windowglobal variable created in the same win-
dow.

Since a local variable is created and destroyed within each procedure local variables are not accessible to for-
mulas in form objects. If you want to display a variable in a form it must be a windowglobal, fileglobal, per-
manent or global variable.

Creating Variables with a SuperObject

Variables are usually created in a procedure (see “Creating a Variable” on page 1369). However, several dif-
ferent types of SuperObjects have the option of linking to a variable or a field, and these objects will automat-
ically create the variable if it does not exist. When a variable is created by a SuperObject it is always a global
or fileglobal variable and is initialized to empty text. SuperObjects that can create variables include the Text

Type of Variable Hides these types (if the name is the same)

local all other types of variables and fields

windowglobal fileglobal variables, permanent variables, global
variables and fields

fileglobal
or permanent global variables and fields

global database fields

field nada!

Graphic Objects That Can Display Variables Using a Formula

Auto-Wrap Text (see “Displaying Formulas in Auto-Wrap Text” on page 652)

Text Display SuperObjects (see “Text Display SuperObjects™” on page 658)

Text Editor SuperObjects (see “Text Editor SuperObject” on page 689)

Word Processor SuperObject (see “Merging Data into Word Processing Documents” on
page 756)

Flash Art and Super Flash Art (see “Flash Art™” on page 806)

Data Button (see “Data Buttons” on page 866)

Pop-Up Menu Buttons (see “Pop-Up Menus” on page 884)

List SuperObjects (see “List SuperObjects” on page 898)

Page 1374 Panorama Handbook
Editor (see “Text Editor SuperObject” on page 689), Word Processor (see “Word Processor SuperObject” on
page 720), Data Button (see “Data Button SuperObjects™” on page 867), Pop-up Menu (see “Pop-Up Menu
SuperObjects™” on page 884), List (see “List SuperObjects” on page 898), Sticky Button (see “Sticky Push
Button SuperObjects™” on page 881) and Scroll Bar (see “Scroll Bars” on page 983).

For example, suppose you are working on a form and create a checkbox using the Data Button tool (see
“Data Buttons” on page 866). You select the Variable option and type in the variable name DeluxeOption, as
shown in this illustration.

When the OK button is pressed, Panorama checks to see if you have already created a variable named
DeluxeOption. This may be a global variable, a fileglobal or permanent variable (in this database) or a win-
dowglobal variable (in this window). If the variable has already been created, Panorama will simply use it.
But if there is no such variable, Panorama will create it as a global or fileglobal variable. The default is a glo-
bal variable unless the FileGlobal Variables option is set in the Form Preferences dialog (Setup menu). Except
for how it was created, this variable is just like any other variable and can be used freely in procedures and
formulas.

Panorama actually creates the variable the first time it displays this object. If you shut down Panorama and
then later re-open it, the variable will be created the first time the form is displayed. If database has been
saved with the Save Window Position option turned on (see “Saving Window Positions” on page 213) so that
this form opens automatically the variable will be created immediately when the file is first opened.

variable name

Chapter 24:Procedures Page 1375
Permanent Variable Tips

When the permanent statement creates a permanent variable, it really creates two variables: one in memory
and one in the current database. The one in memory is an ordinary fileglobal variable. Whenever the data-
base is saved, Panorama copies the contents of the fileglobal variable into the copy of the variable in the data-
base itself, then saves the database. Just like any other data, the contents of the permanent variable are not
saved unless the database itself is saved. However, if you have not made any other changes to the database,
Panorama will not warn you if you attempt to close a database without saving changes to the permanent
variable.

Whenever a database is opened, Panorama automatically creates fileglobal variables for any permanent vari-
ables associated with that database. Next it copies the values from the database into the fileglobal variables.
The variables are now ready to use.

If you ever want to make a permanent variable un-permanent, use the unpermanent statement, which is fol-
lowed by a list of variables you want to make unpermanent. This statement doesn’t make the variables go
away, but they will no longer be permanent. The unpermanent statement only affects variables that are per-
manent in the current database. The example below changes two permanent variables back into regular (non-
permanent) global variables.

unpermanent myAreaCode,myZipCode

Page 1376 Panorama Handbook
Control Flow

As it runs a procedure, Panorama usually starts with the first statement in a procedure and works its way
down. However, Panorama is not limited to this kind of linear approach. The procedure can be designed to
make comparisons or decisions and take different steps depending on the result. For example, the procedure
might decide to skip one or more steps, or it might decide to repeat a sequence of steps more than once. The
procedure may even decide to trigger another procedure to help it complete its job. Programmers call this
decision making process control flow, because it controls and possibly alters the flow of statements dynami-
cally as the program is running.

The ability to change the flow of steps “on-the-fly” is the key to programming. A simple example may help
make the utility and power of this concept more clear. Suppose you want to create a procedure that adds fifty
new records to the end of the database. You could simply create a procedure with the AddRecord statement
repeated fifty times. Of course this is inconvenient, and what if you wanted to create 2500 new records?
Instead of repeating the AddRecord statement over and over, you can write a program that repeats a single
AddRecord statement over and over until the proper number of records have been added.

loop
addrecord

until 50

The program is much shorter than if you had literally repeated the AddRecord statement 50 times, and can
be changed easily if you want to add a different number of new records.

Now suppose you want to change this program so that as it adds new records, it alternately puts the word
Black or Gold into the Color field of each record. This requires the program to make a decision for each
record—is this record even or odd? There are several ways this could be programmed in Panorama, The
example below shows just one of them. In this example you’ll notice that all seven steps between loop and
until are being repeated 50 times.

local nextColor
nextColor="Black"
loop

addrecord
Color=nextColor
if nextColor="Black"

nextColor="Gold"
else

nextColor="Black"
endif

until 50

Although this program is quite simple, it illustrates the basic elements of control flow.

True/False Formulas

In Panorama as in most programming languages, control flow decisions are made on the basis of formulas
that are either true or false. The most basic true/false formula compares two values to see if they are equal.

PaymentMethod="C.O.D."

This formula will compare the value in the field PaymentMethod with C.O.D. The result will be true if Pay-
mentMethod is C.O.D., and false if it contains anything else (for example Check, Cash, Visa, etc.). To learn
more about true/false formulas and how to create them see “True/False Formulas” on page 1282.

Chapter 24:Procedures Page 1377
Equals Comparison vs. Assignment

If you have been paying attention you undoubtedly noticed that the formula in the previous section looks
exactly like an assignment. Why doesn’t this formula

PaymentMethod="C.O.D."

assign the value C.O.D. to the field PaymentMethod? At first glance this may appear ambiguous…the same
formula is used to compare two values and to assign a value. How do we know when we are assigning and
when we are comparing? The answer lies in the context in which the formula is found.

In a procedure, an assignment is always by itself, not part of a larger statement. A true-false formula is always
part of another statement, for example if , case , until , while , stoploopif , repeatloopif , find ,
select . Here’s an example that shows two formulas that look almost the same, but one is a true-false for-
mula and one is an assignment.

if PaymentMethod="C.O.D."
ShippingMethod="UPS"

endif

The first formula, PaymentMethod="C.O.D." , is part of the if statement. Because it is part of the if state-
ment this formula means: Is the field (or variable) PaymentMethod equal to C.O.D. (true/false)?

The second formula, ShippingMethod="UPS" , is not part of any statement, but stands alone, so this is an
assignment. The statement means: Take the value UPS and copy it into the field or variable named Shipping-
Method.

If an assignment has more than one equals sign, the first equals sign is for the assignment and the rest are for
comparisons. The example assignment below compares B and C. If they are equal (true) the value -1 will be
copied into A. If they are not equal (false) the value 0 will be copied into A.

A=B=C

In other words, A becomes the result of the comparison between B=C.

True/False Values

For purposes of calculation, Panorama treats true and false as numbers: true is -1 and false is zero. Like any
other number, you can store a true/false value in a field or variable and then use it later. The example below
calculates whether a person is a teenager, then uses that information later.

local Teenager
Teenager=Age ≥13 and Age<20
...
if Teenager

Price=4.50
else

Price=6.00
endif

Notice that the if statement doesn’t need to compare, it simply uses the result of the comparison that was
calculated earlier. In fact, the if statement (and all other statements that use true/false logic) can use any for-
mula that produces a numeric integer result. The value 0 will be regarded as false, and any non-zero value
will be regarded as true. The example below will be true if the length of the name is non-zero.

if length(Name)
yesno "Is this a home address?"
...

endif

The first line of this example could also have been written if length(Name)<>0 . The result is the same
either way.

Page 1378 Panorama Handbook
IF Statements

The basic building block for making decisions in a Panorama program is the if statement. The if statement
will skip over the next few statements (up to the next endif statement) if the true/false formula is false.
Here’s a simple example.

if City=""
City="Pismo Beach"
State="CA"

endif
message City+", "+State

Depending on what’s in the City field, this procedure can work one of two ways. If the City field is empty, the
true/false formula City="" will be true, so the procedure will perform the assignments City="Pismo
Beach" and State="CA" . But if the City field is not empty, the true/false formula will be false, and Pan-
orama will skip past the endif to the message statement.

In this example there are two statements between the if and endif statements. These two statements will be
skipped if the formula is false. However, there is no limit to the number of statements that may be between
the if and endif . Just make sure that there is always a matching endif for every if . Although it is not
required, indenting the statements between the if and the endif usually makes the procedure easier to read
and understand.

ELSE Statements

The else statement turns the if statement into a two way operation: if true, do this, otherwise, do that. You
could do this with two if statements in a row, but the else is simpler.

To use the else statement, place it between the if and endif statements. If the true/false formula is true,
Panorama will perform the statements from the if up to the else and skip the statements from the else up
to the endif . If the true/false formula is false, Panorama will skip the statements from the if up to the else
and perform the statements from the else up to the endif .

The example below calculates sales tax and shipping for both in-state and out-of-state purchases.

if State="CA"
SalesTax=0.08
Shipping=2.50

else
SalesTax=0
Shipping=5.00

endif

If the state is California, the sales tax is 8% and shipping is $2.50. But if the purchase is from any other state,
the sales tax is zero and shipping is $5.00. In this example more or less the same statements are used in both
halves of the if /else , but this is not necessary. The two sections could be completely different.

Nested if Statements

Panorama is not limited to one if at a time. Panorama can make a decision, execute some more statements,
and then make a subdecision. Since the inner if endif pair is completely surrounded by the outer pair, this
is called nesting.

local CardLength
if PaymentMethod="Credit Card"

CardLength=length(CardNumber)
if CardLength<13 or CardLength>16

message "Sorry, invalid credit card number."
endif

endif

Chapter 24:Procedures Page 1379
If the PaymentMethod is not Credit Card, the procedure will skip all the following statements and do noth-
ing. But if the PaymentMethod is Credit Card, the procedure will continue and calculate the CardLength
variable. The second if statement checks the card length. The message statement will only be performed if
both if statements are true.

Error Handling with if error

There are literally hundreds of different errors that can occur while a procedure is running. Of course you’ll
want to eliminate all of the errors in the procedure itself, but many errors are the result of circumstances
beyond the programmers control. A file can fail to open because it was placed into the wrong folder, the user
can enter the wrong data type into a formula, the list is endless. When such an error occurs, Panorama’s nor-
mal response is to display an error message and stop the procedure immediately. (In addition, if the proce-
dure window is open, Panorama will attempt to highlight the location of the error.)

If you want to create a database that operates professionally, simply stopping the procedure half finished if
there is an error may not be acceptable. Instead, you may want your procedure itself to trap the error and try
to correct it, if possible. At a minimum, you may be able to display an error message that is more relevant to
an untrained operator than Panorama’s general purpose error messages.

To trap errors, use the if error statement (two words - there must be a space). This statement must be
placed immediately after the statement that you are worried might cause an error. For example, suppose you
have a procedure that appends a file with the openfile statement. If the file is missing or has been moved
an error will occur. This example checks for that error, and if the error occurs, asks the user to enter a new file
name. The procedure will keep trying until the file is opened successfully or the user gives up and enters an
empty name.

local txFileName
txFileName="New Transactions"
loop

openfile "+"+txFileName
if error

gettext "Enter the file name",txFileName
reloopif txFileName ≠""

endif
while 1 ≠1
if txFileName="" stop endif
/* further processing of the new transactions, below */
...

A very useful trick for if error is checking to see if a global variable has been initialized with a value (see
“Assigning a Value to a Variable” on page 1370). If the variable has already been initialized with a value, you
don’t want to change that value, but if it has not been initialized, you do want to set the value. The example
below checks the AreaCode global variable to see if it has already been set by another procedure. If it has, the
statement xTest=AreaCode will work perfectly. But if AreaCode doesn’t have a value yet, this statement
will produce an error. The if error statement traps the error and sets the AreaCode variable to 714.

fileglobal AreaCode
local xTest
xTest=AreaCode
if error

AreaCode="714"
endif

If you have a lot of variables it may not be necessary to test each one, as long as they are initialized as a group
by any procedure that sets them up. If they are initialized as a group you can just test one variable, then if it
has not been initialized you can initialize the entire group.

If error must be used by itself, you cannot combine other conditions. For example, the statement:

if error and info("modifiers") contains "shift" /* WILL NOT WORK !! */

Page 1380 Panorama Handbook
will NOT work. To get this effect you must nest a second if statement inside the if error, like this.

if error
if info("modifiers") contains "shift"

...
endif

endif

Another way to handle errors is with the onerror statement, which allows you to change Panorama’s
default behavior for handling an error. See “Catching Program Errors (Especially for Web and other Server
Applications)” on page 1405 for details on this statement.

CASE Statements

If a program needs to select one (and only one) option out of many, the case statement is the way to go. Like
the if statement, the case statement uses a true-false formula to decide whether or not to perform the fol-
lowing statements. But unlike the if statement, which is used alone, the case statement is always used in
groups. Panorama checks the true-false formula for each case statement. If it is false, it skips to the next
case statement. If it is true, it performs the statements until the next case statement. Then it skips past all
the rest of the case statement to the endcase statement.

After all the case statements, you may optionally add a defaultcase statement. This will pick up any left-
overs that weren’t included in any of the other cases.

The example below shows how the case statement can be used to divide people up into five age groups.

case Age<5
AgeGroup="Pre-School"

case Age<13
AgeGroup="Youth"

case Age<20
AgeGroup="Teen"

case Age ≥65
AgeGroup="Senior"

defaultcase
AgeGroup="Adult"

endcase

This example has included one statement for each case statement, but there is no limit to the number of
statements that may be included in each section. However, there is a maximum limit of 75 case statements
per endcase statement.

LOOP Statements

A loop allows Panorama to repeat a sequence of statements over and over again. The loop can be repeated a
fixed number of times, or until a special condition is fulfilled.

All loops begin with the loop statement, and end with either until or while . The statements in between
these two statements are said to be “inside the loop.” These are the statements that will be repeated over and
over again. Although it is not required, your procedures will usually be easier to read and understand if the
statements inside the loop are indented.

To repeat the statements inside the loop a fixed number of times, use the until statement with a number
after it. This number may be a fixed number, or a variable or formula that calculates a number. For example,
this procedure will add a dozen shiny new records to the database:

loop
addrecord

until 12

Chapter 24:Procedures Page 1381
To repeat the statements inside a loop until a specific condition is met, put a true/false formula after the
until statement. Like the previous example, this example adds new records to the database. In this case,
however, the number of new records is determined by asking the user (with the gettext statement, see
“GETTEXT” on page 5314).

local NewCount
NewCount="1"
gettext "How many new records?",NewCount
NewCount=val(NewCount)
loop

NewCount=NewCount-1
AddRecord

until NewCount=0

The while statement is the exact opposite of the until statement; it repeats the loop as long as the formula
remains true. Here is the previous example rewritten to use the while statement.

local NewCount
NewCount="1"
gettext "How many new records?",NewCount
NewCount=val(NewCount)
loop

NewCount=NewCount-1
AddRecord

while NewCount>0

These two examples are exactly the same except for the last line.

Note: The while statement can also be followed by the special word forever , which tells Panorama to
repeat the loop forever. Usually this is used with a stoploopif statement to break the loop, otherwise your
procedure won’t ever stop!

Stopping a Loop in the Middle

The stoploopif statement allows Panorama to break out of the loop in the middle (or even at the top),
instead of at the bottom. Panorama will break out of the loop if the true-false formula is true.

The example below finds every record where the field PrintDuplicate contains Yes. Each of these records is
duplicated. But what if there were no such record? The stoploopif statement will stop the loop before it
ever begins. The stoploopif statement also checks each time the loop is repeated to see if the next state-
ment has found another record to duplicate, or if the loop is done.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
copyrecord
pasterecord
downrecord
next

while forever

Notice that this sample uses while forever . This means that the while statement will never stop the loop.

Page 1382 Panorama Handbook
Restarting a Loop in the Middle

The repeatloopif statement tells Panorama to restart the loop from the top. The example procedure below
tries to extract a phone number from the clipboard.

local X,theChar,aPhone
X=1
aPhone=""
loop

theChar=clipboard()[X;1]
X=X+1
stoploopif theChar=""
repeatloopif theChar ≠"(" and aPhone=""
aPhone=aPhone+theChar

until aPhone match "(???) ???-????"

Each time the loop goes around it copies the next character from the clipboard into the variable theChar. If
there are no more characters, the loop stops. Each character is checked to see if it is a left parenthesis. Until a (
is found, the repeatloopif statement stops the loop short, repeating only the top portion of the loop. Once
the (is found the loop starts collecting the following data into aPhone. The loop finally stops when the entire
phone number is collected or the clipboard runs out of data.

Subroutines

Sometimes you may need to use the exact same series of steps in several places in your program. Wouldn’t it
be nice if Panorama had a special statement that performed this series of steps for you, so you wouldn’t have
to type those same steps over and over again? Your programs would be smaller, easier to create, and easier to
modify. You can’t create your own statements, but a subroutine is the next best thing.

A subroutine is used by “calling” it. It’s sort of like calling someone to dinner. When a subroutine is called,
Panorama temporarily stops performing the steps in the current procedure. It marks its place in the current
procedure, and then starts performing the steps in the subroutine. When it has completed all the steps in the
subroutine Panorama goes back to the original procedure and starts off right where it left off. The net effect is
as if the statements from the subroutine were copied into the middle of the original procedure.

When the same steps are used in different places, a subroutine has many advantages. First of all, using a sub-
routine makes the database smaller, because these statements appear only once. An even bigger advantage is
that if the statements in the subroutine ever need to be changed, they will only have to be changed in one
place, instead of over and over again.

It’s possible for the main procedure and the subroutine to pass values back and forth between them. These
are called parameters. Parameters allow very general subroutines to be written that can handle a wide variety
of situations.

CALL Statement

The call statement allows any procedure in the current database to be called as a subroutine. The basic format
is simple:

call <procedure name>

Chapter 24:Procedures Page 1383
For example, suppose you have created a procedure called DuplicateRecord. The procedure looks like this:

We can use this procedure in another procedure by calling it.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
call DuplicateRecord
next

while forever

Each time Panorama repeats the loop it will call the DuplicateRecord procedure. The three steps in that proce-
dure will be performed, then it will return to the loop and perform the next statement. As far as Panorama is
concerned, this is exactly the same as if you had written the procedure this way.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
copyrecord
pasterecord
downrecord
next

while forever

Although there is no difference as far as running the procedure is concerned, there is a big difference for writ-
ing procedures. Suppose you have many procedures that need to duplicate a record. If you create a subrou-
tine to duplicate the record, you can save two lines of typing each time you need to duplicate a record. Most
subroutines have more than three lines, so the savings are even more substantial.

An even more important advantage is that using subroutines allows you to “modularize” your code. You’ll
probably never have to modify the simple code needed to duplicate a record, but more complicated subrou-
tines often need to be adjusted from time to time. If you had simply typed the statements of the subroutine
into each location where they were needed (as shown in orange above) then making the adjustment would be
very time consuming because you would have to locate and modify each copy of the statements. By collect-
ing these statements together in a subroutine you can make any adjustments necessary to the code in a single
location. Every procedure that calls the subroutine will automatically get the benefit of the adjustments.

Calling Procedures With Unusual Names

If a procedure has a space or other punctuation inside the procedure name, you must enclose the procedure
name in quotes, like this:

call "Calculate P/E Ratio"

Quotes are not necessary for a procedure name that contains a period, even if the period is the first character
of the name.

call .DialNumber

Page 1384 Panorama Handbook
It is even possible to calculate the procedure name with a formula. The formula must be surrounded with
parentheses. The example below assumes that there is a dialing procedure for several different fields in the
database, Dial Name, Dial Company, etc. If there is such a procedure for the current field, this procedure will
call it.

call ("Dial "+info("fieldname"))
if error

message "Sorry, can't dial the "+info("fieldname")
endif

If there is no such procedure, the error message will appear.

Passing Values to a Subroutine (Parameters)

There are a couple of ways to communicate values between the original procedure and the subroutine. One is
to simply put the values in one or more fileglobal or global variables.

A more flexible method is to use procedure parameters. A subroutine may have one or more procedure
parameters. Each procedure parameter is numbered, starting from 1. When you call the subroutine, you must
pass the procedure parameters after the subroutine name. Each parameter must be separated from the next
with a comma, like this:

call <procedure>,<parameter 1>,<parameter 2>, …

Each procedure parameter may be a field, a variable, a text or numeric constant, or a complete formula. How-
ever, if you are going to change a parameter with the setparameter statement, that parameter must be a
field or a variable.

Inside the procedure, the programmer can use the parameter(function to retrieve the parameter values
(see “PARAMETER(” on page 5589). This function itself has one parameter: the procedure parameter num-
ber, for example parameter(1) , parameter(2) , etc.

Here is a silly little procedure named Addition that displays the result of an addition problem.

message str(parameter(1))+" plus "+str(parameter(2))+" equals "+
str(parameter(1)+parameter(2))

Any other procedure in the same database can call this procedure with two numeric parameters, like this.

call Addition,4,3

When you run this procedure it calls the subroutine and displays this alert.

Chapter 24:Procedures Page 1385
By changing the parameters you can change the result.

call Addition,35,12

The subroutine grabs the parameters and puts up the result.

Each parameter may be a complete formula containing variables, constants, operators and functions.

call Addition,4*2+3*7,sqr(121)

Panorama will compute each parameter and pass it to the subroutine.

Subroutine parameters can be numbers or text. Here is a procedure named WordStats that takes a single text
parameter.

local words,wordcount,letters
words=parameter(1)
wordcount=arraysize(words," ")
letters=stripchar(words,"AZaz")
message str(wordcount)+" words (average length "+

pattern(length(letters)/wordcount,"#.#")+" characters)"

This procedure can be called as a subroutine like this.

call WordStats,"Now is the time"

Here is the result.

Page 1386 Panorama Handbook
Just as with the previous example you can pass any data you want to this subroutine.

call WordStats,"Dysfunctional institutions instantiate excessive gobbledigook"

The subroutine calculates the new statistics.

Passing Values Back From a Procedure

The subroutine can also change a parameter value using the setparameter statement (see “SETPARAME-
TER” on page 5744). This statement itself has two parameters, the procedure parameter number you want to
change, and new value.

setparameter <number>,<value>

Here’s a procedure named Weekend that decides whether the current day is during the week or on a week-
end.

if datapattern(today(),"DayOfWeek") beginswith "S"
setparameter 1,"Weekend"

else
setparameter 1,"Weekday"

endif

Any other procedure in this database can call this procedure to find out if today is a weekday or a weekend.
This procedure adds a new record to the database on weekdays but not on weekends. The parameter is the
local variable TypeOfDay.

local TypeOfDay
call Weekend,TypeOfDay
if TypeOfDay="WeekDay"

addrecord
endif

A parameter can be passed to a procedure and then back again. Here’s a modified version of the Weekend
procedure that works for any day, not just today.

if datapattern(parameter(1),"DayOfWeek") beginswith "S"
setparameter 1,"Weekend"

else
setparameter 1,"Weekday"

endif

Here is a procedure that uses this revised subroutine. Notice that the DayInfo variable is assigned a value
(December 7, 1941) before being passed to the procedure. The procedure gives the DayInfo variable a new
value (Weekend).

local DayInfo
DayInfo=date("December 7, 1941")
call Weekend,DayInfo
message "Pearl Harbor was bombed on a "+DayInfo

Chapter 24:Procedures Page 1387
An important point to understand is that the subroutine does not know the name of the field or variable it is
modifying. It could be DayInfo, TypeOfDay, or ZippityDoo — it’s up to the procedure that calls the subrou-
tine.

In the previous section you learned that a parameter can be any formula, for example 3*4 or
array(Address,2,ƒ) . However, this is not true for parameters that are modified by the subroutine. A
parameter that is going to be modified must be a field or variable. For example, you cannot call the Weekend
subroutine like this.

local DayInfo
call Weekend,date("December 7, 1941") <--- WRONG
message "Pearl Harbor was bombed on a "+DayInfo

The problem with this procedure is that the subroutine has no idea where to put the result.

Here is a more useful subroutine that uses parameters. This subroutine (named ConvertLength) can convert
one measurement system into another (for example feet into meters).

/* call ConvertLength,dimension,from,to */
local from,to,length
from=lookup(info("databasename"),Units,lower(parameter(2)),Factor,0,0)
to=lookup(info("databasename"),Units,lower(parameter(3)),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

The ConvertLength subroutine is designed to be part of this database, which contains the measurement fac-
tors used by the lookup(functions in the procedure (see above).

Page 1388 Panorama Handbook
Here is a procedure that uses the subroutine to convert 12 inches into feet.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","feet"
message str(original)+"="+pattern(val(converted),"#.###")

The result is this alert.

By making a slight adjustment we can convert 12 inches into centimeters.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","centimeters"
message str(original)+"="+pattern(val(converted),"#.###")

The result is this alert. News flash — 12 inches equals 1 foot.

This procedure/subroutine combination illustrates a quirk in the way Panorama handles numeric parame-
ters. If you look at the original procedure you will notice that it is setting the parameter to a numeric value.

/* call ConvertLength,dimension,from,to */
local from,to,length
from=lookup(info("databasename"),Units,lower(parameter(2)),Factor,0,0)
to=lookup(info("databasename"),Units,lower(parameter(3)),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1, length

However, the setparameter statement always converts numbers to text when it stores the result in a vari-
able. Because of this the calling procedure must use the val(function to convert the number back into a
number again.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","centimeters"
message str(original)+"="+pattern(val(converted) ,"#.###")

Chapter 24:Procedures Page 1389
You’ll need to keep this in mind if your subroutine passes back numeric values. (Note: This quirk could prob-
ably be considered a bug. However, if we fixed it then all of the databases that currently work (by using the
val(function) would suddenly become broken. Therefore we intend to keep it this way.)

What if the parameters don’t match the procedure?

Like a hand in a glove, the procedure parameters supplied as part of the call statement must exactly match
the parameters used by the procedure being called. For example, consider the ConvertLength procedure in
the last example. If you call this procedure, you must supply at least three parameters. (It’s ok to supply more
than three…the extra parameters will be ignored.) If you supply less than three parameters, the Con-
vertLength procedure will stop and an error message will be displayed when it tries to access a missing
parameter.

In addition to having the correct number of parameters, the parameters must also have the correct data type.
In our ConvertLength example, the first parameter supplied must be a number, while the second and third
parameters must be text. If the wrong type of data is passed in the parameter, the procedure will stop and dis-
play an error message when you try to use the value. Here’s the message that appears if a numeric parameter
is passed when a text parameter is required, a similar message appears for the opposite case.

It’s possible to check for missing parameters in a procedure using the if error statement. This allows you
to perform your own action instead of displaying the default error message. Here’s a revised version of the
ConvertLength procedure that displays custom error messages and then stops if a parameter is missing.

/* call ConvertLength,dimension,from,to */
local from,to,length,fromUnits,toUnits
fromUnits=parameter(2)
if error

messaage "From units must be inches, feet, yards, centimeters, etc."
stop

endif
toUnits=parameter(3)
if error

messaage "To units must be inches, feet, yards, centimeters, etc."
stop

endif
from=lookup(info("databasename"),Units,lower(fromUnits),Factor,0,0)
to=lookup(info("databasename"),Units,lower(toUnits),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

Page 1390 Panorama Handbook
Although this example stops if there is a parameter error, that is not absolutely necessary. If you can deter-
mine a reasonable default value for a missing parameter the procedure can simply substitute that value and
continue on its way. Here is another variation of the ConvertLength procedure that defaults to inches if the a
parameter is missing.

/* call ConvertLength,dimension,from,to */
local from,to,length,fromUnits,toUnits
fromUnits=parameter(2)
if error

fromUnits="inches"
endif
toUnits=parameter(3)
if error

toUnits="inches"
endif
from=lookup(info("databasename"),Units,lower(fromUnits),Factor,0,0)
to=lookup(info("databasename"),Units,lower(toUnits),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

Here is a procedure that uses the revised subroutine to converts 12 centimeters into inches.

local original,converted
original=12
converted=original
call ConvertLength,converted,"centimeters" <-- missing parameter defaults to inches
message str(original)+"="+pattern(val(converted),"#.###")

Or the missing parameter can be in the middle of the list like this. In this case 12 inches will be converted into
centimeters.

local original,converted
original=12
converted=original
call ConvertLength,converted ,, "centimeters" <-- missing parameter defaults to inches
message str(original)+"="+pattern(val(converted),"#.###")

Calling a Subroutine in Another Database

The call statement calls another procedure in the current database as a subroutine. (The current database is
the database associated with the topmost window — not necessarily the database the current procedure
belongs to.) The farcall statement can call any procedure in any open database, not just the current one.
The format of this statement is almost identical to the call statement, but you must specify the database
name.

farcall <database>,<procedure>,<parameter 1>,<parameter 2>, …

The database name should usually be in quotes, like this.

farcall "Length Measurments",ConvertLength,converted,"feet","miles"

Chapter 24:Procedures Page 1391
It’s also possible to use a formula to calculate the database name. The example below searches for any open
database with the word Phone in the name, then attempts to call the .Dial procedure in that database.

local X,dbList
dbList=info("files")
X=search(dbList,"Phone")
if X=0

message "No phone database open!"
stop

endif
X=arrayelement(dbList,X,¶)
farcall (array(dbList,X,¶)),.Dial,Name

When the database name is calculated as in this example, the formula must be surrounded by parentheses ().

Terminating a Subroutine in the Middle

The rtn statement (short for return) allows a subroutine to stop short in the middle and return to the original
procedure. Usually when a subroutine is called, all the statements in the subroutine are performed from top
to bottom. But if the rtn statement is encountered, the subroutine stops and immediately goes back to the
original procedure. The rtn statement is almost always used in combination with the if or case statement.

The simple example below dials a local phone number, which is passed to the subroutine in parameter 1. If
no phone number is passed, or if a long distance phone number is passed, the subroutine returns without
doing anything.

local DialNumber
DialNumber=parameter(1)
if error

rtn
endif
if DialNumber="" or length(DialNumber)>8

rtn
endif
dial DialNumber

If the rtn statement is encountered in a procedure that has not been called as a subroutine (i.e. an original
procedure) the procedure will simply stop.

Mini Subroutines within a Procedure

Sometimes you may want to use a short subroutine, perhaps two or three lines. It just seems like too much
hassle to create a separate procedure. For these situations, Panorama allows you to create a subroutine right
inside the current procedure. This special subroutine within a procedure is called a short subroutine.

A short subroutine always begins with a label. A label is a unique series of letters and numbers that identifies
a location within the procedure. The label may not contain any spaces or punctuation except for . and $, and
must always end with a colon. The colon is not actually part of the label, it simply identifies the series of let-
ters and numbers as a label, as opposed to a field or variable. Here are some examples of labels:

diamond:

blue:

mailAction7:

Dispatch.Route:

A short subroutine ends with the end of the procedure, or with a rtn statement. A single procedure may con-
tain many short subroutines, each starting with a label and ending with a rtn statement.

Page 1392 Panorama Handbook
Short subroutines are called with the shortcall statement. This statement is always followed by the name
of the short subroutine (the label). Don’t include the colon here. You must type the label exactly as it appears
at the top of the short subroutine (except for the colon), no quotes, and unlike a regular call statement the sub-
routine name cannot be calculated. The shortcall statement also does not allow parameter passing. Here
are examples of how to call short subroutines.

call diamond

call blue

call mailAction7

call Dispatch.Route

The example below contains a short subroutine called GroupTotal. The short subroutine starts on line 7, with
the label GroupTotal: . This short subroutine performs three steps and then returns to the main section of
the program. The main section of the program calls the subroutine twice, then stops.

field City
shortcall GroupTotal
field State
shortcall GroupTotal
stop

GroupTotal:
groupup
field "Amount"
total
rtn

If the stop statement was not included, the program would continue down and perform the steps in the
short subroutine a third time. In fact, we do this on purpose to produce a shorter version of this program.

field City
shortcall GroupTotal
field State

GroupTotal:
groupup
field "Amount"
total

We’ve also removed the rtn statement at the end of the short subroutine. It’s redundant in this case because
the short subroutine ends at the end of the entire procedure. However, if there were additional short subrou-
tines after this one, all but the last one would require a rtn statement at the end.

Subroutines and Local Variables

Earlier in this chapter you learned that local variables are destroyed at the end of the procedure that created
them (see “The Birth and Death of a Local Variable” on page 1371). Local variables also become dormant
when a subroutine is called (except for short subroutines, see “Mini Subroutines within a Procedure” on
page 1391). At the end of the subroutine the local variables come out of hibernation. Because of this, local
variables created in one procedure cannot be accessed in another procedure. Local variables are always com-
pletely separate.

Chapter 24:Procedures Page 1393
To illustrate this, consider this procedure which creates a local variable named x.

local x
x=2
call test
message x

The procedure test contains only one line which displays the x variable.

message x

However, this subroutine does not work! The x variable is now dormant and is not accessible to the test pro-
cedure. Instead of displaying the value 2, this error message appears.

As a matter of fact, Panorama allows the test subroutine to have it’s own separate x variable, like this.

local x
x=9
message x

Now when the original procedure (see above) is run two alerts appear. The first displays the value 9 (the
value of x set in the test subroutine). The second displays the value 2 (the original value of x which was dor-
mant but re-appeared when the test subroutine was finished).

Recursive Subroutines

A recursive subroutine is a subroutine that calls itself. Some programming languages don’t allow recursion,
but Panorama does allow recursion up to 8 levels deep. Here is an example of a recursive procedure called
AddAddAdd. Notice that it calls itself on line 4.

local x,y
x=parameter(1)
if x>1
 call AddAddAdd ,x-1,y
 y=val(y)+x
else
 y=x
endif
setparameter 2,y

Given an integer, this procedure will calculate the sum of that integer plus all lower integers. For example, if
you start with 4 the procedure will compute 4+3+2+1 = 10. The procedure calls itself for each addition. Here
is a procedure that calls AddAddAdd to start the computation. In this case the computation starts with 6, so
the result will be 6+5+4+3+2+1 = 21.

local answer
call AddAddAdd, 6,answer
message answer

Page 1394 Panorama Handbook
Although Panorama allows recursion it is very limited. The AddAddAdd procedure won’t work with any
number larger than 8. Usually it’s best to try to write a procedure without recursion. Here’s an example of a
procedure that solves the same problem without recursion. Now we can calculate that for a larger number
like 68 our cumulative sum is 2346.

local x,sum
x=68
sum=0
loop
 sum=sum+x
 x=x-1
while x>0
message sum

As you can see, the non-recursive solution is actually quite a bit simpler than the recursive solution. How-
ever, there are some cases where recursion can greatly simplify the solution of a problem, and Panorama does
have a limited capability to allow recursion.

Other Control Flow Statements

There are a few other control flow statements that don’t fit into any neat categories. These statements are
described in the following sections.

Jumping to an Another Location in the Program

The goto statement tells Panorama to jump immediately to another spot in the program (see “GOTO” on
page 5323). The format of this command is simple:

goto <label>

A label is a unique series of letters and numbers that identifies a location within the procedure. The label may
not contain any spaces or punctuation except for . and $, and must always end with a colon. The colon is not
actually part of the label, it simply identifies the series of letters and numbers as a label, as opposed to a field
or variable. Here are some examples of labels:

diamond:

tryAgain:

accessRoute3:

Start.Over:

The example subroutine below asks the user to enter an angle. If the angle is not between 0 and 360, Pan-
orama will jump back to the label TryAgain.

fileglobal GoAngle
GoAngle="0"

TryAgain:
gettext "Enter direction (0-360)",GoAngle
if GoAngle>360 or GoAngle<0

goto TryAgain
endif
setparameter 1,val(GoAngle)

Chapter 24:Procedures Page 1395
You may wonder why the goto statement is buried here at the end of the chapter. It’s simple: we don’t want
you to use it! At least, not much. For years professional programmers have known that too many goto’s
quickly create “spaghetti” code that is usually confusing. In fact, it has been mathematically proven that any
program can be written with if and loop statements, without any goto ’s at all. Here’s how our example
could be rewritten without a goto .

global GoAngle
GoAngle="0"
loop

gettext "Enter direction (0-360)",GoAngle
while GoAngle>360 or GoAngle<0
setparameter 1,val(GoAngle)

As you can see, this example is actually simpler without the goto statement. Occasionally the goto state-
ment does make it easier to write a program. Frankly we couldn’t come up with an example of this, but if you
do, feel free to use the goto statement. That’s what it’s there for.

Stopping the Program

The stop statement tells Panorama to stop the procedure immediately (see “STOP” on page 5793). If the cur-
rent procedure is a subroutine, the original procedure is also stopped. If you want the current subroutine to
stop but the original procedure to continue, use the rtn statement (see “Terminating a Subroutine in the Mid-
dle” on page 1391). The rtn statement also acts to stop the procedure if it is not being used as a subroutine.

Aborting a Program

Sometimes you may need to stop a program in the middle, before it has finished running. For example, sup-
pose you make a mistake and create a loop that never stops. If that happens you need to abort the program.
On the Macintosh you can do this by pressing Command-Period, on the PC by pressing Control-Period.

The ability to abort any program is normally an important safety valve, but you may have a procedure that
should not be stopped in the middle with a job halfway done. For these types of cases Panorama allows you
to disable the ability to abort during some or all of a procedure.

To disable the abort feature use the disableabort statement. To re-enable the ability to abort use the
enableabort statement. (If you don’t include an enableabort statement Panorama automatically re-
enables aborting at the end of the procedure.)

The example below shows how these statements can be used. In this case there is no way that the new record
can be added without being filled in by the lookup formulas. You either get all or nothing, but not a halfway
done job.

disableabort
addrecord
Name=dialogName
Address=lookup("Contacts","Name",Name,Address,"",0)
City=lookup("Contacts","Name",Name,City,"",0)
State=lookup("Contacts","Name",Name,State,"",0)
Zip=lookup("Contacts","Name",Name,Zip,"",0)
enableabort

Page 1396 Panorama Handbook
When using the disableabort statement you must be careful, especially when using loops. The procedure
below will hang Panorama. The only way to stop the loop is to reboot the computer or do a force quit on Pan-
orama (Command-Shift-Option-Escape on the Macintosh, Control-Alt-Delete on the PC).

disableabort
local i,tag
i=1
loop

tag="<"+array(Text,i,¶)+">"
stoploopif tag=""
i=i+1

while forever
enableabort

While this example may look silly, it is easy to create an endless loop without realizing it.

Controlling the Abort Process

Sometimes you may want to allow a procedure to be aborted before it is finished, but in a controlled way. For
example, suppose a procedure opens a progress window then loops over and over again to perform some
operation (perhaps copying files or some other slow function). You might want to allow the procedure to be
cancelled before it finishes, but you want to make sure that it closes the progress window even if the proce-
dure is aborted. This can be done with the info("abort") function. This function returns a true or false
value depending on whether the Command-Period (Mac), or Control-Period (PC) key has been pressed.
Here is an example of a procedure that stops the loop if these keys are pressed.

disableabort
loop

if info("abort")
alert 1014,"Abort?"
if info("dialogtrigger") contains "yes"

stoploopif 1=1
endif

endif
...
... body of loop
...

while forever
...
... clean up after loop (close temporary windows, etc.)
...
enableabort

Since the procedure itself is testing to see if it should abort it is able to abort cleanly, finishing up any neces-
sary tasks like closing progress windows, etc. This is much better than simply stopping the procedure at a
semi-random spot.

Important note: The info("abort") function will only return true ONCE for each time the Command-
Period (Mac), or Control-Period (PC) key combination is pressed. If you need to test it more than once (for
example to cancel two nested loops you must copy the result into a variable and then test the variable. In
other words, you generally don’t want to have the info("abort") function in more than one spot within a
loop.

Doing Nothing for a While

The nop statement (short for no operation) tells Panorama to do absolutely nothing! You can use the nop
statement as a placeholder, or to delay for a short time. Here’s an example of a procedure that will delay for a
short time (probably less than a second).

loop
nop

until 20

Chapter 24:Procedures Page 1397
The exact amount of time delay depends on the speed of your computer. Here's an example that will delay
exactly 10 seconds.

local startTime
startTime=now()
loop

nop
until now()>startTime+10

Another use for the nop statement is to fool Panorama into not displaying a warning dialog. When used as
the last statement in a procedure, or just before a stop statement, statements like quit and close will ask
the user if they want to save changes. By adding a nop statement you can prevent this dialog from appearing.

if info("trigger") contains "Close w/o Save"
close
nop
stop

endif

See “NOP” on page 5542 to learn more about doing nothing with the nop statement.

Building Subroutines On The Fly (The Execute Statement)

Subroutines are usually written in advance using the procedure editing window (see “Writing a Procedure
from Scratch” on page 1357). However it is possible for a procedure to construct a subroutine “on-the-fly”
and then immediately call (execute) that subroutine. This magical trick is performed by a special statement
called execute. The execute statement is followed by a formula that calculates the text of the subroutine to
be called.

execute <formula>

Here is an example procedure that uses the execute statement to “ditto” the value in the cell above the current
cell. Basically, this procedure moves up a line, grabs the cell, then moves down a line and assigns the new
value to the current cell.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
execute dittoField+"={"+dittoValue+"}"

The first line (local dittoValue,dittoField) simply sets up the two local variables we will need (see “Vari-
ables” on page 1369).

The second line (dittoField=info("FieldName")) gets the name of the current field and places it in the dit-
toField variable. In the example above this value will be Company.

Page 1398 Panorama Handbook
The third line (uprecord) moves up one record, like this.

The fourth line (if stopped rtn endif) checks to see if we were already on the top line of the database, and
if so, stops the procedure.

The fifth line (dittoValue=˙¨) grabs the value in the current cell, in this case Palo Alto Lumber (see “Using
the Current Field” on page 1220).

The sixth line (downrecord) moves back down one record to the original position.

The seventh line (execute dittoField+"={"+dittoValue+"}") assigns the value in dittoValue to the cell.

Let’s take a close look at how the execute statement did its job. Here’s the formula it used.

dittoField+"={"+dittoValue+"}"

Now we know that dittoField is Company, and dittoValue is Palo Alto Lumber. So the result of this formula is
this —

Company={Palo Alto Lumber}

Now this is a valid assignment statement (see “Assignment Statements” on page 1367) that assigns a value
into the Company field! (In case you have forgotten, { and } are alternate quote characters that can be used
instead of " . See “Constants” on page 1218 for a complete list of quote characters.) This line is a completely
valid subroutine all by itself. So Panorama goes ahead and executes this custom subroutine which causes the
company name to be filled in.

If we move one column to the left, the formula will generate a different custom subroutine.

Title={Purchasing}

The ditto procedure will work for any text field. (It could be revised to work with numeric and date fields as
well with some extra work with the str(and datepattern(functions.)

Chapter 24:Procedures Page 1399
Tips for On-The-Fly Program Writing

Writing a regular program can be tricky enough. Attempting to create a procedure on the fly can turn into a
quagmire if you don’t take a systematic approach. Careful planning will insure success.

Before you start attempting to write a formula make sure you have a good idea of what the final subroutine
will look like. If the subroutine is more than one or two lines it’s a good idea to create a “mock up” using the
procedure editor. This should be a fully running procedure hard coded for specific data. Here’s an example
mock up for the ditto cell procedure described in the previous section.

Once the mock up is debugged you can start converting it into a formula. Start by figuring out which sections
of the procedure are fixed and which will change, and where the data for the changeable parts will come
from.

Now we’ll start to assemble the formula. The first part is changeable, and comes from the dittoField variable.
So the first part of the formula is simply

dittoField

Next is a fixed component ={. We want this to appear exactly like this in the final subroutine, so we quote it
and concatenate it to the first section. Since we’re using { and } for quotes in the final procedure we’ll need to
use a different kind of quote here. We’re using "" here but we also could have used smart quotes (see “Con-
stants” on page 1218 for a list of different types of quotes).

dittoField+"={"

The next component is changeable, and comes from the dittoValue variable, so we’ll add that on next.

dittoField+"={"+dittoValue

Finally we’ll add on the closing } quote. Again this must be enclosed in a different type of quote.

dittoField+"={"+dittoValue+"}"

The trickiest part is often the nested quotes. Each type of quote must be nested in another type. An alternative
technique would be to use the chr(function (see “CHR(” on page 5096) to generate the { and } quotes, like
this.

dittoField+"="+chr(123)+dittoValue+chr(125)

from dittoField variable from dittoValue variable

fixed

Page 1400 Panorama Handbook
The values 123 and 125 must be looked up in an ASCII chart. A partial ASCII chart is shown below. (Use the
ASCII Wizard to see complete ASCII chart — see “The ASCII Chart Wizard” on page 1253).

As you can see, a regular " quote can be generated with chr(34) .

If you are having a difficult time getting your execute formula to work properly a good tip is to temporarily
replace the execute statement with a message statement, like this.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
message dittoField+"={"+dittoValue+"}"

When the procedure runs it displays the actual subroutine that it was about to execute.

Often at this point the error is obvious and you can easily go back and check it. If the subroutine is too long to
fit in the dialog you can copy it into the clipboard instead.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
clipboard= dittoField+"={"+dittoValue+"}"

After the program runs you can paste the generated subroutine into a text editor and carefully examine it.

If the execute was not the last statement in the procedure you will probably want to place a stop statement
(see “Stopping the Program” on page 1395) after the message or clipboard= statement.

Chapter 24:Procedures Page 1401
Execute and Local Variables

The subroutine generated “on-the-fly” by the execute statement is not part of the current procedure but is a
separate procedure on it’s own (although it doesn’t have a name and disappears as soon as it is finished).
This means that the local variables in the original procedure become dormant while the “on-the-fly” subrou-
tine is running, and that the “on-the-fly” subroutine cannot use or modify any of those local variables (see
“Variable Accessibility” on page 1372). (It can have its own local variables, however.)

Using Execute to Process Arrays

The execute statement can be very handy for working with arrays. For example, suppose you have an comma
separated text array (see “Text Arrays” on page 1257) named Numbers that contains a series of numbers like
this —

78,173,9,32,201,12,82,376,249

and you’d like to add up the numbers and place the sum in a field named Total. With the execute statement
this can be done with a single line of code!

execute "Total="+replace(Numbers,",","+")

The replace(function (see “REPLACE(” on page 5662) converts the commas into plus symbols. The gener-
ated subroutine is —

Total=78+173+9+32+201+12+82+376+249

Not only is this code simple, it is very fast. Here is a slightly more complex example that uses a similar tech-
nique to calculate the total of an invoice. The invoice looks like this. The big area on the right is a field named
Items.

Page 1402 Panorama Handbook
As you can see, if a line in the Items field contains a price it is always after a dollar ($) sign. We can use this
fact to quickly calculate the total.

fileglobal linecalc
if Items ≠""
 arrayfilter Items,linecalc,¶,array(import(),2,"$")
 linecalc=arraystrip(linecalc,¶)
 linecalc=replace(linecalc,¶,"+")
 execute "Subtotal="+linecalc
else
 Subtotal=0
endif
Tax=(Subtotal*7.75)/100
Total=Subtotal+Tax

Lines 3 thru 6 are the guts of this procedure.

Line 3 (arrayfilter Items,linecalc,¶,array(import(),2,"$")) uses the arrayfilter function (see
“ARRAYFILTER” on page 5042) to scan the Items array and strip out only the prices (after the $ symbol). The
intermediate result in linecalc will be something like this.

4.99

5.99
3.50
6.00

Items field

Chapter 24:Procedures Page 1403
Line 4 (linecalc=arraystrip(linecalc,¶)) strips out any extra carriage returns. The result looks now looks
something like this.

4.99
5.99
3.50
6.00

Line 5 (linecalc=replace(linecalc,¶,"+")) converts the carriage returns (¶ - see “Special Characters” on
page 1225) into plus symbols.

4.99+5.99+3.50+6.00

Line 6 (execute "Subtotal="+linecalc) is just like the previous example and calculates the total.

Do It Yourself Data Merge

Auto-wrap text objects allow you to merge data and formulas into a template to be displayed on the screen or
printed in a report (see “Displaying Data in Auto-Wrap Text” on page 645). In this section we’ll describe a
technique using the execute statement that allows a procedure to do the same thing. For example, suppose
that you have a template in a variable named Letter that contains this text.

«Name»
«Address»
«City», «State» «Zip»

Dear «Name»,

Your order (reference «Order») has been shipped. You should expect it to arrive within the
next three to five days.

Sincerely,

Acme Widgets

If we can turn this template into a formula we can evaluate it with the execute statement. Let’s see how this
can be done. The first step is to create two arrays. The first array, FieldNames, will contain a list of the fields,
like this.

«Name»
«Address»
«City»
«State»
«Zip»
«Order»

The second array, FieldFormulas, will also contain a list of fields, but modified so that they can be included as
part of a formula.

"}+«Name»+{"
"}+«Address»+{"
"}+«City»+{"
"}+«State»+{"
"}+«Zip»+{"
"}+«Order»+{"

Here’s the code that can generate these two arrays (see “DBINFO(” on page 5147 and “ARRAYFILTER” on
page 5042).

local FieldNames,FieldFormulas
FieldNames=dbinfo("fields","")
arrayfilter FieldNames,FieldNames,¶,"«"+import()+"»"
arrayfilter FieldNames,FieldFormulas,¶,“"}+”+import()+“+{"”

Page 1404 Panorama Handbook
Now we can use the replacemultiple(function (see “REPLACEMULTIPLE(” on page 5664) to transform
the template into a formula.

local MergeFormula
MergeFormula=”{“+replacemultiple(Letter,FieldNames,FieldFormulas)+”}”

After the transformation the template has been turned into a valid Panorama formula.

{}+«Name»+{
}+«Address»+{
}+«City»+{, }+«State»+{ }+«Zip»+{

Dear }+«Name»+{,

Your order (reference }+«Order»+{) has been shipped. You should expect it to arrive within the
next three to five days.

Sincerely,

Acme Widgets}

Here’s the complete procedure.

local FieldNames,FieldFormulas,MergeFormula
fileglobal FinalLetter
FieldNames=dbinfo("fields","")
arrayfilter FieldNames,FieldNames,¶,"«"+import()+"»"
arrayfilter FieldNames,FieldFormulas,¶,“"}+”+import()+“+{"”
MergeFormula=”{“+replacemultiple(Letter,FieldNames,FieldFormulas)+”}”
execute “FinalLetter=”+MergeFormula

This procedure turns the template into a final letter with all of the data merged in as requested in the tem-
plate. You could use a procedure like this to generate custom e-mail or as part of a CGI for a web server (in
which case the template would contain HTML).

On-The-Fly Subroutine Error Checking

Just as with any other procedure, it’s possible for an on-the-fly subroutine to contain grammar errors. If the
subroutine contains a grammar error (for example a++b) the procedure will stop and an alert displaying an
error message will appear. If you don’t want that to happen you can place an if error statement after the
execute statement. This example procedure executes whatever is in the PreFlight field and ignores any
grammar error that occurs.

execute PreFlight
if error

nop
endif

The program can find out what the problem was with the info("error") function (see “INFO("ERROR")”
on page 5370). To find out exactly where the problem occurred check the special global variables ExecuteEr-
rorStart and ExecuteErrorEnd. These variables contain numbers telling where within the subroutine Pan-
orama thinks the error occurred. If the subroutine was generated with a complex formula it may be difficult
to relate these numbers back to the formula that generated the subroutine.

The if error statement after the execute only catches grammar errors, not run-time errors. If you want to
catch run-time errors (for example field or variable does not exist or numeric when text expected) you must
build if error statements into the generated subroutine itself (see “Error Handling with if error” on
page 1379).

Chapter 24:Procedures Page 1405
Catching Program Errors (Especially for Web and other Server Applications)

The if error statement (see “Error Handling with if error” on page 1379) gives the programmer complete
control of what happens when an error occurs at a specific point in the program. However it requires the pro-
grammer to explicitly handle every error that may occur. The OnError statement can be used to catch all
errors that are not trapped by if error statements. This has two benefits when Panorama is used as part of
a web server. First it allows the programmer to easily eliminate all error alert dialogs. This is very important
for server applications because an alert dialog requires human intervention to get the server going again. Sec-
ondly, it makes it easy to build a log of errors.

The OnError statement has one parameter: a text string that contains one or more Panorama statements to
be executed when an error occurs. Notice that this is not the name of a procedure, but the actual statements
themselves (as a string of text). This is similar to the execute statement (see “Building Subroutines On The
Fly (The Execute Statement)” on page 1397). Once an error has occurred these statements will run. Within
these statements you can use the info("error") function to find out what the error was, if necessary.

The effect of the OnError statement ends when the main procedure stops running. In other words, OnError
isn't a permanent error handler — you must specify it for each procedure you wish to have error trapping. If
you plan to use OnError , it is probably best to put it in the first line of any procedure that needs error trap-
ping. If you are going to use the same statements with OnError in several different procedures, you may
want to set up the statements in a variable in your .Initialize procedure, then use that variable as the parame-
ter to OnError .

It's important to consider the possible environment that may exist when an error is created. Depending on the
flow of your main procedure, Panorama may not be in the same window or even in the same database. Your
OnError program should generally not make any assumptions about what windows or databases will be
active or available when the error occurs.

Here is an example of how OnError could be used in a CGI (web server) application. In this example if there
is an error Panorama will return an error message to the web server and also log the error along with the date
and time.

global cgiResult,errorLog
errorLog=errorLog /* make sure errorLog exists */
if error

errorLog="" /* initialize errorLog */
endif
onerror {cgiResult="Panorama Error: "+info("error") }+

{errorLog=sandwich("",errorLog,¶)+}+
{datepattern(today(),"DD/MM/YYYY ")+}+
{timepattern(now(),"hh:mm:ss")+}+
{info("error")}

/* error logging is set up, now we can continue with our tasks */
...
... rest of this procedure
...

Page 1406 Panorama Handbook
Program Formatting

The way a program is formatted can make a big difference in how understandable it is. Panorama is very
flexible in letting you format a program; you can have multiple statements on a single line, or split a single
statement over multiple lines. Statements can be flush on the left or indented; it’s all up to you.

For example, here’s a sample procedure from earlier in this chapter with one line per statement.

select Debit>0
field Category
groupup
field Debit
total
outlinelevel 1

Here’s the same procedure squished onto a single line. Panorama will understand this just fine, although you
and I might have a more difficult time.

select Debit>0 field Category groupup field Debit total outlinelevel 1

You can even split individual statements across multiple lines, as long as you don’t split a single word or con-
stant in the middle. Here’s another version of this same program.

select
Debit>0
field
Category
groupup
field
Debit
total
outlinelevel
1

Anyplace you can have a single blank or carriage return you can have more than one. Here’s one final exam-
ple.

select Debit>0
field Category
groupup
field Debit
total
outlinelevel 1

In general, we recommend using one statement per line for readability. We also recommend indenting the
statements between if and endif , case and endcase , and between loop and until or while (as seen in
most of the examples throughout this manual). If you have multiple levels of nested if statements, each level
should be indented further. This makes it easy to see which statements are associated with each if /endif
pair.

Here’s a program example with no indenting:

local CardLength
if PaymentMethod="Credit Card"
CardLength=length(CardNumber)
if CardLength<13 or CardLength>16
message "Sorry, invalid credit card number."
endif endif

Chapter 24:Procedures Page 1407
Now the same procedure with the recommended indenting:

local CardLength
if PaymentMethod="Credit Card"

CardLength=length(CardNumber)
if CardLength<13 or CardLength>16

message "Sorry, invalid credit card number."
endif

endif

A lot easier to understand, isn’t it?

The Edit menu has two commands that can help you shift a section of text to the left or right.

For example, suppose you start with this procedure, which is not indented at all (it’s the same procedure
listed earlier in this section).

To indent the text, start by selecting the text between the if and endif statements.

shift selected text to the right four spaces

shift selected text to the left four spaces

Page 1408 Panorama Handbook
Now use the Shift Right command to indent the selected text.

Repeat as necessary to indent any other text.

You can even use these commands to change the indentation of the entire procedure.

Now we can add another if statement around the entire procedure.

Consistent indentation can go a long way towards making your programs more readable and bug free.

Chapter 24:Procedures Page 1409
Notes To Yourself

A comment is a note inside the program. Comments are very useful for documenting how a procedure
works, what the variables are for, what the procedure parameters are, etc. Comments are totally optional, but
you should use them to record anything you think you might forget about the operation of a procedure.

Panorama has three different comment styles: /* … */, //, and ;.

/* … */ comments begin with /* and end with */ The advantage of this type of comment is that a single com-
ment may be many lines long.

// comments begin with // and continue to the end of the line.

; comments begin with a semicolon and continue to the end of the line.

A comment can appear almost anywhere in a procedure. The only restriction on comments is that they can-
not be inside the middle of a statement or formula; they must be between statements.

This example shows a procedure with lots of comments. If anyone comes back and takes a look at this proce-
dure next year, they will have no problem telling what the procedure does and how it does it. To emphasize
the comments they are shown in purple below. However, when actually editing a procedure the comments
are black just like everything else.

/* Procedure: .Delay

 This procedure delays for a fairly precise time.
 The procedure has one parameter, the number of seconds to delay.

 Example:
call .Delay,12; delay for 12 seconds

*/
local startTime
startTime=now() // record the time we started
loop

nop ; short delay
until now()>startTime+parameter(1)

“Commenting Out” Statements

One handy use for /* … */ comments is to temporarily remove one or more statements from your program
(usually for testing purposes). Simply put /* and */ around the statement or statements you want to
remove, and those statements are effectively removed from your program without actually erasing them.
(Programmers call this “commenting out” the statements, because they are temporarily “out” of the pro-
gram.) To re-enable the statements simply remove the /* and */ .

Page 1410 Panorama Handbook
Suppressing Display of Text and Graphics

As a program executes the windows belonging to the database will often flicker or even redisplay over and
over again as the statements are performed. Often this redisplay serves no purpose except to slow the pro-
gram down and annoy you. To disable display while a sequence of steps is performed you must bracket the
steps with the noshow and endnoshow statements, like this.

noshow
statement
statement
statement
...

endnoshow

The noshow statement tells Panorama to suppress all display of text and graphics by the following state-
ments. For example the sort and formulafill statements normally cause some or all of the window to be
redisplayed. But if these statements follow a noshow statement the window will not redisplay. The
endnoshow statement cancels the effect of the noshow statement and resumes normal display operation.

Note: The noshow statement suppresses all display that results from changes to the database. It does not,
however, suppress display that is causes by changes in the configuration of database windows. For example
if a procedure moves a window to the front with the window statement the newly visible section of the win-
dow will always be displayed, with or without a noshow statement. This is true for any statement that
changes the window configuration: opening or closing a window, changing the size of a window, or changing
the stacking order of the windows.

Updating the Display After (or Within) a NoShow Block

The noshow statement is great for making procedures run faster without unnecessary window updating.
There’s just one problem though - since the window is not updated, it winds up being wrong! Consider the
the procedure below.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2

endnoshow

Without the noshow statement this procedure will cause the window to update four times. But with the
noshow statement the final result is not displayed! To fix this you must add one of the seven statements in the
table below.

Statement Parameters Description

showpage none Displays the entire database.

showline none Displays the current record.

showfields list of fields Displays the specified fields in the current record

showvariables list of variables Displays the specified variables

showcolumns list of fields Displays the specified fields in all visible records

showrecordcounter none Displays the number of records

showother field,option Depends on option, see documentation below

Chapter 24:Procedures Page 1411
Using the showpage statement we can fix the program listed earlier so that it displays the final result at the
end of the procedure.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage

endnoshow

The seven display statements are described in the following sections.

ShowPage

The showpage statement forces Panorama to redisplay all windows in the current database. Here is an exam-
ple that performs several operations on the current database, but only updates the display once:

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage

endnoshow

ShowLine

The showline statement forces Panorama to redisplay the current record in all windows in the current data-
base. The example below clears the current record in the database, but doesn’t display anything until it is
completely finished.

noshow
field array(dbinfo("fields",""),1,¶) /* go to first field */
loop

clearcell
right

until stopped
showline

endnoshow

Without the noshow statement you would be able to watch as Panorama cleared each cell in the line. With
the noshow statement all of the cells will appear to disappear simultaneously.

ShowFields field,field,…,field

The showfields statement forces Panorama to redisplay the specified fields in all windows in the current
database. You may list as many fields as you want to display, with each field separated by a comma. (If you
want to display all the fields it is easier to use the showline statement.) The example below modifies three
fields but only displays the change made to the Balance field.

noshow
Date=today()
Time=now()
Balance=Credit-Debit
showfields Balance

endnoshow

Page 1412 Panorama Handbook
ShowColumns field,field,…,field

The showcolumns statement forces Panorama to redisplay the specified fields in all windows in the current
database. In a data sheet or view-as-list window the entire column is re-displayed, not just the current record.
You may list as many fields as you want to display, with each field separated by a comma. (If you want to dis-
play all the fields it is easier to use the showpage statement.) The example below performs two calculations
on the Balance field, but only redisplays the column a single time.

noshow
field Balance
Balance=Credit-Debit
RunningTotal
showcolumns Balance

endnoshow

ShowVariables var,var,…,var

The showvariables statement forces Panorama to redisplay the specified variables in all windows in the
current database. You may list as many variables as you want to display, with each variables separated by a
comma. The example below adds a new record to the database without changing the display, but does show
the new record count.

noshow
global myCount
addrecord
myCount=info("total")
showvariables myCount

endnoshow

Warning: The showvariables statement is always required if you want to display changes to one or more
variables, even if you are not using the noshow statement.

ShowRecordCounter

The showrecordcounter statement forces Panorama to redisplay the record count in all windows in the
current database. The example below adds three new records to the database but only updates the display
once.

noshow
addrecord
addrecord
addrecord
showpage
showrecordcounter

endnoshow

Chapter 24:Procedures Page 1413
ShowOther field,code

The showother statement forces Panorama to redisplay all windows in the current database. You specify a
code that tells Panorama what portion of the window to update. This is the code that Panorama uses inter-
nally, so if Panorama becomes capable of a new mode of redisplay it will automatically become available.
Some codes allow you to specify a specific field to update, you can use the field name or use All to specify all
fields. The available codes are listed in this table.

We recommend that you avoid this command if one of the other show commands will do the job for you.

Disabling the Watch Cursor

As a procedure runs the cursor often flips from the arrow into a watch, or sometimes a pie chart. This helps
let the user know that they may need to wait.

In some cases Panorama flips to the watch or pie chart cursor when it is not really necessary (especially on
today’s faster machines). If you want the mouse cursor to remain as an arrow while your procedure runs you
can use the nowatchcursor statement (see “NOWATCHCURSOR” on page 5546). Here is a procedure that
opens a database. This would normally cause the watch cursor to be displayed, but in this case the arrow
remains active.

nowatchcursor
openfile "Reference Data"
watchcursor

The final statement re-enables the watch and pie chart mouse cursors. In this example the watchcursor
statement isn’t really necessary because Panorama always automatically re-enables these cursors at the end
of any procedure.

Hide and Show

Previous versions of Panorama (up to 3.0) include hide and show commands that allowed a programmer to
turn off the display of text and graphics while the procedure was running. Unfortunately these commands
did not give accurate control over the display, and worse, they could even crash if you attempted to use them
across multiple windows. These commands are still available to retain compatibility with old databases, but
we recommend that you avoid them for new applications.

Code Action

0 Display current cell (should use showfields instead)

1 Display entire page (should use showpage instead)

2 Cursor moved, update data sheet

3 Cursor moved, data sheet already updated

4 Update window after insertline (data sheet or view-as-list)

5 Move cursor up/down (for example after a search)

6 New line with cursor move

97 Display record count (use showrecordcounter instead)

98 Display data sheet field header (after changing field name)

99 Display after database redesign (insert field, etc.)

Arrow Watch Pie Chart

Page 1414 Panorama Handbook
Debugging a Procedure

In the real world, programs often don’t work correctly the first time. (Sometimes they don’t work the second
or the third time, either!) Panorama has a number of tools that you can use to help locate and correct the
problem in a procedure.

One of the most basic tools you can use is the message statement. By inserting this statement at various
points in your program you can display intermediate results and get a feel for what is happening in your pro-
gram. For example, consider this procedure which has had three message statements inserted into it.

Chapter 24:Procedures Page 1415
This procedure is designed to be triggered by a Matrix SuperObject (see See “Super Matrix Objects” on
page 958) which contains menu items.

When you click on a particular matrix item the procedure is triggered.

The first message statement, message info("matrixcell") , displays the number of the cell that was
clicked on. (It also verifies that the procedure is being triggered correctly.)

Page 1416 Panorama Handbook
The next message statement, message section , displays the result of the info("trigger") function.

The final message statement, message item , displays the item that has been looked up and will be added to
the order. This will allow you to quickly spot any errors in the code that retrieves the item and price.

Once the procedure is working correctly you can remove the message statements. If you think there is any
chance you might need them again you can temporarily remove them by “commenting them out” (see
““Commenting Out” Statements” on page 1409) like this.

As long as the // is in front of the message statement the statement is disabled. Any time you want the state-
ment back in again you simply need to remove the // .

Sometimes you may want to run a portion of the procedure, display a message and then stop. To do this sim-
ply add a stop statement after the message statement (see “Stopping the Program” on page 1395). If both
statements are on the same line then they can both be disabled with a single // comment.

Chapter 24:Procedures Page 1417
The Panorama Interactive Debugger

To help solve more stubborn problems Panorama includes a built in debugger. The debugger allows you to
stop a procedure in the middle and execute statements one at a time (called single-stepping). You can actu-
ally watch as your program executes each statement, and you can check the value of fields and variables at
any time.

The Debug Statement

The debug statement pauses the procedure so that you can examine fields and variables. You can insert a
debug statement anywhere in a procedure, and a procedure may contain more than one debug statement.
Usually debug statements are inserted into the procedure temporarily while you are getting the program
running, and then removed when the procedure is operating properly.

Using the Debugger

The first step in using the debugger is to add one or more debug statements to a procedure. In this example
the debug statement has been inserted at the very top of the procedure, but it can be inserted anywhere.

Once this is done, go to a form or data sheet window where you can test the procedure. Be sure to leave the
procedure window open! If necessary, you can open an additional window in the same database - see “Open-
ing More Than One Window Per Database” on page 303 and “The View Wizard” on page 307.

Now start the procedure normally. Usually you will click on a button or pull down a menu item. If this is a
“hidden trigger” procedure you should perform whatever action triggers the procedure.

Page 1418 Panorama Handbook
The procedure will run normally until it gets to the debug statement. At that point the procedure will stop
and Panorama will bring the procedure window back to the front. The statement following the debug state-
ment will be highlighted, indicating that it is the next statement to be performed when the procedure
resumes.

Important: If the procedure window is not open, the procedure will not stop. That’s why it was so important
to leave the procedure window open in the last paragraph. If you wish, you can leave debug statements per-
manently in a procedure. They won’t affect the procedure unless the procedure window is open.

Single Stepping

After the procedure has been stopped by a debug statement, you have the option of continuing the proce-
dure one step at a time. You can watch to see what happens as each step is performed. To perform the next
step, press the Single Step tool, or select Single Step from the Debug menu.

Before it performs the next statement, Panorama will move the procedure window to the back again, so that
the form or data sheet (or whatever the current window was) is on top again. Panorama performs the state-
ment, then brings the procedure window back on top again. The following statement is highlighted.

Chapter 24:Procedures Page 1419
By single stepping again and again you can watch the program run. You can see as the procedure makes deci-
sions at if statements, watch as a loop runs over and over again—everything your procedure does is
instantly visible.

If the procedure uses call or farcall statement to trigger a subroutine (see “Subroutines” on page 1382),
single stepping usually considers the subroutine to be a single step. In other words, in one step Panorama
will perform the entire subroutine. However, if the window containing the subroutine procedure is open,
Panorama will single step through the subroutine, letting you see each step in it.

Page 1420 Panorama Handbook
Resuming Full Speed Execution

If you want the procedure to start up again at full speed, press the Proceed button or select Proceed from the
Debug menu.

The procedure will start up again at full speed from the current spot. It will continue at full speed until it
either reaches the end of the procedure, or it comes to another debug statement in an open procedure win-
dow.

Making Corrections to a Procedure

In the course of debugging you may find a problem with your procedure. To fix the problem, just edit the
procedure. However, after you change the procedure you can no longer single step or continue the proce-
dure. You must start over again from the top after any kind of change.

Watching Computations

When you single step through a procedure Panorama updates the status bar to show the result of each
assignment statement (see “Assignment Statements” on page 1367). This makes it easier to follow along with
what is going on in the procedure. For example, the procedure shown below has just stopped after the debug
statement. The status bar shows the result of the last assignment statement, sentences=0 .

Chapter 24:Procedures Page 1421
Single stepping twice executes the loop and assignment statements. Again, the status bar shows the result of
the assignment, in this case the word Morris.

Each time you single step through an assignment statement the result is shown in the status bar.

Page 1422 Panorama Handbook
You can use the statusmessage statement to display any formula in the status bar. This statement is similar
to the message statement, but instead of displaying the message in an alert it displays it in the status bar, as
shown below.

The statusmessage statement works any time the procedure window is open, even when the procedure is
running at full speed. A stragetically placed statusmessage statement can be ideal for watching the
progress of a loop. For example the statusmessage statement in the procedure above will let you watch as
the procedure counts the words in each sentence — 1, 2, 3 … . If the procedure window is closed the
statusmessage statement is simply ignored, so it is safe to leave this statement in your final procedure in
case you need it later. (When the window is open the procedure may run slower than normal due to the time
taken to update the status bar.)

Using the Inspector to Examine Fields, Variables and Formulas

During debugging, you’ll often need to examine the contents of fields and variables. If the fields and/or vari-
ables you are interested in are not already visible in a form or data sheet window, you can use the Inspector
window to watch them. To access this window, choose the Open Inspector command in the Debug menu.

The Inspector window displays two columns. The left column is for formulas that you enter. The right col-
umn displays the result of each formula.

Chapter 24:Procedures Page 1423
Each formula may consist of a field, a variable, or a more complex formula with fields, variables, and/or
functions. The Inspector window calculates and displays the result of each formula. The calculations are
updated every time a field or variable is changed, so you can actually watch the data change as you single
step or proceed through the procedure.

Use the buttons at the top of the window to add and remove formulas.

insert formula

add formula to end

delete formula

Page 1424 Panorama Handbook
To edit a formula, click on it then begin typing.

Press Return or Enter to see the result.

The Inspector window normally displays a list of formulas, one line per formula. If you need to display a for-
mula or result that is more than one line high switch to the Zoom mode. In this mode only one formula and
result is displayed at time.

click to edit formula

Chapter 24:Procedures Page 1425
If necessary you can enlarge the window to display a result that doesn’t fit in the normal window size.

To switch back to the list mode press the List button.

What Fields or Variables can be Displayed?

Sometimes you may enter a formula that looks correct to you, but no result appears in the Inspector window.
Why does this error occur? This means that the field or variable is not currently accessible to the procedure
being debugged. As a procedure runs, it may switch from database to database, and variables may be created
and destroyed (see “Variable Accessibility” on page 1372). The Inspector window cannot display fields or
variables that the procedure cannot access.

If you are trying to display a local variable, that variable may not exist. Local variables only exist while the
procedure is actually running. You can only see the contents of a local variable while the procedure is
stopped in the middle or single stepping. Before the procedure is started, or after it is finished, the local vari-
able does not exist and cannot be inspected.

When displaying fields, the Inspector window always displays the value of the field in the current debug
database. Usually this is the database that contains the procedure. However, if the procedure switches to a
different database (with the window or openfile statement), the Inspector window will also switch to the
new database. If no result appears, you are probably attempting to display a field in another database.

Use the grabdata(function to display the value of a particular field in a particular database no matter what
database is being debugged. For example, to always display the PayTo field in the Checkbook database, type
the formula grabdata("Checkbook","PayTo") into the Inspector window as shown below.

As long as the Checkbook database remains open in memory you’ll be able to see the contents of this field.

Page 1426 Panorama Handbook
Displaying Functions

Don’t forget that the Inspector window can display any formula, not just fields and variables. One handy
application for the Inspector window is to look at the results of info(functions. For example, you can display
the function info("trigger") to see how a procedure was triggered, or info("files") to see what
databases are currently open.

You can use the asc(function to look up the ASCII value of a character (see “Characters and ASCII Values”
on page 1251).

Or you can use the Inspector as a handy calculator.

Note: The Formula Wizard also can be used as a handy calulator. See “Using the Formula Wizard” on
page 1195.

Chapter 24:Procedures Page 1427
Procedure Debug Log

The procedure debug log was originally developed as an “in house” tool to help debug Panorama itself. It
has proved so useful that we have decided to document and make it available for general use. When the
debug log is in use Panorama records procedure activity in a text file. Later you can review the text file to
trace the actions of your procedure. Although Panorama rarely crashes, when it does the debug log comes in
very handy, because it will record the steps taken right up to the crash. This allows you to find out exactly
what statement is causing the crash (which explains why this debug log is so useful for our in-house pro-
gramming of Panorama itself.)

The Procedure Log Window

To open the log window choose Debug Log from the Wizards menu. When you first open the debug log it
looks something like this.

The list on the left hand side of the window shows each of the previously recorded logs. Each log is date and
time stamped.

list previously recorded logs
contents of selected log

recording optionscreate new log

start/stop recording

Page 1428 Panorama Handbook
Recording a New Log

To record a new log, start by pressing the New Log button. A new log will be added to the top of the list.

Next, select the recording options for the new log.

For our first log we’ll record only the procedures and statements.

Once the options are set press the Record button to start recording. The button will highlight to show that it is
recording.

Option Description

procedures

When this option is selected the log will record each time a new procedure starts or finishes,
either by being triggered by a menu or button or as a subroutine call. This option can be
handy if you are not sure what procedure is triggered by a button. Simply turn on the Debug
Log, start recording and press the button. Then check the log to find out which procedure
was triggered.

statements When this option is selected the log will record each statement that is executed. Only the
statement itself is recorded, not any parameters (see next section).

parameters When this option is selected the log will record the values of each statement parameter (see
“Decoding Parameters and Assignment Statements” on page 1432).

messages When this option is selected the log will record each logmessage statement (see “The Log-
Message Statement” on page 1433).

assignments When this option is selected the log will record each assignment statement (A=B, etc.). See
“Decoding Parameters and Assignment Statements” on page 1432.

new log

Chapter 24:Procedures Page 1429
Open the database that contains the procedure you want to test (if it is already open, click on it to bring it to
the front.

Now perform whatever action it takes to trigger the procedure you want to test — choose the procedure from
the Action menu, press on a button, enter data, whatever (see “50 Ways to Trigger a Procedure” on
page 1442). In this case we are going to test a procedure named Sentence Length in the Action menu. Here is
the text of the procedure.

Note: Depending on the recording options you have selected, the procedure may run much slower than it
usually does. The recording process slows down Panorama’s speed by an order of magnitude or more.

Page 1430 Panorama Handbook
When the procedure has finished running, click on the Debug Log window and press the Record button. The
newly recorded log appears on the right hand side of the window.

At the beginning of the log you may see a few lines caused by the debug log database actually recording
itself. You should ignore these lines. Your recording starts with your test procedure being triggered. After that
you will see a recording of each statement the procedure performed.

debug log setup (ignore)

test procedure gets triggered

Chapter 24:Procedures Page 1431
You can continue to trace the steps the procedure took all the way to the end.

debug log setup (ignore)

end of test procedure

Page 1432 Panorama Handbook
Decoding Parameters and Assignment Statements

When the Parameters and/or Assignment options are enabled the log will contain much more information.

Each statement parameter is logged with the word Param: followed by the value of the parameter. Each
assignment is logged as the destination (words=) followed by the value that the procedure is putting into the
destination (Please). Notice that in either case the procedure is logging the value and not the formula used to
produce the value, for example n=2, not n=n+1.

local theWord,n,words,sentences

theWord=array(Joke,n,)

n=n+1

words=words+1

Chapter 24:Procedures Page 1433
The LogMessage Statement

The debug log can quickly generate reams and reams of information that can be tedious to wade through. By
inserting the logmessage statement in strategic locations you can create a log that shows only the informa-
tion that is useful to you. Here is a revised version of the procedure with four logmessage statements added
at strategic spots.

Before recording we’ll adjust the log options to only record messages, not statements, parameters or assign-
ments.

The revised log shows only the messages. You can easily see the flow of the procedure as it scans through
each word and sentence.

Page 1434 Panorama Handbook
If you look closely at the procedure above (with the logmessage statements) you’ll notice that the assign-
ment statement at the beginning of the loop is different than in the previous examples.

theWord=array(replace(replace(Joke,¶," ")," "," "),n," ")

The reason for this change is that in the process of creating the screen shots to demonstrate the logmessage
statement the log actually showed us that there was a bug in the procedure that caused it to count the number
of words incorrectly! The log created with the logmessage statements made this bug instantly visible, and
hopefully it can do the same for your bugs too!

The Log Menu

When you are finished with a log you can delete it by selecting the log and choosing the Delete Selected
Logs command from the Log menu. To delete every log choose Delete All Logs from the Log menu.

Panorama normally date and time stamps each log file. You can customize how the log file is created by using
the Edit Log File Template command from the Log menu. This command opens a template that allows you
to customize the date/time stamp.

You can customize this template by re-arranging the items.

Chapter 24:Procedures Page 1435
Cross Referencing

A complex real world system (accounting, reservations, order entry, etc.) created with Panorama may involve
a dozen files with hundreds of fields, variables, procedures, forms, etc. Keeping track of all this information
in your head can be a monumental task.

Panorama’s Cross Reference database feature can help make this task manageable. A cross reference data-
base keeps track of all the items in one or more databases: every field, every variable, every procedure, every
form—every everything. Not only does the cross reference database keep track of where these items are
defined, but also everywhere they are used. For example, suppose your database has a field named Title. A
cross reference database can tell you that this field is used in the Entry, List, and Label forms, and is also used
in the procedures .NewRecord and Search. Or you could use a cross reference database to find out that the
.LastYear procedure is triggered by buttons in the Entry and Annual Report forms. As your database applica-
tions become more complicated you’ll find that a cross reference database is an invaluable tool to help you
sift through a mountain of databases and programming.

Note: You can also use the View Wizard to search through procedures (see “Searching All Procedures” on
page 312). However unlike a Cross Reference database the View Wizard cannot search through forms,
crosstabs or the design sheet.

Building a Cross Reference Database

Panorama comes with a pre-built cross reference database that contains everything but the data. This data-
base is called Empty Cross Reference. Start by making a copy of this database. You’ll probably want to create
this copy in the same folder as the databases you want to cross reference. You can give the cross reference
database any name you want, but you’ll probably want to include Cross Reference or X Ref or something like
that (for example Order Entry Cross Reference).You can make as many copies of the Empty Cross Reference
database as you like, using each to keep track of a separate set of databases.

Now open the Panorama database files you want to include in the cross reference database. (If you don’t have
enough memory to open all the database files at once, don’t worry. It’s possible to build the cross reference
database one database at a time.)

Page 1436 Panorama Handbook
Next open your copy of the cross reference database. Here’s what the empty cross reference database looks
like.

To update the cross reference database, pick the Build/Update command from the X-Ref menu. This opens
the Build Cross Reference window.

Chapter 24:Procedures Page 1437
This window lists all the open database files. Pick the databases you want to include in the cross reference. To
select multiple files (as shown below) hold down the Command key (Macintosh) or Control key (Windows
PC) and click on each file you want to select.

When all the files are selected click the BuildX-Ref button. Panorama will scan the database you have
selected and build the cross-reference database. The Items column will list all of the items (fields, variables,
procedures, forms, words and phrases) that have been indexed throughout this collection of databases.

If you have more databases to process, open them and then go back to the cross reference database. Pick the
Build/Update command from the X-Ref menu, then select the additional database(s) from the list and press
the Build X-Ref button.

Updating a Cross Reference Database

The technique described in the previous section takes a “snapshot” of the fields, variables, procedures etc. in
the databases you ask it to scan. As you add new fields, variables, etc. your cross reference database will no
longer be up-to-date.

Page 1438 Panorama Handbook
To update the cross reference database, pick the Build/Update command from the X-Ref menu, then select
the databases you want to update. Press the Build X-Ref button and Panorama will re-scan the databases and
update your cross reference database.

Looking Up References

Once the cross reference database has been compiled, you can use it to find out where any item is defined and
used. Just type in the name of the item in the entry box at the top of the window. Some of the things you can
search for in a cross reference database include:

You can use the * and ? wildcard characters if you are not sure of the exact spelling. Upper and lower case are
not important. For example, if you type in ship* you’ll see a list of all items that start with ship, as shown
here.

Field Names

Variable Names

Procedure Names

Form Names

Words or phrases in a procedure

Chapter 24:Procedures Page 1439
When you click on an item in this list a list of database files that reference this item will appear in the middle
of the window. For example double clicking on Shipping in the Items list shows that Shipping is used in the
Invoice and Products databases.

If you click on a database, a list of the places where this item appears in that database will appear. The display
below quickly shows us that Shipping is a name of a field in the Invoice database, and that field is used in six
procedures and eight forms within the procedure.

Page 1440 Panorama Handbook
If you double click on (Field) Panorama will open the design sheet for that database and locate the definition
for the field.

If you double click on a procedure Panorama will open the procedure and locate the first occurrence of the
item in this procedure.

Chapter 24:Procedures Page 1441
If you double click on a form Panorama will open the form and automatically switch to Graphics Mode.
However, it is up to you to locate where the field is used within the form.

To search for a different item, just type in a new item name in the top of the window and repeat the process.
That’s all there is to it!

Page 1442 Panorama Handbook
50 Ways to Trigger a Procedure

Procedures don’t start up on their own — they must be triggered somehow. There aren’t really 50 ways to
trigger a procedure, but there are quite a few.

There are basically two types of triggers that can activate a procedure: explicit triggers and hidden triggers
(implicit). Explicit triggers allow the user to deliberately trigger a procedure, for example by pressing a but-
ton or choosing an item from a menu. Hidden triggers activate a procedure automatically when the user per-
forms some normal Panorama action. Examples of user actions that can cause a hidden trigger to activate
include adding new records to a database, deleting records, opening a file, closing a window and many more.
Procedures that are activated by hidden triggers can customize the way Panorama responds to these user
actions, giving the programmer tremendous flexibility in creating a user interface that is appropriate for the
task at hand.

The same procedure can be triggered different ways at different times. For example, the same procedure
could be triggered both by a menu command or a button. If necessary, a procedure can use the
info("trigger") function to find out how it was triggered.

The Action Menu

The Action menu is the simplest way to allow a procedure to be triggered. All you have to do is create the
procedure, and it is automatically listed in the Action menu. The Action menu is added to the end of the
standard menus, and the user can activate any procedure simply by selecting its name from the Action menu.
(Note: Prior to version 3.0 this menu was called the Macro menu.)

Panorama allows some variations from the basic one-size-fits-all Action menu. The programmer can give the
Action menu a different name, or even split the Action menu into multiple menus. The programmer can also
exempt some procedures so that they are not listed in the Action menu (a procedure that is not listed can only
be triggered some other way, for example by a button).

The Action menu does have some significant limitations. Action menus can only be added to the standard
menus, they cannot replace the standard menus. Action menus cannot have any submenus. The Action
menu cannot change when the user switches from form to form—it always contains the same items (unless
you switch to a different database). In addition, there must be a separate procedure for each menu item in the
Action menu. It is not possible to have multiple menu items handled by a single procedure. With these
restrictions in mind, the Action menu is by far the easiest way to set up your own menus in a Panorama data-
base. For many custom Panorama databases, the Action menu is the only user interface.

Action Menu Options

By adding special characters to a procedure’s name, you can change the way the procedure is displayed in
the Action menu, or even remove the procedure from the menu completely.

Chapter 24:Procedures Page 1443
There are two special characters that should never be used in a procedure name that is listed in the Action
menu: ^ and ; .

Setting Different Menu Item Styles (Bold, Italic, etc.)

You can make a procedure name appear in several different styles in the Action menu—bold, italic, under-
line, outline, shadow, or a combination of these styles. To change the style of a menu item you must add a
special suffix to the end of the procedure name. The suffix consists of the < character followed by the letter B
(bold), I (italic), U (underline), O (outline) or S (shadow). The action menu below show all six different styles
(including plain) and the procedure names for creating those styles.

You can also combine styles with multiple suffixes, for example Initialize Payroll<B<I for both italic and
bold. You can also combine a style with a command key equivalent, for example Back Order<I/B.

Here’s the same menu on a Windows based system.

 As you can see, the Outline and Shadow styles do not appear on Windows systems.

Shortcuts/Command Key Equivalents

Like other menu items, procedures in the Action menu can have keys on the keyboard assigned to them. On
the Macintosh these are called Command Key Equivalents, on the PC (Windows) they are called shortcuts.
To assign a key to a procedure you add a suffix consisting of a / character followed by the key you want to
assign to the procedure. For example, a procedure named

New Ticket/N

Page 1444 Panorama Handbook
will show up in the Action menu assigned to the N key. Here is what this menu looks like on both the Mac
(left) and Windows (right).

You can run this procedure by choosing it from the menu, or by pressing Command-N on the Macintosh or
Control-N on a Windows based computer.

If a procedure’s key assignment conflicts with one of Panorama’s standard key assignments, the procedure
will override the standard equivalent. For example, Command/Control-P is normally a command key
equivalent for Print, but if you add a procedure called Post Checks/P, pressing Command/Control-P will
trigger the procedure instead of printing.

Note: You cannot assign a command key equivalent to an “unlisted” procedure (one that begins with a
period). Only procedures that appear in the Action menu can have command key equivalents.

Disabled Menu Items

If a procedure name contains the (character, the procedure name will appear in the menu but will be disabled
(gray).

Don’t use parenthesis in a procedure name unless you want the procedure to be disabled.

Separator Lines in a Menu

Many menus contain one or more gray lines separating different sections in the menu. To add a gray line to
the Action menu, create a procedure with a name that start with (- . Use the New Procedure command in the
View menu to create the procedure. Since the procedure will be disabled in the menu, it should not contain
any statements.

(in procedure name causes menu item to be disabled

Chapter 24:Procedures Page 1445
To add a second gray line to the menu, create a procedure named (-- . The third gray line should be named
(--- , the fourth (---- , etc. (Each procedure name must contain a different number of dashes because Pan-
orama does not allow duplicate procedure names.) Here’s an example of an Action menu divided into four
sections.

Page 1446 Panorama Handbook
Renaming the Action Menu

To give the Action menu a different name, insert an empty procedure with a name that begins and ends with
a parenthesis as the very first procedure in the database. For example, inserting a procedure named
(Orchestra) before the first procedure causes the Action menu to become the Orchestra menu.

See “Creating a New Form, Crosstab or Procedure” on page 317 to learn how to insert a procedure in any
position.

Chapter 24:Procedures Page 1447
Dividing the Action Menu into Multiple Menus

If your database contains lots of procedures you may want to split the Action menu into two or more sepa-
rate menus. To split the Action menu into separate pieces, insert an empty procedure with a name that begins
and ends with parentheses. For example, to start a new menu named People add a new procedure named
(People). All of the procedures below this point will be listed in the People menu. You may split the Action
menu into up to 12 separate menus. The example below shows an action menu split into four different
menus.

If necessary you can re-arrange the procedures to organize them into menus. See “Changing the Order of
Forms, Crosstabs or Procedures” on page 318.

Page 1448 Panorama Handbook
“Unlisted” Procedures

You may not want the Action menu to list the special procedures you create for buttons, automatic events,
custom menus, or subroutines. To keep a single procedure out of the menu, add a period to the beginning of
the procedure name. Any procedure name that begins with a period will be “unlisted,” for example .Balance
or .Prepare Chart.

To keep an entire group of procedures out of the menu insert a menu named (). Any procedure below a pro-
cedure named () will not appear in any menu.

Custom Menus

The Action Menu is a very simple method for adding menus to your database. If you need more flexibility,
however, you can use Panorama‘s custom menu feature. Custom menus allow you to completely or partially
override Panorama’s standard menus. They also allow you to create submenus, attach icons, checkmarks,
and other graphics to a menu, and to change menus on the fly. The downside is that custom menus take a lot
more work to set up than the Action Menu.

Custom Menu Overview

Unlike most other Panorama features, custom menus are not self-contained in a Panorama database. Instead
you must create and set up a separate file, called a resource file, that contains the custom menus you want to
use. Resource files are special files that were developed on the Macintosh uses for storing information the
system needs to operate. Panorama also supports resource files on Windows based systems with the .rsr
extension (for example My Menus.rsr). Within the resource file each menu is assigned a unique number
between 128 and 20,000.

Once the resource file is created, Panorama can open it and use the menus inside. You’ll need to assign the
custom menus separately for each form and for the data sheet (if you don’t make this assignment, Panorama
will use the standard menus.) Once they are assigned, the appropriate custom menus appear in the menu bar
automatically (in data mode only—standard menus always appear in graphics mode).

this procedure is “unlisted”
because it starts with a period

all procedures below () are unlisted

Chapter 24:Procedures Page 1449
Once the menus are set up, the user can select items from a custom menu. When this happens Panorama
automatically triggers a special procedure for handling custom menus. This procedure must be called the
.CustomMenu procedure. This one procedure handles all the custom menus in the entire database—whether
there is one or fifty. The procedure can use the info("trigger") function to find out what custom menu
item was selected, then take the appropriate action.

For advanced applications, it is even possible for a Panorama procedure to modify the arrangement and
appearance of the custom menus. Using special statements, a procedure can change which menus are
assigned to a form, can enable or disable entire menus or individual items, can rename menu items, and can
set and remove checkmarks and other symbols.

Preparing a Resource File

To create custom menus you’ll need to create menu resources in a resource file. One way to do this is with
Panorama’s Custom Menu Editor, a database that is installed along with Panorama. To open the Custom
Menu Editor simply locate it on the hard disk and open it just like any other database.

(Note: If you are using a Macintosh computer you can also create and edit menu resources using resource
editing programs such as ResEdit or Resourcerer.)

Page 1450 Panorama Handbook
Creating a New Resource File

To create a new resource file choose New Resource File from the File menu inside the editor window.

Use the dialog to enter the name of the new resource file and the folder (subdirectory) in which it will be
placed.

When you press the Save button the new resource file is created.

name of open resource file

Chapter 24:Procedures Page 1451
The new file starts with one menu named Untitled. The first thing you’ll probably want to do is change the
number of this menu. To do this use the Renumber Menu command.

The menu number can be anything from 160 to 65535. We recommend that you stick to numbers above 1000
(except for submenus, which must be from 160 to 255).

When you press OK the menu number will change, in this case to 5000.

Editing Within a Menu

To edit the menu title simply click in the menu title and start typing.

click in this box to edit menu title

menu list updates as you type

Page 1452 Panorama Handbook
To edit an item within the menu start by selecting the item in the list. (In this case there is only one item so it
is selected automatically).

Once the item is selected you can edit it in the box below the bottom of the menu item list.

To add a new menu item choose Add Menu Item from the Item menu.

click to select item to edit

edit menu item text here

list updates as you type

Chapter 24:Procedures Page 1453
The new item is added to the end of the list and is initially empty.

The new item is already selected so you can just start typing.

new menu item

Page 1454 Panorama Handbook
To add a divider line in the menu choose Add Divider.

Here’s a menu with a couple more items added after the divider. The divider is automatically disabled.

To insert a new item in the middle of the menu first select the spot where you want the new item to appear.

divider is automatically disabled

Chapter 24:Procedures Page 1455
Choose Insert Menu Item from the Item menu.

The new item appears in the spot you have selected.

Page 1456 Panorama Handbook
Just type the text of the new menu item.

To delete a menu item first select the item then choose Delete Item from the Item menu.

Don’t forget that you can edit any menu item simply by clicking on it and typing.

Chapter 24:Procedures Page 1457
Command Key Equivalents/Shortcuts

Like other menus, custom menu items can have keys on the keyboard assigned to them. On the Macintosh
these are called Command Key Equivalents, on the PC (Windows) they are called shortcuts. To assign a key
to a menu item simply type the key into the appropriate box.

Here’s what this menu looks like on both Macintosh and Windows.

On the Macintosh the White menu item can be selected by pressing Command-W, while on the PC it can be
selected by pressing Control-W.

shortcut/command key equivalent

Page 1458 Panorama Handbook
Adding and Removing Entire Menus

To add a new menu click on New Menu in the Menu menu (say that three times fast!).

Panorama will ask you to select a number for the new menu. It will automatically assign the next available
number, but you can select any number between 160 and 65535. We recommend that you stick to numbers
above 1000 (except for submenus, which must be from 160 to 255).

When you press OK the new menu is created.

To delete a menu simply select it and choose Delete Menu from the Menu menu.

To change the number of a menu select the menu and choose Renumber Menu.

click here to edit menu title

Chapter 24:Procedures Page 1459
Opening and Closing Resource Files

To open a resource file you have created previously choose Open Resource File from the File menu.

A dialog appears allowing you to select the folder and file.

Page 1460 Panorama Handbook
Once the file is opened all the menus within that file will be listed.

When you are finished with the resource file you should close it by selecting Close Resource File. The current
resource file is also closed automatically if you open or create another resource file.

Saving Resource Files

You may have noticed that there is no Save command in the File menu. Unlike Panorama databases,
resources are saved immediately as you make each change.

Opening a Resource File in Panorama

Once a resource file containing menus has been prepared you can open and use it within Panorama. To open
the resource file you must create a procedure which uses the openresource statement to open the resource
file (see “OPENRESOURCE” on page 5577). To make sure that the resource file is opened immediately when
the file is opened, we recommend that you place the openresource statement in the .Initialize procedure
for the file (see “.Initialize” on page 1484 for more information on the .Initialize procedure).

The openresource statement requires one parameter—the name of the resource file to open. If you want
the custom menus to appear immediately (the normal situation), the openresource statement must be fol-
lowed by a drawmenus statement (see “DRAWMENUS” on page 5179). For example, if the resource file con-
taining your menus is called Accounting Menus then the .Initialize procedure should contain the statements:

openresource "Accounting Menus"
drawmenus

Simply creating the .Initialize procedure does not open the resource file. The first time you create this proce-
dure you must save the database, then close and re-open the database. The .Initialize procedure will open the
resource file when you re-open the database, and you can begin using the custom menus. From then on the
resource file will be opened automatically every time the database is opened.

Chapter 24:Procedures Page 1461
Once a resource file has been opened, it will remain open until you quit from Panorama or until you close the
resource file with the closeresource statement in a procedure (see “CLOSERESOURCE” on page 5108).

Sharing A Resource File Between Databases

If you have several databases that are usually used together you can create a single resource file containing
the custom menus for all of the databases. This helps to reduce clutter on your disk, especially for more com-
plex Panorama applications.

When a resource file is shared in this way, each database should contain openresource and drawmenus
statements in their .Initialize procedures, as described in the last section. It doesn’t hurt to open the same
resource file more than once. Panorama realizes that the resource file is already open so that it doesn’t have to
open the file again.

Assigning Custom Menus to a Form

To install custom menus for a Panorama data sheet or form, use the Custom Menu command in Panorama’s
Setup menu. The Custom Menu dialog allows you to specify the ID numbers of the menus to be included in
the menu bar. For example, suppose you have prepared a resource file with these menus:

To set up custom menus for a form go into Graphic Design Mode, then choose the Install Custom Menus
command from the Setup menu. In the dialog enter the menu numbers for each custom menu. (In this case
the first menu is 1, the Apple menu.)

After the menu numbers have been entered press OK to close the dialog. Then switch the form to Data
Access Mode to check out the menu configuration.

Page 1462 Panorama Handbook
Notice that the menu bar includes the Action and Help menus. To lean how to get rid of the Action menu,
see ““Unlisted” Procedures” on page 1448. There is no way to get rid of the Help menu.

Here’s what this same custom menu configuration looks like on Windows. Notice that the Apple menu has
automatically been removed.

You can mix your own custom menus with Panorama’s standard menus. For example, you may wish to com-
bine Panorama’s standard Apple, File, and Edit menus with your own custom menus. To use a standard
Panorama menu, simply type its ID number into the Custom Menu dialog. The ID numbers of Panorama’s
standard menus are listed below. Notice that the menu ID for the Edit Menu must be preceded by the letter E.
Menus that are submenus must be preceded by the letter S.

Number Menu Notes

1 Apple Menu

7 File Data Sheet Only

27 File Forms Only

S18 Arrange Submenu

E19 Edit Data Sheet Only

E37 Edit Forms Only

26 View

28 Fields Data Sheet Only

73 Text Data Sheet Only

S3 Font Data Sheet Only

S4 Size Data Sheet Only

8 Search

9 Sort

10 Math

68 Setup Data Sheet Only

70 Setup Form Only

Chapter 24:Procedures Page 1463
Here is the configuration dialog for a typical menu that combines both standard menus and custom menus.

Here’s what this menu configuration looks like.

Notice that Panorama has added a View menu after the Edit menu. Panorama will automatically add the
View menu after the Edit menu if their is an Edit menu.

The Edit menu should always be prefixed with an E, even if you create your own custom Edit menu. The E
identifies the location of the Edit menu for Panorama. Panorama uses this information two ways. First, it nor-
mally inserts the View menu after this location. Secondly, when a data cell is being edited Panorama tempo-
rarily substitutes a special Edit menu for editing data cells.

If your custom menu configuration doesn’t include a menu that begins with an E then these commands will
not be available when editing a data cell.

If the menu configuration does not include the View menu (26) it will normally be placed after the Edit
menu, as described above. If you wish to include the Edit menu but not include a View menu then place X26
somewhere in the menu configuration. If you wish to position the View menu somewhere other than after
the Edit menu then simply place the number 26 in the spot where you want the View menu to appear.

You can preview your custom menu configuration by pressing the Preview button. You can try out the new
menus to see what they look like (they won’t do anything while being previewed). (Note: The menu preview
will not work if the resource file has not been opened—see “Opening a Resource File in Panorama” on
page 1460.)

special commands for editing within a data cell

Page 1464 Panorama Handbook
Each form can have its own separate menu configuration, as can the data sheet. You must use the Custom
Menu dialog to set up the menu commands for each form or data sheet. If several forms use the same menus,
you can use the Copy and Paste commands to transfer the menu ID numbers from one form to another. Also
if you use the Copy Form/Paste Form command to copy an entire form (see “Copying an Entire Form” on
page 618), the custom menu setup will automatically be copied to the new form.

The .CustomMenu Procedure

What happens when a user pulls down a custom menu and selects a menu item? Choosing an item in a cus-
tom menu automatically starts a special procedure. This procedure must be called .CustomMenu. If the data-
base does not have a .CustomMenu procedure then you’ll still be able to pull down custom menus, but they
won’t do anything.

(Tip: When you create the .CustomMenu procedure, make sure that the procedure name is spelled and capi-
talized correctly. Don’t forget the period at the beginning. The easy way to do it right is to select .Custom-
Menu from the pop-up menu in the New Procedure dialog (see “Creating Hidden Trigger Procedures” on
page 1480).

If the .CustomMenu procedure name is not spelled correctly, Panorama won’t be able to find and trigger the
procedure when a custom menu item is used, and your custom menus won’t work.)

Programming the .CustomMenu Procedure

Since the .CustomMenu procedure is triggered for all custom menu items, the procedure needs a way to fig-
ure out what item was chosen and act accordingly. For example, if the user pulls down a menu item you’ve
created called Sort by City, you’ll want something different to happen then if the user selects Void Transac-
tion.

Whenever a custom menu item is chosen, Panorama stores the name of the custom menu and the name of the
item. The programmer can retrieve this information using the info("trigger") function (see
“INFO("TRIGGER")” on page 5430). By combining the info("trigger") function with if or case state-
ments (see “IF Statements” on page 1378 and “CASE Statements” on page 1380) the programmer can create a
.CustomMenu procedure that performs the correct action for every custom menu item. The following sec-
tions will illustrate several methods for programming .CustomMenu procedures to operate correctly.

Chapter 24:Procedures Page 1465
The info("trigger") Function

The info("trigger") function can be used by any procedure to find out how that procedure was trig-
gered. If the procedure was triggered by a custom menu, the info("trigger") function will return the
word Menu followed by the menu name and menu item name, separated by periods.

Menu.<Menu Name>.<Menu Item Name>

For example, suppose you select Yards from the Units menu.

When this item is chosen the info("trigger") function will return the value:

Menu.Ledger.Balance

If you are ever in doubt about what value the info("trigger") function will contain for a menu item,
temporarily insert the following line into the top of the .CustomMenu procedure.

Now choose the custom menu item in question. An alert will appear showing you the exact value produced
by the info("trigger") function.

Once you have the value, be sure to go back and remove the temporary line from .CustomMenu procedure.
A handy way to do this is to comment it out so that it can be easily re-activated later (see ““Commenting
Out” Statements” on page 1409).

Page 1466 Panorama Handbook
Processing Custom Menus with Simple IF’s

The simplest way to process custom menus is to use the if statement (see “IF Statements” on page 1378). In
this technique a similar block of statements is repeated over and over, once for each custom menu item. Each
block starts with an if statement that uses info("trigger") to decode the menu item name. Then there are
one or more statements that perform the actual operations for this menu item. Since we don’t want any fur-
ther actions for other menu items to be performed, this is followed by a stop statement (see “Stopping the
Program” on page 1395). The endif statement terminates the entire block.

if info("trigger") = "Menu.<Menu Name>.<Item Name>"
statement1
statement2
statement3
...
stop

endif

The .CustomMenu procedure should contain one of these blocks for each custom menu item. Since each
block of statements is completely self contained, the blocks can be in any order you want. The example below
shows a .CustomMenu procedure written for two custom menus with two menu items apiece.

if info("trigger") = "Menu.Organize.SortByName"
field LastName
sortup
field FirstName
sortupwithin
stop

endif
if info("trigger") = "Menu.Organize.SortByZip"

field Zip
sortup
stop

endif
if info("trigger") = "Menu.Transaction.Add"

AddRecord«
stop

endif
if info("trigger") = "Menu.Transaction.Void"

Description="Void"
Amount=0
stop

endif

Chapter 24:Procedures Page 1467
Processing Custom Menus with Nested IF’s

If your database has a lot of custom menu items, the technique described in the last section can be slow for
items that are processed toward the bottom of the .CustomMenu procedure. There may be a noticeable delay
as Panorama processes all the if statements. The solution to this delay is to group the blocks together by
menus using nested if statements. For example, suppose your database uses 6 custom menus with 15 items
apiece. Using the simple if statement technique there could be a delay of as many as 90 if statements before
the statements that actually do the work get started. Using nested if statements this delay is reduced to a
maximum of 21 if statements.

The example below shows the previous example rewritten to use nested if statements. The outer level of if
statements selects what menu is being processed, while the inner level selects the individual menu items.

if info("trigger") beginswith "Menu.Organize."
if info("trigger") endswith ".SortByName"

field LastName sortup
field FirstName sortupwithin
stop

endif
if info("trigger") endswith ".SortByZip"

field Zip sortup
stop

endif
endif
if info("trigger") beginswith "Menu.Transaction."

if info("trigger") endswith ".Add"
AddRecord
stop

endif
if info("trigger") endswith ".Void"

Description="Void"
Amount=0
stop

endif
endif

Splitting the Trigger into Menu/Item Names

In some cases it may be advantageous to split the value returned from info("trigger") back into sepa-
rate menu and menu item names. This can be done with the array(function as shown in the example below
(see “Text Arrays” on page 1257).

This example assumes that the database contains a field called Carrier, and a custom menu called Airlines
that contains menu items listing airlines: American, Delta, Southwest, etc. When the user selects an airline
the name of the airline is copied into the Carrier field.

local MenuName,MenuItemName
MenuName=array(info("trigger"),2,".")
MenuItemName=array(info("trigger"),3,".")

if MenuName="Airlines"
Carrier=MenuItemName
stop

endif
/* other menu processing continues below */
…

Page 1468 Panorama Handbook
Menus with Modifier Keys

Sometimes you may want to have a custom menu item perform a different action if a modifier key is pressed
(Shift, Control, Option, Command or Alt). The program can test for these modifiers with the
info("modifiers") function. This function returns the names of all the modifier keys that are pressed
down.

The partial example below uses the info("modifiers") function to create a shortcut for the Void menu
item. This procedure is programmed so that a confirmation alert normally appears before the transaction is
voided, but if the user holds down the Option key the alert is skipped (Alt key on PC systems).

if info("trigger") = "Menu.Transaction.Void"
if (not info("modifiers") contains "option")

alert 1014,"Are you sure you want to void this transaction"
if info("dialogtrigger")="No"

stop
endif

endif
Description="Void"
Amount=0
stop

endif

Since the user has no way to tell that a modifier key affects the operation of a menu item, this technique
should be used with care. Don’t make pressing a modifier key cause a completely different operation. In gen-
eral this technique should only be used for slight variations (like the shortcut above), or to allow for secret
undocumented operations that you don’t want someone to stumble across accidentally.

Submenus (Hierarchal Menus)

Custom menus can be nested up to five levels deep. This is usually called submenus or hierarchical menus.

Submenus must be prepared in advance in a resource file, just like any other custom menu (see “Preparing a
Resource File” on page 1449). However, submenus must have menu ID’s between 200 and 255. Be sure to
give the submenu a name, even though that name will not appear in the menu bar. (Even though the name
doesn’t appear in the menu bar, the name will still be returned by the info("trigger") command.)

may be used as submenus

may not be used as submenus

Chapter 24:Procedures Page 1469
After the submenu is created, it must be attached to a menu item in another menu. Select the menu item that
you want to attach the submenu to.

Once the item is selected choose Assign Submenu from the Item menu.

Type in the ID of the submenu you want to attach to this item. In this case we’ll type 200 to attach the Colors
menu as a Submenu.

select item you want
to attach submenu to.

Page 1470 Panorama Handbook
Like other custom menus, submenus must be assigned to one or more views in the database using the Cus-
tom Menu dialog (in the Setup Menu). However, the menu ID number should be preceded by the letter S.
For example, if your submenu has a menu ID of 200, it should be installed in the Custom Menu dialog as S200
(or s200). Preceding the menu ID with the letter S tells Panorama not to display the menu in the menu bar.

Once the submenu is installed, it can be used like any other custom menu.

If the user selects an item in the submenu it will trigger the .CustomMenu procedure (see “The .Custom-
Menu Procedure” on page 1464). The info("trigger") function will return the name of the submenu and
the submenu item. For example, if the user selects Green in the Colors submenu, which is a submenu in the
Options menu, the info("trigger") function will return Menu.Colors.Green.

submenus (may be anywhere in list)

Chapter 24:Procedures Page 1471
Changing Custom Menus on the Fly

One of the advantages of custom menus is that they can be modified on the fly by the programmer. The pro-
grammer can add and remove checkmarks, gray out menu items (enable or disable), or even replace an entire
menu with a different one.

(Warning: The commands described in the following section work only with custom menus. They do not
work with Panorama’s standard menus.)

Specifying Menus and Menu Items

To change a menu, Panorama needs to know exactly what menu and menu item you want to modify or
access. There are two ways you can specify menus and menu items: 1) by name, or 2) by numeric ID.

For example, suppose you have a custom menu named Transaction with a menu ID of 3012. The fourth item
in this menu is Void. There are four possible combinations that can be used to specify this menu item:

 Example 1: "Transaction" "Void"

 Example 2: 3012 4

 Example 3: "Transaction" 4

 Example 4: 3012 "Void"

In the first example, both the menu and the menu item are specified by name. In the second example, both are
specified by numeric ID. In the final two examples the methods are mixed.

How does the programmer decide which method to use? If the name is known when the program is written,
it should probably be used for clarity. However, in some cases the name cannot be known. In those cases the
numeric ID must be used.

Menu Marks (Checkmarks, etc.)

A procedure can add or remove any kind of mark to a custom menu item. Any character can be used as a
mark, but the most common marks are checkmarks (✓) and diamonds (◆). You cannot type these characters
into a procedure, but you can use the chr(function to create these special characters.

 For the checkmark (✓), use chr(18)

 For the diamond (◆), use chr(19)

The SetMenuMark statement adds or removes a mark to a specific menu item (see “SETMENUMARK” on
page 5739). The statement requires three parameters: 1) the menu, 2) the menu item, and 3) the mark charac-
ter. If you supply an empty mark character, Panorama will remove any mark that is attached to the menu
item.

The GetMenuMark statement allows a program to find out if and how a menu item is marked (see “GET-
MENUMARK” on page 5299). This statement has two parameters, 1) the menu, 2) the menu item. The state-
ment finds out what character (if any) is used to mark the menu item, then places that character in the
clipboard where it can be retrieved with the clipboard() function (see “CLIPBOARD(” on page 5104).

The ClearMenuMarks statement removes all the marks from every menu item in a menu. The statement
requires one parameter: the menu name or ID number. This statement is especially useful when you don’t
know what menu items might be marked. The marks could also be cleared by using the SetMenuMark com-
mand over and over again in a loop, but ClearMenuMarks is much faster.

Page 1472 Panorama Handbook
Checkmark On/Off Toggle

One of the most common reasons to mark a menu item is to indicate the status of something represented by
the menu item: on/off, rush/normal, locked/unlocked, etc. For example, suppose a database had a custom
menu item in the Order menu named Rush, and that this item could be either checked or unchecked.

The sample program fragment below shows the section of the .CustomMenu procedure that adds and
removes the checkmark.

if info("trigger") = "Menu.Order.Rush"
getmenumark "Order" "Rush"
if clipboard() = ""

setmenumark "Order","Rush",chr(18)
else

setmenumark "Order","Rush" ""
endif

endif

The program fragment starts by seeing if Rush is checked already. If not, it adds the checkmark, otherwise it
removes it.

Other procedures in this database can use GetMenuMark to check if the Rush status is turned on. This sam-
ple program fragment makes today the ship date if rush is on, otherwise the ship date is in 5 days.

getmenumark "Order","Rush"
if clipboard() ≠ ""

ShipDate=today()
else

ShipDate=today()+5
endif

Checking One Item in a Group

Another common use for menu checkmarks is to check one item from a group. The sample below is designed
to work with a Shipper custom menu that contains a list of shipping companies (UPS, US Mail, FedEx, etc.).

Chapter 24:Procedures Page 1473
The program fragment below should be part of the .CustomMenu procedure.

global PreferredShipper
local MenuName,MenuItemName
MenuName=array(info("trigger"),2,".")
MenuItemName=array(info("trigger"),3,".")

if MenuName="Shipper"
clearmenumarks "Shipper"
PreferredShipper = MenuItemName
setmenumark "Shipper",MenuItemName,chr(18)
stop

endif

When the user selects any item from the Shipper menu, the procedure starts by clearing all of the menu items
in the menu. Then it saves the new preferred shipper in a global variable, where it can be accessed by other
procedures at any time. Finally a checkmark is added next to the new preferred shipper name in the menu.

Groups with Other…

This example extends the previous example by adding an Other… item to the Shipper menu.

If the user selects this item, the procedure will display a dialog allowing the user to type in the name of any
shipper.

After the new value is entered, the procedure changes the name of the Other menu to show the new selection,
for example Other (DHL)….

Page 1474 Panorama Handbook
(Note: This sample assumes that the Shipper menu contains 6 items and that the Other item is the last one in
the menu. The SetMenuText line will have to be adjusted if the menu contains more or fewer items.)

global PreferredShipper
local MenuName,MenuItemName
MenuName=array(info("trigger"),2,".")
MenuItemName=array(info("trigger"),3,".")

if MenuName="Shipper"
clearmenumarks "Shipper"
if MenuItemName beginswith "Other"

gettext "Preferred Shipper…",PreferredShipper
setmenutext "Shipper",6,"Other ("+PreferredShipper+")…"
stop

endif
PreferredShipper = MenuItemName
setmenumark "Shipper",MenuItemName,chr(18)
stop

endif

Disabling Menu Items

A procedure can disable custom menu items when they would not be appropriate. The MenuDisable state-
ment disables a menu item, turning it gray in the menu. The MenuEnable statement enables a menu item
that has been disabled. Both of these statements have two parameters: 1) the menu name or ID number, and
2) the menu item name or number.

The sample program fragment below disables the US Mail and UPS Ground items in the Shipper menu
when the Rush option is turned on.

These shipping options are re-enabled when the Rush option is turned off.

if info("trigger") = "Menu.Order.Rush"
getmenumark "Order" "Rush"
if clipboard() = ""

setmenumark "Order","Rush",chr(18)
menudisable "Shipper","US Mail"
menudisable "Shipper","UPS Ground"

else
setmenumark "Order","Rush",""
menuenable "Shipper","US Mail"
menuenable "Shipper","UPS Ground"

endif
endif

(Note: If a custom menu contains over 32 items, only the first 32 items can be disabled.)

Chapter 24:Procedures Page 1475
Changing Menu Text on the Fly

Panorama allows custom menu items to change to show changing conditions. For example, a menu item
could be changed between Locked/UnLocked, Inches/Centimeters, or Public/Private.

To change a menu item use the SetMenuText statement. This statement has three parameters: 1) the menu
name or ID number, 2) the menu item name (if known) or number, and 3) the new menu item text.

To find out what the current text of a menu item is, use the GetMenuText statement. This command has two
parameters: 1) the menu name or ID number, and 2) the menu item number. (Notice that you must specify the
menu item by number. This is because, by definition, you do not know what the menu item text is or you
wouldn’t be using this command!) The GetMenuText statement will put a copy of the menu item text into
the clipboard, where it can be retrieved with the clipboard() function.

The code sample below assumes that the database has a custom menu named Status, and that the first item in
this menu is either Transactions Allowed or Transactions Locked. This code sample starts by using the
GetMenuText statement to find out the current state of the menu item.

Then it uses the SetMenuText statement to toggle the text in the menu to the opposite condition.

if info("trigger") matches "Menu.Status.Transactions*"
getmenutext "Status" 1
if clipboard() contains "locked"

setmenutext "Status",1,"Transactions Allowed"
else

setmenutext "Status",1,"Transactions Locked"
endif
stop

endif

You should be very careful to avoid a confusing interface when using this menu changing technique. In the
example above, it may not be clear to the user what this menu item does or shows. A better solution might be
to have two menu items and mark one or the other with a checkbox. A previous section in this chapter, shows
a more suitable use for changing menu items (see “Groups with Other…” on page 1473).

Page 1476 Panorama Handbook
Rebuilding Entire Menus

The menubuild statement allows a programmer to completely rebuild a menu on the fly. This allows menu
choices to be tailored to changing situations. The key word here is rebuild, because this command cannot
build a menu from scratch. The custom menu must already exist in an open resource file, and it must be
assigned to the current form or data sheet with the Custom Menu dialog.

The menubuild statement requires two parameters: 1) the menu name or ID number, and 2) a list of the new
menu items, separated by semicolons.

The example below shows the menubuild statement in action. The database associated with this example
has two custom menus, Transportation and Carrier. The Transportation menu has four items: Air, Train,
Ship and Car. When the user selects one of these four items, the procedure changes the Carrier menu to show
a list of carriers for that transportation mode. For example, if the user selects Air, the Carrier menu will be
filled with a list of airlines. If the user selects Train, the Carrier menu will be filled with a list of railroads, etc.

Here’s the procedure.

case info("trigger") = "Menu.Transportation.Air"
menubuild "Carrier","American;Continental;Delta;Southwest;United;US Air;"

case info("trigger") = "Menu.Transportation.Train"
menubuild "Carrier","Amtrak;Alaska RR;VIA [Canada]"

case info("trigger") = "Menu.Transportation.Ship"
menubuild "Carrier","Carnival;Cunard;Norwegian;Princess;Royal Caribbean"

case info("trigger") = "Menu.Transportation.Car"
menubuild "Carrier","Alamo;Avis;Budget;Dollar;Hertz;National"

endcase

Chapter 24:Procedures Page 1477
Note: The menubuild statement normally builds all menu items as plain 12 point text in the default menu
font. By adding a special suffix to menu item names in the menu item list you can change menu items to dif-
ferent styles: bold, italic, etc. The table below lists the different styles and corresponding suffixes.

It is also possible to assign a command key equivalent (shortcut) by adding a suffix. The suffix consists of a /
character followed by the character you want to assign as a command key equivalent. The example below
fills the Ship menu with five items that have command key equivalents from 1 thru 5.

menubuild "Ship","UPS/1;US Mail/2;FedEx/3;DHL/4;Airborne/5"

You can build separator lines in the custom menu by defining a menu item as (- . Unlike Action menus, all
separator lines can be defined (- , duplicates are no problem. The example below would build a menu with
two separator lines, one between White and Red, and another between Blue and Orange.

menubuild "Colors","Black;White;(-;Red;Green;Blue;(-;Orange;Violet;Yellow;Cyan;Brown"

Reassigning Menus in the Menu Bar

Normally custom menus are assigned to the menu bar with the Custom Menu dialog (in the Setup menu).
The setmenus statement allows this same function to be performed by the programmer, allowing menus to
be added, removed, or re-arranged in the menu bar at any time under program control. The setmenus state-
ment requires one parameter, a list of the menu ID numbers you want to include in the menu bar, exactly as
they would be typed into the Custom Menu dialog.

The getmenus statement allows a program to retrieve and examine the current menu bar configuration. This
command places a copy of the menu ID number list into the clipboard, where it can be retrieved with the
clipboard() function.

The example below saves the current menu configuration in the global variable fullMenus, then installs a
minimum menu configuration of just the Apple, File, and Setup menus (S18 is the Arrange sub-menu).

global fullMenus
getmenus
fullMenus=clipboard()
setmenus "1 27 S18 68"

At a later time another procedure could restore the full custom menu configuration by simply including the
line below:

setmenus fullMenus

Style Suffix Example

Bold <B Monthly Report<B

Italic <I New Invoice<I

Underline <U Initialize Payroll<U

Outline <O Back Order<O

Shadow <S Erase All Statements<S

Page 1478 Panorama Handbook
Custom Menu Troubleshooting

If you encounter problems while setting up custom menus, consult the troubleshooting guide below.

Buttons

Buttons are an important part of the today’s modern graphic user interfaces. You can use a wide variety of
buttons in any Panorama form. Panorama buttons come in three basic varieties: push buttons, data buttons
(checkboxes and radio buttons), and pop-up menu buttons. All of these types of buttons can trigger a proce-
dure. Use the configuration dialog for the button to select which button will be triggered when the button is
pressed (see “Buttons & Widgets” on page 853).

When a button is triggered by a procedure the info(trigger) function will return the title of the button.
If you wish you may use a single procedure with many different buttons. For example, consider this form,
which has four different buttons.

Problem Solutions

No menus appear at all.

The most likely source of this problem is that the resource file is not open.
To correct this problem make sure that the .Initialize procedure contains
an openresource statement, that the resource file name matches the
name specified by the openresource statement, and that the resource
file is in the same folder as the Panorama database file (or the correct
folder if a path has been specified by the openresource statement).

If the resource file has been opened correctly, the menus may not be set
up correctly in the resource file. Check the menus with the Custom Menu
Editor (see “Preparing a Resource File” on page 1449), and make sure that
the menu ID numbers match the numbers that have been set up in the
Custom Menu dialog.

Only standard Panorama
menus appear.

The most likely source of this problem is that the resource file is not open.
See the previous section.

Custom menus appear and can be
pulled down, but nothing happens
when you select any custom menu

item.

This problem could be caused if there is no .CustomMenu procedure, or
if the .CustomMenu procedure name is spelled incorrectly. If you think
you have set up the .CustomMenu procedure correctly but none of your
menu items work, insert the following line at the top of the .Custom-
Menu procedure:

message info("trigger") stop

After this line is inserted, if you select any custom menu item a dialog
should appear. If the dialog does not appear, check the name of the .Cus-
tomMenu procedure—it must be spelled exactly including upper and
lower case. If the dialog does appear then the problem is in the logic of
your .CustomMenu procedure.

A specific custom menu item does
not work.

This indicates a problem in the logic of your .CustomMenu procedure—
possibly an incorrect comparison with the info("trigger") function.
Use the debugger to check the logic of your procedure (see “The Pan-
orama Interactive Debugger” on page 1417).

Chapter 24:Procedures Page 1479
All four of these buttons trigger the .ButtonMath procedure. In fact, the only difference between these but-
tons is their titles. Here is the configuration dialog for one of these buttons.

The .ButtonMath procedure uses the info("trigger") function to decide which button was pressed.

Notice that the name of this procedure starts with a period. This makes this an “unlisted” procedure that
does not appear in the Action menu (see See ““Unlisted” Procedures” on page 1448). It wouldn’t make any
sense to trigger this procedure from the menu, so it’s best to make it unlisted.

Page 1480 Panorama Handbook
Hidden Triggers

Hidden triggers activate a procedure automatically when the user performs some normal Panorama action.
Examples of user actions that can cause a hidden trigger to activate include adding new records to a data-
base, deleting records, opening a file, closing a window and many more. The trigger is “hidden” because the
user is not explicitly asking Panorama to activate a procedure by pressing a button or selecting a menu
choice.

Procedures that are activated by hidden triggers can modify (or even override) the way Panorama reacts to
many standard user actions. For example, when a user clicks on a window’s close box, Panorama normally
responds by closing the window. But with a hidden trigger the programmer can activate a procedure when-
ever the close box is clicked. This procedure can do anything the programmer wants. For example, the pro-
grammer may want to save the window position before the window is closed. Or the programmer may not
want to let the user even close the window until all the data on a form is filled in. Of course this kind of flexi-
bility comes with a price. The user expects the window to close—so any other action must be carefully
designed so that it doesn’t confuse or frustrate the user.

Creating Hidden Trigger Procedures

To create a procedure that is activated by a hidden trigger you must give the procedure a special name. For
example, suppose you want to create a procedure that is triggered whenever a window is closed. That proce-
dure must be named .CloseWindow. If a database contains a procedure with that name, it will always be trig-
gered when the user clicks on the close box of a window in that database. To make it easier to create hidden
trigger procedures, the New Procedure dialog contains a pop-up menu of the special procedure names
required for hidden triggers.

Each of the eighteen possible hidden trigger procedures is explained in the following sections.

click here to choose from pop-up menu of hidden procedures

Chapter 24:Procedures Page 1481
.About

This hidden trigger procedure will be triggered when the user selects About Panorama from the Apple
menu. Normally selecting this menu item displays the “splash screen” and copyright message for Panorama.
Using the .About hidden trigger procedure, you can display your own splash screen with information about
your database. The following example shows a typical .About hidden trigger procedure that opens a form
called Credits. This form would normally include a picture or logo for your database. It should also include a
button that allows the user to close the window and resume normal use of the database (or you could even
flip through multiple credit pages before closing the window).

Warning: Your revised credit screen must include the ProVUE copyright notice in its entirety.

.Note: You can also change the name of the About Panorama menu item. See “..CustomAbout” on page 1496.

AutoGrow

The .AutoGrow procedure is designed to work with Elastic forms (see “Elastic Forms” on page 940). To use
this procedure you must enabled the option in the auto-grow objects, like this.

When this option is enabled the .AutoGrow procedure will be triggered every time the window changes size.
Here is an .AutoGrow procedure that simply calculates the width and height of the window.

Page 1482 Panorama Handbook
In this database the .AutoGrow procedure is simply used to display the size of the new window.

A more useful application would be to adjust elements of the form depending on the size of the window. See
“Programming Graphic Objects on the Fly” on page 1652 to learn how to adjust form elements.

.ClearRecord

This procedure is triggered when you choose the Clear menu item from the Edit menu, but only in a crosstab.
Frankly, we can’t remember why this feature was added!

.CloseWindow

This hidden trigger procedure will be triggered when the user clicks on the close box in the upper left hand
corner of a window. Usually clicking on this box causes the window to close. Using the .CloseWindow hid-
den trigger procedure you can perform extra steps before closing the window, or even prevent the window
from closing. Here is a typical example of how the .CloseWindow hidden trigger procedure is used. If the
Registration form is open, the procedure checks to make sure that the Name field is not empty. If the Name
field is empty, the procedure tells the user that they cannot close the form yet. Otherwise the procedure goes
ahead and closes the window.

Chapter 24:Procedures Page 1483
Notice that the last statement in this procedure, closewindow , actually closes the window. It does not trig-
ger the procedure again. Only a user action, such as clicking or pressing a key, can trigger a hidden proce-
dure.

Warning: The .CloseWindow procedure is triggered only by the user clicking on the close box of the window.
It is not triggered by other actions that might close the window, such as closing the entire file or quitting from
Panorama.

.CurrentRecord

This hidden trigger procedure will be triggered when the database shifts to a different record. For example,
this procedure is triggered when you move up or down in the database with the vertical scroll bar, or with
the Find or Find Next commands. (Remember, like other hidden trigger procedures it is not triggered by pro-
cedure statements, only by user actions.) You can use this procedure to perform any special actions that are
necessary to display or work with this record.

.CustomMenu

This hidden trigger procedure will be triggered when the user selects a Custom menu item. For a complete
description of custom menus and the .CustomMenu hidden trigger procedure see “The .CustomMenu Proce-
dure” on page 1464.

.DeleteRecord

This hidden trigger procedure will be triggered when the user attempts to delete a record from the database.
This procedure could be triggered by the Delete Record tool, or by pressing the Delete key in data sheet or
view-as-list windows. The example below allows records created today to be deleted immediately, but dou-
ble checks before allowing older records to be deleted.

Notice that the record is not deleted unless the procedure deletes the record. The .DeleteRecord procedure
interrupts the normal deletion process and takes over. This puts you, the programmer, in control.

.DialogKeyDown

This very specialized hidden trigger procedure will be triggered when the user presses a key in a form that
has no drag bar (a form that looks like a dialog). However, this procedure will not be triggered if a Data Cell
or SuperObject Text Editor is currently active. So if you are in a dialog created with a Panorama form, not
editing text, and press a key, the .DialogKeyDown procedure will be triggered. (Another way to intercept
keystrokes is with a hotkey procedure, see “Hot Key Procedures” on page 1490.)

The procedure can tell what key was pressed by using the info("trigger") function. For example, if the
user presses Y the info("trigger") functions will return Key.Y.

Page 1484 Panorama Handbook
Here is a .DialogKeyDown procedure that closes the dialog window if the user presses the Enter key. All
other keystrokes will be processed normally.

To process keystrokes normally this procedure uses the key statement. See “.KeyDown” on page 1484 for
more information on this statement.

.Help

This hidden trigger procedure will be triggered when the user selects Help from the Apple menu. Normally
selecting this menu item opens the Panorama help system. Using this hidden trigger procedure you can force
Panorama to use your own custom help system for your database. The example shown below will open the
normal Panorama Help if the current window is a procedure or a form in graphics mode. Otherwise it will
open the special Accounting Help database.

.Initialize

This hidden trigger procedure will be triggered when the database is opened, either from the desktop or from
the Open dialog. You can use this procedure to initialize global and permanent variables, open resource files,
set up custom menus, pre-sort or pre-select the database…anything that needs to be done automatically
whenever the database file is opened.

Warning: Most procedures can only be triggered from the data sheet or a form. However, the .Initialize proce-
dure will start running immediately when the file is opened, in whatever window happens to be open. If this
window is not a data sheet or form, the procedure may not operate correctly. Many procedure statements
(sort, group, select, etc.) will not operate properly from a non-data window. If this may happen, the first thing
the .Initialize procedure should do is open a form or the data sheet.

.KeyDown

This very specialized hidden trigger procedure will be triggered when the user presses a key in a form. How-
ever, this procedure will not be triggered if a Data Cell or SuperObject Text Editor is currently active. So if you
are in a form, not editing text, and press a key, the .KeyDown procedure will be triggered. (Another way to
intercept keystrokes is with a hotkey procedure, see “Hot Key Procedures” on page 1490.)

Chapter 24:Procedures Page 1485
The procedure can tell what key was pressed by using the info("trigger") function. For example, if the
user presses Y the info("trigger") functions will return Key.Y. Special keys will return the special values listed
in this table:

The procedure can use the info("modifier") function to tell what modifier keys have been pressed along
with the primary key: shift, option, control, and command.

Here is a .KeyDown procedure that closes the window if the user presses the Enter key. If the user presses the
$ key Panorama jumps to the Amount data cell and begins to edit it. All other keystrokes will be processed
normally.

local KeyStroke
KeyStroke=info("trigger")[5,-1]
case KeyStroke=chr(3)/* enter key */

closewindow
case KeyStroke="$"

field Amount
editcellstop

defaultcase
key info("modifiers"),KeyStroke

endcase

To process keystrokes normally this procedure uses the key statement. The key statement passes the key-
stroke back to Panorama for normal processing (see “KEY” on page 5458). This statement has two parame-
ters: 1) the modifiers associated with the key, and 2) the key itself.

.ModifyRecord

This hidden trigger procedure will be triggered when the user modifies any field in the database. Warning:
The .ModifyRecord procedure will not run if a procedure is already running, or if the field has its own proce-
dure. In those cases you may want the other procedure to call the .ModifyRecord procedure as a subroutine
(more on this in a moment). The .ModifyRecord procedure is also not called if the data is modified with a
command in the Fill menu.

The .ModifyRecord procedure example below automatically marks the latest date and time when a record
was modified. This example assumes that the database has two fields for time/date tracking: ModifyDate (a
date field) and ModifyTime (a numeric field).

ModifyDate=today()
ModifyTime=now()

Tab † chr(9)

Enter œ chr(3)

Return ¥ chr(13)

Esc Ÿ chr(27)

Delete ƒ chr(8)

Left Arrow ¯ chr(28)

Right Arrow ˘ chr(29)

Up Arrow ˜ chr(31)

Down Arrow ¿ chr(30)

Page 1486 Panorama Handbook
Note: This example illustrates the .ModifyRecord procedure, but a better way to perform this task would be
to create a Time Stamp field in the design sheet. See “Automatic Time/Date Stamping” on page 404 for
details on this process.

If your database has other procedures that modify the database they should call the .ModifyRecord proce-
dure to make sure that the time stamp is kept up to date. For example, here is a procedure that automatically
subtracts one from the QtyInStock field.

QtyInStock=QtyInStock-1
call .ModifyRecord

The example below selects all items that have over 500 in stock and have not been touched in 30 days. For
those items, it reduces the price by 10%, then marks the modification date and time.

select QtyInStock>500 and today()-ModifyDate>30
field Price formulafill Price*0.90
field ModifyDate formulafill today()
field ModifyTime formulafill now()

Since the .ModifyRecord procedure is not triggered by FormulaFill , the procedure must update the modi-
fication date and time itself.

.NewRecord

This hidden trigger procedure will be triggered when the user attempts to add a new record to the database
with the Add New Record or Insert New Record tool, or by pressing the Return key in the data sheet or a
view-as-list form (see “Adding a New Record” on page 372). The info("trigger") function can be used
to determine which of the three possible actions triggered the procedure:

This sample .NewRecord procedure won’t allow new records to be added if there already at 100 or more
records in the database:

if info("records") ≥100
message "Sorry, this database is limited to 100 records."

else
case info("trigger") = "New.Add"

addrecord
case info("trigger") = "New.Insert"

insertrecord
case info("trigger") = "New.Return"

insertbelow
endcase

endif

"New.Add" Add New Record tool or Add New Record menu item

"New.Insert" Insert New Record tool

"New.Return" Return key

Chapter 24:Procedures Page 1487
Here’s another .NewRecord example that only allows new records to be added to the end of the database, not
inserted in the middle. In this example the case for info("trigger") = "New.Insert" has been elimi-
nated, because we know that a new record cannot be inserted. The case for info("trigger") =
"New.Return" has been expanded to also check to see if we are on the last line of the database with the
info("eof") function.

local AddFlag
AddFlag="no"
case info("trigger") = "New.Add

addrecord
AddFlag="yes"

case info("trigger") = "New.Return" and info("eof")
insertbelow
AddFlag="yes"

endcase
if AddFlag="no"

message "Sorry, new records must be added"+
 " to the end of the database, not inserted in the middle."
stop

else
call .ModifyRecord

endif

At the end of this example procedure a message is displayed if the record could not be added. If the new
record has been added this procedure calls .ModifyRecord (see “.ModifyRecord” on page 1485). The proce-
dure could also calculate default values at this point.

Warning: The .NewRecord procedure is not triggered when new records are added by appending (with the
Open File command).

.OutOfBounds

This very specialized hidden trigger procedure will be triggered when a form that has no drag bar is open (a
form that looks like a dialog) and the user clicks outside of the window. In other words, if you create a dialog
with a Panorama form and the user clicks outside of the dialog, this procedure will be triggered. (If there is no
.OutOfBounds procedure, Panorama will simply beep when this happens.)

If you wish, the .OutOfBounds procedure could simply close the window if the user clicks outside of it:

closewindow

Or, the .OutOfBounds procedure could display a message:

message "Please click inside the dialog."

Of course, this message might make the user feel like they were back in kindergarten (please draw inside the
lines!).

Page 1488 Panorama Handbook
.ZoomFailed

This very specialized hidden trigger procedure will be triggered when the user clicks on the zoom box, but
Panorama cannot zoom the window. The only time this happens is if both the horizontal and vertical scroll
bars are disabled. In that case you can use the .ZoomFailed procedure to make the window zoom, perhaps by
switching to a different form as the example below shows:

case info("formname")="Letter
goform "Full Letter"
setwindow 20,2,760,500,""
zoomwindow

case info("formname")="Full Letter"
goform "Letter"
setwindow 20,2,320,500,""
zoomwindow

endcase

Data Entry Triggers

Panorama can automatically trigger a procedure whenever you enter new data into a database field. Unlike
other hidden trigger procedures, data entry trigger procedures do not have a special name. Instead, the name
of the procedure is specified in the design sheet.

To set up a procedure that is triggered by data entry, first create the procedure. If you don’t want the proce-
dure to be listed in the Action menu the procedure name should start with a period. The procedure name
must be a single word with no spaces. Then open the design sheet and make sure that the Procedure Style
Formulas option is checked in the Special menu. If you have been using Spreadsheet Style formulas you
will need to adjust the other formulas that have been set up in the design sheet (see “Automatic Calculations”
on page 406).

Then type the procedure name into the Equation column for the field. If there are already formulas for the
field, the procedure name should be typed after the last formula.

Once the data entry trigger is set up, the procedure will be triggered automatically each time the user presses
Enter, Return or Tab to enter data. The procedure can find out which key was pressed using the
info("trigger") function. If the Return key was pressed, info("trigger") will be Key.Return. If the
Tab key was pressed, info("trigger") will be Key.Tab.

Chapter 24:Procedures Page 1489
Here is a sample data entry triggered procedure that calculates the new balance for a checkbook. The data
sheet should be set up so that this procedure is triggered whenever the Credit or Debit fields are modified.

To set this procedure up to be triggered you must enter it into the Equation field of the design sheet, like this.

When the user presses the Tab key while editing data, Panorama normally skips to the next field. However, if
the procedure uses the field statement to switch to a different field, Panorama’s normal tab order is aborted. If
you want to abort the tab order without moving to a different field, use the stoptab statement. Here is a
sample data entry triggered procedure that filters out negative values in the Price field.

if Price < 0
message "Negative prices are not allowed"
stoptab

endif

If a data entry triggered procedure is triggered, the .ModifyRecord procedure (if any) for the database will
not be triggered. If necessary, you should call to .ModifyRecord somewhere in your data entry triggered pro-
cedure. Here’s a revised version of our check balance procedure.

local NewBalance
NewBalance=Credit-Debit
UpRecord
NewBalance=Balance+NewBalance
DownRecord
Balance=NewBalance
call .ModifyRecord

Another option is to get rid of the data entry triggered procedures completely and do all the work in the
.ModifyRecord procedure. That option is described in the next section.

Page 1490 Panorama Handbook
Data Entry Triggers (Part Two)

Instead of using separate data entry trigger procedures for each field as described in the last section, you
combine all of the data entry procedures for the entire database into a single procedure: the .ModifyRecord
procedure. Remember, this procedure is triggered whenever any field is modified. This procedure can use the
info("fieldname") function to determine which field was modified, and take appropriate action. Here’s
an example of a .ModifyRecord procedure that performs special actions for the Date, Credit, and Debit fields
in a checkbook database.

case info("fieldname")="Date"
if Date>today()

Date=today()
stoptab
message "Post-dated checks not allowed!"

endif
case info("fieldname")="Credit" or info("fieldname")="Debit"

local NewBalance
NewBalance=Credit-Debit
UpRecord
NewBalance=Balance+NewBalance
DownRecord
Balance=NewBalance

endcase
ModifyDate=today()

This procedure also time stamps the ModifyDate field in the current record whenever any field is modified.
With this technique it’s all in one procedure and easy to keep track of. Another advantage of this technique is
that it will work just fine with the Spreadsheet Style Formulas option.

Hot Key Procedures

Every time a key is pressed Panorama looks for a special variable. This variable is named HotKey[xx], where
xx is the hexadecimal value of the keycode for the key that is pressed (see table below). For example, to create
a hotkey procedure for the F1 key the variable must be named HotKey[7A] If Panorama finds such a value it
takes the contents of the variable and executes them, just as if the variable was part of an execute statement
(see “Building Subroutines On The Fly (The Execute Statement)” on page 1397). The table below lists the
codes for 96 different keys (the keys in green are on the numeric keypad).

A 00 M 2E Y 10 ˚ 37 0 1D 2 54 * 43 F9 65

B 0B N 2D Z 06 ˙ 31 - 1B 3 55 + 4E F10 6D

C 08 O 1F [21 \ 32 = 18 4 56 - 45 F11 67

D 02 P 23] 1E 1 12 ƒ 33 5 57 ESC 35 F12 6F

E 0E Q 0C ; 29 2 13 ` 2A 6 58 F1 7A F13 69

F 03 R 0F ‘ 27 3 14 œ 24 7 59 F2 7B F14 6B

G 05 S 11 , 2B 4 15 ˜ 7E 8 5B F3 63 F15 71

H 04 T 11 . 2F 5 17 ¿ 7D 9 5C F4 76 Ó 73

I 22 U 20 / 2C 6 16 ¯ 7B œ 4C F5 60 “ 74

J 26 V 09 ß 38 7 1A ˘ 7C „ 47 F6 61 ” 79

K 28 W 0D ç 3B 8 1C 0 52 = 51 F7 62 END 77

L 25 X 07 å 3A 9 19 1 53 / 4B F8 64 HELP 72

Chapter 24:Procedures Page 1491
The procedure below sets up a hotkey procedure for the F1 key. After this procedure has been used pressing
the F1 key will open the Favorite Databases wizard.

global «HotKey[7A]»
«HotKey[7A]»={

openfile folderpath(info("panoramafolder"))+"Wizards:Favorite Databases"
}

Because this hotkey procedure was set up as a global variable it will be active no matter what database is cur-
renty open. If you want to restrict the hotkey procedure to a particular database you should use a fileglobal
variable. If you want to restrict the hotkey procedure to a particular window you should use a windowglobal
variable.

If you define a hotkey procedure with a global or fileglobal variable keep in mind that the procedure may be
triggered at any time in any window, so you must not make any assumptions about what window or even
what type of window will be active when the procedure is triggered. It could be a procedure window,
crosstab window, input window, you name it. Also, if you used a global variable you cannot even assume
that the original database is still open.

Hotkey procedures do not work in Panorama dialogs. For example, pressing a hot key has no effect when
you are using the Find/Select dialog, or the Print dialog, or any other dialog that is built into Panorama.
However, hot keys do work in dialogs that you have created with a form (see “Custom Dialogs” on
page 1570).

To disable a hotkey procedure you can either set the hotkey variable to "" or you can destroy the variable
with the undefine statement (see “Destroying a Variable” on page 1371).

Universal HotKey Procedure

If Panorama does not find a hotkey for the specific key that has been pressed it will check to see if there is a
variable named HotKey[*]. If there is, Panorama will execute the code it finds inside. Be very careful with this
variable. For example, the procedure below will completely disable the keyboard until you Quit from Pan-
orama. No matter what database you are in pressing the keyboard will no longer have any effect. Usually you
will want to selectively apply a universal hotkey with a fileglobal or windowglobal variable.

global «HotKey[*]»
«HotKey[*]»="rtn"

The .KeyDown and .DialogKeyDown procedures provide another method to intercept keystrokes and pro-
cess them yourself. See “.KeyDown” on page 1484 and “.DialogKeyDown” on page 1483.

Triggering a Procedure Every Second

Once every second Panorama checks for a special variable named ExecuteEverySecond. If it finds this vari-
able, Panorama takes its contents and executes them, just as if the variable was part of an execute statement
(see “Building Subroutines On The Fly (The Execute Statement)” on page 1397). The most common use for
this feature is to create animation within a form. For example, you could use this feature to make an item on
the form blink, or you could use it to update a stopwatch display every second.

The ExecuteEverySecond variable may be a global, fileglobal, or windowglobal variable. If it is a windowglo-
bal variable, the procedure will only be executed when that window is the front window. If it is a fileglobal
variable the procedure will only be executed when that file is the active file (one of its windows is on top). If
it is a global variable the procedure will be executed no matter what database is active, even if the original
database that created the variable is no longer open. It’s possible to have more than one ExecuteEverySecond
variable active at a time, for example a windowglobal and a global. In that case Panorama will execute both
of the procedures every second.

Page 1492 Panorama Handbook
Here is an example that will cause a bullet to blink on and off once per second. The form Blink Demo should
contain a Text Display SuperObject that displays the blinkValue variable, or a Flash Art object that uses this
value as part of the formula. The nowatchcursor statement makes sure that the mouse arrow doesn’t flip
into a watch once per second as the procedure runs (see “Disabling the Watch Cursor” on page 1413).

openform "Blink Demo"
windowglobal ExecuteEverySecond,blinkValue
blinkValue="•"
ExecuteEverySecond={

nowatchcursor
if blinkValue="•"

blinkValue=""
else

blinkValue="•"
endif
showvariables blinkValue

}

Because the ExecuteEverySecond variable was defined as a windowglobal variable the object will only blink
when that window is the front window. When another window comes to the front the blinking will pause. It
will resume when the Blink Demo window is brought to the front again.

Since this example uses a windowglobal variable the procedure can assume that the Blink Demo window is
on top when the procedure executes each second. If you use a fileglobal or global variable there is no guaran-
tee what window will be on top. If you need to access a specific database you should use the secret window
feature to temporarily activate it during the procedure (see “Temporary “Invisible” Windows” on page 1554).

If you use a global variable you should be careful to be a good neighbor, since other databases may also be
using the same variable. Instead of simply assigning the text of your procedure to the ExecuteEverySecond
procedure you should append it. When you are done you should remove your code while leaving any other
code. In addition, your procedure should not assume that the original database that activated it is still open
— it may have been closed.

Panorama includes a Stopwatch wizard that can be used as a timer.

The three buttons in this form are tied to a single procedure which is listed below. When the Start button is
pressed the procedure appends the code in StopwatchCode to the ExecuteEverySecond variable. This code
will execute every second, causing the form to update as the timer runs. (Notice that the procedure also
checks to make sure that the original database is still open using the arraysearch(and info("files")
functions.) When the Stop button is pressed the procedure uses the replace(function to remove the code
that it added without touching any other code that may have been added by other databases. In fact, you can
make copies of this Stopwatch database and run them all at the same time. Each will keep it’s own time, and
they will all keep running no matter what database is currently active.

global ExecuteEverySecond
fileglobal ElapsedTime,CumulativeTime,StartTime
local StopwatchCode
define ElapsedTime,0
define ExecuteEverySecond,""

StopwatchCode=
{/* }+info("databasename")+{ Wizard */
nowatchcursor
if arraysearch(info("files"),}+"{"+info("databasename")+"}"+{,1,¶)<>0

local wasWindow
wasWindow=info("windowname")

Chapter 24:Procedures Page 1493
window }+"{"+info("databasename")+"}"+{+":SECRET"
ElapsedTime=CumulativeTime+now()-StartTime
showvariables ElapsedTime
window wasWindow

endif
}

if info("trigger") contains "Reset"
ElapsedTime=0
showvariables ElapsedTime
rtn

endif
if info("trigger") contains "Start"

if ExecuteEverySecond notcontains StopwatchCode
CumulativeTime=ElapsedTime
StartTime=now()
ExecuteEverySecond=ExecuteEverySecond+StopwatchCode

endif
endif
if info("trigger") contains "Stop"

ExecuteEverySecond=replace(ExecuteEverySecond,StopwatchCode,"")
endif

If the code you assign to the ExecuteEverySecond variable contains an error Panorama will display an alert
with the error message. It will then wait 20 seconds before it trys to execute the variable again. This delay
gives you a chance to do something (perhaps simply quitting Panorama) before the error occurs again.

By the way, Panorama is not guaranteed to execute the procedure in the ExecuteEverySecond variable every
single second. The procedure will not be executed when you are editing data, graphics, or a procedure. The
procedure will not be executed when you hold down the mouse for an extended time, or if an operation like
sorting, selecting or opening a file takes more than a second. Also, the procedure will not be executed if Pan-
orama is not the frontmost program (in other words, if another program is on top).

Triggering a Procedure Every Minute

Once every minute Panorama checks for a special variable named ExecuteEveryMinute and executes the con-
tents, if any. This variable is just like ExecuteEverySecond except that it only runs once per minute. At that
rate this variable isn’t much use for animations, but it can be used to check for reminders. This example beeps
and displays the time once per hour.

fileglobal ExecuteEveryMinute
ExecuteEveryMinute={

if timepattern(now(),"mm")="00"
beep
message "It’s "+timepattern(now(),"hh")+" o’clock"

endif
}

Panorama will execute this procedure as close to the top of the hour as possible. If it cannot execute the proce-
dure exactly at the top of the hour (because another program is on top, or you are editing data, graphics or a
procedure) it will execute the procedure as soon as possible after the hour.

Event Handler Procedures

Panorama procedures are usually triggered by relatively "hi-level" events like clicking on a button or choos-
ing from a menu. However there is a special type of procedure that is triggered by more low level events like
simply bring a window to the front. These “event handler” procedures (also called simply “handler proce-
dures”) let you control how Panorama responds to these low level events.

Page 1494 Panorama Handbook
Internally, event handler procedures work slightly differently than regular procedures. When an event han-
dler procedure is triggered, Panorama stops everything and runs that procedure immediately. If a regular
procedure causes the event handler procedure to trigger, the regular procedure will pause and wait for the
event handler procedure to finish before continuing.

Event handler procedures are intended for changing the way Panorama responds to various low level events.
An event handler procedure cannot contain any statements that would cause more low level events. In prac-
tical terms this means that an event handler procedure cannot change the arrangement of windows on the
screen in any way—it cannot bring another window to the top, open a new window, close a window, or open
or close any files. You cannot use the debugger with event handler procedures, because the debugger itself
generates low level events. An error dialog will appear if your event handler procedure attempts to perform
a statement that would cause another low level event. Event handler procedures should not pause for user
input unless you really want to annoy your users. (However, it can sometimes be convenient to use a
message statement to help debug an event handler procedure.)

Event handler procedures should be as short as possible. Extra delays in processing low level events will be
very noticeable. The event handler procedure should only deal with the event in question and should not
contain any other logic for your application. If possible an event handler procedure should be written with
one or two simple statements or formulas.

Most event handler procedures have names that begin with two periods (..ActivateForm, ..CustomAbout,
etc.) to help distinguish them from ordinary procedures. The following sections describe each type of event
handler procedure in detail.

Text Editor SuperObject ..Handler Option

The text editor SuperObject has always been able to trigger procedures when various events occur: pressing a
key, pressing most keys, and terminating the editing of the object (see “Text Editor Options” on page 692).
However, users of early versions of Panorama encountered problems with this feature, since it would not
work properly when other procedures were running, and would not work properly if the user terminated
editing by clicking on another window. In addition, there was no way to automatically run a procedure when
editing started. The ..Handler option (in the Text Editor SuperObject Object Properties dialog) solves all of
these problems.

When the ..Handler option is turned on, all procedures triggered by the Text Editor SuperObject are treated
as event handler procedures. The benefit of using event handler procedures is that these procedures are guar-
anteed to trigger and work properly under all conditions, no matter how the user started or stopped editing
and whether or not another procedure is currently running. The only downside is that event handler proce-
dures cannot open or close windows (see the previous section). To retain compatibility with databases cre-
ated with earlier versions of Panorama you are allowed to turn the ..Handler option off.

Chapter 24:Procedures Page 1495
Focus Procedure

Panorama 3.1 added a new condition that may cause the Text Editor SuperObject to trigger a procedure. This
condition is called Focus. When the Focus option is turned on, the text editor will trigger its procedure when-
ever you start editing that field. In other words, when you click on the field or tab into the field, the proce-
dure will be triggered. When the procedure is triggered this way, the info("trigger") function will begin
with Focus. followed by the name of the object, for example Focus.TimeEditor or Focus.HTML.

One use for a focus procedure is to implement Undo for editing. Here is a procedure that saves the data in the
field as the editing begins.

if info("trigger") beginswith "Focus."
undoCell=«» /* «» is the current field */
undoField=info("fieldname")

endif

The Undo procedure would look like this.

if undoField ≠""
set undoField,undoCell

endif

For completeness you may wish to add the following line to your .CurrentRecord procedure. This line
ensures that you cannot undo after moving to a different record.

undoField=""

Another use for the Focus procedure is to memorize the selection point when editing was terminated and re-
set the selection when editing resumes again. This example assumes that the database has two numeric fields
named textStart and textEnd.

if info("trigger") contains "focus"
activesuperobject "setselection",textStart,textEnd

else
activesuperobject "getselection",textStart,textEnd

endif

The Focus option cannot be used if the ..Handler option is turned off. This is not a big handicap, since you
obviously don’t want to change window just as editing begins. You should also keep the procedure as short
as possible to minimize delay.

..OpenForm

The ..OpenForm event handling procedure is triggered when any form in the same database as the procedure
is opened. It doesn’t matter how the form is opened—manually by the user, in a procedure, or automatically
as part of opening the database. The most common uses for the ..OpenForm procedure are initializing win-
dow variables and initializing SuperObjects. The ..OpenForm procedure below will automatically open the
Text Editor or Word Processing SuperObject named Letter when the Editor form is opened.

if info("formname")="Editor"
superobject "Letter","open"

endif

..ActivateForm

The ..ActivateForm event handling procedure is triggered when any form in the same database as the proce-
dure is activated (brought to the front). It doesn’t matter how the form is activated—manually (by clicking on
it) or as part of a procedure (usually the window statement).

Page 1496 Panorama Handbook
The example below shows how this procedure can be used with clone windows (see “Window Clones” on
page 1556). It assumes that your database contains a field called ID with unique values for each record. When
a clone window is activated (brought to the front), the procedure automatically searches for the record that
corresponds to that window.

windowvariable windowID
if info("formname") beginswith "Clone"

find ID=windowID
endif

The careful reader may wonder if opening a form also activates it. The answer is yes. When a form is opened,
both the ..OpenForm and ..ActivateForm procedures will be triggered (if they exist), in that order.

..CustomAbout

The ..CustomAbout procedure allows you to change the name of the About Panorama item in the Apple
menu (Mac) or Help menu (PC). This item normally says About Panorama… or About Panorama Direct…,
but you can customize it to display any text you want when your database is active, for example About This
Database… .

The first step in customizing the About menu item is to create a new procedure in the database called ..Cus-
tomAbout. You must spell this name exactly as shown, including upper and lower case.

The ..CustomAbout procedure should only have a single statement in it: SetAboutMenu . This statement is
followed by a text parameter, which could contain a formula, that specifies what text should be displayed.
For example, if you want the Apple Menu to display About Office 97…, the ..CustomAbout procedure
should look like this:

setaboutmenu "About Office 97…"

Panorama runs the ..CustomAbout procedure every time you click on a form or data sheet window. This
means that you can adjust the Apple Menu for changing conditions. Here is a ..CustomAbout procedure that
displays the name of the current form:

setaboutmenu "About "+info("formname")+"…"

The ..CustomAbout procedure only applies to the forms and data sheet in the same database. As you click
from window to window, the About item in the Apple Menu may change. When a procedure, flash art, or
design sheet window is open the Apple Menu will display the standard About Panorama… or About Pan-
orama Direct… message. The standard message will also be displayed when a window from any other data-
base is active (unless that database also has a ..CustomAbout procedure).

Note: By using the ..CustomAbout and .About procedures (see “.About” on page 1481) you can almost com-
pletely hide the fact that your application is created in Panorama. (However, on the Macintosh the Applica-
tion Menu in the upper right hand corner of the screen will always show the name Panorama, while on the
PC the master window and the task bar will always show the name Panorama.) Don’t forget that you must
include the Panorama copyright message in any custom About window that you create with the .About pro-
cedure!

Chapter 25: Programming Techniques

The previous chapter covered the basics of working with procedures - how to create and edit procedures, set
up and use variables, and basic control flow. This chapter builds on these basics and shows how to automate
a wide variety of tasks within Panorama.

The structure of this chapter is a miniature version of the entire manual. We’ll start with Chapter One and
show how to automate file handling, then work our way through the entire manual showing how to auto-
mate all of the different operations available in Panorama.

Accessing Files

A Panorama procedure has a wide variety of statements available for working with disk files. A procedure
can open and close database files, import and export data to/from a database, or even read and write disk
files directly (including resource files and registry entries).

Files and Folders

On both Macintosh and Windows PC systems files are contained in folders, which may themselves be nested
inside other folders. There are two different methods that Panorama uses to identify the name and location of
a file. Method 1 is to combine both the name and location in a single string of text. Method 2 is to specify a
separate file name and folder ID separately. Some statements and functions use method 1, some use method
2. Panorama also include functions that can convert back and forth between these two methods.

Combined Folder Location and File Name

On the Macintosh, the exact location of any file can be specified by stringing together the name of the volume
(disk) and the folders, each separated by a colon.

Alaska:Work in Progress:Ontario:Schedule.pan

Page 1498 Panorama Handbook
Windows systems are similar, but backslashes (\) are used instead of colons, and drive names always consist
of letters followed by a colon (A:, B:, C:, etc.).

For cross platform compatibility, Panorama also allows you to use colons when using Panorama for Win-
dows, like this:

C::Work in Progress:Ontario:Schedule.pan

A file’s location may also be specified relative to the current database. For example, suppose the current data-
base was in the Work in Progress folder. In that case you could specify the location of the Shedule.pan file by
simply leaving off left hand portion of the specification. The specification must begin with a colon or back-
slash to indicate that it is relative to the current folder and not an absolute location.

On PC systems you can specify this relative location like this:

However, keep in mind that on PC systems Panorama will accept : instead of \. Therefore, the specification

:Ontario:Schedule.pan

will work on both Windows and MacOS based computers. You should use colons if your database might ever
be used on both Macintosh and Windows computers.

C:\Work in Progress\Ontario\Schedule.pan

:Ontario:Schedule.pan

\Ontario\Schedule.pan

Chapter 25:Programming Techniques Page 1499
Folder ID’s and Paths

A folder’s path is simply a list of folders within folders, each separated by a colon (Macintosh) or backslash
(Windows PC). The list always starts with the name of the disk drive. Here are some examples of folder
paths:

GigDrive:Work In Progress:

F:\Clients\Taco Bell\

HD:System Folder:Preferences:

C:\Windows\

A folder ID is a 6 byte binary value that uniquely identifies a folder. Folder ID’s are used by several of the
Panorama functions and statements. Panorama can convert a path to a folder id with the folder(function,
like this:

folder("MyDisk:Clients:")

The folderpath(function converts a folder ID back into a path, for example:

folderpath(dbinfo("folder"),"Checkbook"))

Panorama has several info(functions that generate folder ID's for commonly used folders:

In addition, any function or statement that uses a folder ID will accept "" , which means “the folder that con-
tains the current database.”

Function Reference
Page Description

info("systemfolder") Page 5426
This function returns a pathid that unambiguously describes the location
of the system folder. This pathid can be used in other functions and state-
ments.

info("panoramafolder") Page 5402
This function returns a pathid that unambiguously describes the location
of the folder containing the Panorama application. This pathid can be
used in other functions and statements.

dbinfo(option,database) Page 5147

This function gets information about a database: what forms it contains,
what fields, what flash art pictures, etc. There are two parameters: option
and database.

Database is the name of the database you want to get information about.
This must be a database that is currently open. If you want to get infor-
mation about the current database you can use the info("databasename")
function or simply use empty text ("").

Option controls what kind of information this function will retrieve.
There are about a half dozen possible options: "fields", "forms",
"procedures", "crosstabs", "flash art", "folder", "level" and "autosave". The
"folder" option produces a folder id for the folder containing the data-
base. (See “Disk Files and Folders” on page 1317.)

Page 1500 Panorama Handbook
Locating a File with Standard Dialogs

Both the Macintosh and Windows PC’s have standard dialogs for locating a file. With the openfiledialog
and savefiledialog statements, your procedures can use these dialogs also.

The openfiledialog statement allows the user to select the file using a standard file open dialog (see
“OPENFILEDIALOG” on page 5571). This illustration shows what this dialog looks like on both Windows
PC and Macintosh computers (the exact appearance may vary depending on what operating system version
and extensions you are using).

The file may be anywhere on any disk drive mounted on the computer. The openfiledialog statement has
four parameters.

openfiledialog folder , file , type , typelist

The folder parameter is a folder ID (see “Folder ID’s and Paths” on page 1499). This specifies what folder
should be listed when the dialog first opens.

The file parameter is the name of the file the user selected. If this parameter is empty the user pressed the
Cancel button.

The type parameter is the type of the file the user selected. This is a four letter descriptor, for example TEXT
for text files or ZEPD for Panorama database files.

The typelist parameter specifies what kind of files you want listed in the file dialog. If this parameter is
empty (""), then all files will be listed. Otherwise, this should be one or more 4 letter “file type” descriptions.
Here are two file type descriptions you may find useful.

Type Description

ZEPD Panorama database

TEXT Text file

Chapter 25:Programming Techniques Page 1501
The file type must be entered exactly as shown. Only files whose types match exactly (including upper/lower
case) will be shown.

Here is an example of a procedure that allows the user to select a Panorama file, then appends that file to the
current file.

local fileFolder,fileName,fileType
openfiledialog fileFolder,fileName,fileType,"ZEPD"
if fileName="" stop endif ; user pressed cancel
openfile "+"+folderpath(fileFolder)+fileName

To change this example so that it can be used for importing text files, change "ZEPD" to "TEXT" . Or, to allow
either choice, change this parameter to "ZEPDTEXT" (or "TEXTZEPD").

The savefiledialog statement allows the user to select a file using a standard file save dialog (see “SAVE-
FILEDIALOG” on page 5695). This illustration shows what this dialog looks like on both Windows PC and
Macintosh computers (the exact appearance may vary depending on what operating system version and
extensions you are using).

The user may type in the name of the file, and can select what folder the file will be saved into. The file may
be anywhere on any disk drive mounted on the computer. The savefiledialog statement has three
parameters.

savefiledialog folder , file , prompt

The folder parameter is the ID of the folder the user selected.

The file parameter is the name of the file the user entered. If this parameter is empty, the user pressed the ˘
button.

Page 1502 Panorama Handbook
The prompt parameter is a short phrase that you supply. Panorama will display this phrase in the dialog, for
example Enter file name.

Here is an example of a procedure that allows the user to specify a file name and location, then exports to that
file.

local fileFolder,fileName
fileName=""
savefiledialog fileFolder,fileName,"Export file name:"
if fileName="" stop endif ; user pressed cancel
export folderpath(fileFolder)+fileName,replace(exportline(),¶,chr(11))+¶

If the user specifies a file that already exists, Panorama will warn them and ask if they really want to erase the
existing file.

Customizing the Standard File Dialogs

Panorama has two statements that display a dialog for selecting a folder and file name: openfiledialog
and savefiledialog (see previous section). On Macintosh computers these dialogs can be customized by
creating a custom dialog template and using the customdialog statement. (This statement cannot be used
on Windows PC computers, so the open and save file dialog’s cannot be customized on those computers.)
The customization options you have include changing the layout of the dialog, adding extra text to the dialog
and adding extra push buttons to the dialog. (You cannot add other kinds of controls to the dialog, for exam-
ple checkboxes, radio buttons, or pop-up menus.)

Most of the work in setting up a custom dialog involves creating a resource template for the dialog. To do this
you will need a resource editing program like ResEdit or Resorcerer. (See “Working with Resources” on
page 1532 for more information on these programs, or consult the documentation for the programs them-
selves.) Once the resource template is set up, it can be used in any procedure by inserting the customdialog
statement just before the openfiledialog or savefiledalog statements.

Customizing the Open File Dialog. The resource for an open file dialog must contain at least the required
items listed below. Once the required items are set up in this order you can add additional items of your own.
The easiest way to do this correctly is to make a copy of DLOG 9000 in the FileDialogs.rsrc file (which is sup-
plied with Panorama), then adjust the layout and add your own items as necessary.

Item Notes

1 Open Button You may rename this button

2 Invisible Button

3 Cancel Button

4 Disk Name

5 Eject Button

6 Drive Button

7 Filename List

8 Scroll Bar

9 Dotted Line

10 Invisible Text

Chapter 25:Programming Techniques Page 1503
To use your custom file dialog in a procedure you must place the customdialog statement just before the
openfiledialog statement, like this:

local folder,file
customdialog 9037
openfiledialog folder,file,"TEXT",""
case info("dialogtrigger") contains "Open"
 ...
case info("dialogtrigger") contains "Select Folder"
 ...
endcase

As this example shows, the info("dialogtrigger") will contain the name of the push button that the
user pressed. (Note: If the user clicks on a pushbutton without selecting a file, the procedure can still find out
what folder was selected, as shown in this example.)

Customizing the Save File Dialog. The resource for an save file dialog must contain at least the required
items listed below. Once the required items are set up in this order you can add additional items of your own.
The easiest way to do this correctly is to make a copy of DLOG 9001 in the FileDialogs.rsrc file (which is sup-
plied with Panorama), then adjust the layout and add your own items as necessary.

To use your custom file dialog in a procedure you must place the customdialog statement just before the
savefiledialog statement, like this:

local folder,file
customdialog 9038
savefiledialog folder,file,"Export File:"
case info("dialogtrigger") contains "Save Tab Delimited"
 ...
case info("dialogtrigger") contains "Save Comma Delimited"
 ...
endcase

As this example shows, the info("dialogtrigger") will contain the name of the push button that the user
pressed.

Item Notes

1 Save Button You may rename this button

2 Cancel Button

3 Prompt Text
This is overwritten by the 2nd

parameter of the
savefiledialog statement

4 Disk Name

5 Eject Button

6 Drive Button

7 File Name

8 Dotted Line

Page 1504 Panorama Handbook
Opening a Panorama Database

To open a Panorama database use the openfile statement (see “OPENFILE” on page 5569). If the database
to be opened is in the same folder as the current database you can simply supply the filename.

openfile "Contacts"

If the file is in a different folder you must supply a combined path and file name (see “Combined Folder
Location and File Name” on page 1497).

openfile "C:\My Documents\Organizer\Contacts"

On a Windows PC system the file would actually be named Contacts.pan, but you may omit the .pan from
the name.

Here is an example of a procedure that allows the user to select a Panorama file and then open it (see “Locat-
ing a File with Standard Dialogs” on page 1500).

local fileFolder,fileName
openfiledialog fileFolder,fileName,"ZEPD"
if fileName="" /* user pressed cancel */

stop
endif
openfile folderpath(fileFolder)+fileName

Supressing the Default Extension

On Macintosh systems the behavior of the openfile statement changes slightly if the current database
name ends with .pan. In that case the openfile statement will automatically add .pan to any file name that
doesn’t already have an extension. This makes it easier to set up a set of database files that can work on both
the Macintosh and the PC. However, this also means that you will not be able to open a database that doesn’t
have any extension at all with this statement (of course you can always open such a file manually using the
Open File dialog in the File menu).

If you need to use the openfile statement to open a file without an extension when the current file does
have the .pan extension you must use the nodefaultextension statement just before the openfile state-
ment. Here is a modified version of the procedure from the last section that allows the user to select any Pan-
orama file (with or without the extension) and then open it.

local fileFolder,fileName
openfiledialog fileFolder,fileName,"ZEPD"
if fileName="" /* user pressed cancel */

stop
endif
nodefaultextension
openfile folderpath(fileFolder)+fileName

Appending Databases End-to-End

If you have two database files with identical field structures (the same fields in the same order), it’s easy to
append them together. Essentially appending sticks the second database right onto the end of the current
database. To append a database use the openfile statement, but put a + symbol in front of the name of the
database. The example below appends the file MoreCustomers to the end of the current database. (Note: The
MoreCustomers file does not have to be open, but it’s ok if it is.)

openfile "+MoreCustomers"

If the file you want to append doesn’t have identical field order, but the field names are the same, use two +
symbols, like this:

openfile "++MoreCustomers"

Chapter 25:Programming Techniques Page 1505
Only fields with matching names will be appended together (this is the same as checking the Match Fields by
Name option in the Open File dialog, see “Appending One Database to Another” on page 219). If there are
any extra fields in the current database that do not match, they will be left blank in the new appended data.

The openfile statement can also be used to append a text file to the current database. See “Importing Text
Files” on page 1507.

Eliminating Duplicates in Appended Data

If you need to eliminate duplicates between the newly appended data and the original data, you can use the
sortup statement to bring the duplicates together, followed by the unpropagate statement to clear out the
duplicate company names (see “Using UnPropagate to Eliminate Duplicates” on page 528). The select and
removeunselected statements actually eliminate the duplicate records. The example below appends to the
customer file, then eliminates any duplicates that were appended. Newly appended records that are not
duplicates of the existing data will be kept.

openfile "+MoreCustomers"
field Company
sortup
unpropagate
select Company<>""
removeunselected

If you want to keep the newly appended data and remove the original data when a duplicate is found, use
the unpropagateup statement instead of the unpropagate statement. For example, you would do this if
you felt the newly appended data was more up-to-date or more reliable than the original data.

Replacing the Data in a Database

Occasionally you may want to throw out all the data in the current database and replace it with the data in
another database. For example, the data in the current database may be out-of-date. To do this use the
openfile statement and put an & symbol in front of the file name:

openfile "&NewCustomerList"

You may be wondering, if the data is already in a database, “Why not use that database instead of replacing
the data in the current database?” Usually it’s because the file that contains the correct data does not have the
forms and procedures set up they way you want them. You can easily transfer the data, transferring forms
and procedures is a much more tedious job.

If the database file you want to load doesn’t have the fields in the same order, but the field names are the
same, use two & symbols in a row.

openfile "&&NewCustomerList"

Only fields with matching names will be loaded with data (this is the same as checking the Match Fields by
Name option in the Open File dialog, see “Appending One Database to Another” on page 219). If there are
any extra fields in the current database that do not match, they will be left blank in the newly loaded data.

The openfile statement can also be used to replace the current data with data from a text file (see “Import-
ing Text Files” on page 1507). The & option becomes very handy because you can load the raw text into a pre-
prepared database that contains ready-to-use forms and procedures.

Saving a Panorama Database

To save the current database use the save statement (see “SAVE” on page 5689). This procedure adds a new
record and then saves the database.

addrecord
save

Page 1506 Panorama Handbook
To save all open databases use the saveall statement (see “SAVEALL” on page 5691).

To save the current database with a new name or in a new location use the saveas statement (see “SAVEAS”
on page 5692). The new file becomes the current version of the file. The procedure below will save the current
file under the name Monday, Tuesday, Wednesday, etc. depending on the day of the week.

saveas datepattern(today(),"DayOfWeek")

The saveacopyas statement also saves the database with a new name or location, but the new file does not
become the current version of the file (see “SAVEACOPYAS” on page 5690). This procedure saves a backup
copy of the current file in a folder named Backups.

saveas "C:\Backups\"+info("databasename")

A procedure can also save the current file as a text file, this is called exporting the file. See “Exporting Text
Files” on page 1511 to learn how to do this in a procedure.

A procedure can use the revert statement to revert to the last previously saved copy of the database (see
“REVERT” on page 5673).

Closing a Database

To close the current database use the closefile statement (see “CLOSEFILE” on page 5106). All windows
associated with the current file will also be closed.

If the closefile statement is in the middle of a procedure it will immediately close the file without stop-
ping to ask if you want to save the file. For example, this procedure will close the Checkbook and Payments
databases immediately, without saving them, and then open the Bills database.

window "Checkbook"
closefile
window "Payments"
closefile
openfile "Bills"

A safer version of this procedure might look like this.

window "Checkbook"
save
closefile
window "Payments"
save
closefile
openfile "Bills"

There is one exception to this rule. If the closefile statement is the very last statement in the procedure
Panorama will stop and ask if the file should be saved. If you don’t want that to happen, add a nop statement
(see “Doing Nothing for a While” on page 1396) after the closefile statement, like this.

closefile
nop

Shutting Down Panorama

To shut down Panorama use the quit statement (see “QUIT” on page 5621). The quit statement will not
normally ask the user if they want to save changes in any open databases before stopping Panorama. How-
ever, if the quit statement is the last statement in the procedure, or is followed by a stop statement, it will
ask the user if he or she wants to save each file, and if they say yes, save the files for them.

Chapter 25:Programming Techniques Page 1507
Importing Text Files

Panorama cannot directly access information in files created by other database or spreadsheet programs.
Exchanging information between Panorama and other programs requires an intermediate file which is called
a “text” or “ASCII” file (see “Working with Text Files” on page 222). A text file is very basic because it con-
tains just the data—no forms, procedures, formulas, pictures or anything else. Because text files are so simple
they provide a common interchange format for different programs. Virtually all database, spreadsheet, and
word processing programs on both the Macintosh and the PC can read and write text files.

Like the Panorama data sheet, a text file is divided into records and fields. Each line in the text file is a single
record. The fields may be separated by commas or by tabs. You will often hear that a file is “tab delimited” or
“comma delimited,” because the tab or comma character delimits the boundaries between each field. When
you export from Panorama you must specify whether to use commas or tabs. When Panorama imports a text
file it automatically checks for tabs. If it doesn’t find any, it assumes that this text file is comma delimited.

Carriage Returns in the Data

One complication with using text files is handling carriage returns that are actually part of the data in a cell.
Usually a carriage return signals the end of the record and the start of a new record. If a carriage return is in a
cell, Panorama thinks a new record is starting, and the rest of the import will be misaligned.

The best solution to this problem is to convert carriage returns in cells into vertical tabs (ASCII value 11) in
the exported text file. Many programs do this automatically. When the data is imported into Panorama the
vertical tabs are automatically converted back into carriage returns again.

If you are manually exporting data from Panorama (using the Save As command, see “Exporting a Text File”
on page 245) and want the carriage returns converted to vertical tabs, make sure the Tabs w/o quotes option
is turned on, and the Output Patterns option is turned off.

Importing a Text File into an Existing Database

The openfile statement can also be used to import a text file into the current database (the text can either be
appended to or replace the current data). This is called importing the text. In a procedure, the technique for
importing text is exactly the same as appending or replacing two Panorama databases. Panorama checks the
file you have specified to see if it is a database or text file, and automatically imports it if it is a text file.

This example will append the data in a text file named RawData.txt to the end of the current database.

openfile "+RawData.txt"

This example will erase all the data in the current database, then import the data in a text file named
NewRawData.txt.

openfile "&NewRawData.txt"

Both of these examples have shown files with the .txt extension. On the Macintosh this is optional. On Win-
dows PC systems this extension is required. If you need to import a text file that does not have the .txt exten-
sion you can use the opentext statement (see “OPENTEXTFILE” on page 5582). This statement is the same
as the openfile statement except that it treats all files as text files, no matter what extension they have.

The text file must be separated into columns with either tabs or commas, and into rows with carriage returns
or carriage return/line feed pairs. (If the first line of the file contains a tab Panorama assumes the file is tab
delimited, otherwise comma delimited.) If any vertical tab characters are encountered (character value: 11)
they are converted to carriage returns within the actual cell (in other words, this allows you to import car-
riage returns within a cell without starting a new record.)

Page 1508 Panorama Handbook
Importing from a Variable

If the filename begins with the @ symbol the openfile statement will import from a variable instead of from
a text file. For example, the procedure below will import the text contents of the variable MyData into a new
database.

openfile "@MyData"

Adding the + symbol causes the text contained in the variable to be appended to the end of the current data-
base.

openfile "+@MyData"

Adding the & symbol causes the text contained in the variable to be appended to the end of the current data-
base.

openfile "&@MyData"

A useful technique is to build an array of data from one database (see “Building an Array from a Database”
on page 1647) and then import that data directly into another database.

Importing HTML Tables

When the openfile statement imports a text file (or variable) it checks the text to see if it contains one or
more HTML <table> tags. If a <table> tag is found the other text is ignored and Panorama simply imports the
data inside the table. The text will be divided into rows and columns based on the <tr> and <td> tags within
the table. Here’s an example of how to import a table.

openfile "Financial_News.html"

If the text file (or variable) contains more than one table only the first will be imported. Any additional tables
will be ignored. If you need to import a different table the procedure can use the fileload(function to read
the text into a variable (see “Reading Data Files” on page 1520), then use the tagdata(function to extract
the table you want to import (see “Tag Parameter Functions” on page 1264). The example procedure below
imports the 2nd table from the HTML file (instead of the 1st).

local rawHTML,theTable
rawHTML=fileload("","Financial_News.html")
theTable="<table"+tagdata(rawHTML,"<table","</table>",2)+"</table>"
openfile "@theTable"

Re-Arranging the Order of Imported Data

Panorama normally imports text directly into the database, column for column. In other words, the first col-
umn in the text file goes into the first field in the database, the second column into the second field, etc. This
is great if the text file is set up the same way as your database. If not, you’ll need to process the data as it
comes in, possibly re-arranging and combining data as you go. This processing is done with a formula you
design. The formula is set up by the importusing statement (see “IMPORTUSING” on page 5352), which
should be the statement immediately before the openfile statement. The importusing statement has one
parameter, the formula for processing the data. Here’s the general idea of how these statements must be used
together (several more specific examples follow below).

importusing formula
openfile "+MyTextFile.txt"

Chapter 25:Programming Techniques Page 1509
By itself, the importusing statement doesn’t do anything except stash the formula you provide where the
openfile statement can find it. Here’s what happens. First openfile statement reads one line from the text
file. But it doesn’t actually import the line into the database. Instead, it evaluates the importusing formula.
The formula takes the line of data and re-arranges it. The openfile statement then takes the result of this
formula and imports that result into the database. This process is repeated over and over again for each line
in the text file: read, calculate, import.

To process the line that the openfile statement has read in, the formula needs to be able to access the data in
that line. There are two special functions that allow you to read this line. The import() function (see
“IMPORT(” on page 5349) accesses the entire line that has been read in. The importcell(columnNumber)
function (see “IMPORTCELL(” on page 5350) accesses an individual cell in the line (tab or comma delimited).
The columnNumber starts with 0 for the first column, 1 for the second column, etc.

Suppose you have a text file named Sam’s Contacts.txt that contains data like this (each column of data repre-
sents fields separated by a tab):

Smith John World Widgets 124 W. Olive St San Jose CA 95134
Lee Susan Industrial Metals 2347 N. Riverside Cambridge MA 02139
Marklee Lance Zipper Technologies 687 E. Dorothy Lane Bothell WA 98011
Anders Fred Acme Fireworks 5672 Lakewood Drive Salinas CA 93908

You want to import this data into a database that contains these fields:

Here’s a procedure that will append the data in Sam’s Contacts.txt into this database. The tabs (¬) in the for-
mula divide the output into separate columns again so it can be imported (see “Special Characters” on
page 1225).

importusing importcell(2)+¬+importcell(1)+¬+importcell(0)+¬+¬+
importcell(3)+¬+importcell(4)+¬+importcell(5)+¬+importcell(6)

openfile "+Sam’s Contacts.txt"

The formula re-arranges the incoming data so that third column in the input text goes into the first field, the
2nd column goes into the 2nd field, the first column goes into the 3rd field, the 4th field is empty, the 4th col-
umn goes into the 5th field, the 5th column goes into the 6th field, the 6th goes into the 7th field and the 7th
column goes into the 8th field.

In this example, each column in the input corresponds with one field in the final database. However, you
could split up a column into multiple fields, or combine multiple columns in the input text into a single field
in the final database. For example, suppose your Address Book database only had five fields, like this.

Page 1510 Panorama Handbook
Here is a procedure that imports Sam’s Contacts.txt into this version of the Address Book database.

importusing importcell(1)+" "+importcell(0)+¬+
importcell(3)+¬+importcell(4)+¬+importcell(5)+¬+importcell(6)

openfile "+Sam’s Contacts.txt"

This formula simply concatenates the first and last names with a space, but you can use any function you
want, including the ?(, sandwich(, upper(, lower(, even lookup(functions.

Building the ImportUsing Formula on the Fly

The importusing formula is usually hard-coded into the procedure. What if however, you don’t know how
the data should be re-arranged in advance? In that case you might want to design a dialog that would allow
the user to configure how the data is re-arranged. The dialog would build the formula for importusing. To
pass the formula to the importusing statement, you must put the formula into the clipboard and then use the
following statement:

importusing clipboard

Warning: You must enter this statement exactly as shown here. Do not put () after the word clipboard . Do
not add anything else at all to this statement.

Here is a very simplified example that shows how it is done. First the procedure asks for the name of the file
to import, then it asks for the order of the fields. The field order should be entered as numbers separated by
spaces, for example 4 1 2 3 8 9 10.

local importFile,importOrder,importFormula,X
importFile="" importOrder="" importFormula=""
gettext "Import what file?",importFile
gettext "Field order? (ex: 4 1 2 3)",importOrder
X=1
loop

importFormula=sandwich("",importFormula,"+¬+")+
"importcell("+array(importOrder,X," ")+")"

X=X+1
while X<=arraysize(importOrder," ")
clipboard=importFormula
importusing clipboard
openfile "+"+importFile

As the program goes through the loop it builds up the formula. For example, if the user entered 3 2 4 the pro-
cedure would generate the formula:

importcell(3)+¬+importcell(2)+¬+importcell(4)

When the formula is completely assembled it is placed into the clipboard, and then the text file is appended
to the current file.

Although this example illustrates how the technique works, the user interface is lousy. Instead of having the
user type in the field order, you’ll probably want to let the user choose the list order with a List or Pop-Up
SuperObject.

Chapter 25:Programming Techniques Page 1511
Exporting Text Files

You can manually export a database to a text file with the Save As command (see “Exporting a Text File” on
page 245). To export a database from a procedure, use the export statement (“EXPORT” on page 5204). This
statement has two parameters:

export file , formula

The file parameter is the name of the text file to export. If this file already exists, it will be erased and the
new file will replace it. If the file needs to be in a different folder than the current database then a combined
folder and file must be supplied (see “Combined Folder Location and File Name” on page 1497).

The formula parameter is a formula that controls how the data is formatted as it is exported. To do its job, the
export statement scans each visible (selected) record in the database. For each record it calculates the result
of the formula, and adds that result to the text file being exported.

Usually the export formula consists of a series of fields separated by tabs and ending with a carriage return.
Remember, in a formula ¬ represents a tab and ¶ represents a carriage return (see “Special Characters” on
page 1225).

Here is a typical formula that exports a name and address list.

export "Addresses.txt",Name+¬+Address+¬+City+¬+State+¬+Zip+¶

Numeric and date fields must be converted to text before they can be exported. The functions listed in this
table can perform these conversions.

Here is a function that exports data from a checkbook database using these functions.

export "Checks Archive.txt",str(«Check#»)+¬+datepattern(CheckDate,"MM/DD/YY")+¬+
PayTo+¬+Category+¬+str(Debit)+¬+str(Credit)+¶

Function Reference
Page Description

exportcell(value) Page 5206

This function converts a value into text without any special formatting.
For numeric values this function is the same as the str(function (see
below). The advantage of this function is that it works with any kind of
value - text, numeric or date. Use this function when for some reason you
don’t know what kind of data you need to convert.

pattern(number,string) Page 5596

This function converts a number into text, using the string as an output
pattern. For example the formula pattern(Price,"$#.,##") will convert the
price 3458.23 into the string $3,458.23. The pattern adds the $ and the
comma. For more information on numeric output patterns see “Numeric
Output Patterns” on page 356.

str(number) Page 5796
This function converts a number into text without any special formatting.
If you want to format the number (add commas, set # of digits, etc.) use
the pattern(function.

datepattern(number,pattern) Page 5145

This function converts a number representing a date into a formatted text
string. The pattern parameter is an output pattern telling the function
how to format the date. For more information on date output patterns,
see “Date Output Patterns” on page 361.

Use the datepattern(function to store a date in a text field, or to display a
formatted date in an auto-wrap text object or Text Display SuperObject.
For example, the formula:

datepattern(«Ship Date»,"Month ddnth, yyyy")

can be used to display the date an order was shipped in the format May
12th, 2003.

Page 1512 Panorama Handbook
If one or more data cells might contain carriage returns, you may wish to convert the carriage returns into
vertical tabs as they are being exported. The generic formula for this conversion is
replace(<text>,¶,chr(11)) (see “REPLACE(” on page 5662 and “CHR(” on page 5096). Here’s a specific
example.

export "Addresses.txt",replace(Name+¬+Address+¬+City+¬+State+¬+Zip,¶,chr(11))+¶

If you simply want to export all the fields in the same order that they appear in the data sheet, use the
exportline(function (see Page 5207). This function produces tab delimited output of all the fields.

export "GenericText",replace(exportline(),¶,chr(11))+¶

Don’t forget the ¶ on the end of the formula. Without this the exported text file will all be on a single line!

Exporting Line Items as Separate Records

Usually when Panorama exports data there is one line in the exported text file for each selected record in the
database. So if the database has 67 records, the exported text file will have 67 lines.

This one-to-one correspondence does not apply if the export formula contains one or more line item fields
with the Ω symbol (see “Special Characters” on page 1225), for example QtyΩ or PriceΩ. If the formula con-
tains line items, the export file will contain multiple lines for each record—one line for each line item.

For example, consider an invoice database with 6 line items: Qty1, Qty2, … Qty6, Description1, Description2,
… Description6, Price1, Price2, … Price6 etc. The procedure below can be used to export the line items from
this database:

export "Items",«Invoice#»+¬+
str(Qty Ω)+¬+Description Ω+¬+str(Price Ω)+¬+str(Total Ω)+¶

The text file (Items) will contain 6 lines for each invoice. The first line will contain the invoice number, Qty1,
Description1, Price1, and Total1. The second line will contain the invoice number, Qty2, Description2, Price2,
and Total2. The output continues for each line item, then starts over at Qty1 for the next record.

Here’s a sample of how the exported data might look. This shows the data from three invoice records. Invoice
17882 has three line items. The remaining 3 line items are blank. The next two invoices have two line items
each.

178822 Widget 4.00 8.00
178821 Mini Widget 2.50 2.50
178824 Modern Widget 5.00 20.00
17882
17882
17882
178831 Art Deco Widget 7.50 7.50
178833 Thingy 3.00 9.00
17883
17883
17883
17883
178841 Modern Widget 5.00 5.00
178842 Micro Thingy 4.00 8.00
17884
17884
…
…

Warning: The line item export feature will only work if all the line item fields in the database have the same
number of line items. If some line item fields have more line items than others, only a single record will be
exported. For example if the database contains Address1, Address2, Qty1, Qty2, Qty3, Qty4, Qty5 the line
item export feature will not work. The solution is to rename Address1 and Address2 to names that don’t end
with a number (perhaps Address and Suite, for example).

Chapter 25:Programming Techniques Page 1513
Analyzing Line Items

One great application for exporting line items as separate records is that you can re-import them into another
database and analyze them. For example, from the invoice database it is very difficult to find out how many
widgets or doo-dads you’ve sold. The information is split across all the line item fields. But if you export the
line items as separate records and re-import this file into another database, it’s easy to sort or select line item
data.

The procedure below assumes you have set up a database called Line Item Analysis in advance. This data-
base has five fields: Invoice#, Qty, Description, Price and Total. The procedure exports the line item data from
the Invoice database, then re-imports it into the Line Item Analysis database.

export "Items",«Invoice#»+¬+str(Qty Ω)+¬+Description Ω+¬+str(Price Ω)+¬+str(Total Ω)+¶
window "Line Item Analysis"
openfile "&Items"
select Description ≠""
removeunselected
field Description groupup
field Qty total
field Price average
field Total total
outlinelevel 1

After the data is imported, the procedure removes all of the empty records (with the select and
removeunselected statements). Then the procedure uses Panorama’s standard analysis tools (groupup ,
total , average , etc.) to calculate how many of each type of item has been sold at what average price.

Exporting Array Elements as Separate Records

Usually when Panorama exports data there is one line in the exported text file for each selected record in the
database. So if the database has 67 records, the exported text file will have 67 lines.

This one-to-one correspondence does not apply if the export formula contains one or more arrayscan(
functions. This function allows you to export the contents of arrays (see “Text Arrays” on page 1257) with one
element per exported line. The arrayscan(function (see “ARRAYSCAN(” on page 5049) has two parame-
ters:

arrayscan(field , separator)

The field parameter is the name of a database field that contains an array. (A variable will also work, but usu-
ally doesn’t make sense.) The separator parameter is the separator character for this array (see “Picking a
Separator Character” on page 1257).

For example, suppose your database has a Phones field which contains an array of one or more phone num-
bers, separated by a carriage return. Each array element contains the type of phone number, a comma, and
the phone number itself, like this:

home,(714) 555-1212
office,(714) 555-8932
fax,(714) 555-8938

The procedure below will export the phone numbers with one record per phone number:

export "Phone List",
Name+¬+array(arrayscan(Phones,¶),1,",")+¬+array(arrayscan(Phones,¶),2,",")+¶

Page 1514 Panorama Handbook
This procedure will output a text file something like this:

Joan Selbyhome(714) 555-1212
Joan Selbyoffice(714) 555-8932
Joan Selbyfax(714) 555-8938
Sally Rogersoffice(508) 777-8922
Sally Rogersfax(508) 777-8910
Chris Robertsoffice(909) 874-1234

Notice that, unlike the line item example in a previous section (see “Exporting Line Items as Separate
Records” on page 1512), no blank lines are exported. Panorama counts the number of elements in the array,
and outputs exactly that number of lines. If you use multiple arrayscan(functions in the formula, Pan-
orama will export enough lines to handle the largest array.

The arrayscan(function can also be used in the formula for the arraybuild , arrayselectedbuild , or
arraylinebuild statements (see “ARRAYBUILD” on page 5035). The arrayscan(works exactly the
same as it does with the export statement, but the final result is an array instead of a text file.

Opening a Document in Another Application

If you are using a computer running the Windows operating system you can use the shellopendocument
statement to open documents in other applications (see “SHELLOPENDOCUMENT” on page 5754). The
statement has one parameter — the name and location of the document to open.

This example opens the Adobe Acrobat document Manual.pdf in the folder My Documents.

shellopendocument "C:\My Documents\Manual.pdf"

This example opens the HTML document Roadshow.html in the folder My Test Site. The HTML document
will be opened using Internet Explorer.

shellopendocument "C:\My Test Site\Roadshow.html"

If you are using a Macintosh computer you must use an AppleScript to open a document in another applica-
tion.

Chapter 25:Programming Techniques Page 1515
Smart Merge Synchronization

If you have the same database on more than one machine (for example on a desktop computer and a portable
computer) you may sometimes wonder which contains the most up-to-date information. If you build smart
merge into the database, you won’t have to wonder anymore. Panorama will keep track of which informa-
tion is most up-to-date on a record by record database. When you run a special merge procedure, Panorama
will merge the two databases, picking the most up-to-date information from each. It’s quite easy to add this
feature to almost any Panorama database.

(Note: If you are using Panorama’s multi-user Partner/Server capabilities, you do not need to add separate
smart merge synchronization—Panorama automatically synchronizes all copies of the database using the
server.)

How Smart Merge Synchronization Works

Smart merge works by comparing two database files record by record, keeping only the most recently modi-
fied version of each record. To do this it must be able to match up the corresponding records in the two data-
base files, even if the database files have been sorted or otherwise rearranged. To do this it uses a special ID
field. This field contains a unique ID value for every record in the database. The unique ID value is assigned
when the record is first created, and never changes no matter how many times the record is modified or cop-
ied to other computers. To guarantee that the ID value is unique it is created by combining the name of the
person creating the record along with a serial number, for example Lisa267 or John3091. Because of this,
every computer you plan to use must have a different user name configured.

Adding Smart Merge to Your Database

The first step is to add two new fields to your database. We usually call these fields ID and Modified. This
illustration shows these fields added to the design sheet of an address book database.

The ID field will contain the unique ID value for each record, and should be a text field. The Modified value
will contain the most recent modification date and time for each record, and should be a numeric field. You
may also want to have a creation date field, but this is not necessary for the operation of the smart merge fea-
ture.

Page 1516 Panorama Handbook
The Modified Field

Panorama can automatically update the Modified field with the current date and time whenever the database
is modified. This feature is called time stamping. To enable this feature, open the design sheet for your data-
base. Choose the Time Stamp Field command from the Special menu (see “Automatic Time/Date Stamping”
on page 404). This opens a dialog box with a pop-up menu. The pop-up menu lists all the integer fields
(Numeric 0 digits) in your database — use the menu to select the Modified field.

(If you don’t see the Modified field listed, close the dialog, press the New Generation tool, then open the
Time Stamp Field dialog again.)

Once you have designated the Modified field as the time stamp field, Panorama will automatically place a
SuperDate containing the latest date and time into the field every time a new record is added, or whenever
any other cell in the record is modified (see “SuperDates (combined date and time)” on page 1276).

Adding New Records

Whenever a new record is added to your database, you must make sure that the ID field is filled in. The best
way to do this is to add a .NewRecord automatic procedure to your database (see “.NewRecord” on
page 1486). The line shown below will fill in the proper value in the ID field.

ID=uniqueid("ID",info("user"))

Although you may find other uses for it, the uniqueid(function was designed specifically for creating
unique smart merge serial numbers (see “UNIQUEID(” on page 5867). This function has two parameters: the
name of the field containing the ID serial numbers and a root name. You can get the root name by using the
info("user") function. The uniqueid(function will scan the ID field to find the next serial number avail-
able. For example, if you are using a computer belonging to Sam and the highest Sam serial number is 296,
the uniqueid(function will return the value Sam297.

Creating an .NewRecord procedure may not be enough to insure that the ID field is always filled in. If your
database has procedures that create new records, the .NewRecord procedure will not automatically be called.
You must modify these procedures to call the .NewRecord procedure (using the call statement).

Another possible problem area is imported data. When you import data into the database you must make
sure that the ID and Modified fields are filled in. The procedure listed below will do the job. You should also
run this procedure when you first add smart merge to your database, so that all your existing data will be
properly identified.

select ID=""
field Modified
formulafill superdate(today(),now())
field ID
formulafill uniqueid("ID",info("user"))
selectall

use menu to select field

Chapter 25:Programming Techniques Page 1517
When you first run this procedure after adding the ID and Modified fields it will initialize the fields some-
thing like this.

The Smart Merge Procedure

Once the ID and ModDate fields are set up, you’re ready to build the actual smart merge procedure. This pro-
cedure performs three basic operations.

The first step is to append the file you want to merge with the current file. A procedure can do this with the
openfile command by putting a plus sign in front of the file name, for example,
openfile "+"+MergeFile (see “Appending Databases End-to-End” on page 1504). The big question is,
what file do you want to merge with? If you know the filename in advance, you can simply enter the name
into the procedure itself. For example, if you always want to merge with a file named Invoices on a floppy
named Data, the procedure should contain the statement

openfile "+Data:Invoices"

Usually you’ll want to let the user choose what file he or she wants to merge with. The example below shows
how this can be done with the openfiledialog statement (see “Locating a File with Standard Dialogs” on
page 1500).

The next step is to sort the database (see “Sorting” on page 1610). The database must be sorted by both the
Modified field and the ID field. If two records have the same ID value they will now be right next to each
other, with the more up-to-date record closer to the bottom.

 1. Append second file to the current file.

 2. Sort by ModDate within ID.

 3. Remove records with duplicate ID’s

Page 1518 Panorama Handbook
The final step is to remove the duplicates (see “Using UnPropagate to Eliminate Duplicates” on page 1637).
The unpropagateup statement identifies the duplicate records (see “UnPropagate” on page 527). If the
same ID value occurs more than once in a row, this statement will clear all but the last value. Once the dupli-
cates are identified, the select and removeunselected statements delete the duplicates from the file.

local PathFile,mergeFile, mergePath,mergeType, DoneID
openfiledialog mergePath,mergeFile,mergeType,"ZEPD"
if mergeFile=""

stop /* user pressed cancel */
endif
PathFile=pathstr(mergePath)+mergeFile
if mergeFile<>info("databasename")

alert 1014,"Are you sure you want to merge "+
mergeFile+" with "+info("databasename")+"?"
if info("dialogtrigger") contains "no"

stop
endif

endif
DoneID=ID ; so we can go back to this record when finished
openfile "+"+PathFile
noshow
field Modified
sortup
field ID
sortup
unpropagateup
select ID<>""
removeunselected
field SortName
sortup
find ID=DoneID
showpage
endnoshow

This Smart Merge procedure will work for any database that has the ID and Modified fields properly set up.
To use this procedure simply select Smart Merge from the Action menu.

Chapter 25:Programming Techniques Page 1519
Directly Reading and Writing Disk Files

Disk files are used for permanent storage of information. Panorama normally takes care of saving informa-
tion in disk files, and reading it back in again later as needed. However Panorama also gives you the flexibil-
ity of accessing disk files directly.

Your disk may contain hundreds or thousands of files. When you create a new file, the operating system
(MacOS or Windows) allocates a space on the disk for it. As the file grows, more space is made available as
needed (until the disk is full). The operating system keeps track of the exact location and size of each file for
you, and makes sure that each file is kept separately and doesn’t interfere or overlap with any other file.

What’s in a File?

Before launching into the actual business of reading and writing files a little background is in order. Different
types of files contain different types of information. A particular file may contain a program, a picture, text, a
database a spreadsheet, etc. When reading and writing files it’s often important to know what kind of file it is
and what it is supposed to contain. On Windows PC systems a file’s type can be surmised from the three or
four letter extension at the end of the file name — .exe for programs, .txt for text files, etc. On the Macintosh
file extensions are not used for this purpose. Instead, each file has two invisible tags that identify what type of
file is, and how the file was created. Each invisible tag is four characters long, for example TEXT, APPL, or
KASX. You cannot normally see or modify these invisible tags, but you can access them via program state-
ments and functions.

There are literally thousands of different tags and extensions for identifying different types of files. On the
Macintosh the tag that identifies the type of file is called the file type tag.This table lists a few of the exten-
sions and corresponding file type tags that you may encounter. (Note: Some of thes tags, for example PDF, are
only three characters long - in that case a space must be added to the end.)

Extension
(PC)

Tag
(Mac) File Contents

.exe APPL Application (program)

.txt TEXT Text file

.pan ZEPD Panorama Database

.pnz KSET Panorama File Set

.pwp paig Panorama Word Processing document (see “Word
Processor Document Storage Strategies” on page 744)

.pct PICT Macintosh PICT graphic (image)

.png PNGf Portable Network Graphic (image)

.jpg JPEG JPEG image

.tif TIFF TIFF image

.eps EPSF Encapsulated Postscript image (EPS)

.pdf PDF Adobe Acrobat Document

.mov MOOV Quicktime Movie

.wav WAVE Sound file

.aif AIFF Sound file

.sit SITD Stuffit Archive (compressed file)

Page 1520 Panorama Handbook
Files on a Macintosh also include an additional four character tag that identifies what application created the
file. This is called the file creator tag. Windows doesn’t really have a corresponding information. The com-
puter uses this tag to decide what application to launch when you double click on the file. Here are a few of
the file creator tags you may encounter.

Many Panorama functions use the type and creator tags to select files to be displayed or processed.

Reading Data Files

Panorama has three functions for getting information from data files: fileload(, fileloadpartial(,
and filesize(.

The fileload(function reads an entire file (see “FILELOAD(” on page 5228). The data in the file can be
copied directly into a field or variable, or processed further using the formula. The function has two parame-
ters: a folder ID (see “Folder ID’s and Paths” on page 1499) and a file name. This example loads the contents
of the system Note Pad into a field or variable named Notes.

local Notes
Notes=fileload(info("systemfolder"),"Note Pad File")

The fileload(function can read the data in any file on your disk. It’s up to you to interpret what the data
means, however—the fileload(function simply reads the raw data, exactly as it appears on the disk.
Many files (if not most) will contain unintelligible gobbledygook.

If Panorama cannot read the file because of an error, the function will result in an error. In a procedure, this
error can be trapped with the if error statement (see “Error Handling with if error” on page 1379).

The fileloadpartial(function is similar to fileload(, but it reads only a section of the file (see “FILE-
LOADPARTIAL(” on page 5230). It has two additional parameters, the starting and ending positions within
the file. These positions are measured in characters from the beginning of the file, with 0 being the first char-
acter. The example below reads the first 500 characters from the file My Data in the current folder, then
extracts the first line from the data.

local LineOne
LineOne=array(fileloadpartial("","My Data",0,500),1,¶)

This same example of extracting the first line would also work with the fileload(function, but only if
there is enough scratch memory to load the entire file (see “Changing Scratch Memory Size (Macintosh)” on
page 273). By using fileloadpartial(this procedure requires only 500 bytes of scratch memory no mat-
ter how large the file My Data is.

Tag Application

KASX Panorama (3.5 or later)

KAS1 Panorama (3.1 or earlier)

ttxt SimpleText (text editor)

R*ch BBEdit (text editor)

CWIE CodeWarrior (text editor)

MPS Macintosh Programmers Workshop

ToyS AppleScript Editor

8BIM Adobe Photoshop

XCEL Microsoft Excel

WDBN Microsoft Word

SIT! Stuffit Archive

Chapter 25:Programming Techniques Page 1521
The filesize(function calculates the size of a file (see “FILESIZE(” on page 5235). It has two parameters,
the folder id (see “Folder ID’s and Paths” on page 1499) and file name.

if filesize("","Sample File")=0
message "The file is empty!"

endif

Note: If a file named Sample File does not exist in the current folder, the procedure above will display the
error message File not found. Use the if error statement to trap this error if you want to display your own
error or handle the error differently (see “Error Handling with if error” on page 1379).

local size
size=filesize("","Sample File")
if error

message "Sample File does not exist!"
rtn

endif
message "Sample File contains "+str(size)+" bytes."

Writing Data Files

The filesave statement copies data into a file (see “FILESAVE” on page 5233). If the file does not already
exist, it is created. If the file already contained information, that information is lost.

The filesave statement has four parameters

filesave folder , file , type , data

The first parameter, folder, is the folder ID where the file is to be saved. The second parameter is the name of
the file.

The third parameter, type, is an 8 character text item combining the file type tag and file creator tag for the
file (see “What’s in a File?” on page 1519). If you are using a Windows PC you can simply use "" for this
parameter. If you are using a Macintosh the type and creator tags determine what icon, if any, this file will
have, and what application will be launched when you double click on this file. If you use an empty string
("") for this parameter, the file will be set up as a SimpleText text file. Although you can create any type of
file the most common application is to create a text file, as shown in this table.

The fourth parameter, data, is a formula that produces the data to be saved into the file. This may be a field,
variable, or more complex formula.

Icon Type/Creator Description

TEXTttxt SimpleText text file

TEXTR*ch BBEdit text file

TEXTCWIE CodeWarrior text file

TEXTMPW MPW text file

Page 1522 Panorama Handbook
Here is an example that saves the contents of the Notes field (the current record only) into a text file called
Notes.txt.

filesave "","Notes.txt","TEXTR*ch",Notes

The fileappend statement adds data to the end of an existing file (see “FILEAPPEND” on page 5221). If the
file does not already exist, it is created. If the file already contained information, that information is retained
and the new information is added to the end of the file. The procedure below adds a line to the end of the file
Deleted Records Log.txt every time it is triggered.

fileappend "","Deleted Records Log.txt","","Record "+str(ID)+" deleted on "+
datepattern(today(),"Month, ddnth, yyyy")+" at "+timepattern(now(),"hh:mm:ss am/pm")+¶

deleterecord

If this procedure is named .DeleteRecord it will be triggered every time a record is deleted (see “.DeleteR-
ecord” on page 1483). As records are deleted a log file will be created that looks something like this.

Record 4738 deleted on June 4th, 2001 at 3:12:47 PM
Record 392 deleted on June 4th, 2001 at 4:45:02 PM
Record 6133 deleted on June 5th, 2001 at 9:23:20 AM

As more records are deleted the log file will get bigger and bigger and bigger.

Using FileSave and ArrayBuild to Export Data

Earlier in this chapter we learned how to use the export statement to export data from the database (see
“Exporting Text Files” on page 1511). Another technique is to use the arraybuild statement to scan the
database and build an array (see “ARRAYBUILD” on page 5035) and then use filesave to export the array
into a file. The advantage of this technique is that it is more flexible than using export because it allows you
to add headers and footers to the data. The disadvantage is that this technique requires at least enough
scratch memory to contain the entire exported file, so it will not work for exporting large databases (see
“Changing Scratch Memory Size (Macintosh)” on page 273).

To illustrate this technique we will use it to export a file as an HTML table. We’ll start with a database of fruit
nutrition.

Chapter 25:Programming Techniques Page 1523
Here is the procedure that takes this database and creates an HTML page. The heart of the procedure is the
arraybuild statement, which scans the database and creates each line of the table. See “ARRAYBUILD” on
page 5035 to learn about the parameters to this statement.

local webPage,webTable

arraybuild webTable,¶,"",
"<tr><td>"+Fruit+"</td>"+
"<td align=right>"+str(Calories)+"</td>"+
"<td align=right>"+str(«Total Fat»)+"g</td><tr>"

webPage={<html><head><title>Fruit Nutrition</title></head><body bgcolor="FFFFFF">
<center>
<h2>Fresh Fruit Nutrition Facts</h2>
<table border=1>
<tr>

<td width=100>Fruit</td>
<td width=70 align=right>Calories</td>
<td width=70 align=right>Fat</td>

</tr>
<DATA>
</table>
</center>
</body></html>}

filesave "","Fruit_Nutrition.html","TEXTR*ch",replace(webPage,"<DATA>",webTable)

The middle section of the procedure places a web page template into the variable webPage. Notice how the {
and } characters are used around the text so that " may be used within the text (see “Constants” on
page 1218). The final line uses the replace(function to merge the table body into the web page template and
then saves the file, which will look something like this.

Page 1524 Panorama Handbook
When displayed in a web browser the finished result looks like this.

This example used the arraybuild statement to export the entire file. If you wanted to export only the cur-
rently selected records you would need to use the arrayselectedbuild statement.

Chapter 25:Programming Techniques Page 1525
Reading and Writing Resource Forks

On the Macintosh each file may consist of two separate partitions called forks, the data fork and the resource
fork. The resource fork is normally accessed only indirectly through special statements (see “Working with
Resources” on page 1532) and not through the standard file i/o statements and functions. However, some-
times it is necessary to read and write the resource fork directly (for example to copy a file you must copy
both forks). To do this you must use the resourefork statement to switch Panorama into resource fork
mode (see “RESOURCEFORK” on page 5665). In this mode all of Panorama’s normal file i/o statements and
functions access the resource fork instead of the data fork. To go back to normal data fork mode use the
datafork statement (see “DATAFORK” on page 5138).

Here is a procedure that makes a copy of a file named My File. The copy is called Copy of My File, and
includes both the data and resource forks from the original file.

local theOriginalFile,typecreator,data

theOriginalFile="My File"

typecreator=array(fileinfo("",theOriginalFile,2,¶)

datafork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

resourcefork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

datafork

On Windows PC systems files do not have resource forks and the resourcefork statement does absolutely
nothing. If you want your program to work on both Mac and PC systems you must check which system you
are using and only copy the resource fork if the database is on a Macintosh. Here is a revised copy of the pro-
cedure which shows one way to perform this check.

local theOriginalFile,typecreator,data,computerType

computerType="Macintosh"
if folderpath(dbinfo("folder","")) match "?:*"

computerType="Windows"
endif

theOriginalFile="My File"

typecreator=array(fileinfo("",theOriginalFile,2,¶)

datafork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

if computerType="Macintosh"
resourcefork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data
datafork

endif

Page 1526 Panorama Handbook
Erasing a File

A procedure can erase any file by using the filetrash statement (see “FILETRASH” on page 5236). This
statement has two parameters: the folder ID (see “Folder ID’s and Paths” on page 1499) and the name of the
file to be erased. (If you use "" as the folder ID, the folder containing the current database is assumed.) This
procedure will erase the file Temp Data File.txt in the System folder.

filetrash info("systemfolder"),"Temp Data File.txt"

Keep in mind that the filetrash statement is the same as dragging the file into the trash can or recycle bin,
then choosing the Empty Trash or Empty Recycle Bin command. Once a file has been deleted with this state-
ment, you cannot get it back, so be careful.

Changing a File’s Name

A procedure can change the name of any file by using the filerename statement (see “FILERENAME” on
page 5232). This statement has three parameters: the folder ID (see “Folder ID’s and Paths” on page 1499), the
original name of the file, and the new name of the file. (If you use "" as the folder ID, the folder containing
the current database is assumed.) This procedure will rename the file Temp Data File.txt in the same folder as
the current database, giving it the new name Permanent Data File.txt.

filerename "","Temp Data File.txt","Permanent Data File.txt"

If there is already a file named Permanent Data File.txt, this statement will not be able to rename the file.

Changing a File’s Type and Creator

On the Macintosh each file has two four character tags that identify what type of file it is and what applica-
tion it belongs to (see “What’s in a File?” on page 1519). A procedure can change these tags by using the
filetypecreator statement (see “FILETYPECREATOR” on page 5237). This statement has three parame-
ters: the folder ID (see “Folder ID’s and Paths” on page 1499), the name of the file, and the new tags for the
file. (If you use "" as the folder ID, the folder containing the current database is assumed.)

The procedure below examines a file that has been transferred from a PC computer to a Macintosh. Depend-
ing on the three character "extension" at the end of the filename, it converts the file into a text file, a Panorama
file, or a Photoshop picture file.

case myfile endswith ".txt"
filetypecreator myfolder,myfile,"TEXTttxt"

case myfile endswith ".pan"
filetypecreator myfolder,myfile,"ZEPDKASX"

case myfile endswith ".pct"
filetypecreator myfolder,myfile,"PICT8BIM"

endcase

Since PC files do not have type/creator tags the filetypecreator statement is simply ignored when used
on a Windows PC.

Creating a New Folder

If it is necessary for a procedure to create a new folder it can do so with the makefolder statement (see
“MAKEFOLDER” on page 5517). This statement has one parameter, the full path of the new folder. Here is an
example. This example creates a folder named Project Foo.

makefolder "C:\Plans\1999\Project Foo"

Chapter 25:Programming Techniques Page 1527
One thing to keep in mind about the makefolder statement is that it can only create one folder at a time. In
the example above the folders Plans and 1999 must already exist or the makefolder statement will fail. If
you are not sure that these folders exist you should create them (there’s no harm in telling Panorama to create
a folder that already exists.)

makefolder "C:\Plans"
makefolder "C:\Plans\1999"
makefolder "C:\Plans\1999\Project Foo"

Here is a subroutine that can automatically create any folder. It checks to make sure that any enclosing files
already exist, and if they don’t it creates them. This subroutine can work on either the Macintosh or on Win-
dows PC systems.

/*
 *
 * make a folder, and all nested folders
 *
 * parameter(1)="Alaska:Alpha Folder:Gamma Folder:Zed Quadrant:Foo"
 *
 * if error set parameter(1) to ""
 *
 */

local newfolder,targetfolder,tempfolder,tempfile,tftype,depth,folderSeparator

folderSeparator=":"
if folderpath(dbinfo("folder","")) match "?:*"

folderSeparator="\"
endif

newfolder=parameter(1)
targetfolder=newfolder
shortcall testtarget
if tftype contains "folder" rtn endif /* folder already exists */
if tftype contains "file"

setparameter 1,"" /* can't create folder with same name as a file! */
 rtn
endif

depth=1
loop

targetfolder=arrayrange(newfolder,1,depth+1,folderSeparator)
shortcall testtarget
if tftype=""

makefolder targetfolder
if error nop endif /* seems to be necessary for PC version */

endif
depth=depth+1

while newfolder<>targetfolder
rtn

testtarget:
tempfolder=

arrayrange(targetfolder,1,1+arraysize(targetfolder,folderSeparator),folderSeparator)
if tempfolder match "?:"

tempfolder=tempfolder+folderSeparator

Page 1528 Panorama Handbook
endif
tempfile=array(targetfolder,arraysize(targetfolder,folderSeparator),folderSeparator)
if folder(tempfolder)=""

tftype=""
rtn

endif
tftype=array(fileinfo(folder(tempfolder),tempfile),1,¶)
if tftype contains "file"

setparameter 1,""
rtn

endif
rtn

Assuming the procedure above is called .makeFolder, here is another procedure that calls it to create a folder.

call .makeFolder,"My Disk:Politics:California:34th District"

Getting Information about a File

Your computer keeps track of a number of attributes for each file on the disk, including the size of the file, the
time and date when it was created, the time and date when it was last modified, and (on the Macintosh) the
file type tag and file creator tag. The fileinfo(function allows a formula to examine this information (see
“FILEINFO(” on page 5226).

The fileinfo(function has two parameters: the folder ID (see “Folder ID’s and Paths” on page 1499) and
the filename. If the specified folder does not contain a file (or folder) with this name, the function returns an
empty text item (""). If the file (or folder) does exist, Panorama will return a text array with 8 items of infor-
mation. The eight items are combined together in an array with carriage return separators, so you can use the
array(function to extract the information you want.

The first element in the array returned by fileinfo(is the type of item, which may be either File or Folder.

The second element in the array returned by fileinfo(is 8 characters defining the type tag and creator tag
for the file (4 characters each - see “What’s in a File?” on page 1519). You can use this information to deter-
mine the type of file. For example, a Panorama database is ZEPDKASX. On PC systems Panorama will attempt
to simulate the type and creator tags for some types of files based on the file’s extension (.txt, .pan, etc.)

The third element in the array returned by fileinfo(is a number representing the creation date of the file.
The formula below displays the creation date of the file named Sample.

datepattern(val(array(fileinfo("","Sample"),3,¶)),"Month ddnth YYYY")

The fourth element in the array returned by fileinfo(is a number representing the creation time of the
file. The formula below displays the creation time of the file named Sample.

timepattern(val(array(fileinfo("","Sample"),4,¶)),"HH:MM:SS AM/PM")

The fifth element in the array returned by fileinfo(is a number representing the modification date of the
file. The sixth element in the array returned by fileinfo(is a number representing the modification time of
the file.

The seventh element in the array returned by fileinfo(is the size of the file.

The eighth element in the array returned by fileinfo(is the status of the file, either Locked or Unlocked.

Chapter 25:Programming Techniques Page 1529
Here is a typical array returned by the fileinfo(function for the file Panorama (the application itself).

File ‹ Type of item (File or Folder)
APPLKASX‹ File type tag (APPL) and file creator tag (KASX)
2450070 ‹ Creation date. Use val(function to convert to number.
54233 ‹ Creation time. Use val(function to convert to number.
2450075 ‹ Modification date. Use val(function to convert to number.
71028 ‹ Modification time. Use val(function to convert to number.
1092657 ‹ File size (just over 1 megabyte)
Unlocked ‹ File options (Locked or Unlocked)

Here is another example of information for a Panorama database file:

File ‹ Type of item (File or Folder)
ZEPDKASX‹ File type tag (APPL) and file creator tag (KASX)
2450035 ‹ Creation date. Use val(function to convert to number.
401 ‹ Creation time. Use val(function to convert to number.
2450035 ‹ Modification date. Use val(function to convert to number.
923 ‹ Modification time. Use val(function to convert to number.
2320 ‹ File size (just over 1 megabyte)
Unlocked ‹ File options (Locked or Unlocked)

Getting and Setting Additional File Information

The getfilefinderinfo statement (see “GETFILEFINDERINFO” on page 5293) retrieves a collection of
information about a file, including when it was created and last modified and its position within the window.

getfilefinderinfo folderID , filename , type/creator , position , flags , creationdate , moddate

The first two parameters, folderID and filename, tell Panorama which file you are interested in. See “Folder
ID’s and Paths” on page 1499 for more information about folder ID’s.

The next five parameters are all filled in by the statement. You should supply variables for each of these val-
ues. Type/Creator is the two four character tags that identify what type of file this is. See “What’s in a File?”
on page 1519 for more information about these tags. Position is the visual x-y position of this file within the
folder (see “Points” on page 1302). Flags contain a number of operating system specific options for this file. If
bit 14 of this value is set then the file is invisible. CreationDate and ModDate contain the creation date/time
and modification date/time of the file. Both of these values are SuperDates (see “SuperDates (combined date
and time)” on page 1276).

The setfilefinderinfo statement (see “SETFILEFINDERINFO” on page 5738) modifies a collection of
information about a file, including when it was created and last modified and its position within the window.

setfilefinderinfo folderID , filename , type/creator , position , flags , creationdate , moddate

The first two parameters, folderID and filename, tell Panorama which file you want to modify. See “Folder
ID’s and Paths” on page 1499 for more information about folder ID’s.

The next five parameters specify the new values for each file option. The parameter descriptions are the same
as for the getfilefinderinfo statement (see above). If you don’t want to change the type/creator value
you can simply specify "" . If you don’t want to change the position, flags, creationdate or moddate value
specify 0. The procedure below sets the creation date/time and modification date/time to 9 am today.

setfilefinderinfo "","Sunset.jpg","",0,0,
superdate(today(),time("9am")),superdate(today(),time("9am"))

All of the other file options (type/creator, position and flags) are left undisturbed.

Page 1530 Panorama Handbook
Building a List of Files or Folders

The listfiles(function builds a list of the files in a folder. The list is a text array with a carriage return
separator between each file name (see “Text Arrays” on page 1257). The listfiles(function has two
parameters.

listfiles(folder , tags)

The folder parameter is a folder ID (see “Folder ID’s and Paths” on page 1499) that identifies what folder you
want to list the contents of.

The tags parameter specifies what types of files you want to list. Leave this parameter empty if you want to
list all files and folders regardless of type.

If you wish, you may use the tags parameter to specify one or more types of files to include in the list. Each
type of file is specified by an 8 character combination of type and creator tags (see the previous section). For
example, to list Panorama database files the tags parameter should be ZEPDKASX. You may use the ? charac-
ter in the tags parameter when you don’t need to match. For example, many different applications can create
text files. To list all text files no matter what application created them, use the tags parameter TEXT????. You
can combine multiple tag specifications to list more than one type of file, for example ZEPDKASXTEXT????
to list both Panorama databases and text files.

The listfiles(function does not normally include folders in the list of files. However, there are two cases
where folders will be listed: 1) if the tags parameter is empty, or 2) if the tags parameter starts with the ˜ char-
acter (see “Special Characters” on page 1225). For example, to list Panorama databases and folders use the
tags parameter ˜ZEPDKASX. If you want to list only folders without any files, use type creator tags that are
not used by any kind of file, for example ˜ZZZZZZZZ .

Since listfiles(is a function, it can be used in any formula in a procedure, auto-wrap text object, or
SuperObject formula. Here is an example formula that lists all the picture files in the same folder as the cur-
rent database:

listfiles(dbinfo("folder",""),"PICT????")

The procedure listed below, called .DoFolder, will count all the files in a folder. Using a technique called
recursion (see “Recursive Subroutines” on page 1393), the procedure calls itself repeatedly to count files in
subfolders within the original folder.

/*
parameter(1): folder ID
parameter(2): file type/creator

*/
global fileCount,folderCount
folderCount=folderCount+1
local folderFiles,subFolders,folderNumber,deeperFolder,deeperFolderID
folderFiles=listfiles(parameter(1),parameter(2))
subFolders=listfiles(parameter(1),"ƒZZZZZZZZ")
fileCount=fileCount+arraysize(folderFiles,¶)
folderNumber=1
loop

deeperFolder=array(subFolders,folderNumber,¶)
stoploopif deeperFolder=""
deeperFolderID=folder(folderpath(parameter(1))+deeperFolder)
call .DoFolder,deeperFolderID,parameter(2) /* recursive! */
folderNumber=folderNumber+1

while forever

Chapter 25:Programming Techniques Page 1531
Here is a procedure that can be used with the .DoFolder procedure shown above to count all the folders and
files on the entire hard disk containing the system folder. (This procedure may take a minute or two to run,
depending on how many thousands of files are on your hard disk!)

global fileCount,folderCount
fileCount=0
folderCount=0
local startFolder
startFolder=folder(folderpath(info("systemfolder"))[1,":"][1,-2])
call .DoFolder,startFolder,""
message str(folderCount)+" folders, "+str(fileCount)+" files."

As written, this procedure simply counts files and folders. However, this procedure could easily be modified
to process the files in some way, for example to search for a file, or to copy all the file names into a database.

Building a List of Disks (Volumes)

The info("volumes") functions creates a list of disks (volumes) that are currently mounted (active). The
list is a text array with a carriage return separator between each file name (see “Text Arrays” on page 1257).
The example below uses this function to check to see if the World Facts Reference CD is currently available.

if 0=arraysearch(info("volumes","World Facts Reference",1,¶)
message "World Facts Reference CD is not currently available."

endif

Page 1532 Panorama Handbook
Working with Resources

On the Macintosh files are split into two partitions, called forks. These forks are the data fork and the
resource fork. The data fork corresponds to a normal file as used on other operating systems (Windows,
UNIX, etc.) The resource fork, however, is not handled like a normal file. Instead, the operating system fur-
ther subdivides this fork into components called resources. These resources are like miniature “files within a
file” and are used to hold objects needed by programs like menus, images, text, templates, and even program
code. Instead of accessing the resource fork directly as a file, programs use the operating system to access
these components. Each resource component may be anything from a single character to tens of thousands of
bytes of information.

Because resources play such an important part in the operation of Macintosh programs (including Panorama)
we have created a mechanism by which resources can be used on Windows PC systems as well. Since Win-
dows PC files do not have two forks the resources must be kept in a separate file. This file must have a name
ending with the extension .rsr, for example My Menus.rsr. Unless specified otherwise, all of the functions and
statements described in this section work equally well on both the Macintosh and the PC.

Just as a file is identified by it’s location (folder) and filename, each resource is identified by its type and ID
number. The type is a four letter designation that identifies what type of data is stored in that resource. There
are hundreds of different types of resources, with more new types being created all the time. However, the
most common types were defined by Apple in 1984 and are still in use today. This table describes some of the
most common types.

The resource ID is simply a number between 0 and 65535.

Just as a file is identified by its folder and file name, a resource is identified by its type and ID. For example,
you may refer to a resource as MENU 97 or ICON 2544.

In addition to a type and ID, a resource may also have a name. However, the name is completely optional. If
a resource does have a name, you can identify the resource by its type and name as well as by its type and ID.
For example you may refer to a resource as ICON 2544 or as ICON Empty Trash Can.

Type Contents

CODE Machine code (a program)

MENU List of items in a menu

STR A single item of text

STR# Multiple items of text

DLOG Template describing a dialog

DITL List of items within a dialog

PICT Picture

ICON A single icon

ICN# Multiple icons

cicn Color icon

CURS Cursor design (mouse pointer)

Chapter 25:Programming Techniques Page 1533
On the Macintosh resource files may be created and edited with resource editing programs. The most popu-
lar such program is ResEdit, a freeware utility written by Apple and distributed by the Apple Programmers
and Developers Association (APDA). ResEdit has appeared in several different versions since the Macintosh
was released in 1984. If you’d like to learn more about ResEdit, we recommend that you get Zen and the Art
of Resource Editing, available from many sources, including amazon.com. The book includes a CD with a
copy of ResEdit along with many example files.

If you do a lot of resource editing you might want to check out another resource editor, Resorcerer, from
Mathemaesthetics (http://www.mathemaesthetics.com/).

Unlike ResEdit, Resorcerer is not free, but it does have advanced features that are not included in ResEdit. We
use Resorcerer instead of ResEdit here at ProVUE.

Page 1534 Panorama Handbook
There are no resource editor programs available for Windows PC’s. However, you can still create and modify
resources using Panorama statements and functions. Panorama includes an editor for creating and modifying
menu resources on both Macintosh and PC systems (“Preparing a Resource File” on page 1449).

Opening and Closing Resource Files

Before a Panorama procedure can access the objects inside a resource file it must open the resource file. This
can be done with the openresource or openresourcerw statements.

The openresource statement opens a resource for read only access — you cannot modify resource objects
when a file is opened this way (see “OPENRESOURCE” on page 5577). The openresource statement
requires one parameter—the name of the resource file to open. For example, if the resource file containing
your text is called Background Items then the procedure should contain the statement

openresource "Background Items"

This statement may be used on both Macintosh and Windows PC computers. On Windows PC computers the
filename extension of .rsr is assumed, so the example above will actually open the resource file Background
Items.rsr if used on a PC computer.

If the resource file is not in the same folder as the current database you must specify the location as well as the
name of the resource file, like this (see “Combined Folder Location and File Name” on page 1497).

openresource "C:\Accounting\Background Items"

The openresourcerw statement also opens a resource file, but allows both reading and writing (see
“OPENRESOURCERW” on page 5578).

Unlike opening a database window, there is no visible indication when a resource file is opened.

To close a resource file use the closeresource statement (see “CLOSERESOURCE” on page 5108). The
statement must be followed by the name of the resource to close.

closeresource "Background Items"

If the resource was opened from a different folder you must specify the entire path, like this.

closeresource "C:\Accounting\Background Items"

It’s often not necessary to bother with closing a resource file. If you leave any resource files open Panorama
will automatically close them when you exit (Quit) from Panorama. If you attempt to re-open a resource file
that is already open Panorama simply leaves it open and continues. (However, if a resource is open for read-
ing only you must close it if you want to open it for read/write access.)

It is possible to open more than one resource file at once. In fact, there is always more than one resource file
open, because the system has a resource file open, and Panorama has its own resource file open. If two differ-
ent resource files contain resources with the same type and ID, Panorama will use the copy of the resource
from the most recently opened resource file.

To get a list of currently open resource files use the info("openresourcefiles") function.

Opening a Resource File in the .Initialization Procedure

If a resource file is required for operation of the database (for example for custom menus, see “Custom
Menus” on page 1448), we recommend that you place the openresource statement in the .Initialize proce-
dure for the file (See “.Initialize” on page 1484 more information on the .Initialize procedure).

Simply creating the .Initialize procedure does not open the resource file. The first time you create this proce-
dure you must save the database, then close and re-open the database. The .Initialize procedure will open
the resource file when you re-open the database, and you can begin using the resources immediately. From
then on the resource file will be opened automatically every time the database is opened.

Chapter 25:Programming Techniques Page 1535
Reading a Resource

The getresource(function gets a resource from an open resource file and copies it into a field or variable.
You can read any resource with this function, although making sense of the contents of the resource is up to
you.

The getresource(function has two parameters: type and ID. The type is the resource type. This must be a
four letter text item (see “Working with Resources” on page 1532). Standard resource types include "STR "
(Pascal String), "STR#" (multiple strings), "DLOG" (dialog template), "DITL" (dialog items), "MENU"
(menu). The ID is the identification for the resource. The resource ID can be a number (from 0 to 65535) or a
name (a text item).

This example loads the contents of TEXT resource number 415 into the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT",415)

Remember, all resource have numbers, but they do not all have names. If the resource does have a name, you
can use the name for the ID. This example loads the contents of the TEXT resource named Thank You #2 into
the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT","Thank You #2")

Reading STR and STR# Resources

Panorama has three special functions for reading with string resources: getstring(, getnstring(and
getstringmatch(.

To read a STR resource (which contains one text item up to 255 characters long), use the getstring(func-
tion (see “GETSTRING(” on page 5311). This function has two parameters: type and ID. Type is the resource
type. This must be a four letter text item (see “Working with Resources” on page 1532). You can specify any
resource type you like here, but strings are usually stored in resources of type "STR " (Pascal String). (If you
specify "" for the type, Panorama will assume "STR " .) The ID parameter is the identification for the
resource. The resource id can be a number (from 0 to 65,535) or a name (a text item).

This example displays the contents of STR resource number 1296.

message getstring("",1296)

All resource have numbers, but they do not all have names. If the resource does have a name, you can use the
name for the ID. This example displays the text in the resource named Overflow Error.

message getstring("","Overflow Error")

To access a STR# resource(which contains multiple text items, each up to 255 characters), use the
getnstring(function (see “GETNSTRING(” on page 5304). STR# resources hold multiple text items, so the
getnstring(function extracts one of them. This function has three parameters: type, ID and number. The
type is the resource type. This must be a four letter text item. You can specify any resource type you like here,
but strings are usually stored in resources of type "STR#" (multiple Pascal Strings). (If you specify "" for the
type, Panorama will assume "STR#" .) The ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). The number is the number of the string item within the col-
lection. For example, if the collection contains 6 strings they will be numbered 0, 1, 2, 3, 4, and 5.

This example displays the contents of STR# resource #693 item 12.

message getnstring("",1296,11)

Here is another example that displays the 12th item in the Errors STR# resource.

message getnstring("","Errors",11)

Page 1536 Panorama Handbook
Another function that access STR# resources is the getstringmatch(function (see “GETSTRING-
MATCH(” on page 5312). The getstringmatch(function searches through a collection of multiple strings
in a STR# resource. If it finds a match with the text you supply, it returns the number of the text item within
the collection.

The getstringmatch(function has three parameters: type, ID and text. The type and ID are the same as for
the getnstring(function (see above). The text parameter is the text you want to search for. For a match,
this text must be exactly the same as one of the text items in the STR# collection.

This function returns a number. If the text does not match any of the text items in the STR# collection, the
function will return 0. If there is a match, the function will return the number of the item that matched, start-
ing with 1 for the first item. (Notice that this numbering system is different than the getnstring(function,
which starts with 0 for the first item.)

One application for this function is looking up commands or keywords. Suppose you have a STR# resource
number 320 that contains the following text items.

DIAL
APPOINTMENT
TODO
LETTER
CHECK

Now suppose the database has a global variable called CommandLine. The user types a command into this
variable with a Text Editor SuperObject™. Here is part of a procedure that can process these commands using
the STR# 320 resource.

local commandWord, commandNumber, commandExtras
openresource "Accounting Extras"
commandWord=upper(strip(CommandLine[1," "]))
commandExtras=strip(CommandLine[" ",-1])
commandNumber=getstringmatch("",320,commandWord)
if commandNumber=0 stop endif
if commandNumber=1

dial commandExtras
endif
if commandNumber=2

…
endif
if commandNumber=3

…
…

Notice that the example converts the text the user types in into all upper case. This is to make sure that the
text will match the commands in the STR# resource. Remember, the text must match exactly, including upper
and lower case.

Writing a Resource

If a resource file has been opened with the openresourcerw statement (see “OPENRESOURCERW” on
page 5578) a procedure can use the writeresource statement to create and/or modify a resource object
(see “WRITERESOURCE” on page 5905). The writeresource statement has three parameters: type, ID and
data. The type is the resource type. This must be a four letter text item (see “Working with Resources” on
page 1532). The ID is the identification for the resource. The resource id can be a number (from 0 to 65,535) or
a name (a text item). The data parameter is the data to be placed in the resource. The data should be text, not
a number. (The text may represent a binary value, see “Raw Binary Data” on page 1310.)

Here is a procedure that writes some text (for example Last update: 10/18/02) into STR resource number
2000. If the resource does not exist it will be created.

writeresource "STR ",2000,string255("Last update: "+datepattern(today(),"mm/dd/yy")

Chapter 25:Programming Techniques Page 1537
If there is more than one resource file open the resource will be written into the file that was most recently
opened (see “Working with Multiple Resource Files” on page 1539).

Deleting a Resource

If a resource file has been opened with the openresourcerw statement (see “OPENRESOURCERW” on
page 5578) a procedure can use the deleteresource statement to permanently remove a resource (see
“DELETERESOURCE” on page 5160).

deleteresource type , id

The type is the resource type. This must be a four letter text item (see “Working with Resources” on
page 1532). The ID is the identification for the resource. The resource id can be a number (from 0 to 65,535) or
a name (a text item).

Renumbering a Resource

If a resource file has been opened with the openresourcerw statement (see “OPENRESOURCERW” on
page 5578) a procedure can use the renameresource statement to change the number of a resource and/or
change it’s name (see “RENAMERESOURCE” on page 5656).

renameresource type , id,number,name

The type is the resource type. This must be a four letter text item (see “Working with Resources” on
page 1532). The ID is the original identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item). The number is the new number for the resource. The name is the new name for
the resource. This procedure changes resource MENU 498 into MENU 1917, and gives the resource the name
Option Menu.

renameresource "MENU",498,1917,"Option Menu"

If the name is "" Panorama will leave the name alone (no change). This procedure changes resource MENU
498 into MENU 8367 while leaving the name alone (as Option Menu in this case).

renameresource "MENU",1917,8367,""

If you want to change the name to empty text then use ¶ as the menu name (see “Special Characters” on
page 1225). This procedure erases the name from resource MENU 8367.

renameresource "MENU",8367,8367,¶

Listing Resources

Panorama has two functions that can help you build a list of the resources available in the currently open
resource files: resourcetypes(and resources(.

The resourcetypes(function creates a text array containing a list of the resource types in the currently
open resource files (see “RESOURCETYPES(” on page 5667). The function has no parameters.

The resourcetypes(function returns a carriage return delimited text array (see “Text Arrays” on
page 1257). Each element in the array contains a resource type. Each resource type is a four letter text item, for
example "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dialog items),
"MENU" (menu) (see “Working with Resources” on page 1532).

You can use this function to check if a particular resource type exists, or you can use the function with a pop-
up menu or List SuperObject™ to allow the user to select a type of resource for any reason. The procedure
below will create a text array with resource types.

local rezTypes
rezTypes=resourcetypes()

Page 1538 Panorama Handbook
The rezTypes variable will be filled with a list of resource types, like this:

CNTL
CURS
FKEY
INIT
KCAP
KCHR
LDEF
MACA
PACK
PTCH
ROv#
TPLT
SIZE
LBAR
octb
DLGX
dctb
cocm
TEXT
STR#
PICT
PAT#
PAPR
MENU
MDEF

As you can see, the resource types are not listed in any particular order.

The resources(function creates a text array containing a list of resources of a particular types (see
“RESOURCES(” on page 5666). This function has one parameter: type , which is the resource type. This must
be a four letter text item (see “Working with Resources” on page 1532).

The resources(function returns a text array containing a carriage return delimited list of all the resources
of the specified type. Each element of this list is itself a tab delimited array. The first item is the resource item
number. The second item is the resource name (if any).

This example builds a list of the TEXT resources in the currently open resource files. (The currently open
resource files include Panorama itself and the Macintosh system file, as well as any resource files you have
opened with the openresource statement.)

local rezStrings
rezStrings=resources("TEXT")

This will fill rezStrings with an array like this. (There is a tab between the number and the first character of
the resource name, if any.)

2001Error Messages
2002Command List
2003Conversion Options
2100
2103
2104
2140Day
2141Month
2142Year

The resourcetypes(and resources(functions normally list all resources in all open resource files. See
the next section to learn how to make these function list only the resources in a single file.

Chapter 25:Programming Techniques Page 1539
Working with Multiple Resource Files

It’s possible to open and work with multiple resource files at once. For example you could open three
resource files like this.

openresourcerw "alpha"
openresourcerw "beta"
openresourcerw "gamma"

When reading resources Panorama always searches the most recently opened file first. For example, if a pro-
cedure contained the statement

temp=getresource("DATA",2000)

Panorama would start by searching for this resource object in the gamma resource file. If it didn’t find it there
it would look in the beta resource file, and if not there then it would look in the alpha file.

When writing resources Panorama always writes in the most recently opened file. For example if a procedure
contained the statement

writeresource "DATA",2000,"This is not a test"

Panorama would always write this resource in the gamma resource file.

Sometimes it may be necessary to focus in on only a single resource file, temporarily disabling the other open
files. This can be done with the activeresource statement (see “ACTIVERESOURCE” on page 5008). This
statement temporarily makes only one resource file active. For example, the program below will write a
resource into the beta resource file instead of the gamma file.

activeresource "beta"
writeresource "DATA",2000,"This is not a test"
activeresource ""

The second activeresource statement (with the "" parameter) re-enables the other resource files.

The activeresource statement can also be used for reading resources. The program below will only read
the DATA 2000 resource from the beta file, not alpha or gamma.

activeresource "beta"
temp=getresource("DATA",2000)
activeresource ""

Finally, the activeresource statement can also be used when listing resources. The resourcetypes(
and resources(functions normally list all resources in all open resource files (see “Listing Resources” on
page 1537). When an activeresource statement is in use they will only list resources and resource types in
the active resource file, ignoring the other files.

Page 1540 Panorama Handbook
Accessing the Windows Registry

The Registry is a master database that Windows uses as kind of a giant system-wide preferences file. If you'd
like to learn about what's in the registry and how to work with it, I recommend that you pick up a copy of
“Inside the Windows 95 Registry” by Ron Petrusha.

Be sure you know what you are doing before you mess with the Registry. You can easily disable your system
beyond repair if you are not careful.

Getting Information About Registry Items

The registryinfo(function allows you get a directory of subkeys, a directory of values within a registry
key, or a specific value within a key (see “REGISTRYINFO(” on page 5637). For example, this formula returns
a list of control panels.

registryinfo("HKEY_CURRENT_USER\Control Panel")

To get a directory of the values contained in a key (instead of the subkeys), add a colon to the end of the path.
This example will list three values: MouseSpeed, MouseThreshold1, and MouseThreshold2.

registryinfo("HKEY_CURRENT_USER\Control Panel\Mouse:")

To retrieve a specific value, add the value name to the end of the path.

registryinfo("HKEY_CURRENT_USER\Control Panel\Mouse:MouseSpeed")

Chapter 25:Programming Techniques Page 1541
To get the default value for the key, use the name <DEFAULT>. This example will tell you that a .aif file is a
QuickTime movie file (if you have QuickTime installed).

registryinfo("HKEY_CLASSES_ROOT*\.aif:<DEFAULT>")

Panorama allows the six root keys to be abbreviated, as shown in the table below.

Using these abbreviations the examples given previously above could be rewritten as shown below:

registryinfo("HKCU\Control Panel")
registryinfo("HKCU\Control Panel\Mouse:")
registryinfo("HKCU\Control Panel\Mouse:MouseSpeed")
registryinfo("HKCR*\.aif:<DEFAULT>")

Modifying Registry Entries

The registrywrite statement allows you to create registry keys and registry values, or to modify an exist-
ing registry value. This statement has three parameters.

RegistryWrite path , type , data

The first parameter is a registry path. This path uses the same format as the registryinfo(function (see
“Getting Information About Registry Items” on page 1540).

The second parameter is the type of data being written. The possible choices are shown below. If you specify
"" , Panorama will default to REG_SZ (text).

The third parameter is the actual data being written. No matter what data format you are writing, this should
be text. For other data types you can fill the text item with binary values (see “Raw Binary Data” on
page 1310).

Root Abbreviation

HKEY_CLASSES_ROOT HKCR

HKEY_CURRENT_USER HKCU

HKEY_LOCAL_MACHINE HKLM

HKEY_USERS HKUS

HKEY_CURRENT_CONFIG HKCC

HKEY_DYN_DATA HKDD

0 REG_NONE

1 REG_SZ

2 REG_EXPAND_SZ

3 REG_BINARY

4 REG_DWORD

5 REG_DWORD_BIG_ENDIAN

6 REG_LINK

7 REG_MULTI_SZ

8 REG_RESOURCE_LIST

9 REG_RESOURCE_LIST

10 REG_RESOURCE_REQUIREMENTS_LIST

Page 1542 Panorama Handbook
This example changes the mouse speed. Notice that this statement supports the same abbreviations allowed
by the registryinfo(function (see “Getting Information About Registry Items” on page 1540).

registrywrite "HKCU\Control Panel\Mouse:MouseSpeed","","2"

You can also change the default value associated with a registry key.

registrywrite "HKCR*\.aif:<DEFAULT>","","Quick Time Movie"

This example creates a registry entry named Acme, but does not create or modify any values associated with
that key.

registrywrite "HKLM\Software\Acme","",""

Deleting a Registry Entry

The registrydelete statement may be used to delete a registry key or registry value (see “REGISTRYDE-
LETE” on page 5636). This statement has one parameter, the path of the registry item to be deleted (see “Get-
ting Information About Registry Items” on page 1540).

This example deletes a registry value:

registrydelete "HKLM\Software\Acme\SuperWidget:WindowLocation"

This example deletes a registry key, along with any values associated with it:

registrydelete "HKLM\Software\Acme\SuperWidget"

Chapter 25:Programming Techniques Page 1543
Monitoring Memory Usage

Since Panorama is a memory based program memory usage can be very important. Several statements allow
you to monitor memory usage.

The info("freememory") function returns the amount of memory available for additional data (see
“INFO("FREEMEMORY")” on page 5379). This corresponds to the value shown by the Memory Usage win-
dow (see “Monitoring Memory Usage” on page 267).

To learn how to change Panorama’s overall memory allocation see “Adjusting Panorama’s Memory Alloca-
tion (Windows)” on page 270 or “Adjusting Panorama’s Memory Allocation (Macintosh)” on page 271.

The info("scratchmemory") function returns the amount of scratch memory available. On Windows PC
systems this function always returns 1,000,000 (one million).

Changing the Scratch Memory Allocation

On Macintosh systems Panorama’s Scratch Memory allocation can be modified manually using a dialog (see
“Changing Scratch Memory Size (Macintosh)” on page 273). It can also be modified using the
scratchmemory statement (see “SCRATCHMEMORY” on page 5700). This statement has one parameter,
the number of bytes to be allocated for scratch memory. This example allocates about 2.5 megabytes for
scratch memory.

scratchmemory 2500000

To temporarily modify the scratch memory allocation use the tempscratchmemory statement. When this
statement is used the new scratch memory allocation only lasts until you exit from Panorama (or change the
allocation again). The next time Panorama is launched the original scratch memory allocation will be used.

Page 1544 Panorama Handbook
Windows

Windows are where the action is. Except for the menu bar, everything Panorama does happens inside of win-
dows. A procedure can open windows, close them, move them around and control their appearance.

Opening a Window

Opening a window in a procedure generally requires at least two statements. The first statement sets up the
location of the window on the screen, along with any window options. The second statement actually opens
the window.

There are six primary statements that open a new window: opensheet , openform , opendialog ,
opencrosstab , openprocedure and opendesignsheet . The procedure can specify exactly where the
new window will open (see the next section) or it can simply allow Panorama to open the window using the
default location and size.

The opensheet statement opens the data sheet for the current database in a new window (see “OPEN-
SHEET” on page 5580). If the data sheet window is already open, that window will simply be brought to the
front (no new window will be opened).

The openform statement opens a form in a new window (see “OPENFORM” on page 5574). The specified
form must be a form in the current database, not some other database. The openform statement has one
parameter, the name of the form to open. The procedure below opens a form in a new window, prints a
report, then closes the new window.

openform "Monthly Report"
field PayTo
groupup
field Amount
total
print dialog
removesummaries 7
closewindow

If the specified form is already open in a window, that window will simply be brought to the front (no new
window will be opened).

A procedure can use the dbinfo(function to find out what forms (or crosstabs or procedures) are in a data-
base (see “DBINFO(” on page 5147). The procedure below opens up every form in the current database.

local windowCount,formCount,nextForm
windowCount=arraysize(listwindows(""),¶)
formCount=arraysize(dbinfo("forms",""),¶)
if windowCount+formCount>23

message "Too many forms, cannot open them all"
formCount=23-windowCount

endif
nextForm=1
loop

openform array(dbinfo("forms",""),nextForm,¶)
nextForm=nextForm+1

until nextForm>formCount

The opendialog statement also opens a form in a new window (see “OPENDIALOG” on page 5567). How-
ever, this statement opens the window without any drag bar, tool palette, or scroll bars. In other words, the
new window will look (and act) like a standard Macintosh dialog window. When a form is opened with the
opendialog statement, Panorama will not allow any other window to be moved on top of the dialog win-
dow. Panorama simply ignores clicks in other windows, as well as clicks on the desktop. The only way to
close this window is with the closewindow statement (see “CLOSEWINDOW” on page 5110). The form
should have at least one button that triggers a procedure that will close the window. (Advanced Tip: If the

Chapter 25:Programming Techniques Page 1545
database is in author mode (see “The Privilege Dialog” on page 319), you can hold down the Command key
(Macintosh) or Control key (Windows PC) and click on another window to bring it to the front. This is handy
if you forget to include a button that will close the dialog window. You’ll still have to write a procedure that
closes the window.)

The example below opens a dialog window, then pauses. In this case the window should contain at least one
button that has a resume pState statement in it, and it should have SuperObjects™ for editing the Print-
StartDate and PrintEndDate global variables.

global pState
setwindowrectangle rectangle(100,150,300,450),""
opendialog "Print Options"
pause pState
closewindow
select Date>=PrintStartDate and Date ≤PrintEndDate
print dialog

For more information about creating dialogs with Panorama forms see “Custom Dialogs” on page 1570.

The opencrosstab statement opens a crosstab in a new window (see “OPENCROSSTAB” on page 5565).
The specified crosstab must be a crosstab in the current database, not some other database. The
opencrosstab statement has one parameter, the name of the crosstab to open.

The openprocedure statement opens a procedure in a new window, so that the procedure can be edited
(see “OPENPROCEDURE” on page 5576). The procedure must be a procedure in the current database, not
some other database. The openprocedure statement has one parameter, the name of the procedure to open.

The opendesignsheet statement opens the design sheet for the current database in a new window (see
“OPENDESIGNSHEET” on page 5566). If the design sheet window is already open, that window will simply
be brought to the front (no new window will be opened). Once the design sheet is open the procedure can
modify the structure of the database (be careful!). A procedure can also modify the structure of the database
with the fieldname , fieldtype , addfield , insertfield and deletefield statements (see “Modify-
ing Field Structure Directly” on page 1584).

Specifying the New Window Location

There are three statements that can define the location and options for a new window:
setwindowrectangle , setwindow and windowbox . The setwindowrectangle statement (see “SET-
WINDOWRECTANGLE” on page 5752) has two parameters: a rectangle defining the location of the new
window (relative to the upper left hand corner of the main screen, see “Rectangles” on page 1304), and the
window options. (The window options will be discussed in the next section, but if you use "" you will get a
standard window.)

Here is a procedure that opens a 100 by 200 pixel form window in the upper left hand corner of the main
screen.

setwindowrectangle rectangle(25,2,125,202),""
openform "Status"

If you want the new window to fill the entire screen you can use the info("screenrectangle") function
(see “INFO("SCREENRECTANGLE")” on page 5411), like this:

setwindowrectangle info("screenrectangle"),""
openform "Status"

The setwindowrectangle statement will allow you to open the window partially or completely off the
screen, where it won’t be visible. If you don’t want that to happen you can use the fitwindow statement in
between the setwindowrectangle statement and the statement that opens the new window (openform ,
opensheet , etc.). The fitwindow statement adjusts the new window position to make sure that it is com-

Page 1546 Panorama Handbook
pletely visible on the screen (see “FITWINDOW” on page 5250). The procedure below positions the Status
window in the lower right hand corner of an XGA (1024 by 768) monitor. But on an older 640 by 480 monitor
the window would be partially off the screen. The fitwindow statement adjusts the window location so it
will be completely visible even on these small monitors.

setwindowrectangle rectangle(568,624,768,1024),""
fitwindow
openform "Status"

You’ll often want to center a new window on top of the current, window, or center a new window on the
screen. The subroutine procedure below, called .CenterRectangle, is handy for these situations.

local newRect,oldHeight,oldWidth,newHeight,newWidth
local newTop,newLeft
oldHeight=rheight(parameter(1))
oldWidth=rwidth(parameter(1))
newHeight=parameter(2)
newWidth=parameter(3)
newTop=max(20,rtop(paramter(1)+int((oldHeight-NewHeight)/2))
newLeft=rleft(parameter(1)+int((oldWidth-newWidth)/2)
newRect=rectanglesize(newTop,newLeft,newHeight,newWidth)
setparameter 1,newRect

Once you’ve added the .CenterRectangle procedure to your database you can use it to open windows. Here’s
a procedure that centers a new 200 pixel high by 450 pixel wide window in the middle of the screen.

local myWindowBox
myWindowBox=info("screenrectangle")
call .CenterRectangle,myWindowBox,200,450
setwindowrectangle myWindowBox,""
openform "Schedule"

This next procedure will center the new window in the middle of the current window.

local myWindowBox
myWindowBox=info("windowrectangle")
call .CenterRectangle,myWindowBox,200,200
setwindowrectangle myWindowBox,""
openform "Options"

The setwindow statement is similar to setwindowrectangle , but uses four separate numbers as parame-
ters instead of using a rectangle (see “SETWINDOW” on page 5750). The windowbox statement also uses
four numbers, but they are combined into a single text item (see “WINDOWBOX” on page 5891). (Also, the
windowbox statement only has one parameter, so you cannot set the window options.) The following three
statements will work identically to each other.

setwindowrectangle rectangle(100,120,250,400),""
setwindow 100,120,250,400,""
windowbox "100 120 250 400"

You may wonder why Panorama has three statements for doing the same thing. The answer is that as newer
statements are added to Panorama in new versions, the older statements are retained for compatibility with
existing procedures. In general, the setwindowrectangle statement is the best for new procedures
because of all the functions Panorama now has for manipulating rectangles as a single unit (instead of having
to deal with four separate numbers). See “Rectangles” on page 1304 to learn more about these functions.

Chapter 25:Programming Techniques Page 1547
New Window Options

Normal Panorama windows have a drag bar across the top, a tool palette down the left hand side, and two
scroll bars down the right and bottom edges of the windows. Using the setwindowrectangle or
setwindow statement, a procedure can open a window with or without any or all of these elements. The sec-
ond parameter of these statements is a text argument that allows you to suppress these four window ele-
ments. The text may include any combination of these four components nodragbar, nopalette, novertscroll
and nohorzscroll. Here are some examples of combinations of these options.

Option Example

""

"nohorzscroll"

"nohorzscroll novertscroll"

Page 1548 Panorama Handbook
Here is a procedure that opens a 100 by 200 pixel form window in the upper left hand corner of the main
screen. The window has no tool palette and no scroll bars.

setwindowrectangle rectangle(25,2,125,202),"nopalette novertscroll nohorzscroll"
openform "Status"

You can use these options to open a form as a dialog window with no drag bar, no tools, and no scroll bar.
Another way to do this is with the opendialog statement, which is described later in this chapter. If a win-
dow is opened with the opendialog statement Panorama will treat it as a dialog and will not allow any
other window to be brought on top of it (including windows of other currently running applications).

Non Standard Window Styles

In addition to standard windows Panorama supports several custom window styles. In fact, if you are using
a Macintosh computer and you are an advanced C, Pascal or assembly language programmer you can even
create your own window types. The windowproc statement allows you to override the normal default win-
dow type and use any type of window (see “WINDOWPROC” on page 5895).

The windowproc statement should be placed just in front of the statement that actually opens the window
(see the example below). The windowproc statement has one parameter—a window type number.

Window type 2 is a plain dialog box with no border and no drop shadow.

"nopalette nohorzscroll novertscroll"

"nodragbar nopalette nohorzscroll
novertscroll"

Option Example

Chapter 25:Programming Techniques Page 1549
Window type 3 is also a plain dialog with no border. However, type 3 windows do have a drop shadow.

Window type 16 is a rounded corner window with a black drag bar. This window type is often used for calcu-
lators. (This window style is not available on Windows PC systems).

If you are using a Macintosh computer your system may include other window types. You can use any win-
dow type simply by specifying its number.

The example below opens a small calculator window.

setwindowrectangle rectanglesize(25,75,200,125),"nohorzscroll novertscroll nopalette"
windowproc 16
openform "Calculator"

Once a window has been opened, the window type is permanent. The only way to change a window type is
to close the window and then re-open it with a new type.

Changing a Window’s Position/Options

If a window has a drag bar, the user can move the window around on the screen. Using the zoomwindow
statement, a procedure can also move a window, and/or change the display options for that window (see
“ZOOMWINDOW” on page 5913).

The zoomwindow statement has five parameters:

zoomwindow top , left , bottom , right , options

These are the exact same options used by the setwindow statement.

Page 1550 Panorama Handbook
The procedure below moves the current window to the right by 50 pixels. (The example assumes the current
window has standard window options.)

local deltaV,deltaH
deltaV=0
deltaH=50
zoomwindow

deltaV+rtop(info("windowrectangle")),
deltaH+rleft(info("windowrectangle")),
deltaV+rbottom(info("windowrectangle")),
deltaH+rright(info("windowrectangle")),
"" /* change this line to use non-standard window options */

If the window was originally close to the right hand edge of the screen, this procedure may push the window
partially off the screen. If you want to prevent this, place a fitwindow statement (see “FITWINDOW” on
page 5250) just in front of the zoomwindow statement.

Changing a Window’s View

A procedure can change what is inside a window at any time. There are five primary statements that change
what appears in the current window: gosheet , goform , gocrosstab , goprocedure and
godesignsheet . These statements are the same as opensheet , openform , etc. except that instead of open-
ing a new window, they simply open the requested form, crosstab, etc. inside the current window. If the
requested view is already open in another window (or even the current window) the go commands simply
bring that window to the front. In that case, the original window will continue to display whatever it was dis-
playing before.

The procedure below switches the current window to a form named List.

goform "List"

Changing the Name of a Window

Panorama windows usually have a name that combines the database name with the name of the form,
crosstab, or procedure being displayed. However, using the windowname statement a procedure can rename
any window to anything you want (see “WINDOWNAME” on page 5894).

The windowname statement has one parameter, the name for the window. The only restriction is that the
name must be less than 31 characters long.

Suppose you have a database named Team with a form named Status. Normally the name of this window
would be Team:Status. The procedure below opens the Status window and renames it to Status Display.

openform "Status"
windowname "Status Display"

Before windoname statement… After windoname statement.

Chapter 25:Programming Techniques Page 1551
The new window name is only temporary. Panorama will forget the new window name if the window is
closed, or if the contents of the window are changed to a different view (either with the View menu or with a
goform , gosheet , or other go<view> statement.)

Scrolling Inside a Form Window

If a form is larger that the window, the user can scroll to different parts of the form using the scroll bars.
Using the formxy statement, a procedure can also scroll the form within the window (see “FORMXY” on
page 5277). This statement has two parameters, the vertical and horizontal position:

formxy vertical , horizontal

The vertical parameter is the vertical spot on the form that you want to appear at the very top of the window.
If you want to see the top of the form this should be zero. The position is specified in pixels (1 pixel = 1/72
inch).

The horizontal parameter is the horizontal spot on the form that you want to appear at the very left edge of
the window. If you want to see the left edge of the form, this should be zero.

This simple example procedure makes sure that the upper left hand corner of the form is visible.

formxy 0,0

The next procedure slides the form down 1/2 inch.

formxy 72/2,0

Sometimes the formxy statement may not seem to slide the form to the exact position you specified. There
are two possible reasons for this. First of all, the form cannot be scrolled farther than the bottom right object
on the form. Once this object is visible, the form cannot be scrolled any farther.

Page 1552 Panorama Handbook
The other possible discrepancy is that forms are always scrolled in increments of 8 pixels. This insures that
patterns (which repeat every 8 pixels) are always displayed consistently. The formxy statement will always
round the position you specify to the nearest multiple of 8.

Closing a Window

The user can usually close a window by clicking on the close box (in the upper left hand corner of the drag
bar). A procedure can close a window with the closewindow statement (see “CLOSEWINDOW” on
page 5110). This statement has no parameters—it simply closes the current (top) window.

When Panorama closes the last window associated with a database, it normally asks the user if he or she
wants to save changes before closing the database. However, the closewindow statement does not usually
do this. It simply closes the window and the database without saving any changes. Sometimes this is very
convenient. A procedure can open a database, sort it, select, etc., then print a report and close the database,
throwing away the temporary changes it has made. However, if you want the procedure to ask the user if
they want to save changes, there are two ways to do this. The first is to write this into the procedure itself.

if info("changes")>0 and arraysize(listwindows(info("databasename")),¶)=1
alert 1013,"Do you want to save changes?"
if clipboard() contains "yes"

save
endif

endif
closewindow
…
… procedure continues

The second method is simply to make sure that the closewindow statement is either the last statement in the
procedure, or that it is immediately followed by a stop statement. In either case Panorama will check for
changes and ask the user if they want to save changes if necessary. (If closewindow is the last statement and
you don’t want Panorama to ask to save changes, simply put an extra nop statement (no-operation) after the
closewindow statement.)

Trapping the Close Box

If the window has a drag bar, the user can close the window at any time simply by clicking on the close box.
You may want to prevent the user from closing the window under certain conditions, or you may want to
perform some special operation before the window is closed. These situations call for a .CloseWindow proce-
dure (see “.CloseWindow” on page 1482). Whenever the user clicks on a close box, Panorama checks to see if
there is a .CloseWindow procedure in this database. If there is, Panorama triggers the procedure instead of
closing the window.

For example, suppose you want to allow the user to close any window except for the data sheet window. This
.CloseWindow procedure will do the trick:

if info("windowname")=info("databasename")
message "Sorry, you cannot close the data sheet"

else
closewindow

endif

Notice that if it wishes to close the window, the .CloseWindow procedure must explicitly use the
closewindow statement.

It’s important to keep it mind that the only time the .CloseWindow procedure is triggered is when the user
clicks on the close box. It is not triggered when the user selects the Quit or Close File commands from the File
menu, or by the closewindow statement.

Chapter 25:Programming Techniques Page 1553
Changing The Window Order (Who’s on Top?)

The user can bring any window to the front by clicking on the window. A procedure can bring a window to
the front with the window statement (see “CLOSEWINDOW” on page 5110). This statement has one parame-
ter, the name of the window that needs to be brought to the front. The name must be spelled and capitalized
exactly as it appears in the window title at the top of the window.

window "Price List:Report"

If there is no such window, the procedure will normally stop and display an error. The procedure can trap
and respond to this error with the if error statement, like this (see “Error Handling with if error” on
page 1379).

window "Price List:Report"
if error

openfile "Price List"
openform "Report"

endif

Use the info("windowname") function to get the name of the currently active (top) window (see
“INFO("WINDOWNAME")” on page 5442). One application for this function is when you want to jump to a
different window, then jump back to the original window. This example jumps to the price list window, sorts
the price list, then jumps back to the original window.

local wasWindow
wasWindow=info("windowname")
window "Price List:Prices"
field Description
sortup
window wasWindow

Use the info("windows") function to get a text array listing of open windows (see “INFO("WINDOWS")”
on page 5444). The text array is carriage return separated (see “Text Arrays” on page 1257), and it lists the
windows in order from front to back (the top window is array element 1, the next window is element 2, etc.)
The procedure below swaps the order of the top and second from top window.

window array(info("windows"),2,¶)

Here is another procedure that brings the bottom window to the front. Using this procedure over and over
again will cycle through all of the windows.

local windowCount
windowCount=arraysize(info("windows"),¶)
window array(info("windows"),windowCount,¶)

The listwindows(function is similar to info("windows") but allows you to list only the windows that
belong to a particular database (see “LISTWINDOWS(” on page 5475). This function has one parameter, the
name of the database. (If you leave the database name as an "" empty string, the listwindows(function
will list all windows, just like the info("windows") function.) The procedure below displays the number
of open Price List windows.

local windowCount
windowCount=arraysize(listwindows("Price List"),¶)
message "The Price List has "+str(windowCount)+" windows open."

Page 1554 Panorama Handbook
The windowtoback statement is the opposite of the window statement. It sends a specified window all the
way to the bottom of the pile (see “WINDOWTOBACK” on page 5897).

window "Price List:Report"
print dialog
windowtoback "Price List:Report"

When the procedure is done with the Price List:Report window, it moves it out of the way, below all of the
other windows. (Of course another option would be to close the window.)

Temporary “Invisible” Windows

Often a procedure needs to flip back and forth between windows in different databases. Although this gets
the job done, it is very annoying and slow if the windows overlap each other.

To get around this problem a procedure can work with secret windows. From a procedure’s point of view, a
secret window is just like any other window that contains a form. The good news is that secret windows are
invisible! A procedure can flip to a secret window in another database, perform some operation on that data-
base (search, sort, etc.), then go back to the original window—all without the flashing and updating that usu-
ally occurs when you flip from window to window.

Secret windows are temporary. A secret window can be created by the window statement (see “WINDOW”
on page 5889). The secret window ceases to exist as soon as the procedure brings another window to the top
(or as soon as the procedure stops).

To create a secret window and make it the current window, use the window statement with the parameter
<database>:secret. For example, to open a secret window for the Price List database use this statement:

window "Price List:Secret"

The Price List database must be open or this statement will not work. The word secret may be capitalized any
way you want: secret, Secret, or even SECRET.

Here is a procedure that opens the price list in a secret window, sorts the price list, then goes back to the orig-
inal window (all without any flashing).

local wasWindow
wasWindow=info("windowname")
window "Price List:Secret"
field PartDescription
sortup
window wasWindow

(Note: If your database actually contains a form named Secret (or secret or SECRET) and it is open, the win-
dow statement will bring this window to the front instead of creating a secret invisible window.)

Databases Without Windows

Most Panorama databases have at least one window at all times. However, it is possible to create a database
that has no windows at all. Such a database can be used for lookups, or it can be used with secret windows
(see “Temporary “Invisible” Windows” on page 1554).

To create a database that has no windows, use the Save As command and check the No Windows option (see
“Saving Window Positions” on page 213). The next time you open this database (either by double clicking on
it or with the Open File dialog) it will open without any windows.

To temporarily open a database without its normal windows use the opensecret statement (see “OPENSE-
CRET” on page 5579). This statement is identical to the openfile statement (see “Opening a Panorama
Database” on page 1504), but it does not open the windows. (It also does not trigger the .Initialize procedure,
see “.Initialize” on page 1484.) The example below opens the Price List database without any windows.

opensecret "Price List"

Chapter 25:Programming Techniques Page 1555
If you open a database with opensecret and then later decide that you want the windows after all you can
use the openfile statement to open the windows. This will also trigger the files .Initialize procedure if it
has one (see “.Initialize” on page 1484).

opensecret "Price List" /* open file without windows */
…
…
…
openfile "Price List" /* file is already open, just open the windows */

The makesecret statement makes all the windows for the current database vanish (see “MAKESECRET” on
page 5519). The database is still open and can be used for lookups or with secret windows. (Note: Since all the
windows for the current database vanish, some other database will be the top window after this statement.)
Here is an example .CloseWindow procedure that makes the database invisible if the user closes the last win-
dow:

if arraysize(listwindows(info("databasename")),¶)=1
makesecret

else
closewindow

endif

If this is not the last window for this database, the procedure simply closes the window. If it is the last win-
dow, it closes the window with makesecret , so the database is still open in memory.

To re-open a window in a database that has no visible windows you need to use a secret window. The proce-
dure below opens the Distributor window in the Price List database.

window "Price List:Secret"
setwindowrectangle rectanglesize(20,20,300,180),""
openform "Distributor"

If you want to actually close a file with no windows you must again use a secret window. This procedure
removes the Price List file from memory.

window "Price List:Secret"
closefile

Using secret windows, a procedure can access an invisible database just as easily as a visible database. The
procedure can read, modify, sort, or even save the database. There’s no need to open a visible window unless
the user needs to see the database.

“Magic” Windows

Panorama has a number of info(functions and graphic statements that work with the currently active win-
dow. In some circumstances you may want to use one of these functions or statements to work with one of
the other open windows. Panorama’s “magic window” feature allows you to temporarily designate any open
window as the currently active window for use with these info(functions (see “Window, Form and Report
Information” on page 1336) and graphic statements (see “Programming Graphic Objects on the Fly” on
page 1652). The designated window doesn’t actually move to the front, so you can use this feature without
unnecessary window “flashing.”

There are two statements available for designating an open window as the “magic” active window.

magicwindow windowname

magicformwindow database , form

Page 1556 Panorama Handbook
In either case the window or form must already be open. From this point on in the program all info(func-
tions and graphic commands will refer to this window, instead of the “real” current window. To remove the
magic window designation and go back to the “real” current window use the statement

magicwindow ""

The info("magicwindow") function can be used to check the name of the currently designated “magic”
window, if any. For example this little program will update the People List list object in the window Con-
tacts:List. The if statement is used in case the specified window is not open at all.

magicwindow "Contacts:List"
if info("magicwindow")<>""

superobject "People List","Fill List"
magicwindow ""

endif

You may confuse this “magic window” feature with the “secret window” feature, but they are quite different.
The “secret window” feature creates a virtual, invisible window that is not tied to any actual window or
form. This secret window may be used for any database operation, including data entry, searching, sorting,
etc. The “magic window” feature does not create an invisible window, but works only with windows that are
actually open. It does not affect most database operations (these still take place in the “real” active window),
but only affects info(functions (see “Window, Form and Report Information” on page 1336) and graphic
statements (see “Programming Graphic Objects on the Fly” on page 1652).

Window Clones

Panorama normally allows only a single window per form. However a form can be designed to be opened
over and over again into multiple windows. This is called window cloning. To allow a form to be cloned you
must open the Form Preferences dialog and select the Allow Clones option.

A window clone cannot be opened manually…clone windows must be created with the openform statement
in a procedure. Here is a typical procedure that opens a slightly offset clone of the current window:

setwindowrectangle rectangleadjust(info("rectangle",10,10,10,10))
openform info("formname")

This procedure will not create a clone window unless the Allow Clones option is turned on.

Chapter 25:Programming Techniques Page 1557
Designing A Clone Window Application

Although any form can be cloned if the Allow Clones option is turned on, most forms will not work very
intelligently if they are cloned. In general, a form that is designed to be cloned should not contain any fields
or global variables, only windowglobal variables (see “Variable Accessibility” on page 1372). If your form
contains Text Editor, Data Button, Pop-Up Menu or List SuperObjects and the Allow Clones option is turned
on, these SuperObjects will automatically create windowglobal variables instead of global variables. Since
the windowglobal variables can be manipulated separately for each clone window you can control each
clone window individually, even though all the clone windows use the same form template.

To illustrate clone windows we’ll use this database that contains a list of books. Here is the data sheet.

In this database we’ve created a form called Detail that displays the information from a single record in the
database.

Page 1558 Panorama Handbook
This form doesn’t display the information directly from the database fields (Title, Authors, Publisher, etc.).
Instead it has been set up to display information from a series of variables with the same name as the fields
but with an x added to the beginning (xTitle, xAuthors, xPublisher, etc.). These variables are created in this
procedure which opens the clone form, creates the variables and fills them with the data from the database
fields.

local dRect
/* open the clone window */
dRect=rectanglesize(

100+rtop(info("windowrectangle")),200+rleft(info("windowrectangle")),340,520)
setwindowrectangle dRect,"noVertScroll noHorzScroll nopalette"
fitwindow
openform "Detail"
/* create new variables for THIS window */
windowglobal xTitle,xAuthors,xISBN,xPages,xBinding,xPublisher,xDescription
/* fill the variables with the data from the current record */
xTitle=Title
xAuthors=Authors
xISBN=ISBN
xPages=Pages
xBinding=Binding
xPublisher=Publisher
xDescription=Description
/* display the variables */
showvariables xTitle,xAuthors,xISBN,xPages,xBinding,xPublisher,xDescription

Let’s see how this procedure works. Start by selecting a record in the data sheet.

Chapter 25:Programming Techniques Page 1559
Now select the procedure from the Action menu (we have called it Open Clone, but you can call it anything
you want). The procedure will open a new window which displays the information for Danny Goodman’s
Applescript Handbook.

Now click on the data sheet to bring it back to the front and then click on another record. Usually when you
do this any open forms will automatically synchronize to show the new record. But in this case, the form is
not displaying the information directly from the database but instead is displaying the data we have stored in
the windowglobal variables. These variables have not changed, so the form continues to display the data
from the original record.

Page 1560 Panorama Handbook
Now if we select the Open Clones procedure again the procedure will open a second copy of the Detail form.
This new copy shows the information from the current record, while the original Detail window continues to
show the information from the original window.

Chapter 25:Programming Techniques Page 1561
Using the Open Clone procedure we can continue to open additional “clone” copies of the form — as many
as we want up to Panorama’s 32 window limit.

There is no special handling necessary for closing clone windows. The window simply closes when you click
on the close box. All of the windowglobal variables associated with the window are destroyed when the win-
dow is closed.

Page 1562 Panorama Handbook
Alerts

Alerts are very simple dialogs that simply display a message and allow the user to press a button. Alerts are
usually used to “alert” the user of a situation (a problem, perhaps). Panorama has several off-the-shelf alerts.
(You can also create your own alerts with a form, just like any other dialog.)

The simplest way to alert the user to a situation is to use the beep statement (see “BEEP” on page 5069). This
statement, which has no parameters, simply causes the computer to make its standard beep sound.

The simplest way to display a short piece of text is with the message statement (see “MESSAGE” on
page 5526). This simply displays an alert with any message you want. The alert stays on the screen until the
user presses the OK button. The message statement has one parameter, the text of the message to be dis-
played. The example below displays the number of records in the database.

message "Total records: "+str(info("records"))

Here is what this alert looks like when this procedure runs.

There are several off the shelf alerts that display a message and allow the user to make a choice: Yes or No,
Ok or Cancel, etc. The statements that display these alerts are yesno , noyes , okcancel , and cancelok .
These statements all display an alert with two buttons. For example, the yesno statement displays a dialog
with Yes and No buttons. Notice that the first button is the default button, so the difference between yesno
and noyes is which button is the default. All of these statements have one parameter: the text of the message
to be displayed. The statements will put the name of the button clicked into the clipboard. The example
below uses the noyes statement to confirm that the user really wants to delete data from the database.

noyes "Do you really want to remove the old data?"
if clipboard()="Yes"

select Date>today()-90
removeunselected

endif

When this procedure is run the alert looks like this.

The alert statement allows you to build your own alerts with ResEdit (see “Working with Resources” on
page 1532). It has two parameters: id and message. The id is the resource number of the alert template you
have built. The message is the text you want to display in the alert.

Another advantage of the alert statement is that it does not disturb the clipboard. To find out what button
was pressed, use the info("dialogtrigger") function (see “INFO("DIALOGTRIGGER")” on page 5367).

Chapter 25:Programming Techniques Page 1563
There are several alert templates built into Panorama that you can use with the alert statement.

Code Sample

alert 1000,"Testing 1, 2, 3"

alert 1001,"Testing 1, 2, 3"

alert 1002,"Testing 1, 2, 3"

alert 1003,"FILE"

alert 1005,"Testing 1, 2, 3"

alert 1008,"Testing 1, 2, 3"

Page 1564 Panorama Handbook
alert 1009,"Testing 1, 2, 3"

alert 1010,"Testing 1, 2, 3"

alert 1012,"Testing 1, 2, 3"

alert 1013,"Testing 1, 2, 3"

alert 1014,"Testing 1, 2, 3"

alert 1015,"Testing 1, 2, 3"

Code Sample

Chapter 25:Programming Techniques Page 1565
The example below uses the alert statement instead of the noyes statement.

alert 1014,"Do you really want to remove the old data?"
if info("dialogtrigger")="Yes"

select Date>today()-90
removeunselected

endif

If you create your own alert templates with ResEdit, make sure the resource file is open (use the
openresource statement) before you attempt to use the alert (see “Opening and Closing Resource Files” on
page 1534).

Supressing Alerts

In some applications (particularly web servers) you may want to suppress all alerts so that the program never
stops and waits for someone to do something. You can do this with the alertmode statement (see “ALERT-
MODE” on page 5025). This statement has one parameter, which controls whether alerts will appear. If the
parameter is "yes", "true", or "on", alerts will be displayed. If the parameter is "no", "false", or "off", alerts will
not be displayed. The program will simply continue as if the default button had been pressed.

alert 1018,"Testing 1, 2, 3"

alert 1101,"Testing 1, 2, 3"

Code Sample

Page 1566 Panorama Handbook
Dialogs

Dialogs are a special type of window. A dialog window is usually temporary, and usually modal. In other
words, the dialog must be filled in and dismissed before the user can continue with his or her work.

“Off the Shelf” Dialogs

Panorama has a couple of simple “off the shelf” dialogs that you can use for collecting a single item of text.
The getscrap statement displays a simple dialog (see “GETSCRAP” on page 5309).

The user types in one item of text, then presses OK or Stop. Panorama will put whatever text the user types
into the clipboard. The getscrap statement has one parameter, the text that you want to appear at the top of
the dialog. The example below uses getscrap to find out what check to search for.

getscrap "Find what check #?"
select «Check#»=val(clipboard())

The getscrapok statement is similar to getscrap , but the dialog has no Stop button (see “GETSCRAPOK”
on page 5310).

The gettext statement is also similar to getscrap , but does not use the clipboard. Instead there is a second
parameter that must be the name of a field or variable that contains text. The value in this field or variable
will be displayed in the dialog—the user can use it as is, edit the value, or erase it completely and type in a
new value. The example below uses gettext to find out what area code to search for. The default area code
is 909.

local whatArea
whatArea="909"
gettext "Select what area code?",whatArea
select Phone match "("+whatArea+")*"

When this procedure is run a dialog like this is displayed.

You can change the appearance of the dialog used by gettext by using the customdialog statement (see
“CUSTOMDIALOG” on page 5132). This statement has one parameter, the resource ID number of a dialog
template. You can create dialog templates with ResEdit (see “Working with Resources” on page 1532), or you
can use one of several templates supplied with Panorama. Here’s a procedure that uses one of Panorama’s
built in templates.

customdialog 3103
gettext "Describe your entry in 50 words or less",Description

Chapter 25:Programming Techniques Page 1567
Here is the alert that will appear.

This table shows the different templates that are available as part of Panorama.

Template Sample

3131

3121

3122

3123

Page 1568 Panorama Handbook
3125

3120

3101

3102

3103

Template Sample

Chapter 25:Programming Techniques Page 1569
As you may have noticed, some of these dialogs contain a Cancel button and some contain a Stop button. If
the dialog contains a Stop button the procedure will stop immediately if the button is pressed.

If the dialog contains a Cancel button the procedure will continue no matter what button is pressed. The pro-
cedure can use the info("dialogtrigger") function to find out which button was pressed (see
“INFO("DIALOGTRIGGER")” on page 5367). If the Cancel button was pressed Panorama will ignore what-
ever the user typed into the field or variable, leaving the original value untouched. Here is a procedure that
uses the info("dialogtrigger") function to find out which button was pressed.

local whatArea
whatArea="909"
customdialog 3131
gettext "Select what area code?",whatArea
if info("dialogtrigger")="OK"

select Phone match "("+whatArea+")*"
else

selectall
endif

If you create your own custom resource templates make sure the resource file is open before you use the dia-
log (see “Opening and Closing Resource Files” on page 1534).

3105

3100

Template Sample

Page 1570 Panorama Handbook
Custom Dialogs

Most of the dialogs you will need will not fit into the “off the shelf” category described in the last section.
When an off the shelf dialog won’t cut it, you can build your own dialogs using standard Panorama forms.
Forms used as dialogs are created just like any other form, using text objects, buttons, lists, pop-up menus,
pictures, etc. In fact, any form can be used as a dialog.

If a dialog is going to be used to collect information that is independent from the database (i.e. not in a data-
base field) your dialog should use SuperObjects™ that are linked to global variables. You can use the Super-
Object Text Editor, Pop-Up Menus, Data Buttons and Lists with global variables. When the dialog is closed,
the procedure can use the information the user entered into these global variables any way it wants to.

Using Custom Dialogs

To use a form as a dialog your procedure should open the form with the opendialog statement. This state-
ment opens the form in a window without any drag bar, tool palette, or scroll bars. In other words, the new
window will look (and act) like a standard dialog window.

When a form is opened with the opendialog statement, Panorama will not allow any other window to be
moved on top of the dialog window. Panorama simply ignores clicks in other windows. The only way to
close a dialog window is with the closewindow statement. The form should have at least one button that
triggers a procedure that will close the window.

The example below opens the Time Card dialog.

setwindowrectangle rectangle(100,150,200,432),""
opendialog "Time Card"

The Time Card form should have at least one button that has a closewindow statement in it. Usually there
are at least two—OK and Cancel. The procedure below can handle both of these buttons.

closewindow
if info("trigger") contains "ok"

addrecord
Name=gName
Time=time(gTimeOut)-time(gTimeIn)

endif

Form opened normally Form opened with opendialog statement

Chapter 25:Programming Techniques Page 1571
Another way to handle dialogs is with the pause and resume statements (see “PAUSE” on page 5597 and
“RESUME” on page 5669). The example below opens the Time Card dialog, then pauses.

global dialogPause
setwindowrectangle rectangle(100,150,300,450),""
opendialog "Time Card"
pause dialogPause
closewindow
if info("trigger") contains "ok"

addrecord
Name=gName
Time=time(gTimeOut)-time(gTimeIn)

endif

The procedure for handling the OK and Cancel buttons contains only a single statement:

resume dialogPause

The advantage of the pause/resume method is that you can create “generic” dialogs. The procedure that han-
dles the OK and Cancel buttons doesn’t have to know what you are going to do with the data—it simply lets
the original procedure resume and handle the data any way it wants to. You can let several different proce-
dures use a single dialog in different ways.

The Custom Dialog Wizard

At the 1998 ProVUE Conference the Panorama Dialog Wizard was introduced. This wizard makes setting up
custom dialogs a snap. If you are planning on creating more than one or two dialogs in your database we
highly recommend that you add the dialog wizard to your database.

Installing the Dialog Wizard

Before the dialog wizard can be used in a database it must be installed in that database. The installation pro-
cess consists of copying three procedures from the Dialog Workshop database into your database. The three
procedures are .dialog, .DialogButton, and Write Dialog Code. (To copy a procedure you first create a new
procedure, then use copy and paste to copy the text of the procedure.)

Preparing a Form for Use as a Dialog

Once the three dialog wizard procedures have been copied into your database you can begin creating your
first dialog. Start by creating a normal form (see “Creating a New Form, Crosstab or Procedure” on page 317).
Next use the Push Button tool (see “Super Object Push Button” on page 853) to create the OK and Cancel
buttons. Both of these buttons should be configured to trigger the .DialogButton procedure that was copied
from the Dialog Workshop database.

Page 1572 Panorama Handbook
The next step is to add any text editing boxes that are needed using the Text Editor SuperObject (see “Text
Editor SuperObject” on page 689). If a text editing box is going to be used to edit a database field it should be
configured to edit a variable. The variable should have the same name as the field but with a prefix of d. The
example below shows the configuration for editing the Name field.

An optional step at this point is to give some or all of the text editor objects a name (see “Object Type/Object
Name” on page 585 to learn how to assign a name to any object). In particular you’ll probably want to assign
a name to the upper left object, the object that will become the default for text entry when the dialog is first
opened.

At this point you can add text captions and any checkboxes or radio buttons. To configure a checkbox or
radio button to edit a database field it should be a variable with the same name as the field but with a d pre-
fix, just as for the Text Editor SuperObjects. Otherwise the variable can be any name you like.

Chapter 25:Programming Techniques Page 1573
Once all the objects on the form are complete, switch the form from Graphics Mode to Data Access Mode.
Then adjust the size of the window to show just the area you want to appear in the dialog.

Remember the Write Dialog Code procedure you copied into the database before? Go to the action menu and
choose it now. The procedure will analyze the form and write the code for a new procedure for you! When it’s
finished it shows you some of the information it has extracted from the form.

Next, close the form window. However, make sure that you leave another window in the database open, so
that the database itself doesn’t become closed.

Now you’ll need to create a spot for the new procedure. If the dialog will be opened by clicking on a button
or selecting an item in the Action menu then you’ll need to create a new procedure (see “Writing a Procedure
from Scratch” on page 1357). Once the procedure is opened you can use the Paste command to insert the
automatically generated code into it.

For most dialogs, that’s it! Once you’ve tried one or two dialogs you’ll find that you can create a new dialog
in just a few minutes.

Page 1574 Panorama Handbook
To use the dialog you can simply select the new procedure from the Action menu (or click on the button or
whatever). The dialog will appear, and will automatically be centered over the current window (or, if the
window is too small, centered in the middle of the screen). Any cells or buttons associated with a field will
automatically be filled in with the original data from the current record.

When you press the OK or Cancel buttons the dialog will close automatically, and if the OK button was
pressed any fields that were modified will be updated.

Customizing the Dialog Code

The program automatically generated by the Write Dialog Code procedure will handle many common dia-
logs as-is. However, this program is designed to be flexible and to allow you to modify almost all aspects of
it’s behavior without having to rewrite the code yourself.

Let’s start by looking at the automatically generated code to see how it works. Here is the simplest possible
dialog processing code — just four lines.

loop
call .dialog,{Form=Address Height=120 Width=400}
stoploopif info("trigger")="Dialog.Close"

while forever

In this most basic form the code is a simple loop that calls the .dialog procedure each time through the loop.
The .dialog procedure handles most of the work. Whenever something happens (a button is pressed, the
Enter or Tab key is pressed), the .dialog procedure analyzes it and then returns to the loop. Your code in the
loop can find out what is happening by examining the result of the info("trigger") function.

This very simple program only does one thing — stop the loop if info("trigger") becomes Dialog.Close.
Our code doesn’t need to do anything else because the .dialog procedure will do everything for us including
opening and closing the dialog.

Chapter 25:Programming Techniques Page 1575
To illustrate how this procedure can be expanded, let’s consider the dialog show below. This dialog is
designed to allow the user to type in a word or phrase they want to search for.

Here’s the procedure that can handle this dialog. The automatically generated code is shown in blue, the cus-
tom code in purple.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

find exportline() contains findThis
endif

while forever

The first two lines simply create the global variable named findThis and assign it a value. This is the variable
the user will type into. The other new code checks to see if the OK button has been pressed, and if so, per-
forms the search.

We can modify this code further to perform error checking. This version of the program checks to make sure
that the user has typed something to search for. If not a message is displayed. More importantly, the
settrigger statement (see “SETTRIGGER” on page 5749) is set to "" instead of "Dialog.OK" . This tells
the .dialog procedure not to close the dialog window.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif

while forever

linked to findThis global variable

Page 1576 Panorama Handbook
The way the code above is written the find operation happens while the dialog is still open. If you wanted the
dialog to close first you would need to rewrite the program like this.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

endif
endif

while forever
if dlgResult="Ok"

find exportline() contains findThis
endif

When the dialog is finished the dlgResult value will contain either the value Ok or Cancel.

You can add additional buttons to the dialog that perform some action within the dialog. For example, you
could add a Clear button to this dialog.

When a button other than the OK or Cancel button is pressed the info("trigger") function will return
Button. followed by the title of the button.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") = "Button.Clear"

activesuperobject "setselection",0,32767
activesuperobject "clear"

endif
while forever

Chapter 25:Programming Techniques Page 1577
Sometimes you may want to have more than one button that terminates the dialog successfully. In this case
both the Find and Select buttons cause the dialog to close.

Here is the revised program to handle this dialog.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find" OkButton="Find" }
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") contains "Button.Select"

superobjectclose
if findThis=""

message "You must enter something to select!"
else

select exportline() contains findThis
settrigger "Dialog.OK"

endif
endif

while forever

The first thing to notice is the option OkButton="Find" on the fourth line. Options are discussed in more
detail in the next section, but for now this option tells the .dialog procedure to treat the Find button as if it
was the OK button. That means that when you press the Enter or Return key it will be treated just as if you
had pressed the Find button. It also means that when the Find button is pressed the info("trigger")
function will return Dialog.OK, not Button.Find (see line 6).

The additions to handle the Select button are fairly routine. However, notice the fourth line from the bottom,
settrigger "Dialog.OK" . This line tells the .dialog procedure to go ahead and close the dialog window.

In some cases you may need to perform some initialization after the dialog window has opened. Usually this
involves some sort of graphic manipulation — moving an object or changing a font (see “Programming
Graphic Objects on the Fly” on page 1652). (Almost any other kind of non-graphic initialization can simply
be performed before the loop begins.) We don’t have an example of this, but the basic idea is to check for the
trigger value of Dialog.Initialize.

loop
call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.Initialize"

/*
... code to initialize procedure goes here ...

*/
endif

while forever

Page 1578 Panorama Handbook
Sometimes you may want to handle the Cancel button in a special way. The revised procedure below checks
to see if the user has typed anything in, and if so, asks them to confirm that they really do want to cancel.

global findThis
findThis=""
loop

call .dialog,{Form="Find" Height=45 Width=346 AutoEdit="Find" OkButton="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") contains "Button.Select"

superobjectclose
if findThis=""

message "You must enter something to select!"
else

select exportline() contains findThis
settrigger "Dialog.OK"

endif
endif
if info("trigger") = "Dialog.Cancel"

superobjectclose
if findThis ≠""

alert 1014,"Are you sure you want to cancel?"
if info("dialogtrigger") contains "no"

settrigger "" /* tell .dialog to stop the cancel! */
superobject "Find","Open"

endif
endif

endif
while forever

All of the examples have shown push buttons, but you can also check for and handle any type of button, list,
or even a Text Editor SuperObject that triggers the .DialogButton procedure. Any object that triggers the
.DialogButton procedure can be handled by your custom dialog code.

Options to the .dialog Procedure

The .dialog subroutine has one parameter (see “Passing Values to a Subroutine (Parameters)” on page 1384).
This parameter contains a series of name=value pairs that tell the .dialog subroutine how to process the dia-
log. At a minimum this parameter must include three parameters: the form name, the form height, and the
form width.

{Form=Address Height=120 Width=400}

If the form name (or any value) contains a space it must be surrounded with quotes, like this.

{Form="Time Card" Height=120 Width=400}

In addition to the three basic name/value pairs there are also about a dozen other optional name/value pairs
that you can specify to customize the appearance and behavior of your dialog.

Chapter 25:Programming Techniques Page 1579
The movable option allows you to create a dialog with a drag bar that can be moved around on the screen.
The value for this option should be yes or no, for example

movable=yes

Here’s what a movable dialog looks like.

If you don’t give the dialog a title it will use the name of the form, as shown above. You can override this and
specify another title using the windowtitle option, like this.

windowtitle="Locate Information"

The dialog will appear with the specified name in the title bar.

When a dialog has more than one editable text item normally the top left item is the default item where you
will begin typing.

If the Text Editor SuperObjects are named (see “Object Type/Object Name” on page 585) you can override
this default and specify a different default editing item with the autoedit option.

autoedit=Zip

With this option set the Zip Code becomes the default item.

default item

default item

Page 1580 Panorama Handbook
The autoeditstart and autoeditend options control what text is initially selected in the default item.

autoeditstart=0 autoeditend=0

If both of these values are set to zero the initial editing point will be at the beginning of the text. If both of
these are set to a large value like 9999 the initial editing point will be at the end of the text.

The okbutton option allows you to change what button is considered the OK button.

okbutton=Find

The OK button is usually named OK but it can be changed to any button on the form. When the button des-
ignated as the OK button is pressed the info("trigger") function will return Dialog.OK, even if the
actual button has a different name. In addition, pressing the Enter or Return key will be treated the same as
clicking on whatever button has been designated as the OK button.

The cancelbutton option allows you to change what button is considered the Cancel button.

cancelbutton=Stop

The Cancel button is usually named Cancel but it can be changed to any button on the form. When the button
designated as the Cancel button is pressed the info("trigger") function will return Dialog.Cancel even if
the actual button has a different name.

Editing Data with a Dialog

Editing data with a dialog that has OK and Cancel buttons takes some extra effort. You can’t simply edit the
data directly because if the user presses the Cancel button you must be able to restore the original data. The
solution is to copy the data from the database into variables, edit the variables, and then only copy the data
back into the database if the OK button is pressed. You can write code for all this yourself, but it’s easier to let
the .dialog procedure take care of it all for you.

initial editing point

designated OK button

Chapter 25:Programming Techniques Page 1581
To illustrate this, consider this dialog for editing an address.

The dialog edits five database fields — Name, Address, City, State and Zip. If you followed instructions care-
fully you have set up the SuperObject Text Editors in this dialog to edit five corresponding variables —
dName, dAddress, dCity, dState and dZip (see “Preparing a Form for Use as a Dialog” on page 1571). Now
one way to set this up would be to write the code to transfer the data back and forth yourself.

global dName,dAddress,dCity,dState,dZip
dName=Name
dAddress=Address
dCity=City
dState=State
dZip=Zip
loop

call .dialog,{Form=Address Height=120 Width=400 AutoEdit=Name}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

Name=dName
Address=dAddress
City=dCity
State=dState
Zip=dZip

endif
while forever

This is a lot of extra work, though, because you have to type the field names twice and the variable names
three times! Another option is to declare the relationship between the fields and variables as part of the
option parameter to the .dialog procedure. Each declaration takes the form

Variable:"<variable>=<field>"

Here is our revised procedure. A lot shorter, eh? Make sure that these declarations are in the parameter to the
.dialog procedure, between the { and } characters. On the other hand, if you set up your form correctly the
Write Dialog Code procedure will write all of the declarations for you, completely automatically!

loop
call .dialog,{Form=Address Height=120 Width=400 AutoEdit=Name

Variable:"dName=Name"
Variable:"dAddress=Address"
Variable:"dCity=City"
Variable:"dState=State"
Variable:"dZip=Zip" }

stoploopif info("trigger")="Dialog.Close"
while forever

Page 1582 Panorama Handbook
Sometimes the data needs to be converted in addition to being copied. Any time a dialog needs to edit a
numeric or date field the declaration needs to include the functions for converting in both directions. Here’s
how a numeric Amount field and date StartDate field would be handled.

Variable:"val(«dAmount»)=str(«Amount»)"
Variable:"date(«dStartDate»)=datepattern(«StartDate»,“mm/dd/yy”)"

When conversion functions are used the variable and field names must always be enclosed in « and » chev-
rons (see “Special Characters” on page 1225). The chevrons must be included even if the variable or field
name doesn’t contain any blanks or punctuation. If the chevrons are omitted an error will occur when you try
to open the dialog.

The .dialog procedure normally creates the variables you specify as global variables when the dialog is
opened (see “Long Life Variables” on page 1371). Using the variabletype option you can specify that
another type of variable be created instead. The only option that makes any sense here is fileglobal.

variabletype=fileglobal

The dialog wizard is a powerful tool for creating dialogs quickly. If you are adventurous you can open up the
procedures and try to figure out how they work — it’s all accessible!

Chapter 25:Programming Techniques Page 1583
Accessing and Modifying the Database Structure (Fields)

Usually the database field structure is set up in advance, and procedures simply work with the fields as they
have been defined. However, for single user databases it is possible for a procedure to add new fields, delete
fields, or change the properties of existing fields. For example you may want to temporarily add a field to
perform a calculation, then remove the field when the procedure is finished.

There are two techniques for modifying field structure in a procedure. The procedure can modify the struc-
ture directly using special statements, or it can open and modify the design sheet.

Getting Information About Field Structure

Before you actually modify the field structure you might want to know something about it. There are several
functions that a procedure can use to learn about the structure of a database.

The dbinfo(function can gather a variety of information about any open database (see “DBINFO(” on
page 5147). This function has two parameters:

dbinfo(option , database)

The second parameter is the name of the database that you want information about. If the parameter is empty
("") the current database is assumed. This database must be currently open. If the database is not open the
dbinfo(function will not return any information.

The first parameter specifies the type of data you are requesting. Information types you may request include
fields, forms, procedures, crosstabs, flash art, and folder. When the option is "fields" the function will
return a carriage return separated list of the fields in the database (see “Text Arrays” on page 1257). For exam-
ple, the procedure below will display the number of fields in the current database:

message "The database "+info("databasename")+" contains "+
str(arraysize(dbinfo("fields",""),¶))+" fields."

The datatype(function returns the data type of a field or variable—text, numeric, date, etc. (see
“DATATYPE(” on page 5139). This function has one parameter: the name of the field or variable in question.
Depending on the data type this function will return one of the 10 values listed below.

The procedure listed below uses the datatype(function and the dbinfo(function to build a list of all the
numeric fields in the current database.

local X,XField,XType,AllFields,NumericFields
X=1 NumericFields=""
AllFields=dbinfo("fields","")
loop

XField=array(AllFields,X,¶)
stoploopif XField=""
XType=datatype((XField))
if XType beginswith "F" or XType beginswith "I"

NumericFields=sandwich("",NumericFields,",")+XField
endif
X=X+1

while forever
message "Numeric Fields: "+NumericFields

Text Integer

Choice Fixed 1 Digit (#.#)

Picture Fixed 2 Digits (#.##)

Date Fixed 3 Digits (#.###)

Floating Point Fixed 4 Digits (#.####)

Page 1584 Panorama Handbook
Notice that XField is surrounded by an extra pair of parentheses when it is used in the datatype(function.
Without this extra pair the datatype(function would return the type of the XField variable itself, instead of
the field whose name is contained inside of XField.

The info("fieldname") function returns the name of the currently active field (see “INFO("FIELD-
NAME")” on page 5372). You can use this function to save the current field name in a variable, go somewhere
else, then return to the original spot.

Modifying Field Structure Directly

There are five statements that allow a procedure to modify the structure of a database directly: addfield ,
insertfield , deletefield , fieldname , and fieldtype .

The addfield statement adds one field to the end of the database (the extreme right edge of the data sheet).
This statement has one parameter—the name of the new field:

addfield fieldname

The fieldname can be defined with any formula. To simply define a fixed field name, enclose that name in
quotes like this:

addfield "Tax Rate"

The new field is always a text field. You can change it to a different data type with the fieldtype statement
(see below). To make this new tax rate field a numeric two digit field the procedure would be modified like
this.

addfield "Tax Rate"
fieldtype "Fixed 2 Digits (#.##)"

Panorama also makes this new field the active field, so the procedure can jump right in with formulafill
or some other statement that fills the new field with data.

The insertfield statement is exactly the same a the addfield statement except that the new field is
inserted in front of the current field instead of being added to the end of the data sheet (see “INSERTFIELD”
on page 5453).

Both the addfield statement and the insertfield statement can be programmed to display a dialog
allowing the user to set up the field name, type, etc. To use this option put the word dialog (no quotes) after
the statement, like this:

insertfield dialog

To change the data type of the currently active field use the fieldtype statement (see “FIELDTYPE” on
page 5219). This statement has one parameter, the new data type:

fieldtype type

The type parameter is actually a text item that names the parameter. Legal field types are shown in this table.

Text Integer

Choice Fixed 1 Digit (#.#)

Picture Fixed 2 Digits (#.##)

Date Fixed 3 Digits (#.###)

Floating Point Fixed 4 Digits (#.####)

Chapter 25:Programming Techniques Page 1585
If the current field has any data in it, Panorama will attempt to convert the data to the new data type. If some
of the data can’t be represented in the new data type, that data will be thrown away; so be careful! For exam-
ple if a text field is converted to date or number, data values like John Smith or San Francisco in that field will
be tossed. Don’t change the field type unless you are sure the data currently in the field can be converted, or
unless you don’t care!

The procedure below shows how these statements and functions can be used together. This procedure makes
an exact copy of the current field. First it copies the current field name and type into the local variables the-
Field and theType (the datatype(function is described in the previous section). Then it attempts to move
one field to the right. If it can’t (because the current field is the last field of the database) it adds a new field,
otherwise it inserts a new field in the middle of the database. Finally, it sets the new field to the same data
type as the original field and copies the data from the original field into the new field.

local theField,theType
theField=info("fieldname")
theType=datatype(info("fieldname"))
right
if stopped /* could also use if info(“stopped”) */

addfield "Copy of "+theField
else

insertfield "Copy of "+theField
endif
fieldtype theType
formulafill grabdata("",theField)

To change the name of the current field use the fieldname statement (see “FIELDNAME” on page 5217).
You can either specify the new name for the field using a formula, or use the word dialog to allow the user
to enter the name in a dialog (they will also be able to modify other field properties.) (Note: Panorama will
not prevent you from creating two or more fields with the same name. However, you should avoid this if pos-
sible. You can use the dbinfo(function to get a current list of the field names; see the previous section.)

To delete the current field, use the deletefield statement. Panorama won’t display any warning—it will
simply delete the field and all the data in it. Be careful because once you delete a field it’s gone…you can’t get
it back. (Exception: If you have saved the database you might be able to get the field back with the Revert To
Saved command.)

Working With the Design Sheet

For the ultimate control the procedure can open the design sheet and change it just like any other database.
There are two statements a procedure can use to open the design sheet: opendesignsheet and
godesignsheet . The opendesignsheet statement opens the design sheet in a new window (see “Open-
ing a Window” on page 1544 for more information on opening windows). The godesignsheet statement
opens the design sheet in the current window.

Once the design sheet is open, the procedure can locate any field it wants using the find statement (see
“Finding Information” on page 1611). Once the correct line is selected the procedure can change elements
with assignment statements (Default="Acme ", etc.). When the changes are complete, the procedure must
use the newgeneration statement to actually change the structure of the database (see “NEWGENERA-
TION” on page 5534).

The example below opens the design sheet and changes the output pattern for the Price field.

opendesignsheet
find «Field Name»="Price"
if info("found")

«Output Pattern»="$#,.##"
newgeneration

endif
closewindow

Page 1586 Panorama Handbook
If you don’t want the user to be able to see the shenanigans with the design sheet, use the setwindow or
setwindowrectangle statements to make the window open outside the visible screen area (see “Specify-
ing the New Window Location” on page 1545).

Updating Database Structure From Another Database

Panorama includes a mechanism that lets you copy the structure of a database from another database while
retaining the original data. Let’s say that you have created a database and distributed it to many users far and
wide…perhaps you are even selling the database. Your many users are each filling their databases with their
own data. In the meantime, you are creating a new version. This new version of the database may have new
fields, new forms, new procedures, and there are probably changes to existing forms/procedures/fields as
well. Once you have finished your update you need a way to distribute the update and let each user update
his or her copy of the database so that it has the new structure but retains the old data. The changename ,
detachname and hijack statements make this possible. The example procedure below shows how to do it.
This procedure assumes the old version of the database is currently open. The procedure allows the user to
locate the update file, then updates the structure.

local oldFile,newFolder,newFile,newFType
/* let user locate the update file */
openfiledialog newFolder,newFile,newFType,"KASXZEPD"
if newFile="" stop endif /* user pressed cancel */
/* save name of original database*/
oldFile=info("databasename")
/* change name of original database IN MEMORY ONLY */
changename oldFile+".old"
/* open the file with the new structure */
openfile folderpath(newFolder)+newFile
/* suck the data from the old file into the new structure */
openfile "&"+oldFile+".old"
/* name of new database=name of old database (IN MEMORY ONLY) */
detachname oldFile
/* now connect to the original databases file on disk */
/* it's a "filejacking"! */
hijack oldFile+".old"
/* save the new, update file */
save
/* finally close the old database - we're done with it */
window oldFile+".old:SECRET"
closefile /* this file is really gone now */

If you look closely at this example, you will see that it doesn’t really update the structure of the original data-
base. Instead, it loads the data from the old database into the new database using Panorama’s standard
"append with matching names" feature (see “Replacing the Data in a Database” on page 1505). Once this is
done the old database is “detached” from its disk file. The new file then takes over or “hijacks” the detached
disk file. As part of this “hijack” process Panorama also copies the auto-increment value, so if the database
uses auto-numbering the numbers will continue to be generated in sequence.

Chapter 25:Programming Techniques Page 1587
Transferring Permanent Variables

If the original database has permanent variables that you want to keep, insert the following statements just
before the detachname statement in the procedure above. This procedure assumes that the new updated
database has at least the same permanent variables as the original database, and it copies the values from the
old database to the new.

local oldPermanentVariables,opv,pv
/* build a list of the permanent variables */
oldPermanentVariables=dbinfo("permanent",oldFile+".old")
opv=1
loop

/* get name of permanent variable */
pv=array(oldPermanentVariables,opv,¶)
stoploopif pv=""
/* transfer value from old to new */
set pv,grabfilevariable(oldFile+".old",pv)
opv=opv+1

while forever

For more information about the grabfilevariable(function, see “Accessing “Dormant” Variables” on
page 1372.

The procedure above will not work if the old database is not in author mode, since the dbinfo(function will
not be able to build a list of permanent variables. In that case you must rely on your knowledge of the origi-
nal database and hard code the permanent variable names, like this:

pAreaCode=grabfilevariable(oldFile+".old","pAreaCode")
pDialingPrefix=grabfilevariable(oldFile+".old","pDialingPrefix")
pCallingCard=grabfilevariable(oldFile+".old","pCallingCard")

This procedure transfers three permanent variables from the old database to the new: pAreaCode, pDialing-
Prefix and pCallingCard.

Verifying Database Identity

The procedure listed above for updating the database relies on the user to pick the correct update database. If
they pick the wrong database, there will be a big problem. You can use permanent variables to create a data-
base identity system that will permanently identify a database, even if it has been renamed. We recommend
creating three permanent variables with the names dbVendor, dbName and dbVersion. Here is an example
showing how these variables can be created in the .Initialize procedure (see “.Initialize” on page 1484).

permanent dbVendor,dbName,dbVersion
dbVendor="ProVUE Development"
dbName="Power Team Phone Book"
dbVersion="2.0"

Once these variables have been created they can be used to verify the identity of a database. In the database
update routine you can add verification code in between the two openfile statements (see “Updating Data-
base Structure From Another Database” on page 1586). This verification code will stop the update if the user
selected the wrong database.

if dbVendor ≠grabfilevariable(oldFile+".old",dbVendor) or
dbName≠dbVendor ≠grabfilevariable(oldFile+".old",dbName)

message "Please pick another database. "+
"The file you picked is not an update for "+oldFile+"."

closefile /* close the bogus update file */
changename oldFile /* and restore the original name */

endif

You could make this procedure even more robust by adding a check to make sure that the version number of
the update file is newer than the version number of the old file.

Page 1588 Panorama Handbook
Database Navigation and Editing

When you are manually working with a database you can use your eyes to see what you are clicking on and
modifying. A procedure doesn’t have eyes to see with, but it can still navigate and modify the database. Since
the procedure can’t see what it is doing you have to give it exact instructions to get the job done correctly.
Imagine giving directions to a blindfolded person (go 23 paces, turn left, go 14 paces, turn right, etc.) Using a
procedure to navigate and edit the database requires the same type of precise instructions.

To illustrate how a procedure can navigate and move around the database we’ll use this database of national
parks.

As shown above we’ll start out with the database on the record for Grand Canyon National Park. The current
field is the City field.

Moving Up and Down in the Database

The basic statements for moving the currently active record are firstrecord , lastrecord , uprecord
and downrecord . The firstrecord statement makes the very first visible record in the database the cur-
rently active record (the record at the top of the data sheet).

Chapter 25:Programming Techniques Page 1589
The lastrecord statement makes the very last visible record in the database the currently active record (the
record at the bottom of the data sheet).

The uprecord and downrecord statements move the currently active record either one record up (towards
the top of the data sheet) or one record down (towards the bottom of the data sheet).

To find out if the currently active record is the first or last visible record in the database, use the
info("bof") and info("eof") functions (bof stands for beginning of file and eof stands for end of file).

Here’s an example that uses the statements and functions described in this section to count the number of
parks with no access fee.

local freeparks
freeparks=0
firstrecord
loop

if Fee=0
freeparks=freeparks+1

endif
stoploopif info("eof")
downrecord

while forever

Although this procedure will work, it will also be unnecessarily slow. Avoid scanning through the database
whenever possible. Here’s another way to write this same procedure that will be much, much faster. For a
small database with a couple of dozen records like our example the speed difference isn’t too important, but
for a large database with thousands of records we’re talking about the difference between seconds vs. min-
utes.)

local freeparks
freeparks=0
formulasum freeparks,?(Fee=0,1,0)

Page 1590 Panorama Handbook
Another way to reposition the currently active record is to search for something using the find statement
(see “Finding Information” on page 1611). The find statement has one parameter, a formula. Starting from
the top of the selected records, Panorama scans down the database until it finds a record that makes this for-
mula true. For example, this procedure will scan down the database until it finds a record where the Park
field contains Everglades.

find Park contains "Everglades"

Notice that the active field stays the same (City) even though the formula searches the Park field.

After the find statement you can check to see if Panorama actually found anything with the
info("found") function (see “INFO("FOUND")” on page 5378).

To find the next match use the next statement (see “Finding Information” on page 1611). This is just like the
find statement except there is no formula…it re-uses the formula supplied with the find statement. You can
continue to use the next statement over and over again until the info("found") function tells you there
are no more matches.

Here’s an example that locates all parks with no access fee and deletes them from the database:

find Fee=0
loop

stoploopif (not info("found"))
deleterecord
next

while forever

Once again, this procedure will work but will be slow. Here’s a faster solution:

select Fee<>0
removeunselected

Why do I keep showing you these alternate examples? If you are a C or a Pascal programmer you are proba-
bly used to solving many problems with loops. In Panorama, a loop is often not the best solution because it is
too slow. It may take some research, but you can usually find a Panorama statement that will do the same job
much faster.

Chapter 25:Programming Techniques Page 1591
Moving Left and Right

The basic statements for moving the currently active field are field , left and right . The field statement
moves directly to the specified field (see “FIELD” on page 5214). For example

field Park

will make the Park field the current field.

If a field name has spaces or other unusual punctuation you must surround it with quotes (see “Constants”
on page 1218). Be sure to use quotes and not « » (chevrons).

field "Phone Number"

You can also use a formula to calculate the field name. If you do so you must surround the formula with (and
) parentheses. For example this procedure will move to the last column in the database — any database.

field (array(dbinfo("fields",""),arraysize(dbinfo("fields",""),¶),¶))

The formula uses the dbinfo(function (see “Getting Information About Field Structure” on page 1583) to
calculate the name of the last field (in this case URL) and then the field statement jumps to that field.

Page 1592 Panorama Handbook
To move left one field (column in the data sheet) use the left statement (see “LEFT” on page 5463). To move
right one field (column in the data sheet) use the right statement (see “RIGHT” on page 5676). You can find
out if this operation succeeded by using if stopped . This will be true if the procedure tried to move to the
left of the first column or to the right of the last column. Here is a procedure that scans the entire database and
converts every text field to upper case.

field (array(dbinfo("fields",""),1,¶)) /* move to first field */
loop

if datatype(info("fieldname"))="Text" /* is this a text field? */
formulafill upper(«») /* if yes, convert to upper case */

 /* Note: «» is shorthand for current field */
endif
right /* move to next field */

until stopped /* stop if we just tried to move past last field */
/* could also use until info(“stopped”) */

Here’s the result of running this procedure on our National Parks sample database.

Notice that this procedure doesn’t reference any specific field names in the National Parks database. This pro-
cedure will actually work on any database.

Moving “Left” and “Right” on a Form

The examples in the previous section all showed the data sheet, but a procedure can also move to a specific
field within a record on a form. To illustrate this we’ll use this form from a Contacts database.

Just as when the data sheet is open a procedure can move to a specific field with the field statement.

field Zip

Chapter 25:Programming Techniques Page 1593
Panorama will jump to the specified field.

The left and right statements don’t move left and right on the form, but move to the next column based
on the order of the fields on the data sheet. For example, suppose you start on the First field.

The right statement will cause Panorama to jump to the next field to the right in the data sheet. In this case
that field (Last) is also to the right on the form.

The next field to the right in the data sheet, Credit Card, does not exist on this form, so at this point the cur-
rent field selection is invisible. The Credit Card field is the current field, however, and would be modified if
the procedure used a statement like formulafill at this point.

Page 1594 Panorama Handbook
The next field to the right in the data sheet, Title, does have a data cell on this form.

The procedure can continue moving to the “right” until it gets to the last column in the data sheet. The left
statement moves in the opposite direction.

Moving to an Empty Line Item Field

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 342).
When creating a new line item line in a procedure you will want to move to the first empty line item field. To
illustrate this, consider this simple invoice form.

To add a new line item to this invoice the procedure must move to the Quantity7 field. One way to do this
would be with a loop.

local n
n=1
loop

field ("Quantity"+str(n))
stoploopif «»=""
n=n+1

while forever

Quantity7

Chapter 25:Programming Techniques Page 1595
Since this is such a common operation when working with line item fields Panorama has a built in statement
to do this job. The statement is called emptyfield (see “EMPTYFIELD” on page 5188). The emptyfield
statement has one parameter, the name of the line item field to jump to. This field name must be surrounded
with quotes and must be followed by the Ω character (see “Special Characters” on page 1225).

emptyfield "Quantity Ω"

If there aren’t any empty line item fields this statement simply leaves the current field wherever it was.

Adding and Deleting Records

To add a new record at the end of the database use the addrecord statement (see “ADDRECORD” on
page 5015).

new record added at end of database

Page 1596 Panorama Handbook
To insert a new record just above the current record use the insertrecord statement (see “INSER-
TRECORD” on page 5454). For example, suppose you start with the database on the Death Valley National
Park record, like this.

The insertrecord statement inserts a record just above Death Valley.

To insert a new record just below the current record use the insertbelow statement (see “INSERTBELOW”
on page 5452). For example, suppose you start with the database on the Death Valley National Park record,
just like the previous example.

The insertbelow statement inserts a record just below Death Valley. Notice that it also moves the current
field to the first field in the database.

Chapter 25:Programming Techniques Page 1597
To delete the current record use the deleterecord statement (see “DELETERECORD” on page 5158). Once
again we’ll start with the database on the Death Valley National Park record.

The deleterecord statement deletes Death Valley and makes the record below Death Valley (Denali Park)
the current record.

Another way to To delete the current record use the deleteabove statement (see “DELETEABOVE” on
page 5153). Once again we’ll start with the database on the Death Valley National Park record.

The deleteabove statement deletes Death Valley and makes the record that was above Death Valley (Cum-
berland Island national Seashore) the current record.

Page 1598 Panorama Handbook
The deleteall statement deletes all the data in the entire database, leaving just one blank record (see
“DELETEALL” on page 5154).

Needless to say you need to be very careful with this statement!

Modifying the Database One Cell at a Time

To modify an individual data cell in the current record (see “Moving Up and Down in the Database” on
page 1588) you use an assignment statement (see “Assignment Statements” on page 1367). Unlike every
other statement, an assignment statement has no specific keyword that identifies the statement. Assignment
statements always have the format shown below:

<data storage location> = <formula>

The first part of the assignment statement is the data storage location. This is the final destination for the data
that is being moved. In fact, sometimes the data storage location is simply called the destination of the assign-
ment. The data storage location may be a variable, a field in the currently active record, or the clipboard.

The next part of the assignment statement is the equals symbol. This identifies this statement as an assign-
ment statement.

After the equals symbol is the formula. The formula may simply take a variable or field and pass it along, or
it may process, calculate or filter the data before it passes it along to be stored in the data storage location.
Here‘s a simple assignment statement that takes the contents of B and moves it into A. After this statement is
finished both A and B will contain the same value.

A=B

More complicated assignment statements may combine multiple fields or variables, and they may process
the data in some way. An assignment statement may also take a constant value and store it. Here are some
examples:

A=B*C

Name=upper(myName)

City="San Francisco"

In each case, the process is the same. First Panorama calculates the formula to produce a data value. Then it
stores the data value in a data storage location.

Accessing and Modifying the Current Cell

To access or modify the current cell use «» (see “Special Characters” on page 1225). For example this state-
ment sets the current cell to Bingo.

«»="Bingo"

Chapter 25:Programming Techniques Page 1599
This procedure stores the contents of the current cell in the variable OriginalData.

OriginalData=«»

To find out which field is the current cell use the info("fieldname") function.

Accessing and Modifying the Clipboard

In addition to variables and fields, the operating system itself provides one spot for stashing data…the clip-
board. This is where data goes when you use the Copy or Cut commands in the Edit menu. To grab any text
that is in the clipboard, use the clipboard() function. To put data on the clipboard, use an assignment with
clipboard on the left hand side of the equals sign.

The example below takes an address, formats it and copies it onto the clipboard.

clipboard=Name+¶+Address+¶+sandwich("",City,", ")+State+" "+Zip

Here’s an example that grabs a name from the clipboard and selects all the records containing that name:

local findThis
findThis=clipboard()
select Name contains findThis

This example copies the contents of the clipboard into a variable before using it in the select statement (see
“Selecting Information” on page 1616). This is not absolutely necessary—in fact this procedure could have
been written in a single line like this:

select Name contains clipboard()

However, the original procedure will be much faster. Because of the overhead involved in querying the oper-
ating system, accessing the clipboard is much slower than accessing a variable. If you’re only going to be
accessing the clipboard a few times, by all means use it directly. But if you are going to access the clipboard
over and over again (as the select statement does) it’s much better to copy the value into a variable first.

Triggering Automatic Calculations

A database can be set up so that when a field is modified by the user, one or more formulas is automatically
calculated (see “Automatic Calculations” on page 406). When an assignment statement modifies a field, how-
ever, these formulas are not automatically calculated. This is to give the procedure programmer the ultimate
control over all calculations that occur during the procedure.

If you as the programmer would like the automatic calculations to be performed during an assignment, add
an extra equal symbol to the assignment. The two equal symbols must be adjacent with no spaces between
them, like this:

Price Ω==19.95

In this example, storing the value 19.95 will most likely trigger several additional calculations to compute the
total for this line item and the total for the entire invoice.

Page 1600 Panorama Handbook
Triggering Automatic Procedures

A database can be set up so that when a field is modified by the user, a procedure is automatically triggered.
This may be a specific procedure for this field (see “Automatically Triggering a Procedure” on page 416), or
the generic .ModifyRecord procedure (see “.ModifyRecord” on page 1485). These procedures are never trig-
gered automatically when an assignment statement modifies a field, even when the double equal assignment
is used (see previous section). If you want a procedure to be triggered after a field is modified, you must call
the procedure explicitly with the call statement (see “Subroutines” on page 1382). This example modifies
several fields, then calls the .ModifyRecord procedure:

City="San Francisco"
State="CA"
«Area Code»="415"
call .ModifyRecord

If the automatically triggered procedure expects that a certain field is active when it is triggered you should
make sure that field is active by using the field statement before calling the procedure.

The Set Statement

The set statement performs the same job as an assignment statement—moving a data item from one place to
another (see “SET” on page 5732). However, unlike the assignment statement, the data storage location is not
known in advance. Instead, the data storage location is calculated using a formula.

The set statement has two parameters:

set <data storage location formula>,<formula>

The first parameter is a formula that calculates the name of the data storage location. Suppose you wanted to
store the data in a field named Widget. In an assignment you would simply use this name, but in the set
statement the name must be calculated, in this case "Widget" . (Of course this is a silly example, because if
we knew the field name in advance we might as well use a regular assignment statement. We’ll look at a bet-
ter example in a minute.)

The second parameter is the formula. This formula produces the data that will be stored in the data storage
location. It’s exactly the same as the formula used in an assignment statement.

Here’s our example. Suppose we have a database where each record has 10 phone number fields, Phone1,
Phone2, Phone3, etc. We want to write a procedure that will automatically store a new phone number in the
first empty field. Here’s one way to get this job done using the set statement:

local newPhone,Counter,tempPhone
Counter=1 newPhone=""
gettext "New phone #:",newPhone
loop

tempPhone=grabdata("","Phone"+str(Counter))
if error

message "No empty phone number slots!"
stop

endif
stoploopif tempPhone=""
Counter=Counter+1

while forever
set "Phone"+str(Counter),newPhone

The procedure starts by initializing the variables, and asking the user to input the new phone number. Then it
loops through the phone number fields, starting with Phone1, then Phone2, etc. It checks each field to see if it
is empty. If it is, the loop stops and the new phone number is stored with the set statement. The first param-
eter of the set statement calculates the field name with the formula "Phone"+str(Counter) . For exam-
ple, if the fourth phone number field was empty, this formula will calculate the field name Phone4.

Chapter 25:Programming Techniques Page 1601
The FormulaCalc Statement

The formulacalc statement is similar to the set statement. It’s different from the set statement because the
data storage location is known in advance, but the formula is not known in advance. Instead, the formula
itself is calculated using another formula. The formulacalc statement has two parameters:

formulacalc <data storage location> , <formula>

The first parameter is the data storage location. This should be a variable or field name, just as in the regular
assignment statement.

The second parameter is the formula. This formula must itself produce another formula, which is then calcu-
lated to produce the data that will be stored in the data storage location. Usually there is a field or variable
that contains the formula you want to calculate.

Our example of the formulacalc statement lets the user type in a formula, then calculates the formula and
displays the result.

local xFormula,Answer
xFormula=""
gettext "Enter the formula",xFormula
formulacalc Answer,xFormula
message Answer

The formulacalc statement was primarily designed to make it easy to build a calculator with Panorama.
I’m sure some enterprising programmer out there will find some other uses as well.

Opening the Input Box

The data sheet and data cells in a form use a pop-up input box for editing data (see “The Input Box” on
page 376). The editcell statement automatically opens the input box for the current cell (see “EDITCELL”
on page 5181). For example, this procedure adds a new record and automatically opens the input box to get
ready for data entry.

addrecord
editcell

When used on a data sheet window the result of this procedure looks like this.

input box open and ready for data entry in new record

Page 1602 Panorama Handbook
We recommend that the editcell statement be the last statement in a procedure. If it is not the last state-
ment in the procedure you should use the editcellstop statement, like this.

if info("trigger") contains "Add Record"
addrecord
editcellstop

endif

If the cell contains data the editcell statement normally selects all of the data when it opens the input box,
like this.

The editselect statement allows a procedure to control what text is selected (see “EDITSELECT” on
page 5184). It must be used immediately before the editcell or editcellstop statement. The
editselect statement has two parameters: start and end. Both parameters are numbers from 0 (first charac-
ter) to 32768 (last character). The table below shows the effect of different parameters with this statement.

Code Result

editselect 0,0
editcell

editselect 32768,32768
editcell

editselect 0,32768
editcell

editselect 5,8
editcell

Chapter 25:Programming Techniques Page 1603
The input box normally has a scroll bar when it is more than about an inch high. The noeditscroll state-
ment suppresses the scroll bar no matter how high the input box is (see “NOEDITSCROLL” on page 5538).
This statement is designed to be used as a prefix for the editcell and editcellstop statements, like this.

noeditscroll
editcell

The input box appears without a scroll bar.

In a form window a procedure can even open an input box in “thin air” in an arbitrary location. No data cell
object on the form is required. To learn how to do this see “FLOATINGEDIT” on page 5254.

These statements work only with data cells. To learn how to control editing within a Text Editor SuperObject
see “Text Editor SuperObject Commands” on page 1682.

“Natural” Data Entry

Computers and people often don’t think alike. Computers tend to use rigid formats, while people like to be
more free-form. In the case of databases with contact information it’s best to store lots of separate fields for
first and last names, street address, city, state, zip etc. (as shown on the left below). This gives the most flexi-
bility in sorting, selecting and reporting data. However, from a data entry point of view it would be much
nicer to enter data in a more natural format (as shown on the right).

no scroll bar

Page 1604 Panorama Handbook
Natural Data Display

To display data in a natural format use a Text Display SuperObject (see “Text Display SuperObjects™” on
page 658) or a Text Editor SuperObject (see “Text Editor SuperObject” on page 689) with the Formula option
enabled (see “Text Editor Options” on page 692). Of course if you want to be able to edit the data you’ll have
to use the Text Editor object. Here is the configuration dialog for the Natural format text editor shown in the
preceding section. (Note: The blue-green background behind the text was created with a rectangle object
placed behind the Text Editor.)

Chapter 25:Programming Techniques Page 1605
Here is the complete formula for this object.

sandwich("",First," ")+Last+¶+
Title+¶+
Company+¶+
arrayrange(Address,1,2,¶)+¶+
sandwich("",City,", ")+sandwich("",State," ")+Zip+sandwich(" ",Country,"")+¶+
?(Address notcontains ¶,¶,"")+
Phone+¶+Fax+¶+Email+¶+Notes

The arrayrange(function (see “ARRAYRANGE(” on page 5047) is used to extract a maximum of two lines
of address (so if an address has 3 or more lines the extras will be removed). The ?(function (see “The ? Func-
tion” on page 1287) checks to see if the Address field contains only one line, and if so, adds an extra blank line
between the address and the phone number.

The sandwich(functions (see “SANDWICH(” on page 5686) are used to add punctuation (spaces and com-
mas) only if needed.

If the city name is empty (for example when entering a new contact) then there is no comma.

Since the box for entering formulas in the Text Editor SuperObject is so small you may want to test out your
formula in a Text Display SuperObject first, then copy to a Text Editor once it is working correctly.

2 line address, so no blank line before phone #

1 line address

blank line
added by ?(function

sandwich("",City,", ")

Page 1606 Panorama Handbook
Natural Data Entry

Displaying the data in a “natural” format is only half the job. To allow the data to be entered and/or modified
in this natural format you’ll need to create a procedure. In our case we’ve configured the Text Editor to trig-
ger a procedure named .NaturalData when the Enter key is pressed.

Here is the .NaturalData procedure itself.

local FullContact,FullName,FullAddress,namePrefix,nameMiddle,nameSuffix
local xTitle,xCompany,xPhone,xFax,xEmail,zPhone,zFax,xNotes
FullContact=TextEditingResult
splitlines FullContact,

"1W",FullName,
"1W",xTitle,
"1W",xCompany,
"3W",FullAddress,
"1",xPhone,
"1",xFax,
"1",xEmail,
"0",xNotes

Title=xTitle Company=xCompany Email=xEmail Notes=xNotes
getname FullName,namePrefix,First,nameMiddle,Last,nameSuffix
getaddress FullAddress,Address,City,State,Zip,Country
getphone xPhone,"714",Country,zPhone,1,""
Phone=strip(array(zPhone,2,":"))
getphone xFax,"714","",zFax,1,""
Fax=strip(array(zFax,2,":"))

The procedure starts by creating the temporary variables it needs. Then it uses the splitlines statement
(see “SPLITLINES” on page 5783) to split the incoming data into eight separate components. Most of these
components are one line high, but the address contains three lines and the notes contains all of the text after
the tenth line. In the process of splitting the text the splitlines statement also automatically capitalizes the
first letter of each word in the name, title, company and address. However, the capitalization only happens if
all of the text is entered in lower case, so frank rich will be converted to Frank Rich, but Scott McBride must
be typed in like that, not as scott mcbride.

The getname statement splits the name into five separate components (see “GETNAME” on page 5303). This
database only uses two of the components (first and last names) so the other three components are simply
discarded. This table shows a few examples of how a name is split up into its individual components.

Sample Prefix First Middle Last Suffix

Frank Rich Frank Rich

Ms. Susan Kay Olson Ms. Susan Kay Olson

John Kuttel DVM John Kuttel DVM

General Dwight A. Eisenhower General Dwight A. Eisenhower

Mark Jackson Jr. Mark Jackson Jr.

Chapter 25:Programming Techniques Page 1607
The getaddress statement splits the address into five separate components (see “GETADDRESS” on
page 5285). It is primarily designed to handle US and Canadian addresses. If you purchased the optional zip
code dictionary (see “Zip Code Lookup” on page 1301) you can enter just the zip code and let Panorama fill
in the city and state for you (see the 3rd and 4th examples in the table below). This table shows a few exam-
ples of how a name is split up into its individual components.

The getphone statement formats the phone number (see “GETPHONE” on page 5305) but only if the coun-
try name is blank, USA or CANADA. Our example has been set up to default to the 714 area code, but you
can use any default area code you wish.

Sample Street Address City State Zip Country

575 Memorial Drive
Cambridge, MA 02139 575 Memorial Drive Cambridge MA 02139

445 Hoes Lane
Piscataway, NJ 08855-1331 445 Hoes Lane Piscataway NJ 08855

-1331

15180 Transistor Lane
92648 15180 Transistor Lane Huntington Beach CA 92648

400 Seaport Court
Suite 100
94063

400 Seaport Court
Suite 100 Redwood City CA 94063

6733 Missisauga Road
Missisauga, ON L5N6J5 canada 6733 Mississauga Road Missisauga ON L5N

6J5 CANADA

Sample Output

5557390 (714) 555-7390

3034491234 (303) 449-1234

(412) 987-3859 (412) 987-3859

7307832x23 (714) 730-7832x23

Page 1608 Panorama Handbook
To see how all of this works together let’s add a new record and type in the data. We think you’ll agree that
typing in the data in this natural format is easier than tabbing from field to field to field.

When the entry is complete press the Enter key. The .NaturalData procedure will process the entry into the
separate fields in the database. Here you see both the natural display format and a form displaying each field
separately.

Since the data is stored in separate fields you can easily sort, group or select it any way you want. Neverthe-
less you still have the convenience of entering and editing it in natural format if you wish. To edit the natural
format data simply click on it and edit, then press Enter to update the database.

The natural data formats demonstrated in this contacts database can be used with any database you create.

Chapter 25:Programming Techniques Page 1609
Validating a Credit Card Number

Credit cards have an internal checksum that allows a number to be validated for simple data entry errors (for
example missing or transposed digits). The cardvalidate statement checks to make sure that a number is a
valid credit card number (see “CARDVALIDATE” on page 5087). This statement has two parameters. The
first is the card number you want to validate. The second parameter should be a variable. The statement will
set this variable to Ok or Error depending on the card number you submit. This example checks the card
number in the field CCNumber to see if it is a valid credit card number.

local cctemp,ccvalid
cctemp=striptonum(CCNumber)
cardvalidate cctemp,ccvalid
if ccvalid<>"Ok"

message "This credit card number is not valid!"
endif

The cardvalidate statement cannot tell whether this card number has actually been issued, what the
credit limit is, or any other financial information about the card. It simply provides a basic check for missing
or transposed digits within the number. Basically, if this statement says that the number is in error you know
for sure that the number is wrong, but if this statement says the number is valid you would still need to check
with the issuer to determine if this is a valid card.

By the way, it’s easy to determine the type of card from the first digit of the number.

Here’s another handy tip for testing. You can make a “valid” credit card number by taking the digits 1, 2, 3,
and 4 and repeating them four times in any order. For example 111122223333444 , 3333111122224444
and 4444111133332222 are all valid credit card numbers (of course there aren’t really any cards with these
numbers, but the checksum is ok).

Card First Digit

3

4

5

6

Page 1610 Panorama Handbook
Sorting

To sort the database takes two steps. First the procedure must select the field to sort by (see “Moving Left and
Right” on page 1591). Then the sortup or sortdown statement is used to sort the database. The sortup
statement sorts the database in ascending order — A’s at the top and Z’s at the bottom. The sortdown state-
ment does the reverse, Z’s go at the top and A’s at the bottom. This example sorts an address book by last
name.

field "Last Name"
sortup

To sort by two or more fields you must use the sortupwithin statement. This statement leaves the data in
the original field in order but re-arranges the records within each value. For example the procedure below
will sort an address book by state, and then by city within each state.

field State
sortup
field City
sortupwithin

Note: Because Panorama uses what is called a “stable sort algorithm” there is another way to sort multiple
fields. Instead of using sortupwithin you can sort the fields in reverse order, like this.

field City
sortup
field State
sortup

Just like the previous example, this procedure will sort the address by city within state. There really isn’t any
advantage to using this technique, but it is available.

To sort the database by the color of the data in a field use the sortbycolor statement. See “Sorting By
Color” on page 429 to learn more about sorting by color.

Reducing Screen “Flashing”

When a database is sorted more than once in a row the window will redisplay over and over again. This is
annoying and wastes time, also. You can eliminate this “flashing” with the noshow and endnoshow state-
ments. This example shows a revised version of our procedure to sort an address book by city and state.

noshow
field City
sortup
field State
sortup
showpage

endnoshow

This revised procedure will only redisplay the window once (because of the showpage statement). To learn
more about the noshow and endnoshow statements see “Suppressing Display of Text and Graphics” on
page 1410.

Making Sorts Even Faster

Panorama sorts even large databases very quickly. However, the noundo statement can make it sort even
faster (see “NOUNDO” on page 5544). This statement disables Panorama’s undo feature. Since the sort
doesn’t need to worry about undo it can run slightly faster.

noundo
field Company
sortup

Chapter 25:Programming Techniques Page 1611
Locating Information

Panorama has two ways of locating information — finding and selecting (see “Finding vs. Selecting” on
page 433). In a procedure you find information with the find statement and select information with the
select statement.

Finding Information

The find statement searches the database, starting from the top. This statement has one parameter, a for-
mula. Starting from the top of the selected records, Panorama scans down the database until it finds a record
that makes this formula true (see “True/False Formulas” on page 1282). For example, this procedure will
scan down the database until it finds a record where the Park field contains Everglades.

find Park contains "Everglades"

Notice that the active field stays the same (City) even though the formula searches the Park field.

After the find statement you can check to see if Panorama actually found anything with the
info("found") function (see “INFO("FOUND")” on page 5378). Here is a procedure that uses this state-
ment and function to locate a park and, if found, make it bold (see “Data Style and Color” on page 1641).

local choice,wasField
choice=""
gettext "Which park?",choice
find Park contains choice
if info("found")

wasField=info("fieldname")
field Park
Style "cell bold"
field (wasField)

else
message "Sorry, park not found."

endif

When you run this procedure it starts by asking you what park you want to highlight (see ““Off the Shelf”
Dialogs” on page 1566).

Page 1612 Panorama Handbook
If the find statement locates the requested information it marks the park name in bold.

If the requested information is not found then an error message is displayed, but the database is not modi-
fied.

A Handy Universal Find Procedure

Here is a handy procedure that will search every field in the database. It can be used in any database without
modifications.

local whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor

The secret of this procedure is the exportline(function (see “EXPORTLINE(” on page 5207). This function
takes all the fields in a line, converts them to text if necessary, and then appends them together with tabs in
between. The procedure uses this handy capability to search all of the fields in the database at once!

Here is a slightly revised version of this procedure that is even cooler. If it finds what you are looking for it
automatically moves to the field containing the data it has located.

fileglobal whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

When you run this procedure it stops and asks you what you want to look for.

Chapter 25:Programming Techniques Page 1613
If that word or phrase exists anywhere in the database, it will find it.

It can find a phone number like 882-4336.

Or it can even find a numeric value like 10.00.

Wherever the data is, this procedure will find it and move right to the spot. See the next section for a “univer-
sal find next” procedure to go with this procedure.

Page 1614 Panorama Handbook
Find Next

To find the next match use the next statement. This is just like the find statement except there is no for-
mula…it re-uses the formula supplied with the find statement. You can continue to use the next statement
over and over again until the info("found") function tells you there are no more matches. The procedure
below uses the next statement to find the next occurrence of the word or phrase — either on the same line or
on a different line.

local fieldnum,thisline,nextSpot
fieldnum=arraysearch(dbinfo("fields",""),info("fieldname"),1,¶)
thisline=rep(¬,fieldnum)+arrayrange(exportline(),fieldnum+1,9999,¬)
nextSpot=search(upper(thisline),upper(whatfor))
if nextSpot>0

field (array(dbinfo("fields",""),arrayelement(thisline,nextSpot,¬),¶))
rtn

endif
next
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

To illustrate these universal find procedures we’ve added them to the National Parks database.

To demonstrate these procedures we’ll start by running Universal Find to search for canyon.

Chapter 25:Programming Techniques Page 1615
When the OK button is pressed the procedure finds the first occurrence of the word canyon.

Running the Universal Next procedure locates the next occurrence of the word canyon, in the City column of
the same record.

There’s no more occurrences of the word canyon in this record, so choosing Universal Next again jumps
down several lines.

Each time you choose Universal Next Panorama will jump to the next occurrence of the word canyon, until it
finally runs out.

Page 1616 Panorama Handbook
Let’s go back and review the original Universal Find procedure for a moment.

fileglobal whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

The first line of this procedure declares the fileglobal variable whatfor. It’s important that this variable is
declared as a global or fileglobal and not as a local variable. Why? Well, remember that Panorama stores the
formula used by the find statement for use by the next statement. In this case the formula is

exportline() contains whatfor

If whatfor is a local variable, it will cease to exist as soon as the Universal Find procedure is finished (see
“The Birth and Death of a Local Variable” on page 1371). Because of this when the next statement is exe-
cuted (or if you manually choose Next from the Search menu) an error will occur: field or variable does not
exist! The solution is simply to create whatfor as a global or fileglobal variable so that it will still be hanging
around when it becomes time to search for the next occurrence of the word or phrase.

Selecting Information

The select statement searches the database, making everything that does not match invisible (see “Finding
vs. Selecting” on page 433). This statement has one parameter, a formula. Starting from the top of the selected
records, Panorama scans down the database looking for records that makes this formula true (see “True/
False Formulas” on page 1282). If the formula is not true the record will be made temporarily invisible. For
example, this procedure will select all parks where the admission fee is greater than ten dollars.

select Fee>10

Only two parks in this database fit in this category. All the others are temporarily invisible.

You can construct as complex a formula as you like, combining different elements together with and and or .

select Park contains "Great" or Park contains "Grand"

In this case four records match the criteria.

Chapter 25:Programming Techniques Page 1617
A procedure can find out how many records are selected with the info("selected") function. The
info("records") function returns the total number of records in the database, both visible and invisible.
See “Database Information” on page 1331 for more information on these functions.

When a procedure wants to make sure that all records are selected it should use the selectall statement.
Here is a simple procedure that checks to see if all records are selected, and if not, selects them.

if info("selected")<info("records")
selectall

endif

A procedure can use the selectadditional statement to add to the current selection (see “SELECTADDI-
TIONAL” on page 5710). The selectwithin statement can be used to select a subset of the currently
selected subset (see “SELECTWITHIN” on page 5722). The selectreverse statement swaps the visible
and invisible records (see “SELECTREVERSE” on page 5719).

Handling Empty Selections

What if the select statement fails to select any records? Eeek! Panorama always requires that at least one
record be selected at all times, it never allows every record in a database to be invisible. If none of the records
in the database match the formula, Panorama does nothing. It’s as if the select never happened. Whatever
records were visible before remain visible after. This can be a problem if the following statements are expect-
ing a particular subset of the database to be selected.

Fortunately, Panorama normally handles this situation for you automatically so that your procedures will
work correctly. Panorama keeps track of the fact that there should be no records selected, and it will skip any
statement that modifies the database, including formulafill , sequence , propagate , unpropagate , etc.
(basically any statement that corresponds to an item in the Math menu will be skipped). Panorama will con-
tinue skipping these statements until it comes to a selectall statement or another select statement.

Panorama’s automatic statement skipping for empty subsets should work fine for most applications. As a
procedure programmer, however, you have the choice of overriding this statement skipping and program-
ming your own solution to the empty subset condition.

To test for an empty subset, use the info("empty") function. This example calculates the InvoiceAge field
only for invoices that have actually been shipped (the ShipDate field is not empty) and that are not paid yet.
An error message will appear if there are no outstanding invoices.

select sizeof(ShipDate) ≠0 and Balance>0
if info("empty")

message "No outstanding invoices!"
else

field InvoiceAge
formulafill today()-ShipDate
selectall

endif

Remember, this logic is only necessary if you want to perform some special handling of empty subsets. Nor-
mally, Panorama will handle the empty subset just fine on its own by skipping the statements until the
selected subset changes.

Page 1618 Panorama Handbook
Selecting Duplicates

The selectduplicates statement may be used to locate and select duplicate entries in a database. The
statement has one parameter, a formula that determines what fields to check for duplicates. If this parameter
is empty text ("") then the current field is assumed. This statement must be combined with the sortup state-
ment. For example, to locate duplicate check number entries within a database you would use this procedure.

field "Check Number"
sortup
selectduplicates ""

If you supply a formula you can check for duplicates across multiple fields, or using only part of a field, or
both, as in the example below. This procedure will check for duplicates in the same zip code, with the same
last name and first initial. The formula uses a text funnel to extract the initial from the first name. See “Taking
Strings Apart (Text Funnels)” on page 1236 if you are not familiar with text funnels.

field Zip
sortup
field "Last Name"
sortupwithin
field "First Name"
sortupwithin
selectduplicates Zip+«Last Name»+«First Name»[1,1]

The database must be sorted so that the duplicates you want to find will be consecutively located within the
database (see See “Sorting” on page 1610).

Chapter 25:Programming Techniques Page 1619
Summaries and Outlines

Summarizing a database is a three step process — group, calculate and outline (see “3-Step Summarizing” on
page 453). The table below lists the statements that can be used to automate this process. Each statement cor-
responds to a menu command or tool. In fact, the easiest way to write a procedure to summarize the database
is to simply record it (see “Creating a Procedure with the Recorder” on page 1353 and “Adding a Recording
to an Existing Procedure” on page 1365).

Step Statement Ref Description

Group

groupup Page 5334

This statement groups the database by the current field (see
“Moving Left and Right” on page 1591). The database is sorted
in ascending order (A’s to Z’s) and a summary recorded is
added at each place where the value in the field changes.

If the current field is a date field you must add by day, by week,
by month, by quarter or by year after the groupup statement.

groupdown Page 5333 This statement works exactly like groupup, but sorts the data-
base in descending order (Z’s to A’s).

group Page 5331 This statement groups the database without sorting it.

groupbycolor Page 5332 This statement groups the database by color.

Calculate

total Page 5862 This statement calculates totals and subtotals in the current field
(see “Moving Left and Right” on page 1591).

average Page 5066 This statement calculates averages and subaverages in the cur-
rent field.

count Page 5128 This statement counts non-empty values in the current field.

minimum Page 5528 This statement calculates minimum values in the current field.

maximum Page 5521 This statement calculates maximum values in the current field.

Outline

outlinelevel Page 5583

This statement expands or collapses the database to show a spe-
cific level of detail. The statement has one parameter, which
may be "Data" to show all of the detail, or a summary level from
"1" to "7" to show a specific outline level.

removesummaries Page 5654

This statement removes some or all of the summary records in
the database. The statement has one parameter, which specifies
the level of summaries to be removed (from "1" to "7"). To make
sure that all summary records are removed use "7".

removedetail Page 5653

This statement removes the data records from the database,
leaving only the summary records. It can also remove lower
level summary records. The remaining summary records are
dropped in level (the lowest remaining summary records
become data records). The statement has one parameter, the
lowest level of summary record to be retained (from "1" to "7").
To remove just the data records and leave all summary records
use "1".

collapse Page 5112 This statement hides any detail records associated with the cur-
rent summary record.

expand Page 5200 This statement expands the next level of detail associated with
the current summary record.

expandall Page 5202 This statement expands all of the detail associated with the cur-
rent summary record, right down to the data records.

info("summary") Page 5425 This function returns the summary record of the current record,
from 0 (data record) to 7 (highest level summary).

info("expandable") Page 5371
This function checks to see if the current record is an expand-
able summary record. It returns false if this is a data record or if
this record is already expanded.

Page 1620 Panorama Handbook
Summary/Outline Examples

To summarize a database using a procedure you simply pick one or more statements from each of the three
steps — group, calculate and outline. This very basic procedure summaries a checkbook by category and dis-
plays just the totals for each category.

field Category /* STEP 1 - GROUP */
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */

The end result of running this procedure will look something like this.

To remove the summaries and get back to the original data we can use a simple one line procedure.

removesummaries "7"

Chapter 25:Programming Techniques Page 1621
This slightly more complex procedure will group the database by month and by category within each month.

field Date /* STEP 1 - GROUP */
groupup by month
field Category
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */

Here is the result of running this procedure.

If the last line of the procedure had been

outlinelevel "2"

Then the final result would have looked like this.

Page 1622 Panorama Handbook
As the procedure runs it flashes the window over and over again. To eliminate this you can use the noshow
and endnoshow statements (see “Suppressing Display of Text and Graphics” on page 1410).

noshow
field Date /* STEP 1 - GROUP */
groupup by month
field Category
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */
showpage

endnoshow

This revised procedure will only re-display the window once, at the very end.

Calculating Grand Totals

There are two methods for calculating a grand total without subtotals. The first is to simply use the total
statement. This adds a single summary record at the bottom of the database and calculates the total. (You can
also use the average , count , minimum and maximum statements this way.)

field Debit
total

This procedure produces a single summary record with the total, like this.

Another method for calculating a grand total is to use the formulasum statement (see “FORMULASUM” on
page 5275). This statement has two parameters:

formulasum result , formula

The result parameter must be a field or variable. The final total will be stored in here.

The formula parameter is a formula that will be evaluated for every selected record. Starting from the top of
the database, Panorama will visit each record and calculate the result of the formula. As it goes it keeps a run-
ning total of the results. The final result is the sum of all of the individual results for each selected record.

Chapter 25:Programming Techniques Page 1623
The procedure below calculates the grand total for the checkbook database and displays it. The database
itself is not modified (no summary record is added).

local total
formulasum total,Debit
message pattern(total,"$#,.##")

The procedure will display the total like this.

By changing the formula you can calculate different sums. This procedure calculates the number of checks
that are over $500.

local count
formulasum count,?(Debit>500,1,0)
message "There are "+str(count)+" checks over $500."

Here is the result.

There’s no reason you can’t use formulasum more than once, like this.

local count,total
formulasum count,?(Debit>500,1,0)
formulasum total,?(Debit>500,Debit,0)
message "There are "+str(count)+

" checks over $500"+¶+"(the average amount is "+
pattern(total/count,"$#.,##")+")"

This procedure displays both the number of checks over $500 and the average value of these checks.

Page 1624 Panorama Handbook
Running Total

The runningtotal statement performs a special computation (see “RUNNINGTOTAL” on page 5684).
Unlike the other summary calculations, this statement modifies every data cell in the currently active field,
not just the summary records. Like the total statement, runningtotal starts at the top of the database
and adds up each data cell as it moves down the column. The runningtotal statement, however, replaces
each data cell with the current total. The result is a field which contains the cumulative total at each point in
the database. Here is a procedure that uses runningtotal to calculate a checkbook’s balance after each
transaction.

noshow
field Balance
formulafill Credit-Debit
runningtotal
showcolumns Balance

endnoshow

To see what the result of this procedure looks like go to “Using Running Total to Balance a Checkbook” on
page 464. By the way, this procedure uses the noshow , showcolumns and endnoshow statements to make
sure that the window only get’s redisplayed once. These statements are not necessary for the procedure to
operate, but do make it look a little bit cleaner as it runs (“Suppressing Display of Text and Graphics” on
page 1410).

Running Difference

The runningdifference statement is the opposite of runningtotal . This statement fills each data cell
with the difference between the cell and the cell above it. Use the runningdifference statement when you
want to calculate the spread or interval between consecutive values, for example odometer readings or dates.
Here is a procedure that uses runningdifference to calculate gas mileage per gallon for each fill-up.

field Range
formulafill Odometer
runningdifference
field MPG
formulafill Range/Gallons

Go to “Using Running Difference to Calculate Gas Mileage” on page 467 to see what the result of this proce-
dure looks like.

Chapter 25:Programming Techniques Page 1625
Transforming Big Chunks of Data

The Math menu contains ten commands for transforming an entire field of data at once (see “Data Process-
ing” on page 509). All of these statements operated on the current field, so you’ll need to position the current
field before you use them (see “Moving Left and Right” on page 1591). In addition these commands only
operate on selected data, so you must make sure that the proper data is selected before the statement is used
(see “Selecting Information” on page 1616).

The workhorse of this group is formulafill , which you will probably use more than all the others com-
bined.

Category Statement Ref Description

Fills

formulafill Page 5271

This statement fills all of the selected cells in the current field
with a formula. Panorama starts at the top of the database and
works it’s way down, calculating a the formula result over and
over again for each record. See “Filling a Field with a Formula”
on page 511.

fill Page 5240

This statement also fills all of the selected cells in the current
field with a formula. Unlike formulafill, however, this state-
ment calculates the formula only once, before it starts scanning
the database. If you are filling the field with a constant value
like "US Mail" this statement will be slightly faster than the for-
mulafill statement. See “Filling a Field with a Fixed Value” on
page 510.

emptyfill Page 5189

This statement fills all empty cells in a field with a formula. Like
the fill statement, the formula is only calculated once before
Panorama begins scanning the database. See “Filling Empty
Cells” on page 521.

sequence Page 5725
This statement fills a numeric field with an increasing or
decreasing numeric sequence, for example 1, 2, 3 or 100, 99, 98.
See “Automatic Numbering” on page 522.

change Page 5092

This statement scans the current field searching for a word or
phrase. It replaces every occurrence of the word or phrase it
finds with another word or phrase. See “Change (Find and
Replace)” on page 530.

Propagates

propagate Page 5616 This statement copies the values in the current field into the
empty cells (if any) below. See “Propagate” on page 523.

unpropagate Page 5871

This statement is the opposite of propagate. It scans the data-
base from top to bottom. If it finds the same value two or more
times in a row it erases all but the topmost duplicate value. See
“UnPropagate” on page 527.

propagateup Page 5617 This statement copies the values in the current field into the
empty cells (if any) above. See “Propagate” on page 523.

unpropagateup Page 5872

This statement is the opposite of unpropagate. It scans the data-
base from bottom to top. If it finds the same value two or more
times in a row it erases all but the bottommost duplicate value.
See “UnPropagate” on page 527.

Appearance stylecolor Page 5807
This statement changes the style (bold, italic, etc.) and color
(red, green, blue, etc.) of one or more data cells. See “Data Style
and Color” on page 532.

Page 1626 Panorama Handbook
Making Transformations Even Faster

Panorama’s transformation (formulafill , propagate , etc.) statements operate very quickly, even when
used with large databases. However, the noundo statement can make these operations even faster (see
“NOUNDO” on page 5544). This statement disables Panorama’s undo feature. Since the transformation
doesn’t need to worry about undo it can run slightly faster. Here is an example of how to use noundo in a
procedure with the formulafill statement.

noundo
field Total
formulafill A+B+C+D
field Avg
formulafill (A+B+C+D)/4

The benefit of the noundo statement will not be noticeable on smaller databases, but becomes more pro-
nounced the larger the database gets.

Numeric Calculations with FormulaFill

On numeric fields the formulafill statement can be used to calculate totals, averages, discounts, percent-
ages, etc. The statement must be followed by a formula to calculate (see “Formulas” on page 1185). To illus-
trate this statement we’ll use this database.

This procedure will calculate all the values in the total and average fields.

field Total
formulafill A+B+C+D
field Avg
formulafill (A+B+C+D)/4

Here’s the finished result.

Chapter 25:Programming Techniques Page 1627
Suppressing Zero’s

If a new record with incomplete information is added to the database the empty values are treated as zeroes,
as shown here.

Sometimes you may want a zero result to be suppressed, leaving the cell blank. To do this use the
zeroblank(function, like this (see “ZEROBLANK(” on page 5912).

field Total
formulafill zeroblank(A+B+C+D)
field Avg
formulafill zeroblank((A+B+C+D)/4)

When this procedure is run any zero values are treated as blanks.

Page 1628 Panorama Handbook
Fill vs. FormulaFill

Like the formulafill statement, the fill statement also takes a formula and fills all the cells in the current
column with the result. However, there is a big difference. The formulafill statement calculates the for-
mula over and over again, producing a separate result for every record. The fill statement only calculates
the formula once, before it starts. It then fills all the cells with the same value. To illustrate we’ll use a modi-
fied version of the procedure from the last section.

field Total
fill zeroblank(A+B+C+D)
field Avg
fill zeroblank((A+B+C+D)/4)

The result of this procedure depends on what record is active. In this case every cell is filled with the total and
average for Camarillo.

If we click on Laguna Beach and run the procedure again we’ll get a different result.

Chapter 25:Programming Techniques Page 1629
The fill statement works fine for constant values, and is slightly faster than formulafill .

field Total
fill 0
field Avg
fill 0

This procedure fills the columns with zeroes.

Use the zeroblank(function if you want to fill a numeric field with zeroes (see “Suppressing Zero’s” on
page 1627).

field Total
fill zeroblank(0)
field Avg
fill zeroblank(0)

The result is two completely empty columns.

By the way, you could get the same result with the formulafill statement. It would be slightly slower, but
the difference would not be measurable unless the database contained tens of thousands of records.

Page 1630 Panorama Handbook
Using FormulaFill to Transform Text

Using the formulafill statement you can combine multiple fields, split a field apart, re-arrange words or
phrases, and translate characters (for example, converting uppercase to lower case). To illustrate a few exam-
ples of this we’ll use this contacts database.

This example combines the first and last names into a single field.

field Name
formulafill First+" "+Last

When triggered the result of this procedure looks like this.

Chapter 25:Programming Techniques Page 1631
This example combines the first and last names in a different way.

field Name
formulafill upper(Last)+", "+First

When triggered the result of this procedure looks like this.

Use text funnels to split a field apart or to re-arrange words or phrases. Text funnels allow a formula to
extract part of a cell based on a fixed character position within the cell, or based on patterns and context
within the cell. See “Taking Strings Apart (Text Funnels)” on page 1236 for a complete explanation of text fun-
nels. This procedure will fill the Name field with the first initial and the last name.

field Name
formulafill First[1,1]+". "+Last

Here is the result.

For more information on formulas that take apart and put together text see “Text Formulas” on page 1235.

Page 1632 Panorama Handbook
Date Calculations with Formula Fill

Use the formulafill statement to calculate the difference between dates, or to adjust dates. See “Date
Arithmetic” on page 1266 for details on performing calculations with dates. A typical use for date arithmetic
is aging of an accounts receivable database.

To calculate the age of an invoice based on the current date, use the Formula Fill command with the formula
shown here:

field Age
formulafill today()-«Ship Date»

Here is the result of this procedure.

Chapter 25:Programming Techniques Page 1633
If you want to calculate ages rounded to the nearest 30 day interval use the procedure below instead.

field Age
formulafill round((today()-«Ship Date»)-15,30)

Here’s the result. The age of each invoice rounded to the nearest 30 days.

For more information on the today(and round(functions see “TODAY(” on page 5859 and “ROUND(” on
page 5679.

The SEQ Function

The seq(function is a special function for use with the formulafill statement. This function returns a
unique number for each selected record, starting with 1 at the top of the database. Use this function if you
need a unique record number in a formula. Here is an example that fills a column with the words One, Two,
Three, Four, etc.

field Place
formulafill pattern(seq(),"§")

When you press OK the field is filled in (see “Displaying Numbers as Words” on page 360 for more informa-
tion on this output pattern.)

Page 1634 Panorama Handbook
Here is another example that uses the seq(function to assign medals to the first three finishers in the race.

field Time
sortup
field Place
formulafill array("Gold/Silver/Bronze",seq(),"/")

The first three finishers are assigned gold, silver, and bronze medals, with all of the other records left blank.

See “Text Arrays” on page 1257 for more information on the array(function used in this example.

Filling Empty Cells

The emptyfill statement is very similar to the fill statement (see “Fill vs. FormulaFill” on page 1628).
However, the emptyfill statement will not destroy the data already in the field. In fact, emptyfill will
only fill cells that are completely empty. Here is a database where some of the name prefixes have been left
blank.

Chapter 25:Programming Techniques Page 1635
Using the emptyfill statement these empty cells can quickly be filled with Mr.

field T
emptyfill "Mr."

Here’s the finished result.

Page 1636 Panorama Handbook
Automatic Numbering

The sequence statement fills the current field with a numeric sequence (for example 1, 2, 3 or 100, 110, 120).
The sequence statement only works with numeric fields, you cannot sequence a text, date, or choice field.
The sequence statement has one parameter, a text value that contains two numeric values within it, the start-
ing value and the increment. Here’s an example that will number 1000, 1001, 1002, etc.

field «Reg #»
sequence "1000 1"

Here is the result of this procedure.

The sequence can start with any number and increase by any value, including non-integer values or negative
values. The table below shows four examples of starting and increment values.

If the database contains summary records, the sequence count will reset to one after each summary record. If
you want to sequence the current field without restarting at summary records, use the formulafill state-
ment with the formula seq() . See “Summaries and Outlines” on page 453 for more information on sum-
mary records. See “Making Transformations Even Faster” on page 1626 for more information on the
formulafill statement.

"1 1" "5 5" "1 0.1" "100 -1"

1 5 1.0 100

2 10 1.1 99

3 15 1.2 98

4 20 1.3 97

5 25 1.4 96

Chapter 25:Programming Techniques Page 1637
Propagate and UnPropagate

Like emptyfill , the propagate statement fills all the empty cells in the current field. However, instead of
filling the empty cells with a fixed value, the propagate statement propagates filled data cells into the
empty data cells (if any) below them. The propagateup statement propagates filled data cells into the
empty data cells (if any) above them. See “Propagate” on page 523 for examples of these features in action.

The unpropagate statement performs the exact inverse of the propagate statement. If the same value
appears in two or more consecutive data cells, the unpropagate statement empties the second and subse-
quent data cells. The unpropagateup statement performs the same operation upside down, leaving the last
of several duplicate values while clearing the others. See “UnPropagate” on page 527 for examples of these
features in action.

Using UnPropagate to Eliminate Duplicates

The unpropagate statement can be used to eliminate duplicate values in a database. To see how to do this
manually see “Using UnPropagate to Eliminate Duplicates” on page 528. This procedure will remove all of
the duplicate entries in the current field.

sortup
unpropagate
select «» <> ""
removeunselected

Tip: One possible problem with this technique is that all cells that start out empty will be removed. For exam-
ple if you are removing duplicate company names but some records don’t contain company names, the
records without company names will be removed. To fix this problem, use the emptyfill statement to fill
the empty names with a unique value like n/a before you start, then use the select statement to select all
values not equal (≠≠≠≠ or <>) to n/a. Then perform the rest of the steps listed above. Here is a revised version of
the procedure that takes care of this problem.

emptyfill "!empty!"
select «» <> "!empty!"
sortup
unpropagate
select «» <> ""
removeunselected
formulafill ?(«» = "!empty!" , "" , «»

Warning: Keep in mind that all of these techniques will blindly remove all but the first duplicate entry. In this
example, there were two entries for Bayshore Typesetting. However, they were probably not really dupli-
cates, since one was in Washington, DC and the other in San Rafael, CA. There is no way for an automatic
technique like this to know which of these is really correct, or even if they are really duplicates at all. If you
want to manually examine duplicate records instead of blindly deleting them, use the selectduplicates
statement. See “Selecting Duplicates” on page 1618 for more information on this statement.

Change (Find and Replace)

The change statement finds and replaces a word or phrase in the current field (see “CHANGE” on
page 5092). For example, you can use the change statement to replace every occurrence of Inc. to Incorpo-
rated, or every occurrence of Purchase Order to P.O. In it’s most basic form the change statement has two
parameters:

change <original text>,<new text>

Page 1638 Panorama Handbook
To illustrate this statement we’ll use this conference registration database. Notice that it contains the abbrevi-
ation Inc. in several places in the company name field.

To change every occurrence of Inc. to Incorporated use this procedure.

field «Company Name»
change "Inc.","Incorporated"

Running this procedure makes the changes.

The procedure can use the info("changecount") function to find out how many occurrences of the word
or phrase were changed (if any). Here is a modified version of the procedure that simply reports the number
of changes.

field «Company Name»
change "Inc.","Incorporated"
message "Inc. changed into Incorporated in "+str(info("changecount"))+ " places."

Chapter 25:Programming Techniques Page 1639
Running this revised procedure (on the original data) causes this message to appear.

By adding the caps option to the change statement you tell Panorama to adjust capitalization as it performs
the replacement. The caps option should NOT be in quotes, and must be placed after the other parameters,
separated by one or more spaces. For example:

field «Company Name»
change "Inc.","Incorporated" caps

When the caps option is added to the statement Panorama will automatically adjust the capitalization of the
new word or phrase as it is inserted into the database. If you leave this option off, capitalization is not
adjusted. In fact, if the caps option is off, only words or phrases that exactly match the capitalization typed
into the dialog will be replaced. The table below shows the result of replacing Inc. with Incorporated both
with and without the caps option.

By adding the words option to the change statement you tell Panorama to replace only entire words, not
sections of words. For example, if you ask Panorama to change is to was, it will also change this to thwas.
This is, of course, wrong. To prevent this, add the words option after the other parameters, like this.

field Body
change "is","was" words

You can combine the caps and the words options, like this.

field Body
change "is","was" caps words

The order of the caps and words options does not matter, as long as both are after the other parameters.

Original without caps option with caps option

 Inc. Incorporated Incorporated

INC. INC. INCORPORATED

inc. inc. incorporated

Page 1640 Panorama Handbook
Changing with the Replace(Function

The change statement is not the only way to replace words or phrases. You can also use the formulafill
statement and the replace(or replacemultiple(functions (see “String Modification Functions” on
page 1246). This technique is especially handy if you need to replace several words or phrases at once. For
example, consider the addresses in the database below.

Suppose you wanted to expand the abbreviations in these addresses: St. to Street, Dr. to Drive, etc. You could
do this by using the change statement over and over again. Or you can simply use the replacemultiple(
function to replace all of the abbreviations in one fell swoop.

field «Street Address»
formulafill replacemultiple(«Street Address»,

"Rd./St./Dr./Ln./Ave.",
"Road/Street/Drive/Lane/Avenue","/")

Running this procedure replaces all of the abbreviations at once.

See “Using FormulaFill to Transform Text” on page 1630 for more information on the formulafill state-
ment.

Chapter 25:Programming Techniques Page 1641
Data Style and Color

In addition to the data stored in each cell, Panorama also keeps track of the style (plain, bold, italic, etc.) and
(to a limited extent) color (red, green, etc.) of each cell (see See “Data Style and Color” on page 532). In a pro-
cedure the stylecolor statement can be used to change the style or color of one or more data cells. The
statement has one parameter which controls what cells get changed (cell, record, field, all), what color the
cells should be changed to (black, red, green, blue, cyan, yellow, magenta) and what style (bold, italic, under-
line, shadow).

If the parameter starts with the word cell, only the current cell will be changed. If the parameter starts with
the word record, all the cells in the current record will be changed. If the parameter starts with the word field,
all the selected cells in the current field will be changed. If the parameter starts with the word all, every cell in
every selected record will be changed.

Here are some examples of different parameter combinations.

stylecolor "field blue bold"
stylecolor "all black"
stylecolor "cell red italic"
stylecolor "record bold"

For example, a procedure can underline the current data cell. We’ll start with a plain data cell.

Here is a procedure that changes the style of this cell.

stylecolor "cell underline"

When you run this procedure the cell will be underlined.

Page 1642 Panorama Handbook
It’s easier to see the underline if you click on another cell.

Using a slightly modified procedure we can make an entire line bold.

stylecolor "record bold"

Run the procedure to make the record bold.

This procedure will make all phone numbers appear in italic blue, as shown here.

field Phone
stylecolor "field italic blue"

Here’s the result.

Notice that the italic blue has overridden the bold applied in the previous example.

For our final example we will go to a checkbook database and mark all insurance payments in green.

select Category="Insurance"
stylecolor "all green"
selectall

Chapter 25:Programming Techniques Page 1643
When you run this procedure all the insurance records will turn green, like this.

A cell retains its style and color until the data is modified. Any data modification (editing, formula fill, etc.)
will cause the cell to revert to plain black.

Every data cell that is not plain black takes up an extra byte of storage. For example a database with 10 fields
and 500 records will expand by 5K bytes if you change every data cell to blue or italic (or both).

Accessing Style and Color in a Formula

Panorama formulas can use the fieldstyle(function to access both the style and color of individual data
cells. When combined with the select statement, these functions allows you to select data based on its style
or color. (See “Selecting Information” on page 1616 for more information on this command.)

The basic syntax for the fieldstyle(function is:

fieldstyle(fieldname)

This function returns the style and color of a data cell— bold, italic, etc. The fieldname parameter is a string,
so it should usually be in quotes—for example fieldstyle("Price")="bold" . If the data cell has more
than one style or color, this function will return all of them, for example red bold italic. Use the contains
operator (see “String Testing Functions” on page 1245) to check for a specific style or color, for example

select fieldstyle("Name") contains "italic"

To check if a cell is plain, use a formula like this

fieldstyle("Address")=""

For more information on this function see “FIELDSTYLE(” on page 5218.

Page 1644 Panorama Handbook
Processing/Transforming an Entire Array

The previous section described methods for transforming an entire field in a database (see See “Transforming
Big Chunks of Data” on page 1625). This section describes different methods for quickly processing all the
elements in an array. If you are not already familiar with text arrays see “Text Arrays” on page 1257.

“Filtering” an Array

The arrayfilter statement allows a procedure to use a formula to process each element of an array (see
“ARRAYFILTER” on page 5042). The statement scans the array you specify element by element, and uses the
formula you supply to transform each element. It then builds a new array using the transformed elements.

The arrayfilter statement has four parameters:

arrayfilter oldarray , newarray , separator , formula

The first parameter, oldarray, is the original array. This is usually a field or variable, but could be any formula
that produces text data.

The second parameter, newarray, is the new array. This must be a field or variable. If you don’t mind chang-
ing the original array, oldarray and newarray may be the same field or variable. If you want to keep the orig-
inal array, newarray should be different.

The third parameter is the separator character (see “Picking a Separator Character” on page 1257).

The fourth parameter is the formula that will transform each array element. In addition to the usual functions
and operators there are two functions that have special meaning in this function. The import(function
returns the original data in the array element. The seq(function returns the array element number (1, 2, 3,
etc.).

Here is a procedure called .NumberArray that adds sequence numbers to an array. The procedure that calls
.NumberArray must pass an array as parameter 1 and a separator character as parameter 2.

local tempArray
tempArray=parameter(1)
arrayfilter tempArray,tempArray,parameter(2),"("+str(seq())+") "+import()
setparameter 2,tempArray

Here’s a procedure that uses .NumberArray to produce a numbered list of atomic elements.

local Elements
Elements=replace("Hydrogen;Helium;Lithium;Beryllium;Boron;"+

"Carbon;Nitrogen;Oxygen;Flourine;Neon;"+
…
"Mendelevium;Nobelium;Lawrencium",";",¶)

.call .NumberArray,Elements,¶

Chapter 25:Programming Techniques Page 1645
This table shows what the Elements array looks like before and after the .NumberArray procedure processes
the array.

Stripping Blank Elements From An Array

The arraystrip(function removes all blank elements from an array (see “ARRAYSTRIP(” on page 5056).
This function has two parameters: the original array, and the separator character for that array.

arraystrip(array , separator)

The arraystrip(function can be combined with the arrayfilter statement to produce a subset of an
array. This example creates a list of recent local phone numbers.

global RecentLocalPhone
arrayfilter RecentPhone,RecentLocalPhone,¶,

?(length(import())<10,import(),"")
RecentLocalPhone=arraystrip(RecentLocalPhone,¶)

The table below shows how this procedure works. The first column shows the original RecentPhone array,
with 6 phone numbers, 3 local, 3 in other area codes. The second column shows the RecentLocalPhone array
after the arrayfilter statement. Using the ?(function the formula has “blanked out” all the phone num-
bers with area codes (see “The ? Function” on page 1287). The array elements are still there, but they are
empty. The third column shows the RecentLocalPhone array after the arraystrip(function. All the empty
array elements have been removed, so this array now has only 3 items.

Before After

Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon

…

…

Mendelevium
Nobelium
Lawrencium

(1) Hydrogen
(2) Helium
(3) Lithium
(4) Beryllium
(5) Boron
(6) Carbon
(7) Nitrogen
(8) Oxygen
(9) Fluorine
(10) Neon

…

…

(101) Mendelevium
(102) Nobelium
(103) Lawrencium

Original after ArrayFilter after ArrayStrip(

784-3490
(213) 454-3309
(408) 339-7792
940-2234
(303) 452-2284
878-2256

784-3490

940-2234

878-2256

784-3490
940-2234
878-2256

Page 1646 Panorama Handbook
Reversing the Order of an Array

The arrayreverse(function reverses the order of the elements of an array (see “ARRAYREVERSE(” on
page 5048). For example, the formula:

arrayreverse("1;2;3;4",";")

will produce the array 4;3;2;1.

The formula below could be used with an auto-wrap or text display object to display all the checks written to
a company, starting with the most recent check (assuming the Checkbook database is sorted by date).

arrayreverse(lookupall("Checkbook",«Pay To»,Company,«Check Num»,¶),¶)

Using Regular Text Functions with Arrays

Don’t forget that you can use regular text processing techniques on arrays (see “Text Formulas” on
page 1235). After all, an array is simply a chunk of text that happens to have separator characters in it. For
example, to convert our entire atomic element array to upper case in one fell swoop, just use this assignment:

Elements=upper(Elements)

The assignment below will change all the stainless steel parts in the PartsList array to cheap plastic.

PartsList=replace(PartsList,"Stainless Steel","Cheap Plastic")

Of course no Panorama customer will ever need a formula like that!

Sorting an Array

Sorting an array in a procedure is easy. The arraysort statement does all the work (see “ARRAYSORT” on
page 5055). This statement has three parameters:

arraysort oldarray , newarray , separator

The first parameter, oldarray, is the original array. This is usually a field or variable, but could be any formula
that produces text data.

The second parameter, newarray, is the new array. This must be a field or variable. If you don’t mind chang-
ing the original array, oldarray and newarray may be the same field or variable. If you want to keep the orig-
inal array, newarray should be different.

The third parameter is the separator character.

The arraysort statement always sorts the array in ascending order (A’s first, Z’s last). Upper case, lower
case, and international letters will be sorted correctly (i.e. a comes before B, which may seem obvious but is
not the normal ASCII order).

The example below builds a fileglobal variable named FormList that contains a list of the forms in the current
database. The list is carriage return delimited and alphabetized. You could use this list with a Pop-Up Menu
or a List SuperObject™.

fileglobal FormList
FormList=dbinfo("forms","")
arraysort FormList,FormList,¶

Chapter 25:Programming Techniques Page 1647
Removing Duplicate Items from an Array

The arraydeduplicate statement also sorts an array. After it sorts the array it eliminates all the elements
that are duplicated (see “ARRAYDEDUPLICATE” on page 5039). For example, if an array contains San Fran-
cisco three times, this statement will eliminate two and leave only one. The parameters for the
arraydeduplicate statement are the same as for the arraysort statement.

arraydeduplicate oldarray , newarray , separator

The example below creates a fileglobal variable named Companies, then fills it with a sorted list that contains
all the companies in California listed in alphabetical order:

fileglobal Companies
Companies=lookupall("Invoices",State,"CA",Company,¶)
arraydeduplicate Companies,Companies,¶

Each company will be listed only once, no matter how many times the company appears in the Invoices data-
base.

(Note: There is no automatic way to eliminate the duplicate values in an array without also sorting the array.)

Building an Array from a Database

The previous example showed how an array can be built from the data in a database using the lookupall(
function. An even more powerful technique is the arraybuild statement (see “ARRAYBUILD” on
page 5035). This statement scans a database and, using a formula you supply, extracts information from each
record to build an array. The statement has four parameters:

arraybuild array , separator , database , formula

The first parameter, array, is the new array you want to build. This must be a field or variable.

The second parameter is the separator character (see “Picking a Separator Character” on page 1257).

The third parameter, database, is the name of the database that contains the information that will be scanned
to build the array. This database must be currently open at the time the arraybuild statement is used. If
you want to use the current database use the function info("databasename") or simply use "" .

The fourth parameter, formula , is the heart of this statement. As the arraybuild statement scans the data-
base record by record, it uses this formula to extract data from each record and add it to the array. The for-
mula can also be used to select which records appear in the array. If the formula produces empty text for a
particular record, that record will not be included in the array. The formula can reference any field in the
database being scanned.

The example below produces a list of past due invoices.

fileglobal PastDueAccounts
arraybuild PastDueAccounts,¶,"Invoices",

?(Balance>0 and today()-InvoiceDate>30,
pattern(InvoiceNumber,#####)+" ("+Company+")","")

This procedure will produce an array that will look something like this:

00436 (Acme Widgets)
02445 (Optimal Resolution Trust)
03689 (Zippy Car Wash)

This array could be displayed on a report, or it could be used in a pop-up menu or scrolling list.

Page 1648 Panorama Handbook
Warning: One thing to be careful about when building arrays with the arraybuild statement is the size
(number of characters) of the array you are building. The array must fit in Panorama’s scratch memory allo-
cation. If you are going to build very large arrays you may need to increase this allocation (see “Changing
Scratch Memory Size (Macintosh)” on page 273).

Note: The arraybuild statement scans every record in the database, whether it is selected or not. If you
would only like to scan selected records, use the arrayselectedbuild statement. This statement is identi-
cal to the arraybuild statement except for the fact that it only scans selected records. If you know that all
the records you want to scan are selected, this statement may be much faster than the regular arraybuild
statement.

Appending an Array to a Database

An array in a variable can be appended to a database almost as if it were a text file on the disk. The array
must be carriage return delimited, and if there is more than one field, the fields must be tab delimited. To
append a variable to the current database, put +@ in front of the variable name like this:

openfile "+@Array"

To replace the entire current database with the array, put &@ in front of the variable name like this:

openfile "&@Array"

Here is an example that transfers houses from a Listings database to a Sales database.

local TransferArray
arraybuild TransferArray,¶,"Listings",

?(Escrow ≠"Closed","",
Date+¬+Address+¬+City+¬+State+¬+Zip+¬+str(SoldPrice))

select Escrow ≠"Closed"
removeunselected
open "Sales"
open "+@TransferArray"

The arraybuild statement copies all the recently sold listings into the TransferArray variable. The ¬ charac-
ter (see “Special Characters” on page 1225) separates each field with the required tab. Once the listings are
safely copied into the array, they are deleted from the Listings database. The first open statement makes sure
that the Sales database is open and on top. This database has six fields, SoldDate, Address, City, State, and
SoldPrice, in that order. The formula in the arraybuild statement has been set up to create the array with
the fields in that order. The final statement of the procedure appends the data in TransferArray to the end of
the Sales database.

If you are transferring information between two databases with identical fields the exportline(function
can come in handy (see “EXPORTLINE(” on page 5207). This function outputs all the fields in the current
record with tabs in between. The example below appends all of the invoices in the database Paul's Invoices to
the current database.

local TransferArray
arraybuild TransferArray,¶,"Paul's Invoices",exportline()
openfile "+@TransferArray"

This example transferred all of the information across, but you could use the ?(function to transfer just a
subset.

Chapter 25:Programming Techniques Page 1649
Copying Between Multiple Variables and an Array

Panorama has the ability to combine multiple variables into a single array, or to take an array and split it into
many separate variables. This capability can be useful for editing arrays (each array element can be edited in
a separate variable) and for saving a collection of variables in a single disk file (for example to store prefer-
ences).

The savevariables statement takes a list of variables and combines the values of all the variables into a
single array. The statement has three parameters:

savevariables VariableList , CombinedArray , Separator

The VariableList parameter is an array containing the names of the variables to be included in the result. Each
item in the array must be separated from the next by the Separator character (see “Picking a Separator Char-
acter” on page 1257).

The CombinedArray parameter is a field or variable name. The statement will build the final array of values
in this field or variable, using the Separator character to divide each item. Any numbers will be converted to
text as the array built. The example below saves all of the fileglobal variables for the current file into a
disk file.

local fileExtraData
savevariables info("filevariables"),fileExtraData,¶
filesave "",info("databasename")+" Variables","",fileExtraData

The following example is similar but it saves both the variable name and the data in the format vari-
able=value. The variables will be listed in alphabetical order.

local varNames,varData
varNames=info("filevariables")
arraysort varNames,varNames,¶
savevariables info("filevariables"),varData,¶
arrayfilter varData,varData,¶,array(info("filevariables"),seq(),¶)+"="+import()
filesave "",info("databasename")+" Variables","",varData

The resulting file will be named something like Contact Variables (the exact name depends on the database
name) and will look something like this:

ActiveForm=Contacts
LocalAreaCode=714
SearchText=Chicago

The loadvariables statement takes an array of values and splits the values into individual variables. If the
variables don’t exist, the statement will create them. The loadvariables statement has three parameters:

loadvariables VariableList , VariableValues , Separator

The VariableList parameter is an array containing the names of the variables to be loaded. Each item in the
array must be separated from the next by the Separator character (see “Picking a Separator Character” on
page 1257).

The VariableValues parameter is an array containing the values of the variables. This array must be in the
same order as the VariableList parameter. Each value in the array must be separated from the next by the
Separator character.

Page 1650 Panorama Handbook
Here is an example that loads three variables from an array.

loadvariables "Gold,Silver,Bronze","Johnson,Smith,Fetzl",","

This example is exactly the same as:

Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

If a variable already contains a numeric value, the loadvariables statement keeps it numeric if possible (if
all the characters in the new value are numeric). Here is an example where three numbers are loaded into
variables.

fileglobal Red,Green,Blue
Red=0 Green=0 Blue=0
loadvariables "Red,Green,Blue","24,58,199",","

This example is exactly the same as the procedure below. Notice that there are no quotes around the numbers.

fileglobal Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting. Suppose you had an
array called ContactInfo that contained name/value pairs like this:

Name:Johnson
Email:ajohnson@worldwide.com
url:www.worldwide.com

The example below can take this array and separate it into three variables called ContactName, ContactE-
mail, and Contacturl.

global ContactInfo
local contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+array(import(),1,":")
arrayfilter ContactInfo,contactValues,¶,array(import(),2,":")
loadvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for variable names and val-
ues, then creates and loads the variables with the values.

The loadvariables statement will automatically create fileglobal variables if they do not exist. If you want
to create some other kind of variable you can use one of the four statements listed below. (The
loadfileglobalvariables statement is actually exactly the same as the loadvariables statement, but
is included for completeness.)

LoadGlobalVariables VariableList , VariableValues , Separator

LoadFileGlobalVariables VariableList , VariableValues , Separator

LoadWindowVariables VariableList , VariableValues , Separator

LoadLocalVariables VariableList , VariableValues , Separator

If the variables have already been created then these four statements all work exactly the same.

Chapter 25:Programming Techniques Page 1651
Editing an Array using Separate Variables

The loadvariables and savevariables statements can be used to help edit an array as individual com-
ponents. Each component has it’s own SuperObject for text editing, but the results are all combined into a sin-
gle variable.

Start by defining the variable names for each individual line item component. You’ll also need to build a form
with SuperObjects to edit each of these variables.

fileglobal LineItems
LineItems=replace("Qty1/Desc1/Price1/Qty2/Desc2/Price2","/",¶)

When you open the form to edit the array, this procedure will fill the separate variables with data from the
LineItemData array (which could be a field or a variable).

loadvariables LineItems,LineItemData,¶

When a component is modified you can rebuild the combined array with this procedure.

savevariables LineItems,LineItemData,¶

Page 1652 Panorama Handbook
Programming Graphic Objects on the Fly

Graphic objects are usually manipulated manually in Graphics Mode. A procedure can also be programmed
to perform manipulations on graphic objects. For example a procedure can move or change the size of
objects, change the color of objects, change the font of text objects, etc. When a procedure manipulates
graphic objects it does so directly in Data Mode (not in Graphic Mode).

Although procedures can manipulate graphics, they cannot do everything that you can do manually in
Graphics Mode. A procedure cannot create new objects or delete existing objects, and it cannot make any
change that would change the amount of memory used by the graphic object. (For example a procedure can-
not change the text in an auto-wrap text object.)

Basics of Graphic Object Programming

Working with graphic objects is a two step process. First, the program must identify the object or objects that
need to be modified. This is called selecting the objects. The process is similar to manually selecting a graphic
object by clicking on it or dragging around it. (However, unlike objects that are selected manually in graphics
mode, no handles appear at the corners of objects that are selected by a procedure.) Of course a procedure
cannot click on an object, so it has to use one or more properties of the object to identify it. For example, you
can select an object based on its name, based on its position, based on its color, or based on a number of other
attributes (or combinations of attributes).

Once at least one object is selected the procedure can use the changeobjects statement to change the object
or objects. The changeobjects statement can change one property of an object (or objects) at time. If you
need to change more than one property (for example position and color) you’ll need to use more than one
changeobjects statement.

Selecting an Object by Name

If an object has a unique name within a form, the simplest way to select the object is using that name. Any
graphic object can have a name that can be used to identify that object. To give an object a name first select the
object (in Graphics Mode), then use the Object Name command in the Edit menu or click on the object name
in the Graphic Control Strip (see “Object Type/Object Name” on page 585). (The Graphic Control Strip can
also display the name of the object when you click on the object.)

To select an object by name use the object statement. This statement has one parameter—the name of the
object to select. For example, to select an object named Swiss Cheese use this procedure:

object "Swiss Cheese"

The parameter must match the object name exactly, including upper and lower case. If there is more than one
object named Swiss Cheese this statement will select the one farthest to the back. (To select multiple objects at
a time use the selectobjects statement, described in the next section.)

If the user is currently editing using a SuperObject (text editor or word processor) the procedure can find out
the name of the object being edited with the info("editing") function. You can use this function with the
object statement to select the object, and possibly change one or more of its attributes. (Note: This function
scans all the objects in the current form, so if you are going to use it over and over again it might be faster to
use it once and copy the name into a local variable, then use the local variable.)

Selecting Multiple Objects

To select multiple objects at once use the selectobjects statement. This statement scans the objects in the
current form and selects some of them based on a formula. The formula can use the objectinfo(function
(see the next section) to examine each object as it is scanned and decide whether or not the object should be
selected. For example, the statement below scans the current form and selects all objects that are pure blue.

selectobjects objectinfo("color")=rgb(0,0,65535)

Chapter 25:Programming Techniques Page 1653
To quickly select all of the objects in the current form, use the selectallobjects statement. To quickly un-
select all of the objects in the current form, use the selectnoobjects statement.

No matter how the objects are selected, they will remain selected until you close the form, switch the form
into graphics mode, or perform another statement that selects objects. Once one or more objects are selected
you can use the changeobjects statement to change many of the attributes of the object (more on this later
in this chapter).

Getting Information About Individual Objects

A procedure does not have eyes to see the graphic objects in a form. Instead of eyes or a camera, the proce-
dure uses the objectinfo(function to gather information about graphic objects. The objectinfo(func-
tion has one parameter—the type of information you want to collect (object location, size, color, font, etc.).

Like a camera, the objectinfo(function must be “pointed” at a specific object. There are several state-
ments that can “point” at a specific object, including the object statement and the selectobjects state-
ment (see previous sections).

Here is an example of the object statement and objectinfo(function in action. This example finds out the
font and text size of the object named MySpecialButton.

local myFont, mySize
object "MySpecialButton"
if info("found")

myFont=objectinfo("font")
mySize=objectinfo("textsize")

endif

There are about a dozen types of information the objectinfo(function can extract from an object.

objectinfo(function Description

objectinfo("rectangle")

This option returns the dimensions (location and size) of the object. The
dimensions are returned using the rectangle data type (see “Rectangles”
on page 1304). The rectangle is returned in form relative co-ordinates (see
“XYTOXY(” on page 5907).

The example below selects the data cell(s) the user clicked on. The proce-
dure uses the inrectangle(function to determine which object (if any)
was clicked on. (Note: Presumably this procedure would be triggered by
a push button which covers the data cell objects.)

local hitPt, hitField
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects
inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") beginswith "Data Cell:"
objectnumber 1
hitField=objectinfo("type")[":",-1][-2,-1]
if hitField="" stop endif
field hitField
editcell

If the user did click on a data cell, the procedure activates the cell.

Page 1654 Panorama Handbook
objectinfo("name")

This option returns the name of the object. This is the name that is
assigned by the Object Name dialog (in the Edit menu, or Graphic Con-
trol Strip). The two lines shown below are basically equivalent.

object "Swiss Cheese"
selectobjects objectinfo("name")="Swiss Cheese"

These two statements are not completely equivalent. If there is more than
one object named Swiss Cheese the selectobjects statement will select all
of them. The object statement will select only the one closest to the back.

The objectinfo("name") function can be used in a formula to decode
object names. For example, if a form contains rows and columns you can
give each cell a name like c1r1, c1r2, … c4r12. Using the object-
info("name") function a procedure could decode these names and select a
specific column or row. For example, here is a procedure that selects the
third column:

selectobjects objectinfo("name")[1,2]="c3"

Here is another procedure that selects the seventh row:

selectobjects objectinfo("name")[3,4]="r7"

By carefully assigning object names you can often simplify the design of
your procedures tremendously. Look for patterns that you can take
advantage of.

objectinfo("type")

This option returns the type of the object. The object types are:

Rectangle
Rounded Rectangle
Oval
Line
Picture
Auto-Wrap Text
Click Text
Data Cell:<field>
Button
Chart
Flash Art
Flash Sound
Balloon Help
SuperObject:<type of SuperObject>
Tile:<type of tile>
Group

To see a complete list of SuperObject types see the objectinfo("custom")
function (Page 1658). To see a complete list of tile types see the object-
info("tile") function (Page 1657).

Here is a procedure that uses this function to select all of the rectangles in
the current form.

selectobjects objectinfo("type")="Rectangle"

objectinfo("font")

This option returns the font for this object. If the option does not have a
font (an oval, for example) this option will return empty text.

This procedure converts all Courier text to American Typewriter.

selectobjects objectinfo("font")="Courier"
changeobjects "font","American Typewriter"

objectinfo(function Description

Chapter 25:Programming Techniques Page 1655
objectinfo("textsize")

This option returns the size of the text displayed by this object. If the
object does not have a text size (an oval, for example) this option will
return zero. Here is a procedure that selects all objects with a text size
greater than 18 points (1/4 inch) and changes them to American Type-
writer.

selectobjects objectinfo("textsize")>18
changeobjects "font","American Typewriter"

objectinfo("textstyle")

This option returns the text style of text displayed by the object. The text
style is a number that is created by adding up the numbers for each indi-
vidual style from the table below. For example, for bold italic text the
style will be 3.

0 Plain
1 Bold
2 Italic
4 Underline
8 Outline
16 Shadow

The example below selects all italic objects and then changes the color of
the italic objects to blue.

selectobjects objectinfo("textstyle") and 2
changeobjects "color",rgb(0,0,65535)

objectinfo("color")

This option returns the color of the object (see “Colors” on page 1308).
For example, this procedure selects all objects with brightness below 50%,
then changes it to a minimum brightness of 50%.

selectobjects brightness(objectinfo("color"))<32768
changeobjects "color",

hsb(
hue(objectinfo("color")),
saturation(objectinfo("color")),
32768

)

objectinfo("selected") This option returns whether or not the object is already selected (by a pre-
vious selectobjects statement).

objectinfo("locked")

This option returns true or false depending on whether or not the object
is locked. (A locked object cannot be modified when in graphic editing
mode, see “Locked Objects” on page 626.) The example below selects all
rectangles that are not locked.

selectobjects objectinfo("type")="Rectangle"
 and not objectinfo("locked")

objectinfo("expandable")
This option returns true or false depending on whether or not the object
can expand depending on the amount of data to be printed (see “Variable
Height Records” on page 1131).

objectinfo("expandshrink")
This option returns true or false depending on whether or not the object
can expand or shrink depending on the amount of data to be printed (see
“The Expand/Shrink Option” on page 1138).

objectinfo(function Description

Page 1656 Panorama Handbook
objectinfo("text")

This option returns the text in auto-wrap text objects or click text objects
(see “Fixed Text Objects” on page 637). When used with any other type of
object it returns empty text.

This example changes all text objects that contain the word Phone to
italic.

selectobjects objectinfo("text") contains "Phone"
changeobjects "textstyle",
 objectinfo("textstyle") or 2

objectinfo("fillpattern")

This option returns the fill pattern of the object (if any, see “Fill Pattern”
on page 575). Patterns are 8 bytes of raw data (see “Raw Binary Data” on
page 1310). Here are some formulas for typical patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally mil-
lions of patterns that can be created.

objectinfo("linepattern")

This option returns the line pattern of the object (if any, see “Line Pattern”
on page 577). Patterns are 8 bytes of raw data (see “Raw Binary Data” on
page 1310). Here are some formulas for typical patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally mil-
lions of patterns that can be created

objectinfo("linewidth")
This option returns the line width of the object (if any, see “Line Width”
on page 579). The line width is a number from 1 to 8, or zero if this object
does not support a line width.

objectinfo(function Description

Chapter 25:Programming Techniques Page 1657
objectinfo("tile")

This option returns the type of tile (if the object is a tile, otherwise it
returns ""). You can also get this information using the objectinfo("type")
function. The tile type will be one of the names in this list.

"1st page Header"
"1st page Header (Center) "
"1st page Header (Right) "
"Header"
"Header (Center) "
"Header (Right) "
"Table Header "
"Group Header (1) "
"Group Header (2) "
"Group Header (3) "
"Group Header (4) "
"Group Header (5) "
"Group Header (6) "
"Group Header (7) "
"Group Sidebar (1) "
"Group Sidebar (2) "
"Group Sidebar (3) "
"Group Sidebar (4) "
"Group Sidebar (5) "
"Group Sidebar (6) "
"Group Sidebar (7) "
"Data "
"Summary (1) "
"Summary (2) "
"Summary (3) "
"Summary (4) "
"Summary (5) "
"Summary (6) "
"Summary (7) "
"Table Footer "
"Footer"
"Footer (Center) "
"Footer (Right) "
"Left Margin "
"Right Margin "
"BackDrop "
"Spacer"
"Data (Page 2) "
"Data (Page 3) "
"Data (Page 4) "
"Data (Page 5) "
"Data (Page 6) "
"Data (Page 7) "
"Data (Page 8) "
"Data (Page 9) "
"Top Margin"
"Data Overflow"

For more information on report tiles see “Working with Tiles” on
page 1068.

objectinfo(function Description

Page 1658 Panorama Handbook
Modifying Selected Objects

A program can use the changeobjects statement to modify certain attributes of selected objects (see
“CHANGEOBJECTS” on page 5094). The changeobjects statement has two parameters:

changeobjects how, data

The how parameter specifies how the objects should be adjusted—a new font, a new color, new position, etc.
The data parameter specifies the new object attributes—"Palatino", rgb(5000,12000,48000), rectan-
gle(100,120,410,240), etc. The following table describes each of the options available.

objectinfo("custom")

This option only works with SuperObjects. It returns the type of Super-
Object (see list below). This information can also be obtained by using the
objectinfo("type") function.

"Text Display"
"Text Editor"
"PgCell" (word processor)
"Super Flash Art"
"Push Button"
"Flash Art Push Button"
"Data Button"
"Sticky Push Button"
"Flash Art Data Button"
"PopUp Menu"
"Text List" (scrollable list)
"Scroll Bar"
"Super Matrix"
"Auto Grow" (elastic form)

objectinfo("ID")

This option returns a unique number that can be used to identify this
object later. The number is valid as long as the form is not edited in
graphics mode. The objectid statement can use this unique ID number to
re-locate this object later (see “Object ID Values” on page 1662).

objectinfo("count")

This option applies not to a specific object, but to the entire form. It
counts the number of currently selected objects. For example, this exam-
ple displays the number of rectangles in the current form.

selectobjects
 objectinfo("type") contains "rectangle"
message "This form contains "+
 str(objectinfo("count"))+ " rectangles."

objectinfo("boundary") This option applies not to a specific object, but to the entire form. It calcu-
lates the minimum rectangle that encloses all of the selected objects.

Option Description

rectangle

This option changes the rectangle of all selected objects. This example moves all selected objects down
and to the right by 36 pixels (1/2 inch).

changeobjects "rectangle" ,
 rectangleadjust(objectinfo("rectangle"),
 36,36,36,36)

objectinfo(function Description

Chapter 25:Programming Techniques Page 1659
fieldname

This option applies only to data cells. It changes the field associated with the any selected data cells.
The example below changes all Qty cells to Price cells (Qty1 to Price1, Qty2 to Price2, etc.)

selectobjects objectinfo("fieldname") match "Qty?"
changeobjects "fieldname" ,
 "Price"+objectinfo("fieldname")[4,-1]

font

This option changes the font of selected objects. Non text objects will not be affected. The example
below sets the font of all data cells to Times Roman.

selectobjects objectinfo("type")="Data Cell"
changeobjects "font" ,"Times Roman"

textsize

This option changes the text size of selected objects. Non text objects will not be affected. The example
below reduces the text size of all data cells by 3 points, down to a minimum of 9 points.

selectobjects objectinfo("type")="Data Cell"
changeobjects "textsize" ,
 maximum(9,objectinfo("textsize")-3)

textstyle

This option changes the text size of selected objects. Non text objects will not be affected. The text style
is a number that is created by adding up the numbers for each individual style from the table below.
For example, for bold italic text the style will be 3.

0 Plain
1 Bold
2 Italic
4 Underline
8 Outline
16 Shadow

The example below sets the style of all data cells to bold italic.

selectobjects objectinfo("type")="Data Cell"
changeobjects "textstyle" ,3

color

This option changes the color of the selected objects (see “Colors” on page 1308). The example proce-
dure below changes any pure red objects on the current form into blue objects.

selectobjects objectinfo("color")=rgb(65535,0,0)
changeobjects "color" ,rgb(0,0,65535)

Option Description

Page 1660 Panorama Handbook
fillpattern

This option changes the fill pattern of the selected objects (see “Fill Pattern” on page 575). Patterns are
8 bytes of raw data (see “Raw Binary Data” on page 1310). Here are some formulas for typical pat-
terns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally millions of patterns that can be
created. The example procedure below sets the Check Background object to a dark gray pattern.

selectobjects objectinfo("name")= "Check Background"
changeobjects "fillpattern" ,radix(16,"DD77DD77DD77DD77")

linepattern

This option changes the line pattern of the selected objects (see “Line Pattern” on page 577). Patterns
are 8 bytes of raw data (see “Raw Binary Data” on page 1310). Here are some formulas for typical pat-
terns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally millions of patterns that can be
created. The example procedure below sets the Check Background object to a 50% gray pattern (which
will display a dotted line).

selectobjects objectinfo("name")= "Check Border"
changeobjects "linepattern" ,radix(16,"AA55AA55AA55AA55")

linewidth

This option changes the line width of the selected objects (see “Line Width” on page 579). The exam-
ple below sets the line width of the Check Background object to 4 pixels.

selectobjects objectinfo("name")= "Check Border"
changeobjects "linewidth" ,4

expandable

This option allows a procedure to make an object expandable (so that it will expand when printed in a
custom report, see “Variable Height Records” on page 1131). Use -1 to make the selected objects
expandable and 0 to make the objects fixed height. This example makes every auto-wrap text object on
the current form expandable.

selectobjects objectinfo("type")="Auto-Wrap Text"
changeobjects "expandable" ,-1

Option Description

Chapter 25:Programming Techniques Page 1661
The changeobjects statement is designed to work closely with the selectobjects statement and the
objectinfo(function. See the previous section (“Modifying Selected Objects” on page 1658) for several
additional examples of how these statements can work together.

Getting Information About Selected Objects

The selectobjects statement can select dozens or even hundreds of graphic objects. To get information
about one of these objects use the objectnumber statement. This statement has one parameter, a number
which specifies which selected object you want to get information about. After the objectnumber statement
the procedure should have one or more assignment statements that use the objectinfo(function to get
information about the object.

Suppose there are 5 objects selected. To find out the name of the first selected object (closest to the back) use
the procedure:

local objName
objectnumber 1
objName=objectinfo("name")

To find out the name of the last selected object (closest to the front) use the procedure:

local objName
objectnumber 5
objName=objectinfo("name")

If there are not enough selected objects to fulfill the request, the info("found") function will return false.
In other words, if there are only 3 objects selected and you try to get information about number 7,
info("found") will be set to false. The procedure below takes advantage of this feature to build a list of all
the names of all the SuperObjects in the current form.

local objectNames,X
X=1
objectselect objectinfo("type") beginswith "SuperObject"
loop

objectnumber X
stoploopif (not info("found"))
objectNames=sandwich("",objectNames,¶)+objectinfo("name")
X=X+1

while forever

expandshrink

This option allows a procedure to make an object expandable/shrinkable (so that it will expand or
shrink as necessary when printed in a custom report, see “The Expand/Shrink Option” on page 1138).
Use -1 to make the selected objects expand/shrinkable and 0 to make the objects fixed height. This
example makes every auto-wrap text object on the current form expand/shrinkable.

selectobjects objectinfo("type")="Auto-Wrap Text"
changeobjects "expandshrink" ,-1

lock

This option can lock or unlock a graphic object (see “Locked Objects” on page 626). Use -1 to lock the
selected objects and 0 to unlock the objects. This example locks every object on the form.

selectallobjects
changeobjects "lock" ,-1

Option Description

Page 1662 Panorama Handbook
You can also use the objectinfo("count") function to find out how many objects are selected. Here is
another procedure that does the same job as the last example but in a slightly different way.

local objectNames,maxObject,X
X=1
objectselect objectinfo("type") beginswith "SuperObject"
maxObject=objectinfo("count")
loop

stoploopif X>maxObject
objectnumber X
objectNames=sandwich("",objectNames,¶)+objectinfo("name")
X=X+1

while forever

The example below finds the name of the top object the user clicked on. The procedure uses the
inrectangle(function to determine which object (if any) was clicked on. (Note: Presumably this proce-
dure would be triggered by a transparent push button which covers all the other objects. This button is not
counted as the object the user clicked on.)

local hitPt, hitObject
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") ≠ "Button"
objectnumber objectinfo("count
hitObject=objectinfo("name")

Object ID Values

Each graphic object has a unique ID value that can be used to identify that object. The ID value is a number
that is guaranteed to be unique for that object only. (However, if you edit the form in graphic editing mode
the ID value may change.)

A procedure can use the objectinfo("ID") function to find out the ID of an object. The procedure can
store the ID value and later use it with the objectid statement to re-select the object. For example, here is a
procedure that finds and stores the ID of an object the user clicks on (see previous section for more details on
this example.)

global hitObject
local hitPt
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") ≠ "Button"
objectnumber objectinfo("count")
hitObject=objectinfo("ID")

Later another procedure can re-select this object with a single statement.

objectid hitObject

You can also use the object ID value to determine the relative front-to-back order of two or more objects.
Objects that are closer to the front will have higher ID values, while objects that are closer to the back will
have lower ID values.

Redrawing an Object

It’s usually not necessary to explicitly redraw an object (or objects), but if it is necessary you can do so with
the drawobjects statement. This statement has no parameters, and must be preceded by the object ,
selectobjects , or objectid statements. This example redraws the object called Swiss Cheese (see
“Selecting an Object by Name” on page 1652).

object "Swiss Cheese"
drawobjects

Chapter 25:Programming Techniques Page 1663
This example redraws all of the objects in the current form that are displayed in the font Courier (see “Select-
ing Multiple Objects” on page 1652).

selectobjects objectinfo("font")="Courier"
drawobjects

The drawobjects statement normally redraws objects in the current window, but it may be used with
“magic windows” to redraw objects in other open windows (see ““Magic” Windows” on page 1555).

Dragging a Rectangle

Dragging is the standard interface technique for moving items from one place to another. A Panorama proce-
dure can allow a user to drag a gray rectangle from one spot to another spot. When the user releases the
mouse, the procedure can be programmed to move an item or to copy data to another spot or another data-
base (drag and drop).

The key to dragging is a special statement called draggraybox . This statement is designed to be used in a
procedure that is triggered by a transparent button with the click/release option turned off. When the user
presses on the button, the procedure is triggered immediately. The procedure calculates size and location of
the original rectangle to drag around, as well as the limits to where this rectangle can be dragged. Then the
draggraybox statement takes over. As long as the user continues to hold down the mouse a gray box will
follow the mouse around. When the user lets up on the mouse button the draggraybox statement tells the
procedure the final position of the box. The procedure can then take whatever action is appropriate (moving
a graphic object, copying data, etc.)

The draggraybox statement has four parameters. The first three of these parameters are rectangles, the
fourth is a number.

draggraybox dragrectangle , limits , slop , axis

The dragrectangle parameter is the original co-ordinates of the rectangle the user will drag around. Often
these co-ordinates are the same as the co-ordinates for the button the user pressed on. (Note: the co-ordinates
for this rectangle, along with the next two, are relative to the upper left hand corner of the screen.) This
parameter should be a field or variable (not a more complex formula) because after the user has released the
mouse Panorama will copy the final co-ordinates into this parameter.

The limits parameter is the co-ordinates of a boundary rectangle that defines how far the dragrectangle can
be dragged in each direction. For example if you don’t want the user to be able to drag the box outside of the
current window you should supply the co-ordinates of the current window for limits. If the limits parameter
is empty ("") there will be no limit on how far the rectangle can be dragged.

The slop parameter is the co-ordinates of a boundary rectangle past the limits boundary. If the user drags the
mouse beyond the slop rectangle the gray rectangle will disappear completely (until the user drags back
inside the slop rectangle). If the slop parameter is empty ("") it will be the same as the limits boundary rect-
angle.

The axis parameter allows the procedure to restrict the direction the rectangle can be dragged to either hori-
zontal or vertical. If the axis parameter is 0 the rectangle can be dragged in any direction. If the axis is 1 the
rectangle can only be dragged horizontally. If the axis is 2 the rectangle can only be dragged vertically.

Page 1664 Panorama Handbook
Here is a procedure that allows the user to drag a button around the window.

When the user releases the mouse, the procedure moves the button to the new location.

(Remember, this procedure should be triggered by a button with the click/release option turned off.)

➊ local drag,insidewindow
➋ drag=info("buttonrectangle")
➌ selectobjects xytoxy(drag,"s","f")=objectinfo("rectangle")
➍ insidewindow=rectangle(

rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)

➎ draggraybox drag,insidewindow,info("windowrectangle"),0
➏ if drag="" stop endif
➐ drag=xytoxy(drag,"s","f")
➑ changeobjects "rectangle",drag

This example is a bit complicated, so let’s take a look at it statement by statement.

➊ We start by allocating the variables we need: drag and insidewindow.

➋ This statement finds the original location of the button, relative to the upper left hand corner of the screen.

Chapter 25:Programming Techniques Page 1665
➌ The selectobjects statement selects the button the user clicked on. It identifies the button by it’s location on
the form. If there are any other objects with the exact same dimensions, they will be selected (and moved)
also.

➍ This assignment calculates the inside dimensions of the window. It takes the raw window dimensions and
moves the top down by 20 pixels (for the drag bar), the left side over by 26 pixels (for the tool palette), and the
bottom and right sides in by 16 pixels (for the scroll bars). This will define the limits beyond which the button
cannot be dragged.

➎ Here’s where dragging actually takes place. The parameters define the starting point for the drag (the orig-
inal button location), the limits of dragging (the inside boundary of the window) and the limits beyond
which the gray box completely disappears (the outside boundary of the window). The final parameter indi-
cates that the button may be dragged in any direction.

➏ If the user dragged the button completely out of the window the drag variable will be set to "". In that case
the procedure simply stops without moving anything.

➐ The new co-ordinates for the button are in drag. However, these co-ordinates are relative to the upper left
hand corner of the screen, and the changeobjects statement needs them relative to the upper left hand corner
of the form. The xytoxy(function will convert the co-ordinates.

➑ The changeobjects statement moves the button (and any other objects with the same co-ordinates to the
new position.

With a few changes the procedure can be modified to move multiple objects at once.

Page 1666 Panorama Handbook
With this new procedure when the mouse is released all of the objects inside the boundaries of the button will
move also.

This procedure moves all the objects inside the boundaries of the button.

➊ local drag,dragstart,insidewindow,deltaV,deltaH
➋ drag=info("buttonrectangle")
➌ dragstart=drag
➍ selectobjects

unionrectangle(xytoxy(drag,"s","f"),objectinfo("rectangle"))
=xytoxy(drag,"s","f")

➎ insidewindow=rectangle(
rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)

➏ draggraybox drag,insidewindow,info("windowrectangle"),0
➐ if drag ="" stop endif
➑ deltaV=rtop(drag)-rtop(dragstart)
➒ deltaH=rleft(drag)-rleft(dragstart)
➓ changeobjects "rectangle",rectangle(

rtop(objectinfo("rectangle"))+deltaV,
rleft(objectinfo("rectangle"))+deltaH,
rbottom(objectinfo("rectangle"))+deltaV,
rright(objectinfo("rectangle"))+deltaH)

This procedure is similar to the last example, but with a couple of twists. Statement ➍ , selectobjects , uses
a trick with the unionrectangle(function (see “Rectangles” on page 1304) to select all the objects inside
the button. If the union of the button rectangle and object X‘s rectangle is equal to the button’s rectangle then
object X is completely inside the button rectangle.

The other twist is in how the objects are moved after the drag is completed. The procedure can’t simply
change all the objects to the new drag rectangle, because each object has a different position within the but-
ton. Instead, the procedure calculates the vertical and horizontal offsets between the old position and the new
position (statements ➑ and ➒) and then adds this offset to each of the selected objects (statement ➓).

Chapter 25:Programming Techniques Page 1667
Movable Dividers

Using the draggraybox statement you can create a movable divider between two elements on a form. The
user can slide this divider to change the division point between the two form elements. To illustrate this con-
sider the form shown below. The form has three sliding dividers that divide the four different sections.

Each sliding divider consists of a button and a rectangle. When you press on the button a procedure is trig-
gered (see below). That procedure allows the divider to move left or right. For example you could slide the
divider between the purple and blue sections to the right.

When the mouse is released the purple section expands and the blue section gets smaller.

The dividers can be moved at any time to adjust the form as his or her needs change.

Building a sliding divider like this requires three (optionally four) graphic objects. First are the two primary
elements being divided. For our example we’re assuming that these two elements are side-by-side and are
the same height. Between the two main elements is a small gap. This gap should be filled with a regular
pushbutton (see “Push Buttons” on page 853). The pushbutton must exactly match the gap between the two
objects, so that the edges of the pushbutton are exactly on top of the edges of the primary elements. The push-
button must have the click/release option turned off (see “Click/Release” on page 859). You can optionally
include another graphic element (for example a black rectangle or a flash art object) with the same dimen-
sions as the pushbutton.

sliding divider
(consists of button and rectangle)

Page 1668 Panorama Handbook
Here is the procedure that allows the user to slide the divider back and forth.

local drag,dragstart,deltaV,deltaH,slider,slidebox
drag=info("buttonrectangle")
dragstart=drag
slider=xytoxy(drag,"s","f")
slider=rectangle(

rtop(slider),
rleft(slider),
rbottom(slider)+1,
rright(slider)+1)

selectobjects
intersectionrectangle(xytoxy(drag,"s","f"),objectinfo("rectangle"))

≠rectangle(0,0,0,0)
slidebox=xytoxy(objectinfo("boundary"),"f","s")
slidebox=rectangleadjust(slidebox,0,16,0,-16)
draggraybox drag,slidebox,info("windowrectangle"),1
if drag="" stop endif
deltaV=rtop(drag)-rtop(dragstart)
deltaH=rleft(drag)-rleft(dragstart)
changeobjects "rectangle",

adjustxy(objectinfo("rectangle"),slider,deltaV,deltaH)

In this procedure, the variable slider is the dimensions of the button in the gap. The variable slidebox is the
area the slider can slide back and forth in. This area includes most of the two primary elements, with a 16
pixel buffer on each end.

The last statement of this procedure uses the adjustxy(function to actually adjust the slider and the pri-
mary elements (see “Rectangles” on page 1304). This function has four parameters: the original rectangle, a
boundary rectangle, the vertical offset and the horizontal offset. The function takes the original rectangle and
adjusts each corner of the rectangle by the offsets, but only if the corner is inside the boundary rectangle. If a
corner is outside the boundary rectangle, it is not adjusted. Using this function it is easy for the procedure to
shift the slider and gap between the two primary elements without shifting the outside edges of the primary
elements.

You may have noticed that the procedure does not directly refer to either the primary objects or the slider
objects. Instead it refers to everything by position. You can use this same procedure to drive several sliders in
your form, or even in several forms. You can also stack several primary elements end-to-end with sliders in
between each. The user can move the sliders back and forth any way they want to adjust the size of each pri-
mary element.

Here is an example of a more practical use for this procedure. The invoice contains four columns.

Chapter 25:Programming Techniques Page 1669
The width of each column may be adjusted at any time simply by dragging on a divider (without going into
graphics mode).

Page 1670 Panorama Handbook
Drag and Drop

In the previous examples dragging was used to make changes to a form. Dragging can also be used to copy
data from one place to another, or to perform an operation on data by dragging. This is usually called drag-
and-drop. Panorama allows you to set up your databases so that data can be intelligently dragged from one
place to another. For example, you can set up a price list so that items can be dragged from the price list into
an invoice, or you can set up a customer file so that customer names and addresses can be dragged into the
invoice. You can also perform operations by dragging, for example dragging an invoice into a trash can to
delete it.

Dragging and dropping involves two active areas: a launching pad and a landing zone. Dragging starts when
the user presses the mouse on an active launching pad, which is usually a pushbutton with the click/release
option turned off. The user drags from the launching pad to a landing zone, an area that can receive the data
from the launching pad. The landing zone may be on the same form as the launching pad, or it may be on a
different form. A single launching pad can have several possible landing zones. Here is a form with three
“launching pads,” one per record.

“launch pads”

Chapter 25:Programming Techniques Page 1671
The launch pads all come from a single pushbutton on the data tile in this view-as-list form (see “View-As-
List Forms” on page 917).

The launching pad is a pushbutton. What defines a landing zone? A landing zone is whatever your proce-
dure defines it to be. It could be an object, a collection of objects, or even an entire window.

The launch pad pushbutton triggers a procedure. This procedure uses the draggraybox statement to let the
user drag to another location. When the user releases the mouse, the procedure must decide whether or not
the mouse is over a suitable landing zone. The procedure can use the findwindow(function to find out
what window the mouse is on top of (see “FINDWINDOW(” on page 5247). If this is a window that can con-
tain a landing zone the procedure can bring that window to the front and then use the selectobjects
statement to find out if the mouse is over an object that is a suitable landing zone (this step is unnecessary if
the whole window can be a landing zone). If the mouse is over a landing zone, the procedure then copies the
data appropriately.

pushbutton on top
of flash art

Page 1672 Panorama Handbook
Now that you are familiar with the theory of drag and drop, let’s take a look at some practical examples.
We’ll start with a catalog and invoice database, like the one’s shown below. The goal is to be able to drag an
item from the catalog onto the invoice and have that item added to the invoice, as shown in this illustration.

Here is the procedure that is triggered by the pushbutton. Remember, the pushbutton must have the click/
release option turned off.

local drag,landingWindow,landingDatabase,landingFields
local dragItem
dragItem=Item /* copy the data for later */
drag=info("buttonrectangle") /* initial co-ordinates of box */

/* drag the box around */
draggraybox drag,"","",0
if drag="" stop endif
landingWindow=findwindow(info("mouse"))

/* if we landed (mouse up)outside a window then stop */
if landingWindow="" stop endif

/* what database did we land on? */
landingDatabase=stripchar(landingWindow[1,":"],"!9;ÿ")

/* if landed in catalog then stop */
if landingDatabase=info("databasename") stop endif

/* does the database we landed on contain the right fields? */
landingFields=dbinfo("fields",landingDatabase)
if (not (landingFields contains "Description1" and landingFields contains "Price1" and

landingFields contains "Quantity1"))
message "Cannot drag item to this database" stop endif

/* copy the data from the catalog into the invoice */
window landingWindow
emptyfield "Quantity Ω"
Quantity Ω=1
Description Ω==dragItem

Chapter 25:Programming Techniques Page 1673
The procedure starts by copying the data that may be dragged into local variables (dragItem). Then it
allows the user to drag. The drag limits are set to "" , so the user can drag anywhere on the screen.

After the user releases the mouse, the procedure continues. First, it checks to see what window (if any) the
user dragged to. If the user did drag to a window, the procedure strips off any extra information to figure out
the name of the database. If the user released the mouse over the original database (the catalog) then the drag
and drop is aborted. Otherwise, the procedure checks to see if the database has Description , Price and
Quantity line item fields. If not, the drag and drop is aborted. If it does, the procedure brings the new win-
dow to the front and copies the data into the appropriate fields. (In this case, the landing zone is the entire
window, so no further checking is required once the procedure has determined that the database the user
dragged to can accept the data.

The following illustrations show the final result. When you press on one of the buttons a gray rectangle
appears. This gray rectangle can be dragged over the Invoice database.

gray outline of button follows mouse as you drag

Page 1674 Panorama Handbook
It doesn’t matter where you release the mouse, as long as it is somewhere over the Invoice database. When
the mouse is released the Invoice window comes to the front and the new item is added to the invoice. By
using the double equals sign (see “Triggering Automatic Calculations” on page 1599) the procedure triggers
the automatic calculations built into the Invoice database to lookup the price and calculate the line total, sub-
total, tax and grand total (as shown by the arrows).

Chapter 25:Programming Techniques Page 1675
Our second drag and drop example has one launching pad, a List SuperObject, and four landing zones, each
a text display SuperObject. The finished example will allow items from the list to be dragged into one of the
four landing zones.

When the mouse is released the item is dropped onto the list.

Page 1676 Panorama Handbook
Here is the procedure that performs this drag and drop operation. It assumes that the four Text Display
Objects that are acting as landing zones are named DragList1, DragList2, DragList3 and DragList4 (see
“Object Type/Object Name” on page 585) and that they are configured to display fileglobal variables with
these same four names (the variables must be created in the .Initialize procedure).

/* the Click/Release option must be turned OFF!!! */

local cell,cellbox,newcell,mouse,mouseStart,landingObject,newWorkList
mouseStart=info("click")
cell=1

/* what cell did user click on */
superobject "Work List","FindCell",cell,dragItem

/* what are the dimensions of this cell */
superobject "Work List","cellrectangle",cell,cellbox

/* we need screen relative dimensions, not window relative */«
cellbox=xytoxy(cellbox,"w","s")

/* drag the box around */
draggraybox cellbox,info("windowrectangle"),info("windowrectangle"),0

/* if dragged outside of window, stop */
if cellbox="" rtn endif

/* where did we end up? */
mouse=xytoxy(info("mouse"),"s","w")

/* did we land on an object? */
selectobjects inrectangle(mouse,objectinfo("rectangle"))
objectnumber 1
landingObject=objectinfo("name")
selectnoobjects

/* if landed on one of the lists, add item to the list */
if landingObject beginswith "DragList"

/* isn't execute cool?
 this will generate something like this:

DragList1=sandwich("",DragList1,¶)+"Carbon" showvariables DragList1

*/
execute landingObject+{=sandwich("",}+landingObject+{,¶)+"}+

dragItem+{" showvariables}+landingObject

endif

Chapter 25:Programming Techniques Page 1677
With a slight addition this procedure can also allow the main list itself to be re-arranged by dragging around
the items. For example, the Carbon could be dragged up to the top of the list.

When the mouse is released, Carbon moves to the top spot and all of the other items move down.

This capability can be added by appending the steps below to the previous procedure.

/* if we landed on the list itself, re-arrange the order of the list */
if landingObject = "Work List"

/* what cell did we land on? */
superobject "Work List","pointtocell",mouse,newcell

/* if didn't actually drag (just stayed in the same place) then stop */
if cell=newcell stop endif

/* check if we are off the end of the list */
if newcell ≥arraysize(workList,¶)

newcell=newcell-1 /* make adjustment to stay in the list */
 newcell=0 /* add to end of list */

endif

 /* delete dragged item from list */
newWorkList=arraydelete(workList,cell,1,¶)

/* add dragged item back into list in the new position */
if newcell>0

newWorkList=arrayinsert(newWorkList,newcell,1,¶)
newWorkList=arraychange(newWorkList,dragItem,newcell,¶)

else
newWorkList=newWorkList+¶+dragItem

endif

/* update and display the list in the new order */
workList=newWorkList
superobject "Work List","FillList"
showvariables dragItem

endif

Because Panorama uses a procedure to implement drag and drop, the possibilities are endless.

Page 1678 Panorama Handbook
Program Control of SuperObjects™

In addition to the general graphic program techniques described in the previous sections (changing position
and size of objects, font, color, etc.) most types of SuperObjects™ have an additional set of specific commands
that it can respond to. For example, a Text Editor SuperObject can be commanded to select a particular sec-
tion of text, while a List SuperObject can be commanded to add or remove items from the list it displays. To
send a command to a specific SuperObject a procedure must use the superobject statement (see “SUPER-
OBJECT” on page 5820).

superobject <name of object> , <command>, <additional parameters>

To send a command to a SuperObject the object must have a name. See “Object Type/Object Name” on
page 585 to learn how to set or change the name of an object. The form shown below contains two Text Editor
SuperObjects, one named Alpha and the other named Beta (these names are completely arbitrary, you can use
whatever names you like). In this case the objects have been configured to edit database fields A and B
respectively.

This short procedure sends two commands to the Alpha object (the left object). The first command tells the
object to open itself for editing (the same as clicking on it). The second command tells the object to select char-
acters 12 through 24 (the same as dragging to select these characters.)

superobject "Alpha","Open"
superobject "Alpha","SetSelection",12,24

Here’s the result of running this procedure.

click here to change object name

the name of this object is Alpha
the name of this object is Betathe field edited by this object is A

the field edited by this object is B

Chapter 25:Programming Techniques Page 1679
By changing the first parameter of the superobject statement the procedure can control which object the
commands are sent to.

superobject "Beta","Open"
superobject "Beta","SetSelection",12,24

Here’s the result of running this revised procedure.

Another option is to specify the object to be manipulated in a separate object , selectobjects or
objectid statement (see “Selecting an Object by Name” on page 1652, “Selecting Multiple Objects” on
page 1652 and “Object ID Values” on page 1662). The command will be sent to every selected object in the
current form.

object "Beta"
superobject "","Open"
superobject "","SetSelection"

The advantage of this technique is that it makes it possible to control what objects are affected on the fly. For
example you could send a command to all blue objects, or all text editor objects that appear in 12 point Times-
Roman.

The superobject statement normally sends a command to an object(s) in the current window. If you want
to send a command to an object in a different window use the magicwindow statement (see ““Magic” Win-
dows” on page 1555).

The Active SuperObject

In the case of SuperObjects that edit text (Text Editor, Word Processor) only one object can be “active” at a
time. The active object is the object that is currently being edited. If your procedure attempts to send a com-
mand to an editor SuperObject that is not active the procedure will stop with an error. For example the fol-
lowing procedure will not work.

superobject "Alpha","Open"
superobject "Beta","SetSelection",12,24

Sometimes you may want a procedure to work with whatever SuperObject happens to be open. This can be
done with the activesuperobject statement, which always sends commands to the currently active
SuperObject. Here is a procedure that will select all of the text that is currently being edited.

activesuperobject "SetSelection",0,-1

Page 1680 Panorama Handbook
If the text on the left is being edited…

then running this procedure selects all of the text on the left.

But if the text on the right is being edited, then running this procedure selects all of the text on the right.

A procedure can find out which text editor object is active (if any) with the info("activesuperobject")
function. This function will return the object name of the active object, or "" if no text is currently being
edited.

A procedure can close the currently open text editor object with the superobjectclose statement. This
statement checks to see if any text editing object (Text Editor or Word Processor) is currently open, and if so,
closes it. If none is open, the procedure simply continues. This statement is often useful at the beginning of a
procedure where you need to make sure that no text editing is happening before continuing with the proce-
dure.

Chapter 25:Programming Techniques Page 1681
Accessing and Modifying a SuperObject’s Internal Data

Most SuperObject’s contain internal data for options and object status. For example a matrix object contains
data that specifies the number of rows and columns, while a Super Flash Art object has internal data control-
ling how the image is aligned within the object. The objectinfo(function and changeobjects statement
each have a “back door” that allows you to access, and in some cases modify this internal object data. Each
internal data item is identified with a special identifier that may be used to access the data item. This identi-
fier always begins with a # symbol, for example —

#SUPER MATRIX COLUMNS
#SUPER MATRIX ROWS
#SUPER FLASH ART ALIGNMENT

A procedure can find out what the current value of an internal data item is by using the objectinfo(func-
tion with the identifier for that data item. Here is an example procedure that finds out the number of rows
and columns in the SuperObject Matrix named Photo Matrix.

local mCols,mRows
object "Photo Matrix"
mCols=objectinfo("#SUPER MATRIX COLUMNS")
mRows=objectinfo("#SUPER MATRIX ROWS")

Some (but not all) internal data items can be modified by using the changeobjects statement with the
identifier for that data item. Here is an example that sets the Photo Matrix object to 3 rows by 4 columns.

selectobjects objectinfo("name")="Photo Matrix"
changeobjects "#SUPER MATRIX ROWS",4
changeobjects "#SUPER MATRIX COLUMNS",3

This mechanism is truly a “back door” — it changes the internal data but it does not cause the object to
redraw if necessary. It’s up to you as the procedure writer to force the object to redraw somehow, perhaps
using the showpage statement or by overlaying a Text Display SuperObject with a variable so that a
showvariables statement forces both objects to redraw.

This mechanism is a “back door” in another sense as well — it doesn’t do any error checking. For some inter-
nal data items you may be able to change the value to something that doesn’t make sense, does not work, or
even causes a crash. Be careful, and save your work often.

Internal Data Types

Internal data items come in several flavors, as shown in this table.

When changing an internal data type you must be careful to supply the correct type of data.

Type Description

Bit This is a single binary digit, either 0 (off) or -1(on)

Byte This is a number from 0 to 255 (8 bits)

Word This is a number from 0 to 65,535 (16 bits)

Long Word This is a number from 0 to 2,100,000,000 (32 bits)

Text This is a string of characters

Page 1682 Panorama Handbook
Text Editor SuperObject Commands

The Text Editor SuperObject understands about a dozen commands that can be sent to it with the
superobject or activesuperobject statements in a procedure (see “Program Control of SuperOb-
jects™” on page 1678). This table describes each of these commands in detail.

Command Parameters Description

"Open"

This command opens the SuperObject for editing, if it is not already
active. This command is the equivalent of clicking on the object to start
editing it. Since the object isn’t active yet, you can’t use the activesuper-
object statement. The example below opens the Memo SuperObject.

SuperObject "Memo","Open"
if info("ActiveSuperObject") ≠"Memo"

beep
stop

endif

If another data cell or SuperObject is currently active, it’s possible that
Panorama won’t be able to open the SuperObject. If there is an error
while attempting to close the currently active item (for example, incorrect
date format or an illegal character in a number), the user may choose to
cancel and re-edit the incorrect data. The example above checks to make
sure that the SuperObject has really been opened for editing—if not, the
procedure beeps and stops.

"Close"

This command closes the SuperObject. This is equivalent to pressing the
Enter key.

If there is an error in the data that was being edited (for example, incor-
rect date format or an illegal character in a number), the user may choose
to cancel and re-edit the incorrect data. The procedure below checks for
this and stops if this happens.

ActiveSuperObject "Close"
if info("ActiveSuperObject") ≠""

stop
endif

An alternate method for closing the currently active SuperObject is to use
the SuperObjectClose statement. This statement, which has no parame-
ters, simply closes the currently active SuperObject, if any. Unlike the
"Close" command, the SuperObjectClose statement will not cause an
error if there is no SuperObject currently open for editing.

"Cut"

This command copies the currently selected text to the clipboard, then
deletes the selected text. This is the same as choosing Cut from the Edit
Menu. (Technical factoid: The Edit menu actually works by sending this
command to the currently active SuperObject.)

"Copy"

This command copies the currently selected text to the clipboard, but
does not delete the text. This is the same as choosing Copy from the Edit
Menu. (Technical factoid: The Edit menu actually works by sending this
command to the currently active SuperObject.)

"Paste"

This command pastes the text in the clipboard into the text being edited.
The new text will replace any currently selected text, or the text will be
inserted at the current insertion point if no text is currently selected. This
is the same as choosing Paste from the Edit Menu. (Technical factoid: The
Edit menu actually works by sending this command to the currently
active SuperObject.)

"Clear"

This command deletes the selected text (without copying it to the clip-
board). This is the same as choosing Clear from the Edit Menu. (Technical
factoid: The Edit menu actually works by sending this command to the
currently active SuperObject.)

Chapter 25:Programming Techniques Page 1683
"GetSelection" Start,End

This command gets the start and end points of the currently selected text.
For the purpose of the GetSelection command (and the SetSelection com-
mand) each character is numbered, starting with zero in front of the first
character. For example, if the first character was currently selected, GetSe-
lection will return 0 and 1. If the 3rd through 8th characters are currently
selected, GetSelection will return 2 and 8. If there is currently an insertion
point, the starting and ending point will be the same. This command only
returns the position of the selected text; if you want to get the text itself,
use the "GetSelectedText" command.

The example procedure below counts and displays the number of charac-
ters selected.

local SelStartPoint,SelEndPoint
SelStartPoint=0 SelEndPoint=0
if info("activesuperobject") ≠""

ActiveSuperObject "GetSelection",
SelStartPoint,SelEndPoint

endif
message str(SelEndPoint-SelStartPoint)+

" characters selected"

This procedure checks to make sure that a SuperObject is active. If there is
no SuperObject active, it will display the message 0 characters selected. If
the procedure did not check, Panorama would stop the procedure and
display an error message if there was no active SuperObject. For example,
suppose this text was selected.

Running this procedure will display this message.

Command Parameters Description

Page 1684 Panorama Handbook
"SetSelection" Start,End

This command allows a procedure to change the selection area. It is
equivalent to clicking or dragging on the text to select it. For the purpose
of the "SetSelection" command (and the "GetSelection" command), each
character is numbered, starting with zero in front of the first character.
For example, the procedure below would put the insertion point in front
of the first character in the text.

if info("activesuperobject") ≠""
ActiveSuperObject "SetSelection",0,0

endif

Here is the location of the insertion point after running this procedure.

The next example will select all of the text. Notice that the end position
may be past the end of the text…Panorama will automatically adjust this
for you.

if info("activesuperobject") ≠""
ActiveSuperObject "SetSelection",0,32768

endif

After this procedure is run all of the text is selected.

Here’s a similar example that places the insertion point at the end of the
text.

if info("activesuperobject") ≠""
ActiveSuperObject "SetSelection",32768,32768

endif

Here is the location of the insertion point after running this procedure.

This final example will increase the length of the current selection by one
character.

Local SelStartPoint,SelEndPoint
SelStartPoint=0 SelEndPoint=0
if info("activesuperobject") ≠""

ActiveSuperObject "GetSelection",
SelStartPoint,SelEndPoint

SelEndPoint=SelEndPoint+1
ActiveSuperObject "SetSelection",

SelStartPoint,SelEndPoint
endif

If the selection was an insertion point it will now be one character, if it
was one character it will be two, if two then now three, etc.

Command Parameters Description

Chapter 25:Programming Techniques Page 1685
"GetText" Text

This command gets all of the text being edited and puts it in a variable
you specify. (Note: If you want only the selected text, use the "GetSelect-
edText" command.)

The example procedure below searches for text in chevrons («») and if
found, selects it. Using this procedure you could create templates with
blanks to be filled in, for example …«Gallery»…«Artist»…«Title». (Of
course it might be better to store this information in fields and merge it
into the text with a formula.)

local someText,selStart,selEnd
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
selStart=search(someText,"«")
selEnd=search(someText,"»")
if selStart>0 selStart=selStart-1 endif
if selEnd<selStart selEnd=selStart+1 endif
ActiveSuperObject "SetSelection",selStart,selEnd

To illustrate this, consider the text being edited below.

After running the procedure, «Name» will be highlighted, like this.

"SetText" Text

This command replaces the text currently being edited with completely
new text! This is a very powerful command.

Here is a very simple example that simply erases all of the text. This is
similar to Clear, except that all the text is erased, not just the selected text.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetText",""

The next example adds a new line with a date and time stamp to the cur-
rently edited text. It also moves the insertion point to the end of the new
time and date stamp, so the user can immediately type in a note.

local someText
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
ActiveSuperObject "SetText",someText+¶+

datepattern(today(),"mm/dd/yy")+" @"+
timepattern(now(),"hh:mm am/pm")+" - "

ActiveSuperObject "SetSelection",32768,32768

Here is the result of running this procedure.

Command Parameters Description

Page 1686 Panorama Handbook
"InsertText" Text

This command inserts text. The new text replaces the currently selected
text, or is inserted at the insertion point if no text is selected. The example
below inserts the current time into the text.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "InsertText",

timepattern(now(),"hh:mm am/pm")

To use this procedure start by clicking to set the insertion point where
you want the time to be inserted.

Running the procedure inserts the current time.

"GetSelectedText" Text

This command gets the selected text and puts it into a variable. The
example below uses this command to change the case of the selected text.
Each time the procedure is used the case will toggle: if the text is all lower
case, it will be converted to initial caps; if it is initial caps, it will be con-
verted to all upper case; otherwise it will be converted to all lower case.

local someText,editStart,editEnd
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetSelection",editStart,editEnd
ActiveSuperObject "GetSelectedText",someText
case someText=lower(someText)

someText=upperword(someText)
case someText=upperword(someText)

someText=upper(someText)
defaultcase

someText=lower(someText)
endcase
ActiveSuperObject "InsertText",someText
ActiveSuperObject "Clear"
ActiveSuperObject "SetSelection",editStart,editEnd

To use this procedure, start by selecting some text.

Each time you run the procedure the text is converted to a different
upper/lower case combination.

Command Parameters Description

Chapter 25:Programming Techniques Page 1687
"Find"

This command displays a dialog asking the user what they would like to
find, then locates the word or phrase within the text being edited. This is
the same as using the Find in Cell command in the Edit Menu (see
“Searching for Text Within the Input Box” on page 421).

Another way to find is to use the search(function. For an example of this,
see the "GetText" command earlier in this section.

"FindNext"

This command locates the next occurrence of the word or phrase
searched for with the "Find" command. This is the same as using the Find
Next in Cell command in the Edit Menu (see “Searching for Text Within
the Input Box” on page 421).

"Change"

This command displays a dialog asking the user what they would like to
change, then changes every occurrence it finds in the text being edited.
This is the same as using the Change in Cell command in the Edit Menu
(see “Replacing Words or Phrases Within a Cell” on page 422).

Another way to change is to use the "GetText" command and the replace(
function. The example below replaces the initials rdb with Robert D.
Bryce, then moves the insertion point to the end of the text.

local someText
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
ActiveSuperObject "SetText",

replace(someText,"rdb","Robert D. Bryce")
ActiveSuperObject "SetSelection",32768,32768

"Spell"

This command locates the next misspelled word in the text being edited.
This is the same as using the Spelling command in the Edit Menu (see
“Using the Spelling Checker within a Cell” on page 423). Note: This com-
mand does not work if the optional Panorama spelling dictionary has not
been installed.

Command Parameters Description

Page 1688 Panorama Handbook
Text Editor Internal Data

This table describes the internal data in a Text Editor SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Text Editor Options” on page 692.

Identifier Data Type Changeable? Description

"#TEXT EDITOR FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, padding,
grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#TEXT WRAP" Bit Yes -1 if wrap at end of line is enabled, 0 if disabled.

"#PROCEDURE EVERY
KEYSTROKE" Bit Yes -1 if procedure every key is enabled, 0 if disabled.

"#PROCEDURE MOST
KEYSTROKES" Bit Yes -1 if procedure most keys is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#TERMINATE RETURN" Bit Yes -1 if terminate when return is enabled, 0 if disabled.

"#TERMINATE TAB" Bit Yes -1 if terminate when tab is enabled, 0 if disabled.

"#TERMINATE UP/DOWN" Bit Yes -1 if terminate when up/down arrows is enabled, 0 if
disabled.

"#NON-WHITE BACKGROUND" Bit Yes -1 if non-white background is enabled, 0 if disabled.

"#UPDATE VARIABLE EVERY
KEY" Bit Yes -1 if update variable every key is enabled, 0 if dis-

abled.

"#FOUR SPACE TAB" Bit Yes -1 if tab = 4 spaces is enabled, 0 if disabled.

"#3D BORDER" Bit Yes -1 if 3D border is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#PADDING" Bit Yes -1 if padding is enabled, 0 if disabled.

"#NO NEOTEXT" Bit Yes -1 if alternate editing style is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#SELECT STARTUP" Byte Yes Insertion point option. 0 = end of text, 1 = beginning of
text, 2 = all text selected.

"#TEXT EDITOR
AUTO CAPITALIZATION" Byte Yes Auto caps option. 0 = off, 1= all, 2 = word, 3 = sen-

tence.

"#PROCEDURE" Text Yes Procedure to be triggered automatically.

"#FORMULA" Text No Field name, variable name, or formula.

Chapter 25:Programming Techniques Page 1689
Text Display SuperObject Internal Data

This table describes the internal data in a Text Display SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Text Display Options” on page 660.

Identifier Data Type Changeable? Description

"#TEXT DISPLAY FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, align-
ment, grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#EVALUATE FORMULA TWICE" Bit Yes -1 if evaluate formula twice is enabled, 0 if disabled.

"#NO TEXT WRAP" Bit Yes -1 if don’t wrap text is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#AUTO SIZE TEXT" Bit Yes -1 if scale text size is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#TEXT DISPLAY ALIGNMENT" Byte Yes

Align option.

 0 = upper left
 1 = upper center
 2 = upper right
 3 = middle left
 4 = middle center
 5 = middle right
 6 = bottom left
 7 = bottom center
 8 = bottom right

"#TEXT DISPLAY
SCALE FACTOR" Long Word Yes

If the #AUTO SIZE TEXT option is enabled this value
controls the number of lines that will be displayed.
The value is an integer that is 100 times the actual
value. For example, if you want to display 2.5 lines in
the text display object this value must be set to 250.

"#FORMULA" Text No Formula used to display text.

Page 1690 Panorama Handbook
Word Processor SuperObject Commands

The Word Processor SuperObject understands about two dozen commands that can be sent to it with the
superobject or activesuperobject statements in a procedure (see “Program Control of SuperOb-
jects™” on page 1678). Many of these commands are identical or nearly identical to the same commands for
the Text Editor SuperObject (see previous section). This table describes each of these commands in detail.

Command Parameters Description

"Open" Identical to Text Editor SuperObject (see Page 1682).

"Close" Identical to Text Editor SuperObject (see Page 1682).

"Undo" Undo’s the most recent editing operation.

"Cut" Identical to Text Editor SuperObject (see Page 1682).

"Copy" Identical to Text Editor SuperObject (see Page 1682).

"Paste" Identical to Text Editor SuperObject (see Page 1682).

"Clear" Identical to Text Editor SuperObject (see Page 1682).

"GetSelection" Start,End Identical to Text Editor SuperObject (see Page 1683).

"SetSelection" Start,End Identical to Text Editor SuperObject (see Page 1684).

"GetText" Text
Almost identical to Text Editor SuperObject (see Page 1685). However,
only the text itself is copied into the variable. Style information (font, size,
bold, italic, etc.) is not copied into the variable.

"SetText" Text

Almost identical to Text Editor SuperObject (see Page 1685). However,
the new text is inserted into the document using the default font and
style. All pre-existing style information (font, size, bold, italic, etc.) in the
document is removed. To insert text without disturbing the style of exist-
ing text use the "InsertText" command.

"InsertText" Text
Almost identical to Text Editor SuperObject (see Page 1686). The new text
is inserted into the document using the font and style of the text at the
current insertion point.

"GetSelectedText" Text
Almost identical to Text Editor SuperObject (see Page 1686). However,
only the text itself is copied into the variable. Style information (font, size,
bold, italic, etc.) is not copied into the variable.

"Find" Identical to Text Editor SuperObject (see Page 1687).

"FindNext" Identical to Text Editor SuperObject (see Page 1687).

"Change" Identical to Text Editor SuperObject (see Page 1687).

"Spell" Identical to Text Editor SuperObject (see Page 1687).

Chapter 25:Programming Techniques Page 1691
"GetFont" FontName

This command gets the name of the font used for the selected text. If the
selected text contains more than one font, only the first font is listed. The
example below displays the font of the selected text.

local MyFont,MyFontSize
ActiveSuperObject "GetFont",MyFont
ActiveSuperObject "GetFontSize",MyFontSize
message "The current font is: "+

str(MyFontSize)+"pt "+MyFont

For example, suppose the word Pointers is selected as shown here.

Running this procedure displays the current font and size of this word.

Command Parameters Description

Page 1692 Panorama Handbook
"SetFont" FontName

This command changes the font of the selected text. All the selected text is
changed to the same font. The example below inserts the current time
into the text using 24 point Arial Black.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetFont","Arial Black"
ActiveSuperObject "SetFontSize",24
ActiveSuperObject "InsertText",

timepattern(now(),"hh:mm am/pm")

To use this procedure start by selecting an insertion point.

Then run the procedure to insert the time.

Any additional text inserted at this point will also use 24 pt Arial Black.

"GetFontSize" Size
This command gets the font size of the selected text. If the selected text
contains more than one size, only the first size is listed. See "GetFont"
(Page 1691) for an example illustrating this command.

"SetFontSize" Size
This command changes the size of the selected text. All the selected text is
changed to the same size. See "SetFont" (Page 1692) for an example using
this command.

Command Parameters Description

Chapter 25:Programming Techniques Page 1693
"GetJustification" Alignment

This command gets the text justification status of the selected text. The
result may be one of these values: Left, Center, Right or Full. If the
selected text contains more than one justification, only the first justifica-
tion is listed. Here is another procedure that inserts a time stamp into the
file.

local theStamp,textAlign
theStamp=timepattern(now(),"hh:mm am/pm")
ActiveSuperObject "GetJustification",textAlign
if textAlign="Center"

theStamp="*** "+theStamp+" ***"
endif
ActiveSuperObject "SetTextColor",rgb(65535,0,0)
ActiveSuperObject "InsertText",theStamp

If the text is inserted in centered text three asterisks are added on each
side of the time.

If the text is inserted in left or right justified text only the time is inserted.

"SetJustification" Alignment

This command changes the justification of the selected text. The new jus-
tification may be one of these values: Left, Center, Right or Full. All the
selected text is changed to the same justification. The example below
adds a new, right justified line to the end of the document.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetSelection",999999,999999
ActiveSuperObject "InsertText",¶+¶
ActiveSuperObject "SetJustification","Right"
ActiveSuperObject "InsertText",

"Document Completed on "+
datepattern(today(),

"DayOfWeek, Month ddnth, yyyy")+" at "+
timepattern(now(),"hh:mm am/pm")

Here is the result of running this procedure.

Command Parameters Description

Page 1694 Panorama Handbook
"GetLeading" Spacing

This command gets the leading of the selected text (an integer). If the
selected text contains more than one leading, only the first leading is
returned. For normal single spaced text the leading value is zero.

For 12 point text a leading value of 6 is about 1 1/2 spacing.

This text has a leading value of 12, which is double spaced for this font
size.

You can set the leading of selected text with the ruler or the Paragraph
Settings dialog (see “Line Spacing” on page 738).

"SetLeading" Spacing

This command changes the leading of the selected text. All the selected
text is changed to the same leading. For normal single spaced text the
leading value should be zero.

Here is a procedure that makes the currently selected text double spaced.

local fontSize
activesuperobject "GetFontSize",fontSize
activesuperobject "SetLeading",fontSize

This procedure makes the currently selected text single spaced.

activesuperobject "SetLeading",0

Command Parameters Description

Chapter 25:Programming Techniques Page 1695
"GetLeftIndent"

Indent

These three commands get the indents distances of the selected text. If the
selected text contains more than one indent value, only the first indent
value is returned. The "GetLeftIndent" and "GetRightIndent" com-
mands return the left and right indent values, respectively. The "Get-
FirstIndent" command returns the indent of the first line of the
paragraph.

All indent values are specified in points (72 points per inch). See “Mar-
gins (Indents)” on page 729 to learn how to set indents with the ruler or
Paragraph Settings dialog.

"GetRightIndent"

"GetFirstIndent"

"SetLeftIndent"

Indent

These three commands change the indents of the selected text. All the
selected text is changed to the same indents. All indent values are speci-
fied in points (72 points per inch). The example below sets the margins
for the currently selected text at 1/2 inch (36 points).

ActiveSuperObject "SetLeftIndent",36
ActiveSuperObject "SetFirstIndent",36
ActiveSuperObject "SetRightIndent",36

"SetRightIndent"

"SetFirstIndent"

"ClearTabs" This command clears all tabs from the selected text.

Command Parameters Description

fFirst Indent
Left Indent Right Indent

Page 1696 Panorama Handbook
"GetTab" Tab,Position,Type,Leader

This command gets information about a tab stop active with the currently
selected text (see “Tab Stops” on page 732). The first parameter, Tab, is
the number of the tab you want to get information about (starting with 1).

The remaining three parameters are filled in by the command. The
Position is the position of the tab, in points. The Type is the type of tab.
The possible types are Left, Center, Right, Decimal and None. A Type of
None indicates that the requested tab does not exist. In that case values of
the Position and Leader characters are not defined. The Leader parameter
is the tab leader character, if any. The example below will display a list of
the current tab stops.

local tabList,theTab,tabSpot,tabType,tabLeader
theTab=1
tabList=""
tabType="None"
loop

ActiveSuperObject "GetTab",theTab,
tabSpot,tabType,tabLeader

stoploopif tabType = "None"
tabList=sandwich("",tabList,", ")+

tabType+" "+pattern(tabSpot/72,"#.##")+{"}
theTab=theTab+1

while forever
message tabList

When you run this procedure it will display a message something like
this.

There is no "SetTab" command. To change a tab setting you must clear all
tabs and then use the "AddTab" command.

Command Parameters Description

tab #1 tab #2 tab #3

Chapter 25:Programming Techniques Page 1697
"AddTab" Position,Type,Leader

This command adds a new tab stop. The Position is the position of the
tab, in points. The Type is the type of tab. The possible types are Left,
Center, Right and Decimal. The Leader parameter is the tab leader char-
acter, if any. The example below will add a tab stop and then add several
lines of pricing information.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetSelection",999999,999999
ActiveSuperObject "InsertText",¶
ActiveSuperObject "ClearTabs"
ActiveSuperObject "AddTab",220,"Decimal",""
ActiveSuperObject "InsertText",

"Widget"+¬+"6.56"+¶+
"Micro Widget"+¬+"3.12"+¶+
"Deluxe Widget"+¬+"18.63"

Here is the finished result of this procedure.

Command Parameters Description

Page 1698 Panorama Handbook
"GetStyle" StyleName,Status

This command will check the selected text to see if it is a certain style. If
there is more than one style in the selected text, the style of the first char-
acter will be returned. If the selected text matches the specified cell the
result is -1, if it does not match, the result is 0. The style names are:

Plain Bold Italic Outline
Shadow Condensed Extended Hidden Text
Strikeout SuperScript SubScript SmallCaps
AllCaps AllLowerCase FormulaMerge UnderLine
DoubleUnderLine WordUnderLine
DottedUnderLine OverLine

A text selection may contain more than one of these styles. You must test
for each style separately. Here is procedure that makes a list of all the
styles enabled for the first character of the currently selected text.

local allstyles,n,checkstyle,stylelist,styletrue
allstyles="Plain,Bold,Italic,Outline,Shadow,"+

"Condensed,Extended,Hidden Text,"+
"Strikeout,SuperScript,SubScript,"+
"SmallCaps,AllCaps,AllLowerCase,"+
"FormulaMerge,UnderLine,"+
"DoubleUnderLine,WordUnderLine,"+
"DottedUnderLine,OverLine"

stylelist=""
n=1
loop

checkstyle=array(allstyles,n,",")
stoploopif checkstyle=""
activesuperobject "GetStyle",

checkstyle,styletrue
if styletrue

stylelist=
sandwich("",stylelist,",")+checkstyle

endif
n=n+1

while forever
message stylelist

This text illustrates the operation of the procedure.

This text has three styles — bold, italic, and small caps.

Command Parameters Description

Chapter 25:Programming Techniques Page 1699
"SetStyle" StyleName,Status

This command will change the style of the selected text. A procedure can
only set one style at a time, from this list.

Plain Bold Italic Outline
Shadow Condensed Extended Hidden Text
Strikeout SuperScript SubScript SmallCaps
AllCaps AllLowerCase FormulaMerge UnderLine
DoubleUnderLine WordUnderLine
DottedUnderLine OverLine

If the Status is -1, the specified style is turned on. If the Status is 0, the
specified style is turned off. The style names are listed in the previous sec-
tion.

The "SetStyle" command adds or subtracts the specified style from the
styles the selected text already has. If you want to make sure the selected
text has only the styles you specify, start by making the text plain. The
example below sets the selected text to bold double underline.

ActiveSuperObject "SetStyle","Plain",-1
ActiveSuperObject "SetStyle","Bold",-1
ActiveSuperObject "SetStyle","DoubleUnderLine",-1

Whatever text is selected when this procedure is run will be made bold
with a double underline.

"GetTextColor"

Color

These two commands will return the color of the selected text. See “Col-
ors” on page 1308 for a complete discussion of colors.

"GetTextBack-
groundColor"

"SetTextColor"

Color

This command will set the color of the selected text. See “Colors” on
page 1308 for a complete discussion of colors. The example below sets the
selected text to a pure blue on a light green background.

ActiveSuperObject "SetTextColor",rgb(0,0,65535)
ActiveSuperObject "SetTextBackGroundColor",

rgb(40000,65535,40000)

Here is the result of selecting text and running this procedure.

"SetTextBack-
groundColor"

Command Parameters Description

text color background color

Page 1700 Panorama Handbook
"ShowRuler" Status

This command will turn the display of the ruler on and off. If the Status is
-1, the ruler will be visible; if the Status is 0, the ruler will not be visible.
The example below makes sure the ruler is visible.

ActiveSuperObject "ShowRuler",-1

The ruler allows you to manually set indents, alignment and tab stops.

This procedure makes the ruler invisible.

ActiveSuperObject "ShowRuler",0

With the ruler turned off you can still edit text, but changing indents,
alignment and tab stops can only be done through dialogs.

"LockDocument" Status

This command allows the document to be locked. If the Status is -1, the
document will be locked and cannot be edited. If the Status is 0, the docu-
ment will be unlocked and may be edited again. The example below
locks the current document.

ActiveSuperObject "LockDocument",-1

Command Parameters Description

Chapter 25:Programming Techniques Page 1701
Word Processor Internal Data

This table describes the internal data in a Word Processor SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 1681. To learn more about how these
options work see “Configuring the Word Processor” on page 744.

Identifier Data Type Changeable? Description

"#WORD PROCESSOR FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, padding,
grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#TEXT WRAP" Bit Yes -1 if wrap at end of line is enabled, 0 if disabled.

"#PROCEDURE EVERY
KEYSTROKE" Bit Yes -1 if procedure every key is enabled, 0 if disabled.

"#PROCEDURE MOST
KEYSTROKES" Bit Yes -1 if procedure most keys is enabled, 0 if disabled.

"#PROCEDURE ON DEACTIVE" Bit Yes -1 if procedure termination is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#TERMINATE RETURN" Bit Yes -1 if terminate when return is enabled, 0 if disabled.

"#TERMINATE TAB" Bit Yes -1 if terminate when tab is enabled, 0 if disabled.

"#TERMINATE UP/DOWN" Bit Yes -1 if terminate when up/down arrows is enabled, 0 if
disabled.

"#NON-WHITE BACKGROUND" Bit Yes -1 if non-white background is enabled, 0 if disabled.

"#UPDATE VARIABLE EVERY
KEY" Bit Yes -1 if update variable every key is enabled, 0 if dis-

abled.

"#3D BORDER" Bit Yes -1 if 3D border is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#OVERFLOW PRINTING" Bit Yes -1 if handle overflow is enabled, 0 if disabled.

"#FILE ON DISK" Bit Yes -1 if file on disk is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#TEXT EDITOR
AUTO CAPITALIZATION" Byte Yes Auto caps option. 0 = off, 1= all, 2 = word, 3 = sen-

tence.

"#PROCEDURE" Text Yes Procedure to be triggered automatically.

"#FORMULA" Text No Field name, variable name, or formula.

Page 1702 Panorama Handbook
Super Flash Art Commands (Including Movie Control)

The Super Flash Art SuperObject understands about a dozen commands that can be sent to it with the
superobject statement in a procedure (see “Program Control of SuperObjects™” on page 1678). Many of
these commands work with QuickTime movies (see “Displaying Movies in a Form” on page 850). This table
describes each of these commands in detail.

Command Parameters Description

"Dimensions" Rectangle

This command obtains the original height and width of the currently dis-
played image and places it in the rectangle you supply (usually a vari-
able, see “Rectangles” on page 1304). The dimensions are in pixels (1/72
inch). You should use the rheight(and rwidth(functions to extract the
height and width of the rectangle.

Here is a procedure that examines the photo being displayed in the object
named Photo and decides whether it is portrait, landscape, or panoramic.

local photoRect,photoHeight,photoWidth
superobject "Photo","Dimensions",photoRect
photoHeight=rheight(photoRect)
photoWidth=rwidth(photoRect)
case photoWidth>photoHeight*2

message "Panoramic Photo"
case photoWidth>photoHeight

message "Landscape Photo"
default

message "Portrait Photo"
endcase

"FindText" Point,Text

This command only works when displaying an Apple PICT format image
that contains vector text (not bitmap). (See “Preparing Pictures with
Extractable Text” on page 1708.) When the procedure issues this com-
mand it must supply an x,y position (Point) within the PICT image. The
command will scan the image and see if there is any text at this point. If
so, the command will fill in the Text parameter (usually a variable) with
the text. This command is usually used to create a web like hypertext sys-
tem within Panorama — see “Building Web Like HyperText Systems with
Super Flash Art” on page 1708.

"ExtractText" Font,Size,Style,Sep,Text

This command only works when displaying an Apple PICT format image
that contains vector text (not bitmap). (See “Preparing Pictures with
Extractable Text” on page 1708.) The procedure specifies what Font, Size,
and Style it wants to extract (for example "Helvetica",12,0) and the com-
mand scans the image looking for text that matches. If it finds any it is
placed in the Text parameter. If there is more than one section of text that
matches the sections are appended together with the Sep character in
between. For more detail about this command see “Extracting All Text of
a Specific Style” on page 1712.

"GetDuration" Time

This command allows you to get the duration of a movie. The result is in
600ths of a second. This example displays the length of the currently
playing movie.

local mTime
superobject "MyMovie","GetDuration",mTime
message "Movie Length: "+str(mTime/600))+" seconds"

Chapter 25:Programming Techniques Page 1703
"GetRate"

Rate

These commands allows you to get and set the current movie playback
speed. If a movie is stopped, the rate is zero. Normal speed is 65536, 1/2
speed (slow motion) is 32768, double speed is 131072. The example below
cuts the current playback speed in half.

local mSpeed
superobject "MyMovie","GetRate",mSpeed
superobject "MyMovie","SetRate",mSpeed/2

"SetRate"

"GetPreferred
Rate"

Rate

These commands allows you to get and set the default movie playback
speed. Normal speed is 65536, 1/2 speed (slow motion) is 32768, double
speed is 131072. The example below restores the default playback speed
(for example, after you have set the speed to slow motion. (Note: Pressing
the Play button on the movie controller automatically sets the playback
speed to the preferred speed).

local mSpeed
superobject "MyMovie","GetPreferredRate",mSpeed
superobject "MyMovie","SetRate",mSpeed

"SetPreferred
Rate"

"GetTime"

Position

These commands allows you to get and set the current movie playback
location. You can use these commands to implement "bookmarks" within
a movie. The value returned by the GetTime command is a binary value
that represents the location within the movie. It is not a number (# of sec-
onds, etc.) and cannot be used in calculations within Panorama. How-
ever, you can pass this value to the SetTime command to move the movie
back to this location later. The example below shows two procedures for
creating and using bookmarks within a movie. The first procedure adds a
“bookmark” recording the current spot within the movie.

/* Procedure 1: Add a bookmark */
global movieMarks
define movieMarks,""
local markName,markSpot
markName=""
gettext "Bookmark Name",markName
superobject "MyMovie","GetTime",markSpot
movieMarks=sandwich("",movieMarks,¶)+

markName+chr(9)+radixstr("hex",markSpot)

The second procedure is designed to be used with a pop-up menu or list
superobject. When the user selects a bookmark in the menu or list the
movie jumps to that spot.

/* Procedure 2: Goto a bookmark */
global movieMarks,movieSpot
/* assume movieSpot contains name of bookmark,
perhaps from pop-up menu */
local movieMark,markSpot,mNum
mNum=arraysearch(

movieMarks,movieSpot+chr(9)+"*",1,¶)
movieMark=array(movieMarks,mNum,¶)
movieMark=array(movieMark,2,chr(9))
markSpot=radix("hex",movieMark)
superobject "MyMovie","SetTime",markSpot

"SetTime"

Command Parameters Description

Page 1704 Panorama Handbook
"GetVolume"

Level

These commands allows you to get and set the current movie playback
volume. Full volume is 255, zero volume is 0. The example below cuts the
current playback volume in half.

local mVol
superobject "MyMovie","GetVolume",mVol
superobject "MyMovie","SetVolume",mVol/2

"SetVolume"

"GetPreferred
Volume" Level

This command allows you to get the default movie playback volume. Full
volume is 255, zero volume is 0. The example below sets the current play-
back volume to 1/3 of the default.

local mVol
superobject "MyMovie","GetPreferredVolume",mVol
superobject "MyMovie","SetVolume",mVol/3

"Play"

This command starts the movie playing from the current location.

superobject "MyMovie","Play"

"Stop"

This command stops the movie playing.

superobject "MyMovie","Stop"

"GoToBeginning"

This command resets the current location to the beginning of the movie.

superobject "MyMovie","GoToBeginning"

"GoToEnd"

This command resets the current location to the end of the movie.

superobject "MyMovie","GoToEnd"

"PlayFinished"

This command checks to see if the movie has reached the end. The exam-
ple starts the movie playback. If the movie is already at the end, the pro-
cedure resets the movie to the beginning before beginning playback.

local mStatus
superobject "MyMovie","PlayFinished",mStatus
if mStatus=1

superobject "MyMovie","GoToBeginning"
endif
superobject "MyMovie","Play"

Command Parameters Description

Chapter 25:Programming Techniques Page 1705
Super Flash Art Internal Data

This table describes the internal data in a Super Flash Art SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 1681. To learn more about how these
options work see “Super Flash Art™ Options” on page 830.

Identifier Data Type Changeable? Description

"#SUPER FLASH ART FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, grow box,
etc. You can also access each of these options sepa-
rately (see following entries). Being able to access all of
these values at once makes it easy to save all the flags,
modify selected flags, and then restore all of the origi-
nal settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pictures on disk is enabled, 0 if disabled.

"#DISPLAY GROUP OF
PICTURES" Bit Yes -1 if display group of pictures is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#OVERFLOW PRINTING" Bit Yes -1 if overflow is enabled, 0 if disabled (see “Printing
Multiple Page Records” on page 1120).

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#SUPER FLASH ART
ALIGNMENT" Byte Yes

Align option (see “Align” on page 839).

 0 = upper left
 1 = upper center
 2 = upper right
 3 = middle left
 4 = middle center
 5 = middle right
 6 = bottom left
 7 = bottom center
 8 = bottom right
 9 = scale to fit
 10 = scale to fit (proportional)
 11 = tile

"#FLASH ART FILE" Text Yes Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 832).

"#FLASH ART DEFAULT
CAPTION" Text Yes Default image name (see “Default” on page 831).

"#FORMULA" Text No
Field name, variable name, or formula. If you want to
be able to change the formula on the fly see “Formula”
on page 830.

Page 1706 Panorama Handbook
Converting Between Image Formats

If the optional Enhanced Image Pack is installed a procedure can convert an image file from one format into
another (for example from PICT into JPEG or JPEG into TIFF). (The Enhanced Image Pack requires that
Apple Quicktime 4.0 or later be installed on your computer. If Quicktime is not already installed on your sys-
tem you can download it from www.apple.com . It is also included on the Panorama CD.) Image conver-
sions are performed with the convertimage statement.

convertimage input , output , type , height , width

The input parameter specifies the original image file. If the image file is in the same folder as the currently
active database then only the file name is required (for example "Cool Sunset.jpg"). If the image file is in a dif-
ferent folder then both the folder and file name must be included (for example "D:\Photography\Cool Sun-
set.jpg"). (Note: The original image file may be a GIF file, but convertimage cannot produce a GIF output file.)

The output parameter specifies the new, converted image file. If you want to put this new image file in the
same folder as the current database then only the file name is required, if you want to put it in a different
folder then both the folder and file name must be included. If a file with this name already exists in this loca-
tion it will be erased.

The type parameter specifies the type of image that will be created. If the output file has an extension (for
example .jpg, .pct, .tif) you should leave this parameter blank ("") and let Panorama automatically figure out
the type. If the output file does not have an extension you must specify the type from the list below.

The height and width parameters are the height and width of the new image (in pixels). If either (or both) of
these parameters is zero then the height and/or width of the original image will be used.

Here is an example that converts a BMP image into a TIFF image. Since the output file has an extension (.tif)
the output image type does not need to be specified. The TIFF image will have the same dimensions as the
original PICT image.

convertimage "my picture.bmp","my picture.tif","",0,0

This example converts an image into a 32 by 32 pixel icon. Since the files do not have any extensions this
example can only work on a Macintosh, not on a Windows PC.

convertimage "my picture","my icon","PICT",32,32

Here is a similar example that can work on a Windows PC (it can work on a Macintosh also, if the file names
have extensions).

convertimage "my picture.jpg","my icon.jpg","",32,32

Image Type PC Extensions Notes

PICT .pct Apple PICT bitmap

BMP .bmp Windows and OS/2 bitmap

JPEG .jpg .jpeg JPEG compressed image

PNG .png Portable Network Graphics bitmap

TIFF .tif .tiff Tagged Image Format

PHOTOSHOP .psb Adobe Photoshop

FLASHPIX .fpx FlashPix bitmap

TARGA .targa

Chapter 25:Programming Techniques Page 1707
When the output file is in JPEG format you can use the imagequality statement to control the compression
level of the JPEG conversion. This statement has one parameter, a number from 0 (very low quality, high
compression) to 100 (high quality, least compression).

imagequality level

The imagequality statement must be used just before the convertimage statement. Here is an example
that creates two JPEG images from a TIFF original, one low quality and one high quality. Each is placed in a
different subfolder of the current database folder.

imagequality 80
convertimage "Sunset.tif",":Hi Quality:Sunset.jpg","",0,0
imagequality 20
convertimage "Sunset.tif",":Lo Quality:Sunset.jpg","",0,0

For more information on ordering the Enhanced Image Pack visit our website at http://www.provue.com.

Page 1708 Panorama Handbook
Building Web Like HyperText Systems with Super Flash Art

Apple’s PICT image format allows an image to contain text as well as bitmap information. For example the
image below (shown in Deneba’s Canvas 3.5) contains both text and bitmap graphics.

Depending on how the picture was created, it can be possible to extract the text in a picture based on certain
specifications: location, style, color, font, etc. This feature gives Panorama the power to turn a collection of
pictures into a linked hypertext system. The Panorama On-Line Reference is an example of such a system.
This system is basically just a collection of PICT images. When the user clicks on a word or phrase within an
image (for example the word ASCII in the image above) a simple procedure decodes what word or phrase
they clicked on and switches to the new page (a new picture) based on that information.

Preparing Pictures with Extractable Text

Not all text in every picture can be extracted. Text that has been converted to a pixel (bitmap) image cannot be
extracted. As a general rule, if the text can be edited as text in your drawing program, the text can be
extracted. For example, Photoshop does not allow text to be edited after it has been created, so text in an
image created by Photoshop cannot be extracted. (Of course, Photoshop does allow the text to be manipu-
lated with graphic tools, but that doesn’t count. You must be able to insert and delete text, type in new text,
etc.)

Some programs that work well for creating extractable text include Canvas and Freehand. (In Canvas, you
must make sure that the text is in a text object, not a paint object.) For other programs we recommend that
you try a small picture before you do a lot of work. Our favorite program for creating images with extractable
text is Deneba Canvas (see http://www.deneba.com).

text bitmap

Chapter 25:Programming Techniques Page 1709
To create extractable text with Canvas you start by selecting the Text tool.

Next, you drag the mouse over the location where you want to create the text, just like creating auto-wrap
text in Panorama.

Now type in the text.

When the image is complete, be sure to save it using PICT format.

Page 1710 Panorama Handbook
Programming a HyperText Engine

When text is saved as part of an image in PICT format the text is split up internally into chunks. A new chunk
starts: 1) whenever there is any change in the text font, size, style or color, or 2) whenever a new line begins.
The image created in the previous section actually consists of six separate text chunks.

The Super Flash Art "FindText" command takes a point within the image (x,y co-ordinates) and checks to see
if a chunk of text is at that location. If there is, it extracts the text chunk and returns it to the procedure for fur-
ther processing. Using this command a procedure can find out what chunk of text has been clicked on (if any)
and take appropriate action.

Finding out what chunk of text has been clicked on takes three components: 1) a Super Flash Art object (see
“Creating Super Flash Art Objects” on page 807), 2) a transparent “Classic” Pushbutton with the click/release
option turned off (see “Transparent Push Buttons” on page 861), and 3) a procedure triggered by the “Clas-
sic” pushbutton. The transparent button should be overlaid exactly on top of the Super Flash Art object…use
the Align command to get exact alignment (see “Aligning Objects” on page 605). If the Super Flash Art object
has scroll bars, however, they should not be covered by the button. Only cover the area where the actual
image is displayed.

The example below shows a procedure that will figure out what text was clicked on, and what font, size, and
style the text is. The example assumes that the Super Flash Art object is named HyperFlash. (To give an object
a name, first select the object, then use the Object Name command in the Edit menu or click on the object
name in the Graphic Control Strip, see “Object Type/Object Name” on page 585.)

local v,h,clickPoint
local clickText, clickFont, clickSize, clickStyle
v=v(info("mouse"))-rtop(info("buttonrectangle"))
h=h(info("mouse"))-rleft(info("buttonrectangle"))
clickPoint=point(v,h)
superobject "HyperFlash","FindText",clickPoint,clickText
clickFont=objectinfo("font")
clickSize=objectinfo("textsize")
clickStyle=objectinfo("textstyle")

This example uses the special superobject "FindText" command. This command only works with Super
Flash Art objects. The command has two additional parameters: 1) the location within the picture object (in
this case clickPoint) and the field or variable the extracted text should be placed into (in this case clickText).

Chapter 25:Programming Techniques Page 1711
If the click was over a chunk of text, the "FindText" command will extract that chunk. After the chunk has
been extracted the procedure can use the objectinfo(function to find out the font, text size, and style of
the chunk (as shown in the program above). The style is a number that is calculated by adding up the follow-
ing numbers for each possible style:

For example, if the chunk is bold-italic, the objectinfo("textstyle") function will return the value 3.

The statements shown below could be added to the end of the previous program to ignore all text that is not
underlined.

if (clickStyle and 4) <> 4
stop

endif

The and operator isolates only the underline attribute. If the statement was simply if clickStyle<>4 the
procedure would stop if the chunk was a combination style like bold-underline or italic-underline.

The sample database Extractable Text demonstrates Panorama’s ability to extract chunks of text. When you
click on the image it uses the procedure listed above to extract the text, along with it’s font, size, and style. For
example, if you click on the word ASCII as shown here it extracts and displays the chunk of text (ASCII)
along with all of the attributes of the chunk.

As you can see the chunk of text is ASCII, the font is Geneva 12, and the style is bold (4).

0 Plain

1 Bold

2 Italic

4 Underline

8 Outline

16 Shadow

Page 1712 Panorama Handbook
You can click on any location to see what chunk of text is there.

If there is no chunk of text at the spot that was clicked the clickText variable will contain empty text ("").

Extracting All Text of a Specific Style

The superobject "ExtractText" command allows all the text that matches specified criteria to be extracted
from the picture currently displayed in a Super Flash Art object. This command has several parameters as
shown here:

SuperObject "Object Name","ExtractText",Font,Size,Style,Sep,Result

The first parameter, Font, specifies the font of the text you want to extract. If you don’t care what the font is,
leave this parameter empty ("").

The second parameter, Size, specifies the size of the text you want to extract. If you don’t care, this parameter
should be zero.

The third parameter, Style, specifies the style of the text you want to extract. This parameter allows you
extreme flexibility in selecting what styles you want to extract.

If the Style parameter is zero, any style is ok. For example, if you want to extract all Monaco 9 point text of
any style into a variable named Samples, here’s how you would do it:

local Samples
superobject "HyperFlash","ExtractText","Monaco",9,0,";",Samples

If the Style parameter is 1-255, it specifies the exact style you want. Add up the numbers for each individual
style. For example, for underlined text you would specify 4, for bold text, 1. The example below will extract
all bold text, but not bolditalic or bold underlined.

local Samples
superobject "HyperFlash","ExtractText","",0,1,¶,Samples

If the Style parameter is 256 or greater, it specifies both the style and a mask for the style. The mask allows
you to isolate individual styles. The mask uses the same style numbers as the individual styles, but multi-
plied by 256. (Why 256? 256 is 2 the 8th power (28), an even number in the computer's binary numbering sys-
tem.) For example, suppose you wanted to extract all bold text, even bold text that is combined with other
styles. By using a mask of 4*256 you tell the "ExtractText" command that you only care about the underlined
style. The example below will extract all underlined, underlined-italic, underlined-bold; any text that is
underlined no matter what other attributes it may have.

local Samples
superobject "HyperFlash","ExtractText","",0,(4*256)+4,¶,Samples

Chapter 25:Programming Techniques Page 1713
The fourth parameter, Sep, specifies what separator character(s) should be used between text chunks as they
are extracted. Usually this is a carriage return (¶), comma, space, slash, etc. (see “Picking a Separator Charac-
ter” on page 1257).

The character "t" is a special separator. When this separator is used, Panorama checks each piece of
extracted text to see if it is on the same line as the previously extracted piece of text. If it is on the same line,
Panorama will connect the pieces with a space. If the two pieces are on different lines, they will be connected
with a carriage return. This allows the extracted text to be more or less reconstructed in its original form.
(Note: Either "t" or "T" will trigger this special operation.)

The final parameter, Result, is the field or variable that you want the extracted text placed into.

The procedure below displays the number of underlined segments in the current picture.

local KeywordList
superobject "HyperFlash","ExtractText","",0,4,¶,KeywordList
message arraysize(KeywordList,¶)

The next example takes all the Monaco 9 pt text in the current picture and combines it. It then copies the text
onto the clipboard.

local SampleText
superobject "HyperFlash","ExtractText","Monaco",9,0,"t",SampleText
clipboard=SampleText

Creating Multi-Page Pictures

Most pictures fit on a single page. However, if you are creating a HyperText system, you may want to build
pictures that are several pages long. On the screen, the user can use scroll bars to see the entire picture. But
what about printing?

To allow printing of multi-page text or pictures, Panorama includes a feature called an “overflow” tile. The
“overflow” tile works in conjunction with a regular data tile to print any leftover data that would not fit on
the data tile. See “Printing Data that Overflows a Page” on page 1122 to learn how to set up multi-page print-
ing.

If you use this picture overflow system, you can build special objects into your pictures that will tell Pan-
orama where to split the picture into separate pages when printing. This will prevent the printout from split-
ting the page in the middle of a graphic or in the middle of a line of text. To specify a page break, you must
draw a short horizontal line (a few pixels wide) near the right edge of the picture (within 16 pixels of the right
edge) as shown in this example.

short horizontal line forces page break

Page 1714 Panorama Handbook
Push Button Internal Data

This table describes the internal data in a Push Button SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Super Object Push Button” on page 853.

Identifier Data Type Changeable? Description

"#PUSH BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — 3D text, click/release, etc. You
can also access each of these options separately (see
following entries). Being able to access all of these val-
ues at once makes it easy to save all the flags, modify
selected flags, and then restore all of the original set-
tings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#COLOR TITLE" Bit Yes -1 if color:title is enabled, 0 if disabled.

"#COLOR BORDER" Bit Yes -1 if color:border is enabled, 0 if disabled.

"#COLOR FILL" Bit Yes -1 if color:fill is enabled, 0 if disabled.

"#COLOR HIGHLIGHT" Bit Yes -1 if color:highlight is enabled, 0 if disabled.

"#PUSH BUTTON STYLE" Byte Yes

Style option (see “Push Button Styles” on page 856).

 0 = rectangle
 1 = rounded rectangle
 2 = circle
 3 = 3D rectangle
 4 = 3D rounded rectangle
 5 = 3D circle
 6 = Beveled Rectangle

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 858).

"#BUTTON TITLE" Text Yes

Title of button (maximum 31 characters). The example
procedure below changes a button’s title from Go to
Stop to Go to Stop each time the procedure runs.

local bTitle
selectobjects

objectinfo("name")="Signal"
bTitle=objectinfo("#BUTTON TITLE")
if bTitle="Go"

bTitle="Stop"
else

bTitle="Go"
endif
changeobjects "#BUTTON TITLE",bTitle
selectnoobjects

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

Chapter 25:Programming Techniques Page 1715
Flash Art Push Button Internal Data

This table describes the internal data in a Flash Art Push Button SuperObject that can be accessed and modi-
fied using the “back door” described in “Internal Data Types” on page 1681. To learn more about how these
options work see “Flash Art™ Push Button SuperObjects™” on page 862.

Data Button SuperObject Internal Data

This table describes the internal data in a Data Button SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Super Data Button Options” on page 876.

Identifier Data Type Changeable? Description

"#PUSH BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — click/release, include pictures
on disk, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pictures on disk is enabled, 0 if disabled.

"#BUTTON TITLE" Text Yes Title of button (maximum 31 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FLASH ART FILE" Text Yes Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 832).

"#FORMULA" Text No Formula used to select which flash art image to dis-
play.

Identifier Data Type Changeable? Description

"#DATA BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Page 1716 Panorama Handbook
Flash Art Data Button SuperObject Internal Data

This table describes the internal data in a Flash Art Data Button SuperObject that can be accessed and modi-
fied using the “back door” described in “Internal Data Types” on page 1681. To learn more about how these
options work see “Flash Art Data Button SuperObjects™” on page 879.

Identifier Data Type Changeable? Description

"#FLASH STICKY BUTTON
FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#BUTTON ANIMATION" Bit Yes -1 if f/x is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pics on disk is enabled, 0 if disabled.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 858).

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#FLASH ART FILE" Text Yes Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 832).

"#FLASH ART FORMULA" Text No Formula used to select which flash art image to dis-
play.

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Chapter 25:Programming Techniques Page 1717
Sticky Push Button SuperObject Internal Data

This table describes the internal data in a Sticky Push Button SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 1681. To learn more about how these
options work see “Sticky Push Button SuperObjects™” on page 881.

Identifier Data Type Changeable? Description

"#STICKY PUSH BUTTON
FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#COLOR TITLE" Bit Yes -1 if color:title is enabled, 0 if disabled.

"#COLOR BORDER" Bit Yes -1 if color:border is enabled, 0 if disabled.

"#COLOR FILL" Bit Yes -1 if color:fill is enabled, 0 if disabled.

"#COLOR HIGHLIGHT" Bit Yes -1 if color:highlight is enabled, 0 if disabled.

"#PUSH BUTTON STYLE" Byte Yes

Style option (see “Push Button Styles” on page 856).

 0 = rectangle
 1 = rounded rectangle
 2 = circle
 3 = 3D rectangle
 4 = 3D rounded rectangle
 5 = 3D circle
 6 = Beveled Rectangle

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 858).

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Page 1718 Panorama Handbook
Pop-Up Menu SuperObject Internal Data

This table describes the internal data in a Pop-Up Menu SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Pop-Up Menu Options” on page 889.

Identifier Data Type Changeable? Description

"#POP-UP MENU FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — multi-column menus, combo
box, show value, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#POP-UP 2 PIXEL DROP
SHADOW" Bit Yes -1 if drop shadow:2 pixels is enabled, 0 if disabled.

"#POP-UP 1 PIXEL DROP
SHADOW" Bit Yes -1 if drop shadow:1 pixel is enabled, 0 if disabled.

"#POP-UP SHOW VALUE" Bit Yes -1 if show value is enabled, 0 if disabled.

"#POP-UP CHICAGO" Bit Yes -1 if Chicago 12 is enabled, 0 if disabled.

"#POP-UP MENU WRAPPING" Bit Yes -1 if multi-column is enabled, 0 if disabled.

"#POP-UP TRIANGLE" Bit Yes -1 if show triangle is enabled, 0 if disabled.

"#COMBO BOX" Bit Yes -1 if combo box is enabled, 0 if disabled.

"#SMART POP UP COMBO BOX" Bit Yes -1 if mac popup/windows combo box is enabled, 0 if
disabled.

"#POP-UP FILL COLOR" Text Yes Fill color for pop-up menu (see “Colors” on
page 1308).

"#POP-UP LAST ITEM" Word No

Last menu item selected (number from 1 to maximum
number of items in menu). For example if the menu
contains four items (Red, Green, Blue, Orange) and the
user picks Blue this value will be 3.

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FIELD" Text Yes Name of field or variable that contains value of pop-
up menu (maximum 31 characters).

"#FORMULA" Text No Formula for calculating contents of menu.

Chapter 25:Programming Techniques Page 1719
List SuperObject™ Commands

The List SuperObject understands about a dozen commands that can be sent to it with the superobject
statement in a procedure (see “Program Control of SuperObjects™” on page 1678). This table describes each
of these commands in detail.

Command Parameters Description

"FillList" Formula,Database

This command re-fills the specified list. You can use this command to
update the list, or to fill it with completely new information.

To update the list using the settings in the List Configuration Dialog (see
“List Options” on page 902) leave off the Formula and Database. For
example, if the pizza toppings list was derived from a pizza toppings
database, you would want to use this procedure when the pizza toppings
database had changed:

superobject "Toppings","FillList"

You can also use the "FillList" command to fill the list with entirely new
information, completely ignoring the formula and database originally
specified in the List dialog. The same list can be filled and refilled again
and again with different items as conditions change. Below are three sam-
ples that could be used to fill a list from the Pizza Toppings database. The
first sample lists all toppings, the next veggie only, the final meat only.

superobject "Toppings","FillList",
Topping,"Pizza Toppings"

superobject "Toppings","FillList",
?(Category="Veggie",Topping,""),"Pizza Toppings"

superobject "Toppings","FillList",
?(Category="Meat",Topping,""),"Pizza Toppings"

Of course you can also use the "FillList" command to directly specify the
contents of the list. In this case the database should be set to "".

superobject "Toppings","FillList",
"Pepperoni"+¶+"Sausage"+¶+"Meatballs"+¶+
"Mushrooms"+¶+"Olives"+¶+"Onions"
,""

Off course the topping list could also be created with variables. Here’s an
example:

local MeatToppings,VeggieToppings,SpecialtyToppings
MeatToppings="Pepperoni"+¶+"Sausage"+¶+"Meatballs"
VeggieToppings="Mushrooms"+¶+"Olives"+¶+"Onions"
SpecialtyToppings="Anchovies"+¶+"Garlic"
superobject "Toppings","FillList",VeggieToppings,""

"AutoScroll"

This command scrolls the list so that the first selected item is visible. For
example, this procedure selects Pineapple and scrolls the list to make sure
that the Pineapple item is visible. (The procedure assumes that the
selected list value is stored in a field named ListCell — see “Data” on
page 902).

ListCell="Pineapple"
SuperObject "Toppings","AutoScroll"

Page 1720 Panorama Handbook
"CellRectangle" Item,Rectangle

This command allows a procedure to determine the physical location and
size (i.e. rectangle) of any item in the list. This command has two parame-
ters as shown below: the Item number (from 1 to the maximum number
of items in the list) and the Rectangle. The Rectangle should be a variable
that will contain the final result.

Here is an example that fills in the variable dragRectangle with the
dimensions of the third item in the list.

superobject "My List",
 "CellRectangle",3,dragRectangle

Note: The rectangle that is returned by this command is in window rela-
tive co-ordinates (see “Rectangles” on page 1304). You can change this to
screen or form relative co-ordinates using the xytoxy(function (see
“XYTOXY(” on page 5907).

"PointToCell" Point,Cell

This command allows a procedure to determine what list item (if any)
corresponds to any point on the screen. For example, if someone drags
something onto the list, this command allows the procedure to determine
where in the list the item should be placed. This command has two
parameters as shown below: the Point and the Cell. The Cell parameter
should be a variable that will contain the final result.

superobject "object name","PointToCell",Point,Cell

"GetList" List
This command produces a list of all the items in the list, with each item
separated from the next by a carriage return. The list is placed into the
field or variable specified by List.

"GetSelected" List

This command produces a list of all the selected items in the list, with
each item separated from the next by a carriage return. The list is placed
into the field or variable specified by List. (Note: This command is redun-
dant if the list is already associated with a field or variable. Instead of
using the command the procedure can simply examine (or change!) the
value of the field or variable.)

"GetCount" Number This command returns a count of the total number of items currently in
the list into the field or variable specified by Number.

"GetCell" Item,Value

This command extracts the contents of a particular item in the list. The
command treats the list as a series of numbered items, starting from 1 at
the top of the list. This example will copy the first item in the list PartsList
into the variable NextPart.

local NextPart
superobject "PartsList","GetCell",1,NextPart

This example will copy the last item in the list PartsList into the variable
NextPart.

local NextPart,ListCount
superobject "PartsList","GetCount",ListCount
superobject "PartsList",
 "GetCell",ListCount,NextPart

Command Parameters Description

Chapter 25:Programming Techniques Page 1721
"FindCell" Cell,Text

This command searches the list to find a specified value. The list item
must match exactly, or the search will be unsuccessful. The search starts
with the item specified by Cell. If successful, the number of the item con-
taining the searched for value will be placed in Cell, otherwise Cell will
be set to zero. The example below will locate Garlic in the list of pizza
toppings and select it (tasty!).

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Garlic"
if ListCell ≠0

superobject "Toppings","SelectCell",ListCell
endif

Keep in mind that the word or phrase must match exactly. In this case
only Garlic will be located; garlic or Roasted Garlic will not.

Note: This command is redundant if the list is already associated with a
field or variable. Instead of using the "FindCell" command the procedure
can simply set the value of the field or variable. Here is a much simpler
procedure that performs the same function as the procedure above. (The
procedure assumes that the selected list value is stored in a field named
ListCell — see “Data” on page 902).

ListCell="Garlic"
showvariables ListCell

"SelectCell" Cell
This command selects a specified item in the list. The item is specified by
Cell, which should be a number from 1 to the maximum number of items
in the list.

"UnSelectCell" Cell

This command unselects a specified item in the list. The item is specified
by Cell, which should be a number from 1 to the maximum number of
items in the list. The example below makes sure that there are no ancho-
vies on the pizza!

local ListCell
ListCell=1
SuperObject
"Toppings","FindCell",ListCell,"Anchovies"
if ListCell ≠0

superobject "Toppings","UnSelectCell",ListCell
endif

Note: This command is usually redundant if the list is already associated
with a field or variable. Instead of using the "UnSelectCell" command
the procedure can simply set the value of the field or variable. Here is a
much simpler procedure that performs the same function as the proce-
dure above. (The procedure assumes that the selected list value is stored
in a field named ListCell that is a carriage return separated array — see
“Data” on page 902).

ListCell=replace(ListCell,"Garlic","")
ListCell=arraystrip(ListCell,¶)
showvariables ListCell

Command Parameters Description

Page 1722 Panorama Handbook
"SetCell" Cell,Value

This command changes the contents of a specified item in the list. The
item is specified by Cell, and should be from 1 to the maximum number
of items in the list. The example below changes the Cheese item to Extra
Cheese.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Cheese"
if ListCell<>0

superobject "Toppings","SetCell",ListCell,
"Extra Cheese"

endif

"AddCell" Value

This command adds a new item to the end of the list. This example adds
the item Sun Dried Tomatoes to the end of the list of pizza toppings.

superobject "Toppings","AddCell",
"Sun Dried Tomatoes"

"InsertCell" Cell,Value

This command inserts a new item into the middle of the list. The Cell
parameter specifies where the new item should be inserted. This parame-
ter must be a number from 1 up to the number of items in the list. The
new item will go above the item specified. For example, you could insert
the item Extra Cheese at the very top of the pizza topping list:

superobject "Toppings",
"InsertCell",1,"Extra Cheese"

This more complex example inserts Grilled Onions after Onions.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Onions"
if ListCell ≠0

ListCell=ListCell+1
superobject "Toppings","InsertCell",

ListCell,"Grilled Onions"
endif

Notice that the example adds one to ListCell before inserting the new
item. This is so the new item (Grilled Onions) will be inserted after the
original item (Onions) instead of before it.

"DeleteCell" Start,End

This command deletes one or more items from the list. If you just want to
delete a single cell, then only one number is needed. This example deletes
the first item in the list.

superobject "Toppings","DeleteCell",1

To delete a bunch of cells at once, specify two numbers — the first and
last cell to delete. This example deletes the first 5 items in the list.

superobject "Toppings","DeleteCell",1,5

This example will delete the entire list in a big hurry!

superobject "Toppings","DeleteCell",1,10000

Command Parameters Description

Chapter 25:Programming Techniques Page 1723
Using Drag and Drop to Change the Order of Items in a List

This example shows how to set up a procedure that allows the user to drag items up or down in a list to
change the order of a list. This example assumes that there is a list of names in a field called Names, with each
name separated from the next by a carriage return. The current form must contain a List SuperObject named
Names List (see “Object Type/Object Name” on page 585). The Names List object displays the Names field, it
is also linked to a global variable named theName (see “Data” on page 902).

global theName
local cell,cellbox,listbox,mouse,newcell,newNames
cell=1
superobject "Names List","findselected",cell
superobject "Names List","cellrectangle",cell,cellbox
cellbox=xytoxy(cellbox,"w","s")
object "Names List"
listbox=xytoxy(objectinfo("rectangle"),"f","s")
draggraybox cellbox,listbox,listbox,0
if cellbox="" stop endif /* user dragged out of the list */
mouse=xytoxy(info("mouse"),"s","w")
/* where is the new location for this item? */
superobject "Names List","pointtocell",mouse,newcell
if cell=newcell stop endif /* item did not move */
if newcell>cell

newcell=newcell-1 /* adjust for deleting item in old spot */
endif
/* delete item from old spot */
newNames=arraydelete(Names,cell,1,¶)
if newcell>0

/* insert item in new spot */
newNames=arrayinsert(newNames,newcell,1,¶)
newNames=arraychange(newNames,theName,newcell,¶)

else
/* add item to end of list */
newNames=newNames+¶+theName

endif
Names=newNames /* update original field */
superobject "Names List","filllist" /* re-display list */
showvariables theName /* and select correct item */

"FindSelected" Cell

This command finds the next selected cell, starting with Cell. The result is
placed in Cell, or zero if there are no selected cells below the starting spot.
The example below deletes all the selected items from the list.

Local Spot
Spot=1
loop

SuperObject "Toppings","FindSelected",Spot
if Spot=0

stop
endif
SuperObject "Toppings",DeleteCell,Spot

next

Command Parameters Description

Page 1724 Panorama Handbook
The illustration below shows this procedure in action. You can click on any item in the list and drag it into a
new position on the list.

List SuperObject Internal Data

This table describes the internal data in a List SuperObject that can be accessed and modified using the “back
door” described in “Internal Data Types” on page 1681. To learn more about how these options work see
“List Options” on page 902.

Identifier Data Type Changeable? Description

"#LIST FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — sort up, no duplicates, click/
release, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#LIST SORT" Bit Yes -1 if sort up is enabled, 0 if disabled.

"#LIST NO DUPLICATES" Bit Yes -1 if no duplicates is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#LIST CLICK FLAGS" Byte Yes

This value controls the click action configuration (see
“Click Action” on page 910).

 0 = Normal
 128 = One Cell Only
 32 = Contiguous Cells Only
 118 = Extend w/o Shift

"#LIST DATABASE" Text Yes Name of database to scan ("" if formula builds list
directly).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this list
is pressed.

"#FIELD" Text Yes Name of field or variable that contains value of pop-
up menu (maximum 31 characters).

"#FORMULA" Text No Formula for calculating contents of list.

Chapter 25:Programming Techniques Page 1725
Auto Grow SuperObject™ Commands (Elastic Forms)

The Auto Grow SuperObject (see “Elastic Forms” on page 940) understands a small set of commands that can
be sent to it with the superobject statement in a procedure (see “Program Control of SuperObjects™” on
page 1678). This table describes each of these commands in detail.

Auto Grow SuperObject Internal Data

This table describes the internal data in an Auto Grow SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Building an Elastic Form” on page 943.

Command Parameters Description

"GetMinSize" Height,Width This command gets the minimum window size (see “Building an Elastic
Form” on page 943).

"SetMinSize" Height,Width This command sets the minimum window size (see “Building an Elastic
Form” on page 943).

"GetMaxSize" Height,Width This command gets the maximum window size (see “Maximum Window
Size” on page 947).

"SetMaxSize" Height,Width This command sets the maximum window size (see “Maximum Window
Size” on page 947).

Identifier Data Type Changeable? Description

"#AUTO GROW FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — sort up, no duplicates, click/
release, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#AUTO GROW HORIZONTAL" Bit Yes -1 if slave (horizontal) is enabled, 0 if disabled.

"#AUTO GROW VERTICAL" Bit Yes -1 if slave (vertical) is enabled, 0 if disabled.

"#NO AUTO GROW" Bit Yes -1 if don’t adjust form is enabled, 0 if disabled.

"#AUTO GROW ICON" Bit Yes -1 if draw grow icon is enabled, 0 if disabled.

"#AUTOGROW PROCEDURE" Bit Yes -1 if .Autogrow proc is enabled, 0 if disabled.

Page 1726 Panorama Handbook
Super Matrix SuperObject™ Commands

The Super Matrix SuperObject (see “Super Matrix Objects” on page 958) understands a small set of com-
mands that can be sent to it with the superobject statement in a procedure (see “Program Control of
SuperObjects™” on page 1678). This table describes each of these commands in detail.

Command Parameters Description

"ReDraw" Area,Start,End

This command redraws some or all of the cells in a super matrix. The first
parameter, Area, defines the area that will be redrawn. Legal options for
this parameter are: "all", "column", "row", and "cell".

The Start and End parameters define the start and end of the area to be
redrawn. For example, if the Area parameter was "column" and the last
two parameters were 3 and 5, then columns 3 thru 5 would be redrawn.
(Note: The start and end values are ignored if the "all" area is chosen.)

The following examples illustrate different ways a matrix might be
updated. This calendar example redisplays the entire month.

superobject "Month","redraw","all",0,0

This example redisplays only weekdays.

superobject "Month","redraw","column",2,6

This example works with a matrix of photographs. The procedure redis-
plays photo 7 only.

superobject "Photographs","redraw","cell",7,7

This example redisplays all photos after photo 12. This procedure would
be used if someone inserts or deletes a photograph at position 12.

superobject "Thumbnails","redraw","cell",12,9999

"CellRectangle" Cell,Rectangle

This command returns the dimensions of an individual cell in the matrix.
The dimensions are in window co-ordinates. The Cell parameter should
be a number from 1 to the maximum number of cells in the matrix. The
Rectangle parameter should be a field or variable where the rectangle will
be stored.

This example uses the "CellRectangle" command to open a new window
over the current matrix cell (the matrix cell that was clicked on).

local subWindowRectangle
superobject "Calendar","CellRectangle",

info("matrixcell"),subWindowRectangle
setwindowrectangle

xytoxy(subWindowRectangle,"w","g"),""
openform "Day"

"CellToXY" Cell,Row,Col

This command converts a matrix cell number into a row and column. The
example below displays what row and column were clicked on.

local mRow,mCol
superobject "Thumbnail",

"CellToXY",info("matrixcell"),mRow,mCol
message "You clicked on row "+str(mRow)+

" and column "+str(mCol)

Chapter 25:Programming Techniques Page 1727
Super Matrix SuperObject Internal Data

This table describes the internal data in a Super Matrix SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 1681. To learn more about how these options
work see “Designing a Matrix Template” on page 968.

"MatrixSize" Cells

This command calculates the current number of cells in the matrix. Here
is a procedure that displays all the vital statistics for a matrix.

local mCells,mRows,mCols
superobject "Images","MatrixSize",mCells
superobject "Images","CellToXY",mCells,mRows,mCols
message "This matrix contains "+

str(mCells)+" cells ("+
str(mRows)+" rows by "+
str(mCols)+ "columns).

This information can be very useful if you want to attach the matrix to a
scroll bar (see “Creating a Scrolling Matrix” on page 989).

"Scroll" Rows,Cols

This command slides the display of the matrix up or down and/or right
or left. This command simply slides the matrix display — it’s up to you to
adjust the underlying data structure (see “Creating a Scrolling Matrix” on
page 989). If the Rows parameter is positive the matrix display will slide
up by the specified number of rows, if negative it will slide down. If the
Cols parameter is positive the matrix display will slide right by the speci-
fied number of columns, if negative it will slide left. For either parameter
a value of 0 may be used to maintain the same position on that axis.

Identifier Data Type Changeable? Description

"#SUPER MATRIX FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — matrix order, fixed width,
fixed height, click/release, etc. You can also access
each of these options separately (see following
entries). Being able to access all of these values at once
makes it easy to save all the flags, modify selected
flags, and then restore all of the original settings.

"#SUPER MATRIX SHOW
FRAME" Bit Yes -1 if display:frame object is enabled, 0 if disabled.

"#SUPER MATRIX ORDER" Bit Yes -1 if horizontal is enabled, 0 if vertical.

"#SUPER MATRIX FIXED WIDTH" Bit Yes -1 if fixed width (pixels) is enabled, 0 if fixed # of
columns.

"#SUPER MATRIX FIXED
HEIGHT" Bit Yes -1 if fixed height (pixels) is enabled, 0 if fixed # of

rows.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#SUPER MATRIX GROW
METHOD" Bit Yes -1 if slide is enabled, 0 if proportional.

"#SUPER MATRIX BORDERS" Bit Yes -1 if cell borders is enabled, 0 if disabled.

"#SUPER MATRIX COLUMNS" Long Word Yes
Number of columns if fixed # of columns is enabled,
or width of each column (in pixels) if fixed width is
enabled.

"#SUPER MATRIX ROWS" Long Word Yes Number of rows if fixed # of rows is enabled, or width
of each column (in pixels) if fixed height is enabled.

"#SUPER MATRIX GROW
BOUNDARY" Long Word Yes

Point specifying slide boundaries (used if slide is
enabled). Use v(and h(functions to extract individual
dimensions (see “Points” on page 1302).

Command Parameters Description

Page 1728 Panorama Handbook
Scroll Bar SuperObject™ Commands

The Scroll Bar SuperObject (see “Scroll Bars” on page 983) understands a small set of commands that can be
sent to it with the superobject statement in a procedure (see “Program Control of SuperObjects™” on
page 1678). This table describes each of these commands in detail.

"#SUPER MATRIX FRAME" Text Yes Name of matrix frame object (maximum 31 charac-
ters).

"#PROCEDURE" Text Yes Name of procedure triggered when matrix is clicked
on, if any.

Command Parameters Description

"GetScrollMin" Value This command gets the minimum scroll bar value and places into the
field or variable specified by Value.

"SetScrollMin" Value
This command sets the minimum scroll bar value to any numeric value
(must be integer) between 1 and 65535. (This value is normally set by the
Min value in the Scroll Bar dialog.)

"GetScrollMax" Value This command gets the maximum scroll bar value and places into the
field or variable specified by Value.

"SetScrollMax" Value

This command sets the maximum scroll bar value to any numeric value
(must be integer) between 1 and 65535. (This value is normally set by the
Max value in the Scroll Bar dialog.) Here is an example that sets the max-
imum value of the scroll bar named Slider to the number of elements in
the array People:

superobject "Slider",
 "SetScrollMax",arraysize(People,¶)

"GetScrollPage" Value

This command gets the scroll bar page amount and places into the field
or variable specified by Value. This value is the amount the scroll bar
value will increase or decrease if the user clicks on the gray area above or
below the thumb of the scroll bar.

"SetScrollPage" Value

This command sets the scroll bar page amount to any numeric value
(must be integer) between 1 and 65535. This value is the amount the scroll
bar value will increase or decrease if the user clicks on the gray area
above or below the thumb of the scroll bar. (This value is normally set by
the Page Up/Down value in the Scroll Bar dialog.)

"GetScrollValue" Value
This command gets the current position of the scroll bar. This command
is redundant because you can always get the position by examining the
field or variable linked to the scroll bar.

"DisableScroll" This command disables the scroll bar. The scroll bar is still visible, but it
turns white and the thumb disappears.

"EnableScroll" This command enables the scroll bar (see DisableScroll above).

"GetScrollEnable" Value
This command checks to see if a scroll bar is enabled or disabled, and sets
the field or variable specified by Value with a true or false result accord-
ingly.

Identifier Data Type Changeable? Description

Chapter 25:Programming Techniques Page 1729
Printing

Even in this e-commerce age many jobs still require paper output. Printing can be done manually (see “Print-
ing Basics” on page 1055) or via a procedure.

Selecting a View for Printing

In Panorama printing is always done through a specific view. You can always print the data sheet, but usually
when printing with a procedure you’ll be using a form set up with a custom report (see “Custom Reports” on
page 1067). Before printing begins the procedure must select the appropriate form, either in a new window
with the openform statement (see “Opening a Window” on page 1544) or within the current window with
the goform statement (see “Changing a Window’s View” on page 1550). An alternate way to select a view for
printing is to use the printusingform statement. This statement allows a procedure to print using a form
without actually opening the form. See “Printing Using an Alternate Form” on page 1731 to learn how to use
this statement.

Selecting a Printer

A procedure always prints to the currently selected printer. Unfortunately, there is no way to change which
printer is currently selected, this must be done manually using your system software.

Adjusting Page Setup

The Page Setup dialog allows you to configure various printing options (see “The Page Setup Dialog” on
page 1061). A procedure cannot control these options directly, but it can open the Page Setup dialog automat-
ically using the pagesetup statement (see “PAGESETUP” on page 5585). This statement does not have any
parameters, it is simply used by itself. Here is a simple procedure that opens a form and allows the page
setup to be adjusted, then closes the form.

openform "My Report"
pagesetup
closewindow

Panorama keeps a separate Page Setup configuration for each form. This allows different forms to have dif-
ferent configurations (for example portrait vs. landscape orientation).

Preparing Data For Printing

Most procedures that print the database also prepare the database in some way. Typically, a procedure may
sort, select a subset of the database and/or prepare summaries. See “Sorting” on page 1610, “Locating Infor-
mation” on page 1611 and “Summaries and Outlines” on page 1619 to learn how to perform these tasks with
a procedure.

Printing the Database

A procedure can print all selected records in the current database using the print statement (see “PRINT”
on page 5610). This statement may be used one of two ways. The first method is to follow the statement with
the parameter dialog , like this (there must be a space between print and dialog , as shown below).

print dialog

When used this way the procedure will pause and display the standard Print dialog, the same dialog that
normally appears when you choose the Print command. This allows you to choose the print options for this
print run (number of copies, paper source, etc.) The exact options depend on the printer you have selected.
When the Print button is pressed the procedure will go ahead and print all the selected records in the current
database.

Page 1730 Panorama Handbook
The second method is to follow the print statement with the parameter "" , as shown here.

print ""

When the print statement is used this way it will not display the Print dialog. Instead, it simply prints the
database using the same options that were used the last time this form was printed. (Note: Depending on the
printer driver software your printer uses, some options may not be saved from print to print. These options
will use default settings. For absolute control over all print options we recommend that you use the dialog
option.)

Here is an example of a complete procedure to print a report. The procedure opens the form that is designed
for printing this report and then selects the appropriate data. After printing it selects all of the data again and
then closes the form.

openform "90 Day Report"
select Date>today()-90
print dialog
selectall
closewindow

Printing a Single Record

To print just the current record use the printonerecord statement (see “PRINTONERECORD” on
page 5613). For example this statement could be used to print a single letter or a single invoice. Like the
print statement the printonerecord statement may be used with a parameter of either dialog or "" .
Here is an example that prints the current invoice.

openform "Paper Invoice"
printonerecord dialog
closewindow

Print Preview

The printpreview statement opens a special preview window. This window displays a preview of the
printed results for the current view. This is the same as choosing Preview from the File menu (see “Print Pre-
view” on page 1063). The user can flip forward to see additional pages of the previewed report. When the
user closes the preview window, the procedure continues with the statement after the printpreview state-
ment. Usually this should be either the end of the procedure or the stop statement (see “Stopping the Pro-
gram” on page 1395).

The most common reason to use the printpreview statement in a procedure is to simulate the Print Pre-
view command in your own custom File menu. Here are the statements to use in your .CustomMenu proce-
dure (see “The .CustomMenu Procedure” on page 1464). (You could also trigger print preview with a button.)

if info("trigger") beginswith "Menu.File.Print Preview"
printpreview
stop

endif

Chapter 25:Programming Techniques Page 1731
Printing Using an Alternate Form

The printusingform statement allows the current database to be printed using a different form than the
one currently being displayed (see “PRINTUSINGFORM” on page 5615). It is designed to be used in combi-
nation with the print , printonerecord , or printpreview statements (see previous sections). This state-
ment has two parameters: file and form.

printusingform file , form

File is the name of the database file that contains the form to be printed. The database file must be open. Usu-
ally the form will be in the current database, and in that case you can simply use an empty string ("") for the
file name. Form is the name of the form to be printed.

The print statement normally prints whatever window is currently active. If you want to print a different
window, you must first open that window and then print (see “Selecting a View for Printing” on page 1729).
The printusingform statement is another way to print an alternate form.

Warning: The printusingform statement may only be used when a form window is currently on top. It
will not work when a data sheet window is the current window.

The procedure below will print My Report, even if another form is currently visible.

printusingform "","My Report"
print dialog

The procedure below will print Standard Report #4 from the Reports database. Although the form is from the
Reports database, the data will be from the current database. This usually only makes sense if the two data-
bases have the same fields.

printusingform "Reports","Standard Report #4"
print dialog

Page 1732 Panorama Handbook
Printing Data in an Array

The printonemultiple statement prints a form over and over again without advancing from record to
record (see “PRINTONEMULTIPLE” on page 5611). Instead of advancing from record to record, a variable is
incremented each time the form is printed. This statement is designed for printing information in an array
(see “Text Arrays” on page 1257) using a Super Matrix (see “Super Matrix Objects” on page 958). Typical
examples include calendars and photo thumbnails. The printonemultiple statement has five parameters.

printonemultiple variable , start , end , bump, copies

The variable parameter is the name of the variable you wish to increment as each page is printed.

The start parameter is the beginning sequence number or date value. Start can be an integer number, a vari-
able containing a numeric integer or date value, or a formula or function which results in a numeric integer
or date value. The start parameter must be less than or equal to the end parameter.

The end parameter is the ending sequence number or date value. End can be an integer number, a variable
containing a numeric integer or date value, or a formula or function which results in a numeric integer or
date value. End must be greater than or equal to start.

The bump parameter is the increment value for your sequence. Bump may be a number, a numeric variable,
or a formula which results in a positive numeric integer. The bump value must be a positive integer for a
numeric field. For a date field bump may also be one of the following:

The copies parameter is the number of times the form is printed for each sequence number. Copies may be a
number, a numeric variable, or a formula which results in a positive numeric integer (usually 1).

The printonemultiple statement will print a form a predetermined number of times. Each printing of the
form may be sequenced with incrementing integer or date values in a specified variable. Note: the
printonemultiple statement does not actually print itself, but must be followed by a printonerecord
statement (see “Printing a Single Record” on page 1730).

This example prints the next 3 months of a monthly calendar. The example assumes that the form Monthly
Calendar will display the month specified by the variable CalendarDate.

fileglobal CalendarDate
openform "Monthly Calendar"
printonemultiple CalendarDate,today(),today()+90,"m",1
printonerecord dialog
closewindow

This example prints all the photograph files in the current folder. The example assumes that the form Picture
Matrix will display 20 pictures per page, probably using a SuperMatrix object. (It’s possible for a procedure to
find out how many pictures are on each page, see “Super Matrix SuperObject™ Commands” on page 1726).
The picture in the top left corner of each is controlled by the global variable PicNumber .

fileglobal PicNumber,PicMax
PicMax=arraysize(listfiles("","PICT"),¶)
openform "Picture Matrix"
printonemultiple PicNumber,1,PicMax,20,1
printonerecord dialog
closewindow

Bump Description

"M" bump one month per page

"Y" bump one year per page

1 bump one day per page

7 bump one week per page

Chapter 25:Programming Techniques Page 1733
Form Comments

Panorama allows you to create extra explanation comments for each form in a database. These comments let
you keep some notes to yourself about each form-what its purpose is, what kind of paper it is printed on,
whatever you want to remember. There’s a limited amount of space, however, so don’t go into great detail
about each field in the form. To create these comments, use the Form Comments command in the Setup
Menu (graphics mode only). Enter the comments in the box in the lower left hand corner of the dialog.

You can also assign a form type using the radio buttons in the upper left hand corner of the dialog. This type
is for your information only and may also be used to select classes of forms using the formselect proce-
dure statement. The pre-defined form types are:

Remember, these form types are for your information only—Panorama will not stop you from printing a
form that is designated as a dialog or from editing data in a form that is designated as a report. However,
form types can be very useful to help the database designer (this means you) keep track of what forms are for
what.

Option Description

Data Entry This is for forms that are primarily for data entry.

Printing

This is for forms that are primarily designed for print-
ing. This option is further subdivided into single page
forms that are designed for printing individual
records, for example checks or tax forms, and reports
that are designed for printing many records at a time.

Dialog & Other This is for forms that are designed to be displayed as
dialog boxes.

Unknown This is the default setting before a purpose has been
assigned.

Custom

Allows you to create your own form classifications
(for use with the formselect statement - see “The
FormSelect Statement” on page 1735). Custom classes
may be numbers from 10 to 255.

Page 1734 Panorama Handbook
In addition to the text comments, you can also assign a preview picture to the form. Before opening the Form
Comments dialog, copy the picture into the clipboard. Once the dialog is open, you can use the Paste
Preview Picture button to paste the picture into the comment window.

Another way to paste pictures into a form comment is to put the pictures in a resource file. The advantage of
this approach is that the picture doesn’t waste any of your valuable memory. However, the resource file must
be opened in the .Initialize procedure for this to work (see “Opening and Closing Resource Files” on
page 1534). Once the picture is stored in the resource file (see “Working with Resources” on page 1532), you
can open the Form Comments dialog, then hold down the Option key and press the Paste Preview Picture
button. Panorama will request the number of the resource containing the picture. Enter the number and press
Enter.

No matter how you get the picture into Panorama, the picture itself should be no more than 256 pixels high
by 256 pixels wide.

Chapter 25:Programming Techniques Page 1735
The FormSelect Statement

The formselect statement pauses a procedure and displays a dialog through which the user can choose a
form from the active database (see “FORMSELECT” on page 5264). The dialog may also show the Form
Comments information (see “Form Comments” on page 1733.) The dialog will look something like this.

The formselect statement has four required parameters.

formselect dialog , filter , button , form

Dialog is the resource number that identifies the dialog you wish to display. If you do not wish to create your
own dialog, with ResEdit for example, you may use Panorama's built in dialog number 2086. Filter is a
numeric value used to determine which type of forms will be displayed in the dialog (see “Form Comments”
on page 1733). The following table shows the possible filter values.

Button is the name of a variable that will contain the name of the button that was pressed inside the
formselect dialog. Clicking on any button in the dialog closes the dialog and allows the procedure to con-
tinue.

Form is the name of a variable that will contain the name of the form selected in the dialog. If the variable is
pre-set to the form name before the formselect statement is reached this form will be selected when the
dialog opens. If no form is selected this variable will equal "" .

This example opens the built-in Panorama Form Selection dialog, displaying all forms. It will store the button
selection and form selection in the global variables defined.

global buttonname,formname
formselect 2086,0,buttonname,formname

Value Selected Forms

0 All forms

1 Data Entry forms

2 Printing forms

3 Dialog & related forms

4 or greater Custom forms

Page 1736 Panorama Handbook
This procedure opens a custom Form Selection dialog (# 3000) displaying Print forms only and pre-selects the
form called Sheet. The procedure makes a decision based on one of three buttons pressed: Cancel, Print, or
Edit.

local PrintButton,PrintForm
PrintForm = "Sheet"
openresource "Dialogs"
formselect 3000,2,PrintButton,PrintForm
if PrintButton = "Cancel"

stop
endif
if PrintButton = "Print"

openform PrintForm
print dialog
closewindow

endif
if PrintButton = "Edit"

openform PrintForm
graphicsmode
stop

endif

Reading and Modifying Form Comments in a Procedure

Using the formcomments(function a procedure can read the form comments from any procedure in any
open database (see “FORMCOMMENT(” on page 5260). This function has two parameters, database and
form. Here is an example that checks for the word printable in the comments for the current form, and only
prints the form if the comments contain this word.

if formcomment(info("databasename"),info("formname")) contains "printable"
print dialog

else
message "Sorry, this form is not printable."

endif

A procedure cannot set the value of the form comments directly, but using the formcomments statement it
can pause and allow the user to type in form comments (see “FORMCOMMENTS” on page 5261).

Chapter 26: Cross Platform Databases

Most Panorama databases can be prepared for cross platform operation in a few seconds. In fact, for most
files the process of transferring a file from the Macintosh to the PC is as simple as adding .pan to the file name
and transferring the file to the PC.

File Type/Creator vs. Extensions

The Mac OS uses an invisible 8 character designator to identify the type of each file. The designator is divided
into a 4 character type code and a 4 character creator code. If you are not a programmer you may not have
ever realized these codes were there, because they are completely hidden.

The Windows operating system does not have an invisible designator to keep track of file types. Instead,
Windows uses a visible designator appended to the end of the file name. This designator, called an extension,
is a period followed by 3 or 4 characters. For example, .txt is a text file, .exe is a program file (application), and
.pan is a Panorama database. If a filename doesn't have an appropriate extension, Windows can't tell what
kind of file it is.

Although there are hundreds of different extensions, there are only a handful that apply to Panorama data-
bases and their associated files.

Before a file may be used on the PC, it must have the correct extension added. If you only have a few files,
you may wish to simply type in the extensions yourself.

Since the Macintosh version of Panorama does not normally use extensions, we've mostly tried to hide them
within Panorama itself. For example, if you open a database named Checkbook.pan, Panorama will display it
simply as Checkbook in the window title, without the .pan extension. When you save a file with the Save As
dialog, it is not necessary to type .pan if the file original had a .pan extension -- Panorama will add the exten-
sion for you.

Extension Type of File

.pan Panorama Database

.pnz Panorama File Set

.pwp Panorama Word Processor File

.pct Macintosh Picture (PICT) File

.rsr Macintosh style Resource File

.txt Text File

Page 1738 Panorama Handbook
Panorama Platform Converter

If you have more than a few files to convert you can use the Panorama Platform Converter to help. The con-
verter can automatically convert an entire folder of files (including subfolders, if any). The converter exam-
ines the hidden type and creator codes for each file, and automatically adds the appropriate extension. (This
conversion must be performed on the Macintosh, since that's where the hidden codes are accessible!) The
Platform Converter can also convert Macintosh resource files for you (more on that later).

The Panorama Platform Converter is actually a Panorama database. It must be used with Panorama 3.1.5 or
Panorama 4.0 on the Macintosh (files must be converted before they are transferred to the PC). Here is a
screen shot of the platform converter.

Selecting a Folder

The first step in using the Platform converter is to select a folder. We recommend that you first make a copy of
the folder you want to convert. When you press the Select Folder button, a standard file selection dialog
appears. Locate the folder you want to convert, then select a file inside the folder and press the Select Folder
button. If you want any subfolders to be converted also, check the Include Subfolders box.

Converting a Folder

To convert the currently selected folder, press the Mac -->> PC button. The converter will scan each file in the
folder (and subfolders, if that option is selected.) Based on the hidden file type and translation, the converter
will add the appropriate extension to each file. As it performs the conversion, the program keeps a log of
everything it does. You can see the log by pressing the Show Log button. The log also shows any errors
encountered by the converter. Typical errors include a file name that would be more than 31 characters long
with the extension added (the PC allows 255 but the Mac only allows 31), a file name that contains characters
not allowed by the PC (for example slash or backslash), or a file type that cannot be converted to the PC (an
application, for instance). If you want to simply check for errors without actually performing the conversion,
check the Preview Only box.

Converting Resources

A Macintosh file may actually contain two separate components, called the data fork and the resource fork.
The resource fork can be used to hold custom menus, icons, text, pictures, and other items. Windows files,
however, only contain one "fork," which corresponds to the data fork.

Chapter 26:Cross Platform Databases Page 1739
The Panorama Platform Converter, however, can convert any file that contains a resource fork so that it may
be used on the PC. If the Resource Files option is checked, the converter will check each file to see if it con-
tains a resource fork. If it does, the converter will copy the resource information into the data fork of a new
file, with an extension of .rsr. The PC version of Panorama knows how to access the items (custom menus,
etc.) that are stored inside the .rsr file.

Reverse Conversion (PC to Macintosh)

If you create a Panorama database on the PC and then copy it back to the Mac, the new file will appear as a
generic icon on the desktop. The PC -->> Mac button allows you to convert new files back to the Macintosh.
When this button is pressed, the converter scans each file in the folder. Based on the extension (.pan, .pnz,
etc.) it sets the proper hidden type and creator code for each file, allowing the file to be accessed properly on
the Macintosh. The converter also removes the extension from the file name. It does not, however, convert .rsr
files back into Macintosh resource files. Note: Databases converted from PC to Mac can only be opened with
Panorama 4.0 or later. Older versions of Panorama will not open these files!

Converting from Panorama 3.x to 4.0 (Macintosh)

Panorama 3.1 and Panorama 4.0 can both co-exist on the same Power Macintosh computer, and in fact both
can be running at the same time! Databases initially created with Panorama 3.1 will automatically open Pan-
orama 3.1 when double clicked; databases created with Panorama 4.0 will automatically open Panorama 4.0
when double clicked. Panorama 4.0 can open databases created with Panorama 3.1 or earlier simply by drag-
ging these files onto Panorama 4.0 or by using the Open File dialog. If you want Panorama 4.0 to launch
automatically when a Panorama 3.1 database is double clicked, you must convert it using the Platform Con-
verter. After the database is converted it's icon will change from the old Panorama icon to a new icon.

To convert all the databases in a folder so that they will automatically launch Panorama 4.0 instead of 3.1 you
must use the Panorama Platform Converter. First, select the folder. Then choose the Launch with 4.0 button.
The Converter will scan the files and convert any Panorama 3.1 files to 4.0.

If you want to go back to 3.1, use the Launch with 3.1 button. This converts the files so that they will auto-
matically launch Panorama 3.1 (or whatever earlier version of Panorama you have installed). Note: If a data-
base was lasted opened on a Windows computer Panorama 3.1 will not be able to open the file, and it will not
be converted.

Sharing Databases Across a Cross Platform Network

In addition to transferring files back and forth between a Mac and a PC, you can actually share a database (or
collection of databases) across a cross platform network. It's annoying on the Macintosh, but if you want to
use a database on both the Mac and PC, you must include the extension as part of the filename (.pan, etc.)
even when you are using the file on the Macintosh. To help keep the transition smooth, the Macintosh version
of Panorama slightly modifies it's behavior when it detects a database with the .pan extension. Just as when
using the PC version of Panorama, the extension is removed for internal use. So if you open a file named
Checkbook.pan, the window title will simply be Checkbook, without the .pan extension. When a file that was
originally opened with the .pan extension is saved, the .pan extension is automatically added to the filename,
whether you use Save, Save As, or Save A Copy As. The main goal is to keep any existing procedures that
reference file names working without changes whether there is an extension or not.

Cross Platform vs. Older Versions of Panorama

The processor used in Windows computers (x86/Pentium) stores numbers in a different format from the pro-
cessors used in Macintosh computers (PowerPC/68K). Since Panorama files contain many numbers, a con-
version must be performed when a database is moved to a different platform. Let's suppose a database is
created on a Macintosh. The first time the database is opened on any Windows machine, the numbers inside
the database are automatically converted to PC format in memory. The conversion only takes a split second,
so Panorama doesn't even notify you that the conversion is happening. When the file is saved, the file with
the converted numbers is written to disk. When you re-open the file on the PC, no further conversion is nec-

Page 1740 Panorama Handbook
essary. However, if you transfer the file back to a Macintosh computer and open it, Panorama must re-convert
the numbers in the file. Again, this happens automatically, and in a split second. In fact, the whole process is
so transparent, you'll never notice it with one exception. The exception is if you attempt to open a file that has
been saved on the PC on an older (Panorama 3) version of Panorama. Since older versions of Panorama do
not have the conversion code, they will be unable to open the file. For now, the only solution is to make sure
you open and save the file on a Macintosh computer before attempting to use the file with an older version of
Panorama.

Cross Platform Font Usage

If a font has the same name on the Macintosh and the PC then it can be used in a database on either type of
computer. If the database is transferred from a Macintosh to the PC or PC to Macintosh the font will continue
to work properly.

Panorama has special handling for four special fonts.

On the Macintosh these four fonts are always present as universal fonts, so you can rely on them always
being available. We have created the four equivalent fonts for Windows computers to guarantee that these
fonts are always available on any computer. For example, if you create an object using the Geneva font on a
Macintosh computer it will automatically be translated to the Alpine font when displayed on a Windows PC
computer. If you want to make sure that your database will display properly on any computer you should
restrict yourself to using only these four fonts.

Cross Platform Programming

If you've been doing Panorama programming with a previous version of Panorama, you're probably wonder-
ing what it will take to get your procedures and formulas to work cross platform. The good news is, probably
nothing! We've gone to great lengths to make Panorama for the PC completely compatible with previous ver-
sions, as you'll see below. The payoff is that we have successfully ported several large Panorama applications
to the PC without making a single change to the applications. No procedures were changed, no forms, fields,
nothing. These applications include the Panorama 3 MegaDemo, Power Team, and several complex third
party applications, including one with dozens of files and hundreds of forms and procedures.

So far we have encountered only one database that required changes to work on the PC - the Panorama On-
Line Reference. The changes required about 10 minutes to complete, and were needed because several proce-
dures referred to subfolders named •Statements, •Functions(, etc. Unfortunately, the • character is not
allowed in a Windows file or folder name, so it had to be changed. Basically, unless your database uses spe-
cial Macintosh only features (the System folder, AppleScripts, special Apple only characters) you shouldn't
have to touch your databases at all, just add extensions and go!

File Name Extensions and the OpenFile Statement

Windows files have extensions (.txt, .pan, etc.) and Macintosh files do not. We've programmed Panorama for
the PC so that in almost all cases, your existing procedures will work just fine even if they open other data-
bases. For example, suppose you have a database named Checkbook, and you want to open it inside a proce-
dure. It's simple, right? Just use the openfile statement:

openfile "Checkbook"

Macintosh Windows

Geneva Alpine

New York Yankee

Chicago City

Monaco Block

Chapter 26:Cross Platform Databases Page 1741
However, on the PC, the file that is opened is actually named Checkbook.pan. Don't worry, however -- Pan-
orama will automatically add the extension for you. You don't have to change your procedure at all, and it
will automatically work on either the Macintosh or the PC. By the way, it's ok to include the extension if you
wish:

openfile "Checkbook.pan"

However, this code is not portable. It will not work on the Macintosh unless the file is actually named Check-
book.pan.

By the way, there is one case where the .pan extension will be automatically added even if you are on the
Macintosh. If the currently open file has a .pan extension, Panorama will assume that the file you want to
open has a .pan extension. This allows you to build a set of files that can be shared cross platform on a server
(which must all have a .pan extension, even when used on the Mac).

Confused? Don't be. The bottom line is you should pretty much always be able to leave off the extension
when using the openfile statement.

When programming on the Macintosh you can use the nodefaultextension statement to open a database
that doesn’t have a .pan extension even if the current database does have a .pan extension. For example, sup-
pose that you are working with a database named Contacts.pan. The procedure below will open the database
named Schedule.pan.

openfile "Schedule"

However, what if the database you want to open is actually called Schedule, not Schedule.pan. In that case
you must add the nodefaultextension statement immediately before the openfile statement, like this.

nodefaultextension
openfile "Schedule"

This revised procedure will open the Schedule database.

Name Extensions and Window Names

Panorama removes the .pan extension from the in-memory copy of the database. This means that you won't
see the extension in the window title, and should not include the extension when using the window state-
ment. Panorama also will not include the extension as part of the file name returned the
info("databasename") , info("windowname") , or info("files") functions. You also should not
include the extension in any statements or functions that require you to specify the name of an open database
(for example lookup(, grabdata(, arraybuild , etc.) Bottom line -- just keep programming the same way
you always have.

Flash Art Formulas

When the current database has a .pan extension and the Flash Art formula refers to a disk file (as opposed to
a picture in the Flash Art Gallery or a resource) Panorama will automatically add the extension .pct to the
final result (unless the formula generates an extension itself). You should make sure that any picture files
used in a Flash Art or Super Flash Art formula end with the .pct extension (the Panorama Platform Converter
will take care of this for you).

Using Partial Paths to Reference SubFolders

On the Macintosh you can use a "partial path" to reference a sub-folder of the folder that contains the data-
base. Partial paths always begin with a colon. For example, ":Photos:Grand Canyon" refers to a file named
Grand Canyon in the Photos folder (the Photos folder must be in the same folder as the database). When this
partial path is used on the PC, Panorama automatically converts the colons into backslashes for you. For
example, you might use a partial path like this in a Flash Art SuperObject or in the openfile statement.

Page 1742 Panorama Handbook
Hard Coded Folder Locations

If your program contains hard coded folder locations (for example "My Disk:Samples:Contacts") these will
have to be changed. Of course, you probably don't have any, since these would not work on different Macin-
tosh systems either.

If you build a folder location with the folderpath(and dbinfo(functions, you'll still be alright. On the
PC, this will result in a path that looks something like C:\Samples\1999\, which can be fed into the folder(
function or used anywhere a path name may be used (for example Flash Art or the openfile statement).

The info("panoramafolder") function also works on both the Macintosh and the PC.

Is It a Mac or a PC?

We're planning on adding some kind of info(function to tell you what kind of computer you are running on.
In the meantime, here's a method that will work now (and will even work with older versions of Panorama).

if folderpath(info("panoramafolder"))[2,3]=":\"
/* PC */

else
/* Macintosh */

endif

This works because all PC pathnames begin with a letter followed by :\, for example C:\ (main hard disk) or
D:\ (cd-rom).

Chapter 27: AppleScript

AppleScript is a programming language included with the Macintosh operating system. Using AppleScript a
program can be written that works across multiple applications. For Panorama users the primary advantage
of AppleScript is that it allows you to program Panorama to work with other applications, for example Excel,
WordPerfect, or WebStar. If your programming task can be accomplished in Panorama all by itself (without
other applications), it is simpler to use Panorama’s built in programming language.

Learning Basic AppleScript

This appendix assumes that you are already familiar with the basics of AppleScript programming (often
called “scripting”). If you haven’t done AppleScript programming before, there are several good books avail-
able. At the time this supplement is being written, probably the best is “Danny Goodman’s AppleScript
Handbook,” published by Random House.

AppleScript and Panorama

AppleScript is an unusual language in that it is not constant. Instead of creating a complete language, Apple
developed only a very skeletal framework. The rest is filled in by the actual application being programmed.
The result is that each application is programmed somewhat differently.

If you are an experienced AppleScript programmer, this list describes how Panorama fits into the AppleScript
scheme of things. (If this list doesn’t mean anything to you, go back and review Danny Goodman’s or one of
the other basic AppleScript books.)

If you examine this list carefully, you can see that AppleScript really gives you the same control over Pan-
orama that Panorama’s built in programming language gives you. Anything that can be done in a Panorama
procedure can also be done within an AppleScript program, and other applications can be programmed as
well.

• Panorama is not recordable.

• Panorama supports the object model for transferring num-
bers and strings between AppleScript and Panorama.

• Panorama does not support the whose clause.

• AppleScripts can launch Panorama procedures.

• Panorama procedures can be included within a script.

• Panorama procedures can launch AppleScripts.

Page 1744 Panorama Handbook
Everything You Really Need to Know…

Although Panorama’s AppleScript dictionary includes over a dozen commands that can be used in a multi-
tude of combinations, most scripts involving Panorama boil down to two basic operations: 1) transferring
data between AppleScript variables and Panorama fields and variables, and 2) running programs written in
Panorama’s built–in programming language. The next two pages will show you the easiest methods to
accomplish these two operations, and should meet 99.95% of your Panorama AppleScripting needs without
even having to read the rest of the appendix!

Value of Cell

Within scripts, you’ll use the phrase value of cell to access and modify Panorama fields and variables.
This phrase must be followed by the name of the field or variable (in quotes). For example, this script checks
to see if the PaymentMethod field in the current record of the current database is MasterCard.

tell application "Panorama"
if Value of Cell "PaymentMethod" = "MasterCard" then

-- process master card
end if

end tell

The value of cell phrase may be used to access either fields or global variables. When it is used to access
a field, that field must be in the currently active database, i.e. the database with the frontmost window within
Panorama. (However, Panorama itself does not have to be the active application.)

Using the AppleScript set statement, a script can copy Panorama database fields (or variables) into Apple-
Script variables. This example pulls the name and address out of the current database into the AppleScript
variable LabelText, then makes a label in WordPerfect.

tell application "Panorama"
set LabelText to ¬

Value of Cell "Name" & return & ¬
Value of Cell "Address" & return & ¬
Value of Cell "City" & ", " & ¬
Value of Cell "State" & space & ¬
Value of Cell "Zip"

end tell
tell application "WordPerfect"

copy LabelText
to beginning of paragraph 1

end tell

By reversing the order of the parameters, the set statement can be used to copy data into Panorama fields or
variables. This example gets the name of the topmost window in the Finder, then puts that name into a field
named Folder in the current database. (If there is a global variable named Folder, the name will go into the
variable instead of into a field.)

tell application "Finder"
set ActiveFolder to name of window 1

end tell
tell application "Panorama"

set Value of Cell "Folder" to ActiveFolder
end tell

It is also possible to access database cells by number instead of by name, although this is rarely of any use.
For example, to get the value of the first field in the database use value of cell 1, for the second field value of
cell 2, etc.

Chapter 27:AppleScript Page 1745
Executing Panorama Programs

Using the execute statement, you can put a Panorama procedure right in the middle of any AppleScript. Sim-
ply type the procedure in quotes after the word execute . This example tells Panorama to open the form
Shipping.

tell application "Panorama"
execute "openform “Shipping”"

end tell

This example includes a single Panorama statement, but your procedure may be as complex as you wish.
Notice, however, that since the entire procedure must be surrounded by double quotes, you cannot use dou-
ble quotes within your procedure. There are several solutions to this: 1) you can use smart quotes, as shown
above, 2) you can use curly braces {} instead of quotes, 3) you can use single quotes instead of double quotes,
or 4) you can use \" for each double quote. All four of these methods are shown in this example:

tell application "Panorama"
execute "openform “Shipping”"
execute "openform {Shipping}"
execute "openform 'Shipping'"
execute "openform \"Shipping\""

end tell

The execute statement is not limited to a single statement or a single line. It can include complex proce-
dures like this:

tell application "Panorama"
Execute "field {Machine Type}
formulafill array(SystemInfo,1,{-})
field {System Version}
formulafill array(SystemInfo,2,{-})
groupup
field {Machine Type}
count
outlinelevel 1"

end tell

The execute statement does not make Panorama the frontmost application. If the procedure is going to dis-
play a dialog or allow the user to interact with a window, the script should activate Panorama (bring it to the
front) before using the execute statement. To bring Panorama to the front, use the AppleScript activate state-
ment.

Transferring Data Between AppleScript and a Panorama Program

Using the value of cell phrase, it’s easy to transfer data between AppleScript and the procedure in the
execute statement. This example uses Panorama’s dbinfo(function to get a list of the fields in the cur-
rently active database.

tell application "Panorama"
execute "global zFieldList
zFieldList=dbinfo(“fields”,“”)"

end tell
set dataFields to value of cell "zFieldList"
if dataFields contains "Address"

(* process address ... *)
end if

Page 1746 Panorama Handbook
Here is a script that passes data to a Panorama procedure. This script is designed to be saved as an applica-
tion. When you drag and drop a text file (or files) on this application it will automatically import and append
the text files into the current database.

on open fileList
tell application "Finder"

repeat with oneFile in fileList
set filePath to oneFile as string
tell application "Panorama"

Execute "global importFile"
set Value of Cell "importFile" to filePath
Execute "openfile {+}+importFile"

end tell
end repeat

end tell
end open

Note: This example requires the Scriptable Finder, which is included with System 7.5 or later.

Working with Lists

One of AppleScripts powerful features is the List data type. Panorama does not directly support the list data
type, but you can easily convert between Panorama text arrays and lists, and back again.

Here is an example that transfers a text array to an AppleScript variable and then converts that variable into a
list.

tell application "Panorama"
Execute "global aString
aString=dbinfo({fields},{})"
set databaseFields to Value of Cell "aString"

end tell
set AppleScript's text item delimiters to return
set databaseFields to¬
every text item of databaseFields

This example gets a list of all the currently running programs (called processes) and then converts that list to
a comma separated text array.

tell application "Finder"
set ProcessList to name of every process

end tell
set AppleScript's text item delimiters to ","
set ProcessList to ProcessList as text

The script could continue by passing the text array to Panorama for further processing. (Note: This example
requires the Scriptable Finder, which is included with System 7.5 or later.)

Launching a Script from Panorama

The previous examples have all shown how Panorama can be controlled by an AppleScript. A Panorama pro-
cedure can also launch an AppleScript all on its own, using the startscript procedure statement. Suppose
you have created this AppleScript named Open Control Panel shown below. (Note: This example requires the
Scriptable Finder, which is included with System 7.5 or later.)

tell application "Finder"
activate
open control panels folder

end tell

Chapter 27:AppleScript Page 1747
Within a Panorama procedure you can use the script to open the control panels folder by using the
startscript statement.

startscript "Open Control Panel"

This example assumes that the Open Control Panel script is in the same folder as the database. If it is not in
the same folder you can specify the complete path name for the script, for example Hard Disk:My
Scripts:Open Control Panel.

AppleScript & Panorama… The Rest of the Story

The previous pages cover everything you really need to know to do work with AppleScript and Panorama.
However, there is more to the story. Most of the material that follows really falls into the category of “more
ways to do the same things” and is not really vital.

Our guide throughout the rest of this appendix is the Panorama AppleScript dictionary. You can open and
view this dictionary from within the AppleScript Script Editor application.

The Required Suite

Like all other AppleScript savvy applications, Panorama supports the four required statements: open ,
close , quit , and run .

The open statement opens one or more database files. This statement requires one parameter, a reference to
one or more files. If you want to reference a single file, simply include the word file followed by the name of
the file in quotes.

tell application "Panorama"
Open file "Address List"

end tell

Notice that in this example, the word file is part of the parameter, not part of the command. This is different
from Panorama’s openfile statement, which is all one word. (Of course you could also use the openfile
statement to open files, as shown here:)

tell application "Panorama"
execute "Openfile {Address List}"

end tell

Page 1748 Panorama Handbook
The print statement prints one or more database files. This statement is identical to selecting the files in the
Finder and choosing Print from the File menu. However, this method of printing give you no control over
what form is used for printing, or what records are selected for printing. To get control over these parameters,
use the execute statement with Panorama‘s print statement.

tell application "Panorama"
activate
execute "Openfile {Address List}
openform {My Report}
select Date>date({1/1/96})
print dialog"

end tell

The quit statement shuts down Panorama. The run statement starts Panorama up if it is not running. How-
ever, this statement is not really very useful because Panorama will start up automatically any time a script
asks it to do something by including the phrase tell application "Panorama" in the script.

The Core Suite

The Core Suite includes 9 additional statements you can use in your scripts.

The close statement closes a window. Unlike Panorama’s close statement, the AppleScript close state-
ment can close any window, not just the top window. For example, to close the 3rd window from the top, use
this script:

tell application "Panorama"
close window 3

end tell

The count statement counts windows or fields. Here is a simple script that counts the current number of
open windows in Panorama.

tell application "Panorama"
get Count windows

end tell

A slightly different format is required to count fields. This script counts the number of fields in the currently
active database.

tell application "Panorama"
get Count of every Cell

end tell

(Note: This of every format works with windows also, one of the many examples of redundancy in the
AppleScript language. This redundancy is not consistent, however, and you cannot say get Count cells to
find the number of fields in a database. Of course you could also create these examples with the execute
statement, using Panorama itself to count the windows or fields.)

The data size statement can be used to get the size of the contents of a field or variable. For example, suppose
the field Name in the current record contains John. In that case, the result of this script will be the number 4
(the number of characters in the name John).

tell application "Panorama"
get Data Size of Value of Cell "Name"

end tell

Chapter 27:AppleScript Page 1749
The do script statement launches a Panorama procedure. The procedure must be pre-defined in the cur-
rent database.

tell application "Panorama"
do script "Year End Totals"

end tell

The execute statement lets you put a Panorama procedure inside an AppleScript. Unlike the do script
statement, the execute statement requires no advance preparation in the database itself.

The exists statement can be used to determine if a field, variable, or window exists or not. This statement
returns a true-false result, and is usually used with the if statement. This script checks to see if the current
database has a field called Name. If it does contain such a field, the script converts the field to all upper case.

tell application "Panorama"
if Exists of Cell "Name" then

execute "field Name
formulafill upper(Name)"

end if
end tell

The get statement is the standard AppleScript get statement—it simply evaluates a value and puts it in the
Result variable. In the script editor you can open the Result window to see the contents of this variable,
which can be useful for debugging.

The move statement works with windows. Using this statement, you can change the order of the windows
within Panorama. Here are some examples of how the move statement can be used.

Move Window 2 to beginning

Move Window 1 to end

Move Window 1 to after Window 2

Move Window 1 to before Window 5

Move Window 1 to back of Window 2

The set statement is the AppleScript equivalent of the assignment statement in most programming lan-
guages. For example, in most programming languages you would add two numbers like this:

Sum=3+4

But in AppleScript this assignment is written like this:

set Sum to 3+4

The set statement is one of the most frequently used statements in the AppleScript language.

The Objects

Panorama has three types of objects that you can use in your scripts: application, window, and cell.

The application object refers to Panorama itself. You cannot modify this object, but you can get useful infor-
mation about it-the version, name, etc. This script prints the current database, but only if Panorama is the top-
most application.

tell application "Panorama"
if frontmost

execute "print dialog"
end if

end tell

Page 1750 Panorama Handbook
(Note: One of the properties of an application is its version number. The dictionary says that this is a string.
However it is not a string or a number, but a special class. There is not much you can do with this special ver-
sion class. Unfortunately, this is consistent with other applications, including the Scriptable Finder.)

The window object refers to Panorama windows. A window may be identified by its name or by a number
(with 1 being the topmost window). Here is a script that gets the name of the topmost window:

tell application "Panorama"
get Name of Window 1

end tell

In addition to the name, there are many other properties of a window that you can access: the window loca-
tion, its size, whether or not it has a close box or zoom box, and many more. See the Panorama AppleScript
dictionary for a complete listing of window properties.

Some window properties can be changed from AppleScript with the set statement. For example, you can
move a window to a new position using the bounds property.

tell application "Panorama"
set Bounds of Window 1 to {50, 100, 400, 250}

end tell

You can change the order of windows with the move statement. This script moves the third window to the
front.

tell application "Panorama"
activate
Move Window 3 to beginning

end tell

The activate statement is not actually necessary. It brings Panorama to the front, which makes it easier to
see the windows change order.

The move statement is very flexible for changing the order of windows. Here are some more examples of pos-
sible options.

Move Window 2 to beginning

Move Window 1 to end

Move Window 1 to after Window 2

Move Window 1 to before Window 2

Move Window 1 to back of Window 2

The cell object type is used for working with Panorama fields and variables. The most commonly used prop-
erty of cell objects is their value, as seen throughout this appendix (Value of cell "Name", etc.)

Another cell property is the index, or field number. (This property only applies to fields, not variables.) Here
is an example that gets the field number (1, 2, 3, etc.) of the field City.

tell application "Panorama"
get Index of Cell "City"

end tell

If the database contains fields called Name, Address, City, State and Zip then this script will return the value
3.

Chapter 27:AppleScript Page 1751
Another cell property is the cell Name. Again, this really only applies to fields, not variables. This script uses
the Name property to build a list of all the fields in a database.

tell application "Panorama"
set CellNames to {}
repeat with cellnumber from 1 to Count of every Cell

set CellNames to (CellNames & Name of Cell cellnumber)
end repeat
get CellNames

end tell

The script above will work fine and illustrates the Name property well, but by letting Panorama itself do
some of the work we can create a script that runs much faster.

tell application "Panorama"
Execute "global aString aString=dbinfo(“fields”,“”)"
set databaseFields to Value of Cell "aString"

end tell
set AppleScript's text item delimiters to return
set databaseFields to every text item of databaseFields
get databaseFields

The dictionary lists several other properties of cell objects (Best Type, Class, Default Type) but these really
aren’t of any use to AppleScript programmers (although they are used internally by AppleScript itself).

Page 1752 Panorama Handbook

History of Panorama

Software is always a work in progress. The first line of code for Panorama was written in 1986. Today Pan-
orama contains over 300,000 lines of code, and we keep making progress (check our web site
www.provue.com for information about the latest updates. If you are already familiar with a previous ver-
sion of Panorama you can find out what has changed by examining the listings below. We’ve also included a
general corporate history of ProVUE and it’s products over the years (see “General Corporate History” on
page 1789).

Version 4.0.2

This version was released in September 2002. It was primarily a bug fix release, with only a few new features.

Page 1754 Panorama Handbook
New Activation Dialog

Panorama 4.0.2 includes a new version of the ProVUE Registration.pan database. This new version almosts
completely automates the process of activating Panorama. If your computer has an internet connection you
no longer need to type product codes, activation codes, or personal license information. All you need to type
is the serial number and Panorama will use your web browser to get the additional information from Pro-
VUE’s web server.

Displaying Balloon Help Text Directly on the Form

Balloon Help text can now be displayed on the form itself as well as using the Macintosh Show Balloons
option (see See “Displaying Balloon Help Text Directly on the Form” on page 1001).

When used this way the help text is visible even if the Show Balloons option is not turned on. This option
also also allows the balloon help text to be displayed on PC systems (kind of like tool tips).

move mouse over
balloon help
location

The balloon help text automatically appears in the text object

Page 1755
New Search Option

The Find/Select dialog includes a new option, Not Contains.

This option works exactly the opposite from the Contains option. See “The Find/Select Dialog” on page 435
for more information on this dialog.

Separate Close File & Close Window Commands

Panorama 4.0.2 now includes two separate close commands in the File menu.

The Close File command closes the entire database. The new Close Window command closes just the current
window (just like clicking on the window’s close box).

Page 1756 Panorama Handbook
Assorted User Interface Fixes and Improvements

Panorama 4.0.2 a number of small changes for improving the general operation of the program.

Fixed a bug that sometimes caused clairvoyance to fire off prematurely.

Files sets ending in .pnz now work properly on the Macintosh as well as Windows. The data-
bases in the set must have filenames that end with .pan. This improvement allows Mac and
Windows computers to use the same file set on a shared server.

Fixed pop-up menu problem reported by some users.

When you double click on a data cell that contains more than 32k of text an alert appears
(earlier versions of Panorama would often crash in this situation).

Fixed the Windows PC version so that windows can open partially off screen. In previous
versions of Panorama 4 if a window was partially off screen it would be pushed completely
off the screen, leaving you wondering “where is my window?”

Fixed the forward delete key in Windows, now it only deletes the next character.

Fixed problem with pasting text from another application into the word processor.

Fixed the Mini Correspondence wizard so it doesn't get hunter errors sometimes when
opening.

Previous versions of the New Database Wizard wouldn't import a text file properly if the
first line was longer 1000 characters. In Panorama 4.0.2 this limit has been increased to 10000
characters.

The Text Export Wizard now works properly even if the array of fields is scrolled.

Fixed append of Panorama files with .pan extension.

Attempting to create a Flash Sound object no longer crashes the program.

Removed font error message from the Panorama Handbook Wizard.

Previous versions of Panorama 4 had a problem if you copied graphic objects (or an entire
form) onto the clipboard and then attempted to paste into text (data cell, procedure, etc.).
The possibility of accidentally erasing data has been removed.

In the Design Sheet equation column whitespace (blanks) is now allowed after a procedure
name. The whitespace will be ignored.

Page 1757
Improved Formula Calculations

Panorama 4.0.2 corrects a number of problems with numeric calculations and functions.

The min(function now works properly with negative numbers.

Fixed a rounding problem when dividing two integers. This problem also affected the Aver-
age command.

Panorama now correctly checks for divide by zero in floating point calculations, and pro-
duces an error if encountered.

Adjusted several scientific functions to give floating point error if an invalid input value is
supplied, including log(, log10(, sqr(, arccos(, arccosh(, arcsin(and arctanh(.

When using a numeric field in an auto wrap text object it would not display 0's after the dec-
imal point. For example 100.00 would be 100 while 100.10 would be 100.10. This was incom-
patible with Panorama 3.1, now it works the same.

Fixed the urldecode(function so that it works with hex values with letters (%4A, etc.) and so
that it works properly with most 8 bit ASCII values.

Fixed the urlencode(function so that it works with 8 bit ASCII values (accents, special char-
acters etc.) These characters are encoded as %nn. If a character cannot be expressed in a URL
it is converted to %00.

On Windows systems, the folder(function now works correctly when the specified folder is
C:\.

Fixed the exportcell(, sizeof(, fieldstyle and fieldmax(functions so that they can be used in
the arraybuild statement.

Page 1758 Panorama Handbook
Improved Procedures and Programming

Panorama 4.0.2 corrects a number of problems with program statements and tools.

The AppleScript EXECUTE statement worked in Panorama 4.0 but was broken in Panorama
4.0.1. It now works again.

Subroutines may now be nested up to 32 levels (previous maximum was 8). If your program
exceeds 32 levels of recursion it will stop with an error message without crashing.

The Command and Function help menus have been re-arranged into a more logical order.

Fixed the ZoomWindow and SetWindow statements so that they work properly when a rect-
angle function is used as one of the parameters, for example

 Zoomwindow 10,10,rheight(info("ScreenRectangle")),450,""

Panorama 4 did not switch windows properly when running a procedure in the back-
ground. Now it does, allowing it to work properly in server applications.

If a Panorama database is open the OpenFile statement now makes sure that a data window
is open before continuing with the procedure. If a procedure or form window is the top win-
dow in the database being opened, this statement will automatically switch to the topmost
open form or data sheet in that database. This greatly reduces accidental occurences of the
dreaded “You can’t do that in this window” error message.

Fixed the SaveACopyAs statement so that it can write over an existing Panorama file (this
bug was in the Windows PC version only).

The superobject "TextObject","Find" statment now works as documented in Text Editor
SuperObjects (previously it worked in Word Processor SuperObjects but not Text Editor
SuperObjects).

Fixed the ChangeObjects statement. Previouslly the EXPANDABLE and EXPANDSHRINK
options did not work with a zero parameter. In other words, you could not make an object
have a fixed size under program control.

Fixed several problems associated with the ONERROR statement. These fixes will make
Panorama 4.0 more reliable in server applications.

Page 1759
Version 4.0.1

This version was released in September 2001, and includes an unusual number of new features for a x.0.1
release. In addition to the new features listed below version 4.0.1 also includes a number of bug fixes, see our
website at www.provue.com if you are interested in the exact list.

Automatic Guides when Nudging Graphic Objects

As you nudge the location or size of a graphic object (or objects) Panorama 4.0.1 now checks to see if the
edges of the nudged object align with any other objects on the form. If so, guides appear to show the align-
ment.

This is a great feature for quickly setting up perfectly aligned forms. See “Nudge “Auto Guides”” on
page 566 for all the details.

Improved Enhanced Image Pack

The Enhanced Image Pack has been rewritten to use Apple Quicktime to display and convert images (previ-
ously we used a library licensed from another third party vendor). Because of this, support for some infre-
quently used image types has been dropped, and support for GIF, LZW compressed TIFF and Photoshop
files has been added. In addition, the Enhanced Image Pack is now more compatible with JPEG images from
any source and can now print sharp reduced images (for example thumbnails) on Macintosh systems. For
more information see “Displaying Non PICT Images (Enhanced Image Pack)” on page 826 and “Converting
Between Image Formats” on page 1706.

auto-guide

auto-guide

object being nudged

Page 1760 Panorama Handbook
New Wizard Manager

Wizards here, wizards there, I see wizards everywhere! Seriously, the number of wizards is growing, and you
can also create your own wizards. To help you keep all these wizards organized and manageable we’ve
added a new Wizard Manager that gives you complete control over the Wizard menu.

See “Wizard Manager” on page 111.

New Search All Fields Wizard

The Search All Fields wizard makes it easy to search all of the fields in a database at once instead of one field
at a time. Simply enter the word or phrase you want to locate and press either the Find or Select button.

Page 1761
The wizard will locate the word or phrase no matter what field it is located in. If you use the Find button you
can jump through the database with the Next button to locate every occurrence of the word or phrase (in this
case Green).

For more information on this wizard see “The Search All Fields Wizard” on page 445.

Page 1762 Panorama Handbook
New Mini Statistics Wizard

The new Mini Statistics wizard can automatically calculate the mean (average), median, and standard devia-
tion of a data set. In addition the wizard can plot a normalized chart showing how the data is distributed
around the mean. You can easily see how this distribution compares with the standard gaussian distribution
(the famous bell shaped curve). Here is an example of an analysis performed by this wizard.

See “The Mini Statistics Wizard” on page 489 for more information.

Page 1763
Tiling and Stacking Windows

The Arrange Windows wizard makes it easy to tile or stack all of the open windows. This illustration shows
an example of window tiling.

Here is an example of window stacking.

See “Arranging All Open Windows at Once (Tiling and Stacking)” on page 289 for more information.

Page 1764 Panorama Handbook
Personal Use License

Panorama is normally licensed for use on a single computer. Panorama 4.0.1 now supports a new personal
use license which allows allows a single Panorama serial number to be used by a single person on multiple
computers.

See our web site and “Using Panorama’s “Demo Mode”” on page 133 for more information about this
license.

Setting Exact Window Dimensions

The Window Size wizard has been enhanced to allow you to specify the exact dimensions for any window.

See “Setting Exact Window Dimensions” on page 286 for more information.

Run Automatic Calculations Wizard

This new wizard allows the formulas set up in the design sheet to be applied to existing data.

See “The Run Automatic Calculations Wizard” on page 418 for more information.

Page 1765
Hiding Windows

The Hide This Window, Hide Other Windows and Show All Windows commands (in the Arrange menu)
now work properly on Windows PC systems. See “Hiding Windows” on page 280 for more information.

More Complex Charts

Panorama 4.0.1 allows charts with up to 5,000 data points (the previous maximum was 500 points). See
“Maximum Number of Chart Points” on page 1022 for more information.

Alternate Key for Opening New Windows

When using the View menu on the Macintosh, Panorama 4.0.1 allows either the Control key or the Option
key to open an additional window (see “Opening More Than One Window Per Database” on page 303).

Using the Esc Key to Cancel Data Entry

When editing a data cell pressing the Esc closes the Input Box without updating the cell (see “The Input Box”
on page 376). Previously this could be done only by pressing Command-Period (Mac) or Control-Period
(Windows).

Using the Esc Key to Toggle Form Modes

Panorama 4 added the ability to use the Esc key to toggle between Data Entry and Graphic Design modes
when using a form window. In Panorama 4.0.1 this feature is disabled if the window does not have a tool pal-
ette (see “Using the Keyboard to Select Common Tools” on page 557).

Using the Option/Alt Key to Zoom Out

When using the Zoom tool in a form, presing the Shift key has always shifted to “zoom out” mode. Many
other applications use the Option key for zoom out, so Panorama 4.0.1 now allows you to use either. You can
also use the Space Bar. See “Magnification and Reduction” on page 630 to learn more.

Simulating Panorama Direct and Panorama Engine

Sometimes when developing a database for in-house or commercial distribution it may be useful to test the
database on a copy of Panorama Direct or Panorama Engine. Panorama 4.0.1 now allows this testing to occur
on your development system using the simulatedirect and simulatengine statements. See “SIMU-
LATEDIRECT” on page 5767 and “SIMULATEENGINE” on page 5768.

New Page Numbering for Panorama Reference

To help make it easier to follow references between the main Panorama Handbook and the Panorama Refer-
ence, all page numbers in the reference now start with 5000. Any page number in the 5xxx range refers to the
Panorama Reference.

Documentation Code Sample Corrections

Due to a font rendering problem when creating the PDF file, the code samples in the Panorama 4.0 documen-
tation sometimes contained incorrect special symbols. For example the › symbol was frequently displayed as
>, and other special symbols were also incorrect. This has been corrected throughout this new version of the
documentation.

New KeyNow Statement Simulates Keystrokes Immediately

Panorama 4.0.1 includes a new statement: KeyNow. This statement is similar to the key statement (see “KEY”
on page 5458) but processes the key immediately, making it useful for automatic demos. See “KEYNOW” on
page 5460 for more information.

Page 1766 Panorama Handbook
New info("imagepack") function

The new info("imagepack") function checks to see if the Enhanced Image Pack is installed. See
“INFO("IMAGEPACK")” on page 5381 for more information.

Displaying Images and Icons from Resource Files

Super Flash Art objects can display images and icons stored in resource files (see “Displaying Images from
Resource Files” on page 844). This feature actually has been in Panorama for some time but was not previ-
ously documented.

Page 1767
Version 4.0

First released in July 2001, Panorama 4.0 has been completely re-engineered to make it cross platform. This is
the first version of Panorama that runs on Windows PC systems and the first version that is native on Power
Macintosh computers.

Cross Platform Compatibility

Panorama 4.0 allows the same database to be moved back and forth between Power Macintosh and Windows
PC systems, or even accessed over a cross platform network. To learn how to set up your databases for cross
platform compatibility see “Panorama Platform Converter” on page 1738.

Performance Enhancements

The Macintosh version of Panorama 4.0 is now Power Mac native, which means that it is now optimized for
speed on Power Macintosh computers. (It also means that Panorama 4.0 will not run on older 68K based
Macintosh systems. We will continue to sell Panorama 3.1.5 for these older computers, but the 68K version
will no longer be updated.) Depending on the operation being performed Panorama 4.0 is up to twice as fast
as Panorama 3.1 on the same computer. We especially concentrated on the speed of sorting, searching and
selecting data.

In addition to the overall speed improvements there is also a tremendous improvement in the speed of
SuperMatrix objects (for calendars, photo thumbnails, etc.). The display speed of matrixes is up to 10 times
faster than the previous version of Panorama (depending on the formulas being used).

Converting from Panorama 3.x to 4.0 (Macintosh)

Panorama 3.1 and Panorama 4.0 can both co-exist on the same Power Macintosh computer, and in fact both
can be running at the same time! Databases initially created with Panorama 3.1 will automatically open Pan-
orama 3.1 when double clicked; databases created with Panorama 4.0 will automatically open Panorama 4.0
when double clicked. Panorama 4.0 can open databases created with Panorama 3.1 or earlier simply by drag-

Page 1768 Panorama Handbook
ging these files onto Panorama 4.0 or by using the Open File dialog. If you want Panorama 4.0 to launch
automatically when a Panorama 3.1 database is double clicked, you must convert it. Inside the Panorama
folder you'll find a folder named Panorama 4 Conversion. (You'll normally find the Panorama folder inside
the ProVUE Development folder, which is inside the Applications (Mac OS 9) folder.

To convert a database from Panorama 3.x to 4.0, open this folder and drag the database onto the Convert to
Panorama 4 icon. (You can also select and drag multiple databases onto this icon. In this case all of the data-
bases must be in the same folder.)

Page 1769
After a short delay the selected database (or databases) will change appearance to the Panorama 4 "cube"
icon. (If the icon does not appear, you may need to rebuild your desktop. To rebuild you desktop, hold down
the Command and Option keys while you restart your computer.)

To reverse the process you can drag a Panorama 4 database (or databases) onto the Convert to Panorama 3
icon. (Of course you should not do this if you have added any Panorama 4 features in the procedures and for-
mulas in this database.)

Technical Note: These conversion applications simply change the creator code for any database dropped on
the script. (The creator code tells the Finder what application to launch when a file is double clicked.) The
internal contents of the database are not modified in any way.

Converting using the Platform Converter

Another conversion method between Panorama 3 and 4 is the Platform Converter (see “Panorama Platform
Converter” on page 1738). After the database is converted it's icon will change from the old Panorama icon to
a new icon.

To convert all the databases in a folder so that they will automatically launch Panorama 4.0 instead of 3.1 you
must use the Panorama Platform Converter. First, select the folder. Then choose the Launch with 4.0 button.
The Converter will scan the files and convert any Panorama 3.1 files to 4.0.

If you want to go back to 3.1, use the Launch with 3.1 button. This converts the files so that they will auto-
matically launch Panorama 3.1 (or whatever earlier version of Panorama you have installed). Note: If a data-
base was lasted opened on a Windows computer Panorama 3.1 will not be able to open the file, and it will not
be converted.

old icon (Panorama 3.1 or earlier) new icon (Panorama 4.0 or later)

Page 1770 Panorama Handbook
Wizards

Panorama 4.0 includes a number of pre-built databases that you can use as is, modify for your own purposes,
or simply use as learning tools. With only a few exceptions these pre-built databases are completely accessi-
ble so that you can not only use them as is but also take them apart and see how they work. All of these data-
bases can be opened with the Wizards menu, which is just to the left of the Help menu and several of them
can be accessed with the Start or Apple menu even when Panorama is not open The table below lists the wiz-
ards included with Panorama 4.0 and provides a short description of each one.

Category Wizard Page Description

General
Productivity

Mini Contacts Page 115 Basic name & address database.

Mini Calendar Page 119 Basic calendar/event database.

Mini Calculator Page 121 Basic math calculator.

Mini Correspondence Page 122

Basic correspondence/mail merge database. Can be
linked with any database that contains names and
addresses to create individual letters or mail merge
letters.

Stopwatch Page 123 Simple timer.

Task Timer Page 124 Keep track of time spent on different tasks.

Database
Operation

New Database Wizard Page 129
Helps to design and create the field structure for a new
databases. You can simply type in the field names you
want or select from about two dozen templates.

Favorite Databases Wizard Page 129
Helps to keep track of your frequently used databases.
We’ve preloaded this with several dozen sample and
tutorial databases.

Summaries & Outline Page 132 Categorize and subtotal database information with a
single click.

Text Export Page 132

Export data into text files. You can control the format
of the exported data, including exporting data as
HTML tables. Export formats can be saved for later
use.

Text Import Page 133

Imports data from text files into existing databases.
Drag and drop to define how columns in the text file
are mapped to database fields, and save configura-
tions as templates for later use.

Page 1771
Font Management across Multiple Computers and Platforms

Panorama 4.0 keeps track of font usage within each database and checks that the necessary fonts are installed
in the system each time the database is opened. As long as fonts have the correct name they may be used on
any computer — even when switching platforms from Macintosh to PC and back. For more information see
“Maintaining Fonts across Multiple Computers and Platforms” on page 582.

Programming &
Development

ASCII Chart Page 134 Displays a table of ASCII characters.

Custom Menu Editor Page 135
Edits custom menu resource files. This wizard allows
you to create and modify custom menus without a
separate resource editor program.

Debug Log Page 136 Traces the internal operation of a PanTalk procedure
for quick debugging

Font Usage Page 136 Display list of fonts used in forms.

Form Explorer Page 137 Display/edit information about form objects.

Formula Wizard Page 137 Workbench for experimenting with formulas. Allows
you to test formulas before you use them for real.

RPN Programmers Calculator Page 143 Calculator for decimal, hex, octal and binary.

View Wizard Page 143
Opens form and procedure windows (an alternate to
the View menu). Also allows you to search all proce-
dures in a database for a word or phrase.

Window Size Page 144 Display size of any window.

Window Tweak Page 144 Disable and enable window tool palettes and scroll
bars without changing the window size.

Category Wizard Page Description

Page 1772 Panorama Handbook
Enhanced Image Pack

The optional Enhanced Image Pack allows a database form to display advanced format images including
JPEG, TIFF (except for LZW compressed TIFF), PNG and many others. To learn how to use this package see
“Displaying Non PICT Images (Enhanced Image Pack)” on page 826.

The Enhanced Image Pack also adds two new programming statements to Panorama — convertimage
and imagequality . These two statements give Panorama the ability to convert images from one format to
another (for example from TIFF to JPEG or from PICT to PNG). You can also change the size (height and
width) of an image. For example, you can take an entire folder of images and create tiny thumbnails for them
automatically. See “Converting Between Image Formats” on page 1706 to learn how to use these statements.

View Menu Moved to Menu Bar

In previous versions of Panorama the View Menu appeared in the title bar of each window (as shown in the
illustration below). The menu appeared when you clicked on the small menu location

Old View Menu Location

Page 1773
In Panorama 4.0 the View menu has been moved into the menu bar. The View menu always appears just
after the Edit menu.

For more information on the View menu see “Switching Between Views” on page 302.

View Wizard

Panorama 3 also provides an alternate method for opening views, the View Wizard.

The View Wizard is especially handy for complex databases with hundreds of forms and/or procedures. The
Wizard lists the forms and procedures in alphabetical order and allows you to search for the form or proce-
dure you want. For more information on this wizard see “The View Wizard” on page 307.

Using the View Menu with Custom Menus

When using custom menus (see “Custom Menu Overview” on page 1448) Panorama automatically places the
View menu immediately after the Edit menu. See “Assigning Custom Menus to a Form” on page 1461 if you
want to move the View menu to a different location or even eliminate it altogether.

Graphics Mode Keyboard Shortcuts

When editing a form you can now use the keyboard to select several common tools (pointer, text, rectangle,
etc.). This can save many trips to the tool palette and back. See “Using the Keyboard to Select Common
Tools” on page 557 for the details.

Improved Procedure Editor

We’ve modified the procedure editor window to make it easier than ever to create and modify procedures.

New View Menu Location

Page 1774 Panorama Handbook
Status Bar

A new status bar at the bottom of each procedure window shows the current status of the procedure both
when editing and debugging (see “Improved Debugging Tools” on page 1774).

When a procedure contains an error Panorama no longer displays an alert. Instead, the error appears in the
status bar (see “Checking for Mistakes” on page 1362). This makes it much easier to continue if you want to
ignore the error and come back to it later, since you don’t have to bother pressing the OK button to continue
your work.

Shifting a Block of Text Left or Right

The Edit menu now contains commands that can shift an entire block of text left or right 4 spaces. This makes
it easy to adjust the indentation of your program when you add another if , case or loop statement. See
“Program Formatting” on page 1406 to learn more about this new editing tool.

new status bar

Page 1775
On-Line Programming Reference

Panorama now includes a complete on-line reference to all programming statements and functions. This on-
line reference is searchable and includes numerous links between topics (see “Online Reference:” on
page 5000).

Page 1776 Panorama Handbook
Improved Debugging Tools

Debugging your procedures has never been easier or faster.

Displaying Values While Single Stepping

The new procedure status bar automatically displays the result of every assignment statement while single
stepping. This makes it much easier to “follow the action” as Panorama executes each step. See “Single Step-
ping” on page 1418 to learn more about single stepping.

If the value you need to see is not the result of an assignment statement you can add one or more
statusmessage statements to your procedure. This statement displays the result of any formula in the sta-
tus bar, see “Watching Computations” on page 1420.

New Command Key Equivalents (Shortcuts) for Debugging

In previous versions of Panorama the command key equivalents for debugging were the same as for the Jasik
Debugger. Panorama 4.0 now uses the same command key equivalents as CodeWarrior.

Debug Log

The debug log allows you to make a record of every step made by a procedure. If the procedure doesn’t work
you can review the log to see where it went wrong — even if the computer crashed. We created the debug log
to help us debug Panorama itself. Once we started using it we discovered that it is such a valuable tool that
we had to share it with you. To learn more about this powerful tool see “Procedure Debug Log” on page 1427.

Hot Keys

Panorama 4.0 allows you to assign any procedure to any keystroke. You can assign hot keys to a window, a
database, or globally across all databases. See “Hot Key Procedures” on page 1490.

Triggering a Procedure Every Minute or Second

Panorama 4.0 allows you to set up procedures that are triggered automatically every second or every minute.
You can use these repeating procedures to create timers, alarms, and animations. See “Triggering a Procedure
Every Second” on page 1491.

Page 1777
Credit Card Data Entry Validation

Credit cards have an internal checksum that allows a number to be validated for simple data entry errors (for
example missing or transposed digits). The new cardvalidate statement checks to make sure that a num-
ber is a potentially valid credit card number. See See “Validating a Credit Card Number” on page 1609.

Calculating Time Intervals Smaller Than One Second

The new info("tickcount") function allows you to calculate time intervals and delays as small as 1/60th
of a second. See “Calculating Time Intervals Smaller Than One Second” on page 1276.

Elastic View-As-List Forms

Previously only regular forms could be made elastic, now view-as-list forms can be elastic too! See “Elastic
View-As-List Forms” on page 956 to learn how to create an elastic view-as-list form.

New QuickTime Features

We’ve upgraded Panorama’s QuickTime capabilities. Instead of only showing the QuickTime controls when
you click on a movie the controls now appear whenever the form is visible. Existing databases that use mov-
ies will have to be slightly re-designed, see “Displaying Movies in a Form” on page 850 to learn how to use
movies with Panorama 4.0.

A Panorama 4.0 procedure can exercise complete control over a movie. The procedure can start or stop a
movie, control the playback speed, or even jump to a pre-defined spot in a movie. See “Super Flash Art Com-
mands (Including Movie Control)” on page 1702 to learn how to program a movie.

SuperObject Enhancements

A number of SuperObjects have been enhanced in Panorama 4.0. One change that affects almost all types of
SuperObjects is the ability to access and modify the configuration of most SuperObjects (see “Accessing and
Modifying a SuperObject’s Internal Data” on page 1681).

Two other improvements apply to the superobject statement. First, you can now specify what objects are
controlled “on-the-fly” (see “Program Control of SuperObjects™” on page 1678). In addition you can also
now use this statement to send commands in any open window, not just the current window (see ““Magic”
Windows” on page 1555).

Page 1778 Panorama Handbook
Text Display SuperObject

The Text Display SuperObject no longer displays error messages when the form is in data mode (only in
graphics mode). This means that if you use a Text Display SuperObject to display a variable Panorama won’t
display an “undefined field or variable” message when the form first opens (before the variable is initialized
with a value).

Flash Art SuperObject

If the first character of the formula is @ Panorama treats the rest of the line as a variable name instead of a for-
mula. The actual formula is stored in the variable. This allows you to easily change the formula on the fly, and
also allows formulas longer than 255 characters. See “Formula in a Variable” on page 830.

Panorama 4.0 also allows a procedure to change the configuration of a Super Flash Art object on the fly. See
“Super Flash Art Internal Data” on page 1705.

List SuperObject

The List SuperObject hasn’t actually changed, but there is a slight change in the documentation for changing
the list formula on the fly - you must use { } around the formula. See “List SuperObject™ Commands” on
page 1719.

SuperMatrix SuperObject

A couple of minor programming revisions for this object. First there is a new programming command:

SuperObject "Object","scroll",RowDelta,ColDelta

This command allows a procedure to scroll the matrix in any direction (see “Super Matrix SuperObject™
Commands” on page 1726).

A new Super Matrix option, Sync Up/Dn, makes it easy to update the matrix as different records in the data-
base are clicked on. See “Updating the Matrix Display” on page 974.

Form Preferences Dialog

This dialog has a new option — FileGlobal Variables. When this option is enabled any variables created by
SuperObjects in the form will be fileglobal variables instead of global variables (see “Creating Variables with
a SuperObject” on page 1373).

Change Command Reports Changes

The Change command (in the Search menu) now tells you what it did, if anything.

This command has also been modified to allow replacing text in fields containing up to 32,768 characters (this
limit was 10,000 characters in previous versions).

Stop Cursor Flashing

Panorama normally flips the mouse cursor from an arrow to a watch or pie chart when performing an opera-
tion that may take a while. With today’s faster computers this often isn’t necessary, and it can be somewhat
annoying. To disable the watch and pie chart cursors during a procedure you can use the new
nowatchcursor statement. See “Disabling the Watch Cursor” on page 1413.

Page 1779
Destroy Variables At Any Time

The new undefine statement allows a program to destroy a variable that has been created with the local,
windowglobal, fileglobal or global statement. See “Destroying a Variable” on page 1371 to learn how to do
this.

Improved Resource Editing Tools

Previous versions of Panorama had no capability to edit resource files. If you wanted to create custom menu
resources you had to use a separate editing program like ResEdit or Resourcerer. Panorama now includes a
menu resource editor that you can use within Panorama on both Macintosh and Windows PC systems (“Pre-
paring a Resource File” on page 1449).

The custom menu resource editor was built using new statements and functions available with Panorama 4.0.
If you need to modify resources in your PanTalk procedure see “Writing a Resource” on page 1536, “Deleting
a Resource” on page 1537, “Renumbering a Resource” on page 1537 and “Working with Multiple Resource
Files” on page 1539.

Opening Documents with Other Applications

Since Panorama 3 the Macintosh version of Panorama has had the ability to open documents in other applica-
tions (using an AppleScript). The new shellopendocument statement extends this capability to the Win-
dows operating system (see “Opening a Document in Another Application” on page 1514).

Windows Registry

If you don’t know what the Window’s Registry is you probably shouldn’t be messing with it! Propellerheads
(you know who you are) should turn straight to “Accessing the Windows Registry” on page 1540.

Page 1780 Panorama Handbook
Memory Allocation on Windows PC Systems

The default memory allocation for Panorama on Windows PC systems is 32 megabytes, which is enough for
all but the largest databases. See “Adjusting Panorama’s Memory Allocation (Windows)” on page 270 if your
databases are larger than this. (Unlike the Macintosh there is no Scratch Memory allocation on Windows PC
systems.)

Autoload File Set

On PowerPC systems the name of the .AutoLoad file set has been changed to AutoLoad. (no period). On
Windows PC systems the name of this file must be AutoLoad.pnz. See “The AutoLoad File Set” on page 219.

Working with Files

Two new statements allow a program to access and modify the position, creation date, modification date and
operating system flags for any file. For example, these statements can be used to make a file invisible. See
“Getting and Setting Additional File Information” on page 1529.

Windows PC systems introduce a new concept not needed on Macintosh computers, the file extension. (The
file extension is the three or four character suffix at the end of the file name, for example .pan or .txt). There
are several new statements and functions to help you work with file extensions. See “Supressing the Default
Extension” on page 1504, “Importing a Text File into an Existing Database” on page 1507 (look for the
opentext statement) and “INFO("DATABASEFILENAME")” on page 5363.

New Procedure Statements

The table below lists the new procedure statements available in Panorama 4.0.

Statement Reference Description

activeresource Page 5008 Select which open resource file to work with.

addwindowsfont Page 5016 Install font (Windows only).

cardvalidate Page 5087 Validate credit card number

convertimage Page 5117 Convert image file to a different format/resolution.

deleteresource Page 5160 Delete resource item.

drawobjects Page 5180 Draw selected objects.

getfilefinderinfo Page 5293 Get information about file position, date, etc.

getproceduretext Page 5307 Get text of procedure (source code).

imagequality Page 5348 JPEG compression setting for convertimage.

logmessage Page 5491 Write formula result to log file (for debugging).

magicformwindow Page 5514 Work with alternate window.

magicwindow Page 5515 Work with alternate window.

nodefaultextension Page 5537 Temporarily disable automatic .pan extension.

nowatchcursor Page 5546 Temporarily disable watch and pie chart cursors

opentext Page 5582 Open text file with any extension (.ini, .html, etc.)

registrydelete Page 5636 Delete registry value, subkey or key.

registrywrite Page 5638 Modify registry value.

renameresouce Page 5656 Change number and/or name of resource item.

scratchmemorytemporary Page 5701 Temporarily change scratch memory allocation.

Page 1781
Revised Procedure Statements

A new function, info("changecount") , can be used to find out how many items were located and
changed by the change statement. See “Change (Find and Replace)” on page 1637.

There are six new resource templates that can be used with the gettext statement — 3121, 3122, 3123, 3125,
3120 and 3131 (see ““Off the Shelf” Dialogs” on page 1566). These templates contain OK and Cancel buttons
(instead of OK and Stop). If you use one of these templates the procedure will not stop even if the Cancel
button is pressed. The procedure can use the info("dialogtrigger") function to find out what button
was pressed.

The dialog opened by the alarmedit statement now allows years up to 2020 A.D. (see “ALARMEDIT” on
page 5020).

New Functions

The table below lists the new formula functions available in Panorama 4.0.

Custom Dialog Wizard

The Custom Dialog Wizard was introduced at the ProVUE 98 conference (in August of 1998). This wizard is
actually a set of procedures that you can copy into your database to make creating custom dialogs with forms
a snap. The wizard actually writes the code for you! We are now including this wizard as part of Panorama,
see Page 1571. (Note: If you attended the ProVUE 98 conference (or purchased the CD set afterwards) the ver-
sion of the Custom Dialog Wizard included with Panorama 4.0 has been updated. You should update to the
new version if you plan to create new dialogs.)

setfilefinderinfo Page 5738 Set information about file position, date, etc.

statusmessage Page 5792 Display message in status bar (for debugging).

shellopendocument Page 5754 Open document in another application (Windows)

undefine Page 5863 Destroy one or more variables.

watchcursor Page 5886 Enable watch and pie chart cursors

writeresource Page 5905 Modify value of resource item.

Statement Reference Return Value

info("applemenufolder") Page 5356 Location of Apple Menu folder.

info("changecount") Page 5359 Number of changes made by last change statement.

info("databasefilename") Page 5363 Actual file name of current database.

info("desktopfolder") Page 5366 Location of desktop folder.

info("magicwindow") Page 5387 Name of magic window, if any.

info("matrixname") Page 5390 Name of matrix that was clicked on.

info("openresourcefiles") Page 5399 List of open resource files.

info("panoramabuild") Page 5401 Time and date Panorama application was created.

info("preferencesfolder") Page 5406 Location of Preferences folder.

info("startupfolder") Page 5422 Location of Startup Items folder.

info("tempfolder") Page 5428 Location of folder for temporary items.

info("windowoptions") Page 5441 Window options (scroll bars, tool palette, drag bar).

info("windowview") Page 5447 Type of window.

registryinfo(Page 5637 Information about registry key or value.

Statement Reference Description

Page 1782 Panorama Handbook
New Documentation

The new Panorama documentation describes a number of topics in much greater detail than previous ver-
sions of the manual. Here is a list of some of these expanded topics.

“Importing a Text File” on page 223
“Importing HTML Tables” on page 228
“Exporting a Text File” on page 245
“Exporting HTML Tables” on page 259
“Opening More Than One Window Per Database” on page 303
“Automatic Time/Date Stamping” on page 404
“Automatic Calculations” on page 406
“3-Step Summarizing” on page 453
“Crosstabs” on page 493
“Filling a Field with a Formula” on page 511
“Graphic Design” on page 549
“Displaying Text” on page 637
“Editing Text” on page 682
“Word Processor SuperObject” on page 720
“Flash Art™” on page 806
“View-As-List Forms” on page 917
“Elastic Forms” on page 940
“Super Matrix Objects” on page 958
“Building a Calendar” on page 975
“Custom Reports” on page 1067
“Formulas In Action” on page 1185
“The Life Cycle of a Variable” on page 1222
“Text Formulas” on page 1235
“Text Arrays” on page 1257
“HTML Tag Parsing Functions” on page 1262
“Variables” on page 1369
“Subroutines” on page 1382
“Program Formatting” on page 1406
“Suppressing Display of Text and Graphics” on page 1410
“Debugging a Procedure” on page 1414
“The Action Menu” on page 1442
“Custom Menus” on page 1448
“Building Subroutines On The Fly (The Execute Statement)” on page 1397
“Smart Merge Synchronization” on page 1515
“Window Clones” on page 1556
““Natural” Data Entry” on page 1603
“Reducing Screen “Flashing”” on page 1610
“A Handy Universal Find Procedure” on page 1612
“Handling Empty Selections” on page 1617
“Changing with the Replace(Function” on page 1640
“Programming Graphic Objects on the Fly” on page 1652
“Drag and Drop” on page 1670
“Program Control of SuperObjects™” on page 1678
“Programming a HyperText Engine” on page 1710
“Printing Data in an Array” on page 1732

If you have read the Panorama Real World Programming Guide some of these topics will be familiar, while
others are completely new.

Page 1783
Unsupported Panorama 3.1 Features

Almost all Panorama 3.1 features are supported by Panorama 4.0 on both Macintosh and Windows PC plat-
forms. However, external procedures (xcalls) are not supported by Panorama 4.0 on either platform. This fea-
ture will be added in a subsequent version of Panorama.

The Windows PC version of Panorama does not support Panorama’s sound playing ability. This includes
phone dialing through either the speaker or serial ports. This feature is on our list of possible future enhance-
ments.

The Windows PC version of Panorama does not support the ability to customize the open file dialog and save
file dialog with the customdialog statement.

The Windows PC version of Panorama does not support making windows “invisible” by opening them in an
off screen location. It also does not support the Hide This Window, Hide Other Windows and Show All
Window commands.

The Windows PC version of Panorama does not support use of the Butler SQL server for multi-user Partner/
Server database operation. A future version of Panorama will support multi-user Partner/Server application
with a new, cross platform, server.

The Windows PC version of Panorama does not support AppleScript (since AppleScript is not available for
Windows PC systems!).

Version 3.1.5

This version was released on December 16, 1998, and is the latest version available for 68K computers (early
Macintosh systems).

Mac OS 8.5 Bug Fix

Several Panorama dialogs did not work (crashed) when run under Mac OS 8.5, including: Custom Tool Pal-
ette Dialog, Quick Report Dialog, Access Privileges Dialog, Rearrange Form/Crosstab/Procedure Dialogs,
Crosstab Setup Dialog and Rearrange Flash Art Dialog. These dialogs are all fixed.

Improved Butler/SQL Performance

Improved performance when adding new records to a Butler SQL database (up to 400% improvement).
Thanks to Mark Sanchez for discovering how to do this.

New FileTypeCreator Statement

This version includes a new statement, filetypecreator. See “Changing a File’s Type and Creator” on
page 1526.

Version 3.1.4

This version was released on August 29, 1998. This is a simple update, just one small but critical bug fix, plus
a couple other minor cleanups. The critical bug would sometimes cause Panorama to ask the user to logon
even when the database did not use security. This bug has been fixed. The repeatloopif statement has
been fixed to work properly (see “Restarting a Loop in the Middle” on page 1382).

Version 3.1.3

This version was released on December 31, 1997.

Special Keyboard Support

Panorama now supports the following special keys on keyboards that have them.

 Page Up

Page 1784 Panorama Handbook
 Page Down

 Home

 End

 Forward Delete

 COMMAND-RIGHT ARROW to end of line

 COMMAND-LEFT ARROW to start of line

 COMMAND-UP ARROW (same as Home)

 COMMAND-DOWN ARROW (same as End)

Holding down the SHIFT key while using any of the arrow key combinations selects the text.

Update Server Every Cell Option

When this option in the SQL Local Setup dialog (design sheet) is enabled, Panorama will immediately write
your data to the server as soon as you enter it. (Normally, Panorama does not write the data until you move
to another record.) If you have been experiencing problems with SQL, you might want to try this option. Be
sure to set the option on every one of your client databases (this is a client option, not a server option). Using
this option will make data entry somewhat slower, since there will be a delay after each cell you edit.

MakeFolder Statement

This new statement allows a procedure to create new folders (see “Creating a New Folder” on page 1526).

Minimum Window Size (Elastic Forms)

The GetMinSize command allows a procedure to find out what the minimum size of a window is, while the
SetMinSize command allows the minimum size to be modified. See “Auto Grow SuperObject™ Com-
mands (Elastic Forms)” on page 1725.

AlertMode Statement

This new statement allows you to disable all alerts when Panorama is running. For example, you might want
to do this when Panorama is running on a server. See “ALERTMODE” on page 5025.

Info("FreeMemory") Function

This new function returns the amount of free memory available (not including scratch memory). See
“INFO("FREEMEMORY")” on page 5379.

New Action Menus Security Option

This option, found in the Access Privileges dialog, allows you to disable Action Menus if the user does not
have a high enough security level. For example, you might set up custom menus for all users, with Action
Menus only for high level users (or even only for the database developer).

OS 8 Bug Fixes

Fixed bug that caused Panorama to crash if you clicked on the windowshade icon. This bug only occurred if
Panorama was in the background, and only with OS 8. Fixed the New Form (QuickLabel) options (Mac OS 8
bug).Fixed the FormSelect and FormComment dialogs (Mac OS 8 bug).

Version 3.1.2

This version was released on October 6, 1997.

Page 1785
Info("Abort") Function

Added info("abort") function that can be used with the disableabort statement (see “Controlling the
Abort Process” on page 1396).

Long Window Names

The windowname statement (see “Changing the Name of a Window” on page 1550) now works with win-
dow names up to 100 characters long. (Previous limit was 48 characters).

SetPlugAndRun Statement

The new setplugandrun statement allows you to change some of the parameters in the Server>Local
Setup dialog via a procedure. See “SETPLUGANDRUN” on page 5746. Also added the
info("plugandrun") function. This allows a procedure to find out what the settings in the Server>Local
Setup dialog are. See “INFO("PLUGANDRUN")” on page 5405.

Disabling Up/Down Arrows in a Form

Added the Enable Up/Down Arrows options to the Form Preferences dialog. If this is turned off (the default
is on) pressing the up or down arrows will not move to the next or previous record. For example, suppose
you are creating a dialog using a form. In that case, you probably don't want the user to be able to get to the
next or previous record with the arrow keys, and this option disables that capability on a form by form basis.

Window Management

The new Hide This Window, Hide Other Windows and Show All Window commands allow one or more
windows to be hidden temporarily. See “Hiding Windows” on page 280. In addition, the maximum number
of open windows has been raised to 32 (was 24).

Version 3.1.1

This version was released on August 23, 1997.

New HTML Parsing Functions

The new functions tagparameter(and tagparameterarray(are handy for parsing the options in an
HTML tag. See “Tag Parameter Functions” on page 1264.

Sleep Statement

This new statement puts Panorama to sleep for a while, letting other programs do their thing. This parameter
should be followed by a number. Bigger numbers make Panorama sleep longer. According to the documenta-
tion for the Apple system call used by this command, the sleep time should be the number specified multi-
plied by 1/60 second, for instance 120 for 2 seconds. However, it doesn't work that way in real life.
Nevertheless, the statement is very useful for allowing programs like Netscape Navigator to do their thing
while Panorama is waiting for them to finish something.

Here is an example of how to use this statement. The AppleScript tells Netscape to save a disk file. However,
Netscape returns to Panorama immediately without finishing this task, so Panorama must wait for the file to
be finished. Without the sleep statement, Netscape will run very very slowly.

startscript "Grab Netscape Page"
loop

websource=fileload("",theFile)
if error

sleep 10000
else

stoploopif 1=1
endif

while forever

Page 1786 Panorama Handbook
Version 3.1

This version was released on July 17, 1997. Major new features include HTML table import, improved user
interface and enhanced programming capabilities. This version was bundled with a copy of our SurfScout
URL management utility.

HTML Table Import

Panorama's text import capability has been enhanced to allow the import of HTML tables. Panorama auto-
matically checks any text file you import for a <table> tag. If the text file contains a <table> tag Panorama
will parse the HTML and input the data in the table. See “Importing HTML Tables” on page 228.

HTML Tag Parsing Functions

Panorama 3.1 has six functions for working with text that contains data delimited by tags. These functions
are not actually specific to HTML, and you may find other uses for them. See “HTML Tag Parsing Functions”
on page 1262.

HTML/URL Conversion Functions

Several new functions allow text to be converted from normal ASCII to the special format used by HTML or
URL’s. See “HTML/URL Conversion Functions” on page 1265.

Window Clones

Panorama normally allows only a single window per form. However, Panorama 3.1 allows a single form to
be opened over and over again into multiple windows. This is called window "cloning." See “Window
Clones” on page 1556 to learn how to set this up.

Dragging To/From a List

Panorama 3.1 adds new features that make it possible to drag-and-drop to or from a List SuperObject. See
“Using Drag and Drop to Change the Order of Items in a List” on page 1723.

Suppressing Display of Text and Graphics

Previous versions of Panorama (up to 3.0) included the hide and show commands that allowed a program-
mer to turn off the display of text and graphics while the procedure was running. Unfortunately these com-
mands did not give accurate control over the display, and worse, they could even crash if you attempted to
use them across multiple windows.

Panorama 3.1 includes 7 new statements and 2 slightly modified old statements for suppressing and enabling
the display of text and graphics. These statements are:

NoShow
EndNoShow
ShowPage
ShowLine
ShowFields field,field,…,field
ShowVariables var,var,…,var
ShowColumns field,field,…,field
ShowRecordCounter
ShowOther field?,op

See “Suppressing Display of Text and Graphics” on page 1410 for detailed information on how to use these
statements.

Page 1787
Unlisted Procedures

Panorama has always had the capability of unlisted procedures by starting the procedure name with a period
(for example .Initialize or .ButtonClick). Panorama 3.1 adds the capability to unlist an entire group of proce-
dures all at once, even if they don’t start with a period. See ““Unlisted” Procedures” on page 1448.

Disabling Command-Period

Pressing Command-Period normally stops any procedure right in it’s tracks, no matter what the procedure is
doing. This is normally an important safety valve, but you may have a procedure that should not be stopped
in the middle with a job halfway done. For these types of cases Panorama 3.1 now allows you to disable
Command-Period during some or all of a procedure. See “Controlling the Abort Process” on page 1396.

Text Editor Padding and Grow Box Options

Two new options allow you to customize a Text Editor SuperObject — Padding and Grow Box. See “Text Edi-
tor Options” on page 692.

Working With Complex Formulas

The new formulabuffer statement allows you to avoid the Expression Too Complicated error message.
See “Working With Extremely Complex Formulas” on page 1227.

ReplaceMultiple(Function

The replacemultiple(function is similar to the replace(function. However, instead of simply replac-
ing one word or phrase with another, the replacemultiple(function takes an entire list of words or
phrases and replaces them with the corresponding words and phrases in a second list. See “REPLACEMUL-
TIPLE(” on page 5664.

ExportCell(Function

This new function takes any database field and converts it to text. You do not have to know the type of data in
the field (text, number or date). See “EXPORTCELL(” on page 5206.

OnError Statement

The onerror statement can be used to catch all errors that are not trapped by if error statements. This
has two benefits: 1) It allows the programmer to easily eliminate all error alert dialogs. This is very important
for server applications because an alert dialog requires human intervention to get the server going again. 2) It
makes it easy to build a log of errors. See “Catching Program Errors (Especially for Web and other Server
Applications)” on page 1405.

Customizing the About Panorama Menu Item

Panorama 3.1 allows you to customize the first item in the Apple Menu. This item normally says About Pan-
orama… or About Panorama Direct…, but you can customize it to display any text you want when your
database is active, for example About This Database… . See “..CustomAbout” on page 1496.

SuperObjectClose Statement

This statement closes (terminates editing) the Text Editor SuperObject or Word Processor object currently
being edited. See “The Active SuperObject” on page 1679.

Page 1788 Panorama Handbook
Customizing the Open File Dialog and Save File Dialog

Panorama has two statements that display a dialog for selecting a folder and file name: openfiledialog
and savefiledialog . Panorama 3.1 extends this capability by allowing you to customize these dialogs
(note — these dialogs cannot be customized on Windows PC systems). The customization options you have
include changing the layout of the dialog, adding extra text to the dialog and adding extra push buttons to
the dialog. See “Customizing the Standard File Dialogs” on page 1502.

Loading/Saving Multiple Variables

Panorama 3.1 has the ability to combine multiple variables into a single array, or to take an array and split it
into many separate variables. This capability can be useful for editing arrays (each array element can be
edited in a separate variable) and for saving a collection of variables in a single disk file (for example to store
preferences). See “Copying Between Multiple Variables and an Array” on page 1649.

Page 1789
Version 3.0

This major version was released in January 1996. Major new features include Client/Server multiuser opera-
tion, SuperObjects, built in Word Processing, Elastic Forms and AppleScript support. If you are upgrading
from Panorama 2.x we’ve summarized these changes here with links to the new documentation.

Client/Server

Panorama 3 introduces a whole new dimension in client/server database management. Instead of a “dumb”
client that simply displays forms and allows data to be edited, our Partner/Server™ system combines the
best of Panorama’s incredibly fast single user RAM based database technology with an industry standard
SQL server for co-ordinating data sharing across multiple computers. (This feature requires an optional SQL
server, sold separately. The Client/Server system is documented in the separate Panorama Partner/Server
Handbook, which is included with your optional SQL server software.)

SuperObjects™

Our new SuperObject technology allows you to rapidly develop even the most complicated forms with preb-
uilt elements like 3D buttons and checkboxes, pop-up menus, scrolling lists, matrices, scalable text, scalable/
scrollable pictures, hypertext, text editing and word processing. Any SuperObject can be automatically linked
to any field or variable, and most have dozens of options for controlling the appearance and operation of the
object. Now you can create virtually any user interface you want. See “SuperObjects” on page 557.

Word Processing

Panorama 3 includes full built in word processing, with multiple fonts/styles/sizes in a single data cell, four
tab stop styles, over 16 different text styles, multiple colors, discontinuous and rectangular selections, and
mail merge. See “Word Processor SuperObject” on page 720.

Graphics/Forms

Improvements include the customizable tool palette (see “Customizing the Tool Palette” on page 554) and
the Graphic Control Strip with instant display of object specifications and pop-up menus for patterns, colors,
fonts, sizes, and more (see “The Graphic Control Strip” on page 562).

Elastic Forms

Panorama 3 can automatically resize and rearrange the elements of a form as the window containing the
form is resized or zoomed. The form adapts automatically to different window sizes. See “Elastic Forms” on
page 940.

Reports

Reports can now include text, word processing, or pictures that are longer than a single page, selectively
printing different pages of a multi-page form (see “Printing Data that Overflows a Page” on page 1122).

Duplicates

The new Select Duplicates command makes it easy to find and eliminate duplicate records (see “Select
Duplicates” on page 449).

AppleScript

Now Panorama can work with and exchange data with other applications automatically. AppleScript can
access and modify Panorama windows, fields and variables, and can launch Panorama procedures (macros).
Panorama procedures can also launch an AppleScript as part of their operation.

Programming Language

Panorama’s programming language has been vastly upgraded with over 100 new statements and over 100

Page 1790 Panorama Handbook
new functions. New features include permanent variables (see “Long Life Variables” on page 1371),
improved loop control (see “Stopping a Loop in the Middle” on page 1381 and “Restarting a Loop in the
Middle” on page 1382), parameters to subroutines (see “Passing Values to a Subroutine (Parameters)” on
page 1384 and “Passing Values Back From a Procedure” on page 1386), pause/resume (see “Custom Dialogs”
on page 1570), direct form manipulation (see “Programming Graphic Objects on the Fly” on page 1652), and

Page 1791
more access to the Macintosh toolbox (see “System and Database Information Functions” on page 1326).
There are also new data types for arrays (see “Text Arrays” on page 1257), superdates (see “SuperDates (com-
bined date and time)” on page 1276), graphic elements including points (see “Points” on page 1302), rectan-
gles (see “Rectangles” on page 1304), colors (see “Colors” on page 1308) and more.

Development Tools

Panorama 3 includes a built-in interactive debugger (see “The Panorama Interactive Debugger” on
page 1417), complete cross-reference tools (“Cross Referencing” on page 1435), and improved procedure edit-
ing.

Import/Export

Data can be rearranged and processed on the fly as it is being imported (see “Importing a Text File into an
Existing Database” on page 1507), and database columns can be matched by field name instead of position
(see “Appending One Database to Another” on page 219).

Security

Panorama 3’s built-in, flexible security system safeguards your data automatically but does not interfere with
authorized database use. (The security system is documented in the Panorama Security Handbook, sold sep-
arately.)

Version 2.1

This version was released in December 1992. Features included the ability to use up to 256 colors in a form
(see “Color” on page 580), QuickTime support (see “Displaying Movies in a Form” on page 850), Balloon
Help (see “Balloon Help” on page 994), and Custom paper sizes including DayRunner/DayTime organizer
notebook pages (see “Special Paper Options” on page 1174).

Version 2.0

This major version was released in April 1991. Over 450 new features were added, including pop-up data
entry window (see “The Input Box” on page 376), Smart Dates™ (see “Entering Dates” on page 360), view-
as-list forms (see “View-As-List Forms” on page 917), instant labels (see “The QuickLabel Dialog” on
page 1177) and reports (see “The QuickReport Dialog” on page 1117), auto-save (see “Auto-Save” on
page 214), and improved programmability.

Version 1.0, 1.1 and 1.5

Panorama 1.0 was released in November 1988. Frankly, we don’t remember much else about those versions!

General Corporate History

Founded in 1978, ProVUE has been developing interactive productivity tools for over two decades. From the
beginning, ProVUE products have been known for their innovation and performance. Since 1978 over
100,000 customers have used ProVUE products on the CP/M, Alpha Micro, PC, and Macintosh platforms.
ProVUE was one of the first commercial developers of Macintosh software, shipping our first Mac program,
OverVUE, in August of 1984 (only 8 months after the debut of the original Mac 128).

PolyVUE

In 1978 ProVUE (then called Micro Concepts) was founded to market PolyVUE, a text editor for the CP/M
operating system. That same year we attended our first trade show, the West Coast Computer Faire.

SuperVUE and DataVUE

In 1980 ProVUE introduced SuperVUE, a WYSIWIG word processor for Alpha Micro minicomputers. This
was one of the first word processors on any machine to include “what you see is what you get” on screen for-

Page 1792 Panorama Handbook
matting, and quickly became the leading word processor in the Alpha Micro market. A PC version of Super-
VUE was released in 1986. In 1983 ProVUE introduced DataVUE, a RAM based database for Alpha Micro
minicomputers.

OverVUE

In August of 1984 ProVUE introduced OverVUE, a RAM based database program for the Macintosh. Over-
VUE pioneered many of the unique features that later made Panorama unique, including ultra fast sorting,
selecting, calculating and import, Clairvoyance™, macros, and charts. In 1985 MacUser magazine awarded
OverVUE the very first “Eddy” award for best database. In January of 1985 we exhibited at the very first
MacWorld Expo (in Brooks Hall in San Francisco) and we’ve been at almost every MacWorld Expo ever since.

Panorama

In 1986 work was begun on an all new database designed specifically for the Macintosh. The result, Pan-
orama, was first released in November 1988. Panorama retained the incredible RAM based speed of Over-
VUE while adding a full graphical multi-window interface, MacDraw like forms, Flash Art™, mail-merge,
outlining, crosstabs and lookups. The result? In 1988 MacUser magazine awarded Panorama an “Eddy”
award for best new database.

Power Team

In 1993 ProVUE introduced Power Team, a complete organizer that combines seven modules into one inte-
grated package: Phone Book, Calendar/To-Do List, Correspondence, Checkbook, Calculator, Expense
Report, and Mailing List. All seven modules are designed from the ground up to work together and share
data seamlessly. MacWorld magazine calls it a “Well thought out, easy to use package” while MacUser says
that Power Team “Breaks new ground in the PIM and contact management arena.”

SurfScout

In the summer of 1997 ProVUE shipped our first Internet product, SurfScout. SurfScout makes web book-
marks manageable by putting an ultra-fast searchable bookmark database right at your fingertips! SurfScout
also imports bookmarks from the web, and imports data tables too!

SiteWarrior

In the fall of 1997 ProVUE started a new HTML industrial revolution with the introduction of SiteWarrior.
Instead of concentrating on flashy WYSIWYG features for newbies, SiteWarrior is designed to maximize the
productivity of HTML experts. SiteWarrior combines database technology with web authoring to turn the
craft of web site creation on its head.

Additional Resources

Whew! This manual contains a wealth of material for learning and using Panorama. However, if you’ve got-
ten through all this material and are looking for more, good for you!

On-Line Resources

For the latest news about new versions of Panorama, accessory products, and announcements of upcoming
events be sure to visit our web site frequently — www.provue.com .

Page 1786 Panorama Handbook
Signing Up For Panorama News Via E-Mail

Sign up to the ProVUE News e-mail list to receive the latest news and announcements from ProVUE, includ-
ing new products, updates, special offers and upcoming events. (We promise not to send too many
announcements, so don't worry about being flooded with email. Typically the average is between five and
twenty messages per year.)

The easiest way to subscribe (or unsubscribe) to this list is to use the ProVUE web site. Simply type in your e-
mail address, select Subscribe or Unsubscribe and then press the Submit button.

If you wish you can also subscribe by sending an e-mail message to requests@lists.provue.com . The
body of the message should be either subscribe news or unsubscribe news .

Page 1787
Signing Up to Join Other Panorama Users On-Line (QNA List)

As a Panorama user you can become part of a vibrant on-line community of Panorama aficionados all around
the world. The Panorama QNA list (Question and Answer) is an e-mail based community of Panorama users
from beginners to experts. You can post questions, answer other users questions, or simply lurk and watch
what’s going on.

The easiest way to subscribe (or unsubscribe) to this list is to use the ProVUE web site. Simply type in your e-
mail address, select Subscribe or Unsubscribe and then press the Submit button.You can easily unsubscribe
at any time, and your address will not be transferred to any third party. If you wish you can also subscribe by
sending an e-mail message to requests@lists.provue.com . The body of the message should be either
subscribe qna or unsubscribe qna .

QNA Digest Mode

Traffic on the QNA list varies from a few messages a week to a few messages a day. When you subscribe in
digest mode all of the day’s messages will be combined and sent to you as a single e-mail. This limits the
number of e-mails you receive to one per day, but can also make it a little more difficult to follow the threads
in the list. You can subscribe to the digest using the web site or by sending an e-mail message with a body of
either subscribe qna digest or unsubscribe qna digest .

Page 1788 Panorama Handbook
QNA Log Database

The QNA Log Database archives several years worth of QNA messages from past years. You can use Pan-
orama’s searching tools to look for the information you need. A copy of this database is supplied on the Pan-
orama CD and can be found using the Favorite Databases wizard.

From time to time we will release updated versions of this database on our web site.

Several Panorama users have created a searchable on-line archive of the QNA list, which can be found at:

http://www.exegesis.com/panorama/index.html

Many thanks to Alan Weiss, Chris Watts and Mick Matousek for setting up and maintaining this archive.

Page 1789
Technical Support

Technical support for ProVUE products is available online or via phone, fax or mail.

Telephone Support

There is no charge for telephone support, however, you must pay for the call. To reach a technical support
person please call (714) 841-8779. ProVUE's telephone support is available Monday thru Friday (except holi-
days), from 9 AM to Noon, and 1 PM to 3 PM (Pacific Time).

Please have your Panorama serial number available before you call. Your serial number is on the paperwork
that came with your copy of Panorama and can also be found by opening Panorama and using the Registra-
tion command in the File or Setup menus.

Fax and E-mail Support

You may also fax or e-mail your technical support questions. Faxed questions may be sent to (714) 841-1479.
Email questions should be sent to support@provue.com. Please include your serial number, the exact version
of Panorama you are using, the type of computer and operating system you are using (e.g. Mac OS 9.1 or
Windows 2000) and a complete description of the problem you are encountering.

Getting the Most from Technical Support

A little bit of preparation can make your technical support experience more productive. Before you call or
write, try to make sure that you are clear exactly what your question is. Don't overload the technical support
person with unnecessary details. If they need additional information, they will ask for it.

If you are encountering an intermittent problem, try to isolate exactly what is causing the problem before
contacting technical support. If you are using a Macintosh system it's always a good idea to try running your
system with the minimum number of extensions. If possible, try rebooting your system with the Shift key
held down to disable all extensions. This will often eliminate intermittent problems.

If you are calling technical support on the phone, try to call when you are in front of your computer. Open the
database that is causing problems so that you can immediately try any suggestions provided by the technical
support representative. It’s also a good idea to have this manual open in case the representative wants to
refer you to a topic there.

serial number

Page 1790 Panorama Handbook
Panorama Conferences

What do you dream you can do with Panorama? One way to help make those dreams come true is to come to
Los Angeles for one of our ProVUE Conferences. Whether you're a novice or a ten year Panorama veteran,
attending one of these conferences will help you get the most from your Panorama investment. You won't
want to miss this golden opportunity to meet with ProVUE's expert staff, as well as network with other Pan-
orama users and developers like yourself. Visit our web site for details on upcoming conference dates.

Can't make it to LA? No problem! We digitally record each conference and make them available as a set of
twelve compact discs. That's right -- you can actually attend every conference session yourself right in the
comfort of your own home or office!

Each CD-ROM contains two or three sessions in QuickTime movie format. It's just like having a front row
seat to every session. Perhaps even better...since you can pause, back up, or even skip forward at any time.
We've included all of the sample files that were used in each session, so you can even follow along with the
instructor right on your own computer!

Whether you're just starting out or having been using ProVUE products since OverVUE days, these CD's will
help you get the most from your Panorama investment. If you're the kind of person that has trouble learning
from a manual, now you can actually see powerful Panorama techniques demonstrated right on your screen.

Don't confuse our digitally recorded QuickTime movies with fuzzy video taped presentations you may have
seen in the past. We used the latest software technology to record directly from the screen to the hard disk.
Each recording is pixel perfect -- you see the screen exactly as it appeared with no loss or distortion. The
audio was recorded separately and added to the movie after the conference. It's never been so easy or fun to
learn how to use Panorama more effectively!

Page 1791
ProVUE 98 Conference

This conference was held on August 31 thru September 1, 1998. The 27 sessions were divided up into five dif-
ferent tracks. (Each session is approximately one hour in length). See our web site or contact ProVUE for
information on purchasing this 12 CD set.

Panorama Skills Track

These sessions will help you get the most from your Panorama investment by building basic and intermedi-
ate Panorama skills, including building reports, import/export, lookups, data posting, using the word pro-
cessor, and getting started with Butler/SQL.

Session Description

Introduction to Panorama 3.0

If you are one of the many Panorama users who are not taking advantage of some
of the terrific new Panorama 3.0 and 3.1 features, this session is for you! We'll con-
centrate on the easy-to-use new form features as well as covering changes in the
way formulas work.

Installing and Using Butler SQL

If you are considering moving up to Panorama's multi-user Partner/Server sys-
tem, this session will show you the way. You'll see how to install the Butler server
and client software, and then go through the steps of converting a single user Pan-
orama database to use the SQL Partner/Server system.

Getting the Most from Panorama's
Word Processor

Panorama 3.0 includes a full-featured word processor that can be included in any
database. In this session you'll learn how easy it is to use this word processor for
common applications like organizing correspondence and creating customized
form letters.

Introduction to Procedures
Are you taking advantage of Panorama procedures to automate your work? It's
easier than you may think. In this session you'll learn how to create a procedure,
how to make decisions in a procedure, basic subroutines, data types, and more.

Data Lookup and Posting

Most significant database applications require lookup up and posting data from
one database to another. In this session you'll learn how to lookup one or many
records from another database (or even the same database!) using the lookup and
lookupall statements. You'll also learn how to post data from one database to
another using a simple procedure.

Report Tiles
Panorama's report tile system is extremely flexible for creating a wide variety of
reports, labels and correspondence. This session will help you unleash the power
of report tiles for your databases.

Advanced Printing

This session covers advanced printing techniques, including overflow tiles, multi-
ple body tiles (including selectively printing multiple pages per record), groups
and sidebars, double sided printing, printing for organizer notebooks, and using
the printusing statement.

Panorama Import/Export and
File I/O

Panorama excels at importing and exporting data. This session starts with basic
import/export techniques, then moves up into more advanced techniques that
allow you to re-arrange data as it is imported/exported. You'll learn how to
import/export space delimited data.

Page 1792 Panorama Handbook
Advanced Track

This track covers advanced topics, including credit card processing, the future of Panorama/SQL, and
behind the scenes looks at several ProVUE programming projects.

Programming Track

This track covers intermediate and advanced programming topics. If you've taught yourself Panorama pro-
gramming the hard way these sessions will help you step up to the next level.

Session Description

ProVUE's In House Order Entry
System

Of course ProVUE uses Panorama to do its own in-house order entry system. In
this session we'll show you how we did it. The system includes unlimited line
items (can you say SuperMatrix?), configurable product panels, and multiple price
levels per product (for resellers, distributors, etc.).

Credit Card Processing with Pan-
orama

Using Tellan's "MacAuthorize" credit card software you can automatically process
credit card transactions from a Panorama database. In this session we'll show how
to set up and program MacAuthorize from Panorama.

SQL Partner/Server Architecture
and Future Directions

This session will describe the current internal operation of the Partner/Server sys-
tem, and cover our future plans for SQL on both the Mac and PC platforms.

Customizing Power Team and
SurfScout

This session will show you how to get at the insides of Power Team and SurfScout
and make changes without breaking everything! If time allows, we'll also cover
plans for future enhancements to Power Team.

Advanced SuperObjects
In this session we'll look at two of the most advanced SuperObjects - Lists, and
Matrixes. You'll learn how to set up these SuperObjects for various applications,
and how to modify them on-the-fly via procedures.

Future of Panorama
In this session we'll lay out some of our future plans and ideas for Panorama as it
moves into its second decade, and we'll also give you the chance to submit your
own ideas and suggestions.

Session Description

Custom Menus, Dialogs, and Alerts

Learn how to create professional menus and dialogs in your Panorama applica-
tions. You'll learn how to use ResEdit and Resourcer to create custom menus, and
how to assign custom menus to your windows. You'll also learn how to change
custom menus on the fly. Panorama 3.1 allows you to use forms to create custom
dialogs that look and behave just like regular dialogs. You'll learn how to create a
default OK button, how to center a dialog, and how to create and use common dia-
log elements like text editing boxes, checkboxes, radio buttons, and scrolling lists.

Using AppleScript with Panorama

Using AppleScript a Panorama programmer can control many other software pro-
grams, including the Finder, web browsers (both Netscape Navigator and
Microsoft Internet Explorer), email software and more. Other programs can also
use AppleScript to control Panorama. In this session you'll learn how to create
AppleScripts that can be used by Panorama to control other programs, including
passing data back and forth between Panorama and other software. We'll also dis-
sect some of the mysteries of using the AppleScript dictionaries for learning how to
script other software packages.

Cool Panorama Programming
Tricks

In this session we'll cover some of the cool programming tricks that can save you
time, and in some cases make what seem to be impossible programming problems
easily solvable. We'll cover neat things you can do with arrays, some really cool
things you can do with the execute statement, show you how to use secret win-
dows and more!

Writing your own XCALLS using
Metrowerks C

Did you know that Panorama can be extended with your own custom routines
written in C or Pascal? In this session we will walk you through the creation of a
simple C module that can be accessed from any Panorama procedure.

Page 1793
Internet Track

This track mostly focuses on efficient techniques for creating both static and dynamic web content thru Pan-
orama, SiteWarrior, and JavaScript. The internet is more than the web though, so there's also a very cool e-
mail session.

Cross Platform Track

The big news for 1998 was that Panorama was going cross-platform and native.

Session Description

On Line Database Publishing with
Panorama

Using the Panorama CGI you can publish Panorama databases on the web. Users
can add and update data over the web, as well as search databases on line. In this
session we'll actually set up a web server and show how to program your data-
bases for the web.

Using Panorama to Process and
Generate Email

Panorama can be an excellent program for working with email. In this session
you'll learn how to reliably transfer data with email, how to generate custom mass
email automatically, and how to automatically read email from your mail server.
You can even use Panorama to create your own customizable e-mail client!

Database Publishing with
SiteWarrior

One of SiteWarrior's primary strengths is the ability to take any database and con-
vert it into finished HTML pages that are ready to upload to your web server. In
this session you'll learn how to design automatically generated HTML database
reports as well as automatically generated sets of pages (for example product cata-
logs, real estate listings or classified ads).

Using SiteWarrior to Build Large
Web Sites

SiteWarrior's "HTML Factories" make creating and maintaining large web sites
much easier and faster. In this session you'll learn how to automatically create a
table of contents both within a page and across a site. The session will also show
how to automatically link a page with its neighbors (previous page and next page),
how to create entire pages (or subsections) from a template, and how to create eas-
ily modifiable "navigation banners" across the top or down the side of a page.

Beginning HTML
(with SiteWarrior)

HTML (Hyper Text Markup Language) is the language of the web. At first glance it
looks complicated, but there are really only about a dozen simple tags you need to
learn. At the end of this session you'll be ready to start creating your own web
pages directly in HTML. (Knowledge of HTML is also a must if you want to get
into publishing your own databases on the web.)

Introduction to JavaScript

JavaScript is to web browsers what AppleScript is to the Mac. Using JavaScript you
can do client-side processing like verifying data entry, looking up prices, and per-
forming calculations-all operations that are especially useful when publishing
databases on the web. This session will introduce the basics of JavaScript for use
with web-based forms.

Session Description

Taking Panorama Cross Platform

The Windows version of Panorama is coming soon! In this session we'll cover the
issues we've discovered in making the switch, including techniques for copying
files between platforms, preparing resource files for use with Windows, font and
character set issues, memory allocation and more.

Introduction to Windows

If you're a long time Mac user, you may be dreading the switch to Windows. This
session will take away some of the sting for first-time Windows users. The session
will cover use of the two-button mouse (context menus), the Start menu, disk orga-
nization, and using the network . We've also collected a set of handy shareware
and freeware utilities that will help you keep your Windows system organized,
and we'll show how these utilities are installed and used.

Page 1794 Panorama Handbook
ProVUE 99 Conference

This conference was held on August 30-31 1999. The sessions were divided up into four different tracks.
(Each session is approximately one hour in length). See our web site or contact ProVUE for information on
purchasing this 12 CD set.

Web Track

ProVUE 99 included eight full hours of instruction on connecting Panorama to the Web. If you're already a
webmaster you'll be putting your databases on-line in no time. If your a web newbie don't worry, we'll start
you with the basics of HTML and web graphics so that you can work your way up.

Session Description

Panorama CGI Introduction

This is the first of four sessions devoted to connecting Panorama to the web. This
session covers the basics, starting with setting up and configuring your server and
the Panorama CGI. Next, we'll cover using the Panorama CGI Test Jig to build and
test your CGI procedures "off-line" so that they'll work the first time when you
install them live on your server. Finally, we'll create a simple status CGI that dis-
plays a list of the Panorama files currently open on the server.

Web Forms
Part two of our web server curriculum covers creating and processing forms. You'll
learn how to create forms in HTML, and how to connect those forms to your Pan-
orama databases for data entry or queries.

JavaScript

Did you know that your web browser has a programming language built into it?
Both Navigator and Explorer can be programmed with JavaScript, a "C like" lan-
guage. JavaScript can work together with Panorama on the server to make a faster,
easier to use web site. In this session we'll introduce the basic's of programming
with JavaScript.

Building the ProVUE
Shopping Cart

This session puts it all together. We'll show you how we used Panorama on the
server and JavaScript on the client to build what we think is a very cool shopping
cart. The conference CD-ROM includes complete source code for this shopping cart
system.

Basic HTML

HTML is the language of the web -- do you speak it? At first glance it looks compli-
cated, but there are really only about a dozen simple tags you need to learn. At the
end of this session you'll be ready to start creating your own web pages directly in
HTML. (Knowledge of HTML is also a must if you want to get into publishing
your own databases on the web.)

HTML Tables
The table tag is HTML's most powerful and least understood formatting tool, and
not just for creating tables. In this session you'll learn how to use the table tag both
to build tables and for general page formatting.

Preparing Images for the Web
The web isn't just about text -- it's also about images. This session covers tools for
creating GIF, JPEG and animated GIF images, and shows how to use these images
in your HTML pages.

Generating HTML with the Word
Processor

In this session we'll build a procedure that automatically converts the text in a
word processor into HTML, including converting attributes like bold, italic, font
and color into the appropriate HTML tags.

Page 1795
Basic Skills Track

If you are just getting started with Panorama these sessions will help you get productive in a hurry. Even if
you have been using Panorama for a while you may find that some of this material is a useful refresher.

Intermediate Skills Track

If you have been using Panorama for a while and are ready to move on to the next level then these sessions
are for you.

Session Description

Basic Panorama Refresher

If you are new to Panorama, or just need a refresher in the basics, come on down!
Even old Panorama hands may discover a trick or two they didn't know. We'll
cover the view menu, data sheet, design sheet, data entry options, sorting, select-
ing, totals, propagating, and other basics.

Forms & Graphic Tools

If you are only using the data sheet, you're not tapping the full power of Panorama.
We'll show you how easy it is to create forms to display, edit and print data. Topics
covered will include creating forms, creating shapes, using the graphic control
strip, grouping objects, cluster resize, alignment, spacing, and auto-cell layout.

Working with Text and Images

In this session you'll learn how to use forms to display and edit text, and to display
images. For handling text we'll cover the text editor, text display, and word proces-
sor SuperObjects™. We'll also demystify the secrets of displaying images with
Flash Art™.

Basic Programming Part 1

If you think programming is too advanced for you, check out these two sessions!
Even if you've never done it before, you can learn how to program in Panorama.
Even simple programming skills can often save you hours of repetitive hand work.
We'll start with the basics - creating a program, making decisions, repeating a task
(loops).

Basic Programming Part 2

Our introduction to programming continues with an introduction to variables, and
a review of programming techniques for controlling Panorama itself (sorting,
selecting, etc.) We'll also cover techniques for finding and eliminating the dreaded
"type mismatch" error.

Session Description

Building Cross Platform Databases
In this session you'll learn how to build databases that work well on both Macin-
tosh and Windows platforms. Topics covered include basic cross platform issues,
images, file handling, resources, and fonts.

Calendars and Date/Time
Processing

Panorama has powerful features for building calendars and working with date and
time information. In this session we'll build a simple monthly calendar and a time
card application.

Partner/Server Programming

The Partner/Server system allows a Panorama database to be used in a multi-user
environment. When you're sharing your database with others, you have to learn a
few new rules. We'll show you how to get the job done, including a discussion of
record locking and techniques for improving the performance of Partner/Server
databases.

Cataloging Images

Panorama makes an excellent tool for cataloging and organizing images, and the
new ability to display TIFF and JPEG images completes this capability. In this ses-
sion you'll learn strategies for displaying images (lists, matrix, etc.,), techniques for
determining image size, finding image files on the disk, and more.

Making Money with Panorama Do you want to use your Panorama skills to make money? Learn how other Pan-
orama developers have done it in this roundtable discussion.

Automatic Procedures
Did you know that Panorama can automatically perform a procedure whenever
you open a file, add or delete a record, close a window, or even resize a form?
Learn how to set up and use these "automatic procedures" in this session.

Page 1796 Panorama Handbook
Advanced Skills Track

Are you a Panorama thunder lizard? These sessions will be especially helpful if you are planning on creating
Panorama databases for distribution and sale.

Formatted Export with Panorama

Need to convert a database into a Quark publication? An HTML document? Some
other special format? The entire process can be automated by using Panorama
functions to export text with embedded tags, often saving hours or even days of
work.

Info Functions
Panorama has literally dozens of "info" functions that allow you to find out infor-
mation about your database, your computer, and Panorama itself. Learn more
about these functions and how they can be used.

Session Description

Windows and Secret Windows

This session is really two parts. In part one, you'll learn how to control window
appearance and location to get just the "look and feel" you want for your database.
In part two, you'll learn how to eliminate windows altogether - using "secret win-
dows" to eliminate unnecessary "flashing" as Panorama switches between data-
bases, and to allow access to hidden databases (rate tables, etc.).

Building Installers with Panorama
(also Panorama Engine)

Are you distributing applications written in Panorama? You can use Panorama
itself to install your software, including placing files in the correct folders, setting
up resources, and modifying the registry (Windows). You get total control over the
installation process, and don't need to pay for a 3rd party installation program!

Windows Registry

The registry is the secret control panel of Window 95 and NT, and is used by both
Windows itself and virtually all applications. You'll learn about how the registry is
structured and used, and how to access and modify the registry from within Pan-
orama.

Advanced Programming
Techniques

The Execute statement is one of the most powerful tools in a Panorama program-
mer's arsenal. It allows you to build program segments "on-the-fly" to rapidly com-
plete tasks that otherwise would be impossible or require slow loops. This session
will also cover other advanced programming topics, including arrays and tech-
niques for parsing structured data (for example HTML).

Session Description

Page 1797
Publications

In addition to this manual there are several other ProVUE publications that contain information helpful to
Panorama users and developers. See our web site or contact ProVUE for information on purchasing these
publications.

Panorama Real World Programming Guide

Panorama has over 350 different statements, over 200 functions, and almost two dozen types of graphical
objects to choose from when building an application. The Panorama 3 Real World Programming Guide
picks up where the Panorama Handbook leaves off and shows how these hundreds of different elements
work together to create a professional quality database. You'll get a solid foundation in Panorama program-
ming fundamentals and clear-cut directions on how to handle dozens of specific real-world situations like:
lookup up and posting data to multiple databases, trapping illegal data entry, creating and using menus, dis-
playing negative numbers in red, extracting and converting data, calculating date and/or time intervals, syn-
chronizing multiple databases, accessing data created in other programs, centering a window on the screen,
line item import/export/analysis, combining numbers with text, building and displaying a list of items in a
field, drag and drop and much more. The Guide is filled with literally hundreds of program examples.
Whether you are a Panorama beginner or a seasoned veteran, this 200 page book will give you a solid foun-
dation in Panorama programming fundamentals and clear-cut directions on how to handle dozens of specific
real-world situations.

Panorama Security Handbook

The Panorama 3 Database Security Supplement describes how to safeguard your Panorama databases from
unauthorized access and modification. The 40 page supplement describes how security can be built in for a
single computer or across an entire network.

Panorama Partner/Server Handbook

The Panorama 3 Partner/Server Handbook describes how to create and use multi-user databases. This hand-
book is not available separately but is provided when you purchase the Butler server.

Consulting Services

Do you need someone to design or support a Panorama database application for you? Although ProVUE
itself does not provide consulting services at this time, we can provide you with referrals to consultants in
your area. Contact the ProVUE technical support staff for further information.

Page 1798 Panorama Handbook

	Table of Contents (Condensed)
	Typographical Conventions - 68, Opening the Documentation - 68, Finding a Topic - 70, Cross Refer...
	Getting Organized - 85, Installing the Software - 85, Activating the Software - 90, Moving Your S...
	Lesson 1: Building Your First Mailing List Database - 2, Entering Data Into Your New Database - 3...
	Files, Icons and the Desktop - 189, Opening a Database - 190, The Favorite Databases Wizard - 191...
	Window Components - 275, Tool Palette - 276, Close Box - 277, Drag Bar - 277, Title - 277, Zoom B...
	Types of Panorama Views - 297, Data Sheet and Form Views - 298, Other Views - 299, Switching Betw...
	Data Organization - 321, Tables vs. Individual Pages - 322, Special Records - 322, Summary Record...
	The Setup Menu - 328, Add Field - 329, Field Properties - 330, Delete Field - 330, Changing the W...
	Data Types and Memory Usage - 352, Setting Up a Field’s Data Type - 352, Numeric Data - 355, Nume...
	Editing Records - 369, Moving From Record to Record - 369, Moving from Field to Field - 371, Addi...
	Basic Sorting - 425, Sorting By More Than One Field - 426, Sorting Numbers and Dates - 430, Sorti...
	Finding vs. Selecting - 433, The Find/Select Dialog - 435, Locating Dates by Month, Quarter, or Y...
	3-Step Summarizing - 453, STEP 1 - GROUP - 459, Subgroups - 459, Grand Total - 459, Grouping by W...
	Category and Tabulation Fields - 495, Creating and Setting Up a New Crosstab View - 496, Crosstab...
	Transforming Selected Data - 509, Filling a Field with a Fixed Value - 510, Filling a Field with ...
	Opening a Form - 540, Opening A Form in a New Window - 541, Form Modes: Data Access vs. Graphic D...
	Graphic Objects - 549, Creating a Graphic Object - 552, Customizing the Tool Palette - 554, Super...
	Displaying Text - 637, Fixed Text Objects - 637, Text Font, Size and Style - 643, Text Alignment ...
	Fixed Images - 797, Displaying and Printing EPS Images - 799, Flash Art™ - 806, The Flash Art Scr...
	Push Buttons - 853, Super Object Push Button - 853, “Classic” Push Buttons - 860, Flash Art™ Push...
	View-As-List Forms - 917, Elastic Forms - 940, Super Matrix Objects - 958, Building a Calendar - ...
	Chart Data - 1001, Creating a New Chart - 1002, Bar Charts - 1009, Line Charts - 1011, Area Chart...
	Printing Different Views - 1055, Printing the Data Sheet - 1055, Printing Data Sheet Headers & Fo...
	Working with Tiles - 1068, Tiles In Action - 1081, Margins - 1090, Headers and Footers - 1096, Pa...
	Label Fundamentals - 1177, The QuickLabel Dialog - 1177, Printing Labels on Sheets - 1180, Printi...
	Formulas In Action - 1185, Displaying/Printing A Formula - 1186, Storing Formula Results in the D...
	Introduction to (Panorama) Programming - 1345, Procedures - 1346, Statements - 1346, Creating a P...
	Accessing Files - 1497, Files and Folders - 1497, Locating a File with Standard Dialogs - 1500, O...
	Introduction: - 5000, Online Reference: - 5000, Searching: - 5001, Minimizing: - 5004, A - 5007, ...
	Version 4.0.1 - 1753, Version 3.1 - 1778, Version 3.0 - 1781, Version 2.1 - 1783, Version 2.0 - 1...
	On-Line Resources - 1785, Technical Support - 1789, Panorama Conferences - 1790, Publications - 1...

	Table of Contents (Full)
	Welcome to Panorama!
	What is a Database?
	A Brief History of Database Technology
	What is Panorama?
	Wizards
	Super Fast Searching and Sorting
	Phonetic Searching
	Easy Set-Up
	Crosstabs
	Data Outlines
	Data Entry Shortcuts
	Smart Dates™
	Smart Program Recorder
	Formulas
	Compact Storage
	Charts
	Relational Links
	Favorite Database Wizard
	Advanced Graphic Tools
	Mail Merge and Labels
	Database Publishing
	View-As-List Forms
	Elastic Forms
	Matrix Display
	Images and Movies
	High Speed Import
	Flexible Text Export (including HTML)
	Data Transformation
	Select/Remove Duplicates
	Client/Server
	Complete Programming Language and Development Tools
	Custom Menus, Buttons, and Dialogs
	Seamless Cross Platform Operation

	Getting Started With Panorama For First Time Users
	Upgrading to Panorama 4.0 From an Earlier Version
	Switching From Macintosh to Windows

	Deploying Applications Built With Panorama
	Panorama Direct
	Panorama Engine
	The Panorama Engine Licensing Process
	Distributing Your Databases
	Panorama Engine Restrictions
	New Database Versions
	License Fees (Commercial)
	License Fees (Shareware/Freeware)
	Panorama Engine vs. Panorama Direct

	Tips for Using This Documentation
	Why So Many Pages?
	Printing This Book
	Training Movies
	Typographical Conventions
	Opening the Documentation
	Finding a Topic
	Cross Reference Links
	Using the Table of Contents
	Searching the Manual
	What About the Find Command?
	Display Options
	Smooth Text & Images Option
	Single Page vs. Continuous Option
	Magnification
	Thumbnails

	Installation & Activation
	Getting Organized
	Installing the Software
	The Main Installer Window
	Installation Options
	Selecting the Installation Location
	Replacing an Existing Copy of Panorama
	Installing the Software

	Activating the Software
	Activating Using the Internet on Another Computer
	Activating Via a Telephone Call
	Activating a Personal Use License Without an Internet Connection
	Using Panorama With a Personal Use License
	Setting Up and Using a Personal Use Password
	What To Do If You Forget Your Password

	What If Your Web Browser Does Not Open Automatically?
	Moving Your Software to Another Computer (Deactivating Your Software)
	Using Panorama’s “Demo Mode”
	Watching Movies

	Guide to Wizards & Demo Files
	Wizard & Demo File Quick Reference
	Wizard Manager
	Using Disabled Wizards
	Wizard Sets

	General Productivity Wizards
	Mini Contacts Wizard
	Mini Calendar Wizard
	Mini Calculator Wizard
	Mini Correspondence Wizard
	Mini Statistics Wizard
	Stopwatch Wizard
	Task Timer Wizard

	Database Operations Wizards
	Arrange Windows Wizard
	New Database Wizard
	Favorite Databases Wizard
	Run Automatic Calculations Wizard
	Search All Fields Wizard
	Summaries & Outline Wizard
	Text Export Wizard
	Text Import Wizard

	Programming and Database Development Wizards
	ASCII Chart
	Custom Menu Editor
	Debug Log
	Font Usage
	Form Explorer
	Formula Wizard
	Panorama Handbook
	Panorama Movies
	Platform Converter
	Programming Reference
	RPN Programmers Calculator
	View Wizard
	Window Size
	Window Tweak

	Business Demo Files
	Books (Product Catalog)
	Displaying the Book Covers
	Navigation with a List SuperObject
	Catalog “Search Engine”
	Invoices (Line Items)
	Invoices (Arrays)
	How the Detail Lines are Stored
	Displaying the Detail Lines
	Scrolling the Detail Lines
	Adjusting for Window Size Variations
	Mexican Restauraunt
	Sales Calendar
	Editing the Menu
	ProVUE Order Entry
	Placing an Order from a Regular Customer
	Placing an Order from an Occasional Customer
	Adding Products to a Product Collection
	Adding a New Product
	Learning More About the ProVUE Order Entry System

	Chapter 1: Files and Memory
	Files, Icons and the Desktop
	Opening a Database
	Databases and RAM
	The Favorite Databases Wizard
	Navigating the Favorite Database List with the Keyboard
	Adding a Favorite Database
	Removing a Favorite Database
	File Information
	Favorite File Groups
	Searching for a File
	Selecting Multiple Favorite Files

	Creating a New Database
	Using the New Database Wizard
	Creating a Database with the Wizard
	Creating Numeric and Date Fields
	Default Values
	Automatic Calculations
	Line Items (Repeating Fields)
	Starting with a New Database Template
	Creating a Database from a Text File

	Closing Panorama
	Saving a Database
	Saving Window Positions
	Revert to Saved
	Auto-Save
	Pitfalls of Auto-Save
	Backup Files
	Opening Backup Files

	On the Importance of Backing Up
	Working with Multiple Databases
	Opening Multiple Files
	File Sets
	The AutoLoad File Set
	Saving Multiple Files
	Appending One Database to Another
	Appending an Open Database
	Appending Imported Data
	Replacing Obsolete Data

	Importing and Exporting Data
	Working with Text Files
	Importing a Text File
	Importing into an Existing Database
	Importing HTML Tables
	Importing OverVUE Files
	Re-Arranging Imported Data
	Using the Text Import Wizard
	Common Import Formulas
	Import Templates
	Choosing a Database to Import Into
	Converting an Import Configuration into a Procedure
	Exporting a Text File
	Exporting with the Text Export Wizard
	Editing the Export Configuration
	Common Export Formulas
	Export Templates
	Choosing a Database to Export From
	Exporting HTML Tables
	Using the Generated HTML Page
	HTML Table Options

	Monitoring Memory Usage
	Memory Usage Details
	Multiple Memory Statistic Windows

	Adjusting Panorama’s Memory Allocation (Windows)
	Adjusting Panorama’s Memory Allocation (Macintosh)
	Changing Scratch Memory Size (Macintosh)

	Chapter 2: Windows
	Window Components
	Tool Palette
	Scrolling the Tool Palette
	Close Box
	Drag Bar
	Title
	Zoom Box (Maximize)
	Grow Box
	Scroll Bars
	Splitting a Window
	Info Palette
	Bringing a Window to the Front
	Hiding Windows
	Zooming Into a Box
	Saving Window Positions
	Saving with No Windows
	Turning Window Components On and Off (Window Tweak Wizard)
	Measuring a Window (Window Size Wizard)
	Setting Exact Window Dimensions
	Arranging All Open Windows at Once (Tiling and Stacking)
	Saving and Restoring Window Positions
	Choosing Tile Configurations
	Bringing Windows to the Front

	Chapter 3: Views
	Types of Panorama Views
	Data Sheet and Form Views
	Other Views

	Switching Between Views
	Opening More Than One Window Per Database
	Window Options
	The View Wizard
	View Wizard Window Size and Options
	Searching All Procedures

	Form Modes: Data Access vs. Graphic Design
	Form Operation: Individual Pages vs.View-As-List
	Creating a New Form, Crosstab or Procedure
	Renaming a Form, Crosstab or Procedure
	Deleting a Form, Crosstab or Procedure
	Changing the Order of Forms, Crosstabs or Procedures
	The Privilege Dialog
	User Levels vs. Save Window Positions
	Hiding Sensitive Data

	Chapter 4: Records
	Data Organization
	Tables vs. Individual Pages
	Special Records
	Data Records
	Summary Records
	Invisible Records

	Chapter 5: Fields
	The Setup Menu
	Add Field
	Field Properties
	Delete Field

	Changing the Width of a Field
	The Design Sheet
	Database “Generations”
	Typical Design Sheet Operation
	Field Properties
	Adding New Fields Using the Design Sheet
	Removing Fields Using the Design Sheet
	Making a Copy of a Field
	Re-Arranging Fields

	Rules for Field Names
	Multiple Line Field Names
	Repeating Fields (Line Items)
	Creating Line Item Fields
	Modifying Line Item Fields
	Adding More Line Item Fields
	Learn More About Line Items

	Chapter 6: Data Types
	Data Types and Memory Usage
	Setting Up a Field’s Data Type
	Data Type Conversion Problems

	Numeric Data
	Money
	Numeric Output Patterns
	Fixed Decimal Point Patterns
	Numbers with Commas, Punctuation, and Measurement Units
	Scientific Notation
	Special Patterns for Negative Numbers
	Leading Zeros
	Numbers with Multiple Components
	Phone Numbers
	Plural Suffixes
	Displaying Numbers as Words

	Dates
	Entering Dates
	Default Year and Century
	Date Output Patterns
	Date Pattern Components
	Common Date Output Patterns

	Choices
	Choice Data Entry (Choice Palette)
	Creating the List of Choices
	Exceptions
	Generating a List of Choices Automatically
	Updating the Choice List
	Using Math Operations with Choices
	Sorting Choices

	Chapter 7: Data Entry & Editing
	Editing Records
	Moving From Record to Record
	Moving from Field to Field
	Adding a New Record
	Inserting a New Record
	Deleting a Record
	Deleting Multiple Records
	Delete All
	Duplicating a Record
	The Clipboard Window
	Moving a Record

	Editing Data Within a Cell
	The Input Box
	Expanding the Input Box
	Expanding a Right Justified Input Box
	Editing Cells Within a Form

	Tabbing from Cell to Cell
	Tab Down
	Tab Order in Forms
	Tabbing with the Space Bar

	Data Entry Accelerators
	Automatic Capitalization
	Changing Capitalization of Existing Data
	Checking for Duplicate Data
	Checking for Duplicates in Existing Data
	Clairvoyance®
	How Clairvoyance® Works
	Turning Clairvoyance® On or Off
	Clairvoyance® Helps Insure Data Consistency
	Using Clairvoyance® With Dates
	Clairvoyance® Across Multiple Files
	Clairrows
	Input Patterns
	Entering Data with an Input Pattern
	Using Input Patterns with Dates
	Restricting Character Types
	Custom Character Restrictions
	Default Values
	Default to Today’s Date
	“Ditto” Defaults Based on the Previous Record
	Automatically Incrementing Defaults (1, 2, 3, …) Based on the Previous Record
	Creating a Unique Record Number
	Manually Changing the Record Number Counter
	Automatic Time/Date Stamping
	Automatic Calculations
	Spreadsheet Mode Calculations
	Procedure Mode Calculations
	Automatically Triggering a Procedure
	Pros and Cons of Spreadsheet vs. Procedure Mode
	The Run Automatic Calculations Wizard
	The Choice Palette
	Changing the Shape of the Choice Palette
	Creating the List of Choices
	Exceptions
	The Choice Palette vs. the Choices Data Type

	Editing Tools within a Data Cell
	Searching for Text Within the Input Box
	Replacing Words or Phrases Within a Cell
	Using the Spelling Checker within a Cell

	Chapter 8: Sorting
	Basic Sorting
	Sorting By More Than One Field
	Sorting By Color
	Undo Sorting
	Sorting Numbers and Dates
	Sorting Right Justified Text
	Sorting Selected Data
	Sorting Within Groups
	Sorting Choices

	Chapter 9: Searching and Selecting
	Finding vs. Selecting
	The Find/Select Dialog
	Locating Dates by Month, Quarter, or Year

	Find and Find Next
	Select
	Multiple Find/Select Criteria
	Select Within
	Select Additional

	Select Reverse
	Undo Select
	Permanently Removing Unselected Data
	The Search All Fields Wizard
	Selecting From All Fields
	Searching All Fields In Another Database

	Formula Find/Select
	The SEQ Function

	The Select Summaries Command
	Select Duplicates
	Select Duplicates Using a Formula

	Chapter 10: Summaries and Outlines
	3-Step Summarizing
	STEP 1 - GROUP
	Subgroups
	Grand Total
	The Group Command
	Grouping by Week, Month, Quarter, or Year
	Group by Color
	Propagating Data into Summary Records
	Manually Creating and Removing Summary Records

	STEP 2 - CALCULATE
	Total
	Count
	Average
	Minimum
	Maximum
	Recalculating Summaries
	Running Total
	Using Running Total to Balance a Checkbook
	Running Difference
	Using Running Difference to Calculate Gas Mileage

	STEP 3 - OUTLINE
	The Outline Level
	Collapsing vs. Selecting
	Expanding and Collapsing Specific Details
	Sorting by Summary Value
	Sorting Within Groups
	Getting Rid of Summary Records
	Getting Rid of Detail

	Printing Reports with Summary Information
	The Summaries & Outlines Wizard
	Using Summary/Outline Templates
	Converting a Template into a Procedure
	Printing the Summary Results

	The Mini Statistics Wizard
	Saving a Statistical Snapshot
	Renaming and Deleting Snapshots
	Printing a Statistical Analysis

	Chapter 11: Crosstabs
	Category and Tabulation Fields
	Creating and Setting Up a New Crosstab View
	Crosstabs by Day, Month, Quarter or Year
	Changing the Crosstab Design
	Re-Calculating a Crosstab
	Adjusting Crosstab Column Widths
	Crosstab Font and Size

	Selecting Original Data
	Crosstabs Based On Selected Data
	Crosstabs Containing Outlines
	Sorting a Crosstab
	Removing and Renaming Crosstab Tables
	Exporting a Crosstab Table

	Chapter 12: Data Processing
	Transforming Selected Data
	Filling a Field with a Fixed Value
	Filling a Field with a Formula
	Numeric Calculations With Formula Fill
	Using Formula Fill to Transform Characters
	Date Calculations with Formula Fill
	The SEQ Function

	Filling Empty Cells
	Automatic Numbering
	Propagate
	UnPropagate
	Using UnPropagate to Eliminate Duplicates

	Change (Find and Replace)
	Changing with the Replace(Function

	Data Style and Color
	Displaying Data Style and Color in Forms
	Accessing Style and Color in a Formula

	Chapter 13: Introduction to Forms
	Opening a Form
	Opening A Form in a New Window

	Form Modes: Data Access vs. Graphic Design
	Form Operation: Individual Pages vs.View-As-List
	Creating a New Form
	Renaming a Form
	Deleting a Form
	Browsing the Database With a Form
	Browsing the Database With a View-As-List Form

	Chapter 14: Graphic Design
	Graphic Objects
	Types of Graphic Objects

	Creating a Graphic Object
	Creating Perfect Squares, Circles and Lines

	Customizing the Tool Palette
	Using the Keyboard to Select Common Tools
	SuperObjects

	Modifying Objects
	Selecting a Single Object
	Selecting Multiple Objects at Once

	The Graphic Control Strip
	Rulers
	Moving a Single Object
	Nudging an Object (or Objects)
	Nudge “Auto Guides”
	Viewing and Setting Exact Object Dimensions

	Changing the Size of a Single Object
	Nudging the Size of an Object
	Nudge Size “Auto Guides”
	Nudging to the Crosshair Cursor
	Percentage Scaling
	Resizing Without Handles
	Changing the Radius of Round Corners

	Removing Objects
	Modifying Object Attributes
	Fill Pattern
	Line Pattern
	Line Width
	Color
	Font
	Maintaining Fonts across Multiple Computers and Platforms
	Universal Fonts
	Text Size
	Text Style
	Object Type/Object Name
	The Object Properties Dialog

	Working With Multiple Objects
	Grouping Objects Together
	Moving Multiple Objects
	Fast Drag
	Resizing Multiple Objects
	Cluster Resize
	Cluster Resize Troubleshooting
	Setting Exact Dimensions of Multiple Objects
	Aligning Objects
	Adjusting Spacing Between Multiple Objects
	Duplicating Objects
	Duplicate
	Drag Duplicating
	Step and Repeat
	Cut, Copy, and Paste
	Copying Objects Between Forms
	Copying Objects Between Files
	Copying an Entire Form
	Overlapping Objects
	Changing the Stacking Order
	Selecting a Completely Hidden Object
	Making a Drop Shadow

	Locked Objects
	Ignoring Locked Objects

	Alignment Grid
	Magnification and Reduction
	A Note About Measurement Accuracy

	Form Background Colors
	Using the Form Explorer Wizard

	Chapter 15: Displaying and Editing Text
	Displaying Text
	Fixed Text Objects
	Editing Fixed Text
	Moving and Resizing Fixed Text Objects
	Text Font, Size and Style
	Creating Reverse Type (White on Black)
	Text Alignment
	Displaying Data in Auto-Wrap Text
	Data Merge Pop-Up Menu
	Using Data Merge to Create Address Labels
	Displaying Formulas in Auto-Wrap Text
	The Build Formula Dialog
	Text Display SuperObjects™
	Creating and Modifying Text Display SuperObjects
	Text Display Options
	Controlling Text Display Color and Style on the Fly
	Using Formulas to Display Text
	Combining Multiple Text Items Into One
	Creating a Smart Formula
	Eliminating Unnecessary Punctuation and Blank Areas With the Sandwich Function
	Combining Numbers with Text
	Displaying Dates
	Merging Images Into Text

	Editing Text
	Types of Data Editing Objects
	Working with Data Cell Objects
	Data Cell Custom Output Patterns
	Text Editor SuperObject
	Creating and Modifying Text Editor SuperObjects
	Text Editor Options
	Converting Data Cells into a Text Editor SuperObjects
	Automatically Creating Rows or Columns of Data Cells or Text Editor SuperObjects
	Automatic Layout Options
	Line Items in a Form
	Tab Order in Forms
	Tab Order for Variables
	Field Setup in Graphics Mode
	Word Processor SuperObject
	Creating and Working With Word Processor SuperObjects
	Using the Word Processor
	The Ruler
	Margins (Indents)
	Tab Stops
	Alignment
	Line Spacing
	Styles
	Selecting Text
	Configuring the Word Processor
	Word Processor Document Storage Strategies
	Storing a Collection of Documents
	Searching for Text Within a Collection of Documents
	Setting up Storage for a Template Document
	Setting up Storage for Multiple Template Documents
	Merging Data into Word Processing Documents
	Forcing Merge Data to Update When Moving From Record to Record
	Word Processor Options
	Default Font and Text Size for New Documents
	Printing Word Processor Documents
	Printing Multiple Page Documents
	Using the Mini Correspondence Wizard
	Creating a New Letter
	Printing a Letter
	Printing a Mail Merge Letter
	Viewing a List of Letters
	Linking Mini Correspondence to Other Databases
	Correspondence Templates
	Understanding the Letter Template Formulas

	Chapter 16: Images & Movies
	Fixed Images
	Displaying and Printing EPS Images
	Memory Requirements for Large Images
	Tracing a Scanned Form

	Flash Art™
	Creating Super Flash Art Objects
	Using Flash Art to Display a Fixed Image
	Using Flash Art to Display a Smart Background
	The Flash Art Scrapbook (Gallery)
	Adding a New Image to the Scrapbook
	Locating an Image in the Flash Art Scrapbook
	Removing an Image from the Flash Art Scrapbook
	Renaming an Image
	Re-Arranging the Image Order
	Printing the Flash Art ScrapBook
	Importing PICT Files into the Flash Art Scrapbook
	Transferring the Flash Art Scrapbook to Another Database
	Displaying Images Directly From Disk Files
	Displaying Images in a Different Folder (Directory)
	Displaying Non PICT Images (Enhanced Image Pack)
	Image File Extensions in a Cross Platform Environment (MacOS and Windows)
	Super Flash Art™ Options
	Formula
	Formula in a Variable
	Default
	Alt File
	Include Pictures on Disk
	Display Group of Pictures
	Border
	Drop Shadow
	Overflow
	Scroll Bars
	Align
	Displaying Images from Resource Files
	Displaying Icons from Resource Files
	Displaying Form Preview Pictures
	“Classic” Flash Art Objects
	Storing Images in a Field

	Displaying Movies in a Form

	Chapter 17: Buttons & Widgets
	Push Buttons
	Super Object Push Button
	Push Button Styles
	Button Title
	Title Positioning
	3D Title
	Hide Title
	Click/Release
	Color Options
	“Classic” Push Buttons
	Transparent Push Buttons
	Flash Art™ Push Button SuperObjects™

	Data Buttons
	Data Button SuperObjects™
	Creating a Group of Radio Buttons
	Multiple Value Button Groups
	Super Data Button Options
	Data
	Title
	Value
	Allow Multiple Values
	Value Separator
	"Radio" button
	Procedure
	Sample
	Flash Art Data Button SuperObjects™
	Sticky Push Button SuperObjects™
	“Classic” Checkbox and Radio Buttons

	Pop-Up Menus
	Pop-Up Menu SuperObjects™
	The Pop-Up Menu Formula
	Dividing Lines in the Menu
	Pop-Up Menu Options
	Data
	Menu Formula
	Menu Type
	Display Options
	Color
	Procedure
	Pop-Up Menu Font, Size and Dimensions
	“Classic” Pop-Up Buttons
	Creating a Pop-Up Menu with a Procedure
	Where Will the Pop-Up Menu Appear?
	The PopUp Statement
	The PopUpByNumber Statement
	The PopUpStyle Statement

	List SuperObjects
	Creating List SuperObjects™
	List Options
	Data
	Sep
	Database
	Sort Up
	No Duplicates
	Formula
	Click Action
	Grow Box
	Procedure
	Click/Release
	Building the List
	“Hiding” Part of a List Item
	Maximum List Size

	Chapter 18: Form Goodies
	View-As-List Forms
	How View-As-List Forms Work
	Creating a View-As-List Form
	Working with Tiles
	Adding a View-As-List Header
	Editable View-As-List Forms
	View-As-List Background Colors
	Buttons on a View-As-List Form

	Elastic Forms
	Theory of Elastic Forms
	Building an Elastic Form
	Defining the Quadrants
	Maximum Window Size
	Removing the Window’s Scroll Bars
	The Window Tweak Procedure
	Opening Windows with a Procedure
	Modifying an Elastic Form
	Non-Rectangular Quadrants
	Expanding Multiple Objects Proportionally
	Elastic View-As-List Forms

	Super Matrix Objects
	The Matrix Template (and Frame Object)
	Creating Super Matrix Objects
	Linking with the Matrix Frame
	Matrix Cell Borders & Background
	Matrix Order
	Matrix Rows and Columns
	Designing a Matrix Template
	Adjustable Size Templates
	Tips for Adjustable Size Templates
	Matrix Formulas (What cell is this?)
	Using the Matrix as a Button
	What Cell Was Clicked?
	Buttons Within Matrixes
	Updating the Matrix Display
	A Trick for Updating the Matrix Display Automatically
	Building a Calendar

	Scroll Bars
	Scroll Bar “Theory”
	Creating Scroll Bar SuperObjects™
	Scroll Bar Options
	Data
	Min
	Max
	Page Up/Down
	16 Pixel
	Procedure
	Creating a Scrolling Matrix

	Balloon Help
	Creating Balloon Help Objects
	Balloon Help Options
	Changing the Cursor Shape Over Different Areas
	Displaying Balloon Help Text Directly on the Form

	Chapter 19: Charts
	Chart Data
	Creating a New Chart
	Setting Up Legend and Value Fields
	Setting Up Additional Value Fields
	Chart Types
	Bar Charts
	Line Charts
	Area Charts
	Pie Charts
	Scatter Diagrams

	Preparing the Database for Drawing a Chart
	Ranking (Sorting) the Chart Values
	Charts with “Other”
	Restoring the Original Data
	Maximum Number of Chart Points

	Dressing Up Chart Appearance
	Chart Font, Size, and Style
	Vertical Legends
	Output Patterns
	Graphic Attribute Icons
	Grid
	Non-Zero Axis OK
	Tick Mark Spacing
	Chart Preview
	Copying a Chart to Another Application
	Graphic Embellishments (Titles, Legends, Drop Shadows, etc.)
	Chart Flash Art
	Using Flash Art for Color or Blends
	Scatter Diagram Flash Art
	Connect Dots
	Printing a Chart

	Chapter 20: Printing Basics
	Printing Different Views
	Printing the Data Sheet
	Printing Data Sheet Headers & Footers

	Printing a Form
	Preparing Data For Printing
	The Page Setup Dialog
	Fractional Fonts

	The Print Dialog
	Print Preview
	Print One Record

	Chapter 21: Custom Reports
	Working with Tiles
	Creating Additional Tiles
	Creating A New Tile By Duplicating

	Tiles In Action
	Data Tiles

	Margins
	Top Margin Tile
	Left Margin Tile
	Right Margin Tile
	Bottom Margin

	Headers and Footers
	Header Tile
	Creating a Header Tile by Duplicating the Data Tile
	Footer Tile
	Page Numbers
	Printing the Current Date and Time
	First Page Header Tile
	BackDrop Tile
	Designing Headers and Footers For Changing Page Sizes

	The QuickReport Dialog
	Printing Multiple Page Records
	Selectively Printing Multiple Pages per Record
	Printing Data that Overflows a Page

	Variable Height Records
	Stacking Variable Height Objects
	The Expand/Shrink Option
	Mixing Variable Height Objects With Other Graphics

	Printing Multiple Column Reports
	Across or Down?
	Table Header and Table Footer Tiles
	Controlling the Number of Columns
	Spacer Tile

	Printing Summary Information
	Summary Tiles
	Printing Summaries Without Data
	Printing Data Grouped by Month, Quarter or Year
	Group Headers
	Group Sidebars
	Keeping a Group Together on a Column or Page
	Starting a Group on a New Column or Page

	Even and Odd Page Layout
	Special Paper Options

	Chapter 22: Labels
	Label Fundamentals
	The QuickLabel Dialog
	Printing Labels on Sheets
	Printing 3 by 10 1” Labels (Avery 5160)
	Aligning Labels on the Sheet
	Printer Inaccuracy and Vertical Creep

	Printing Roll Labels
	Printing on 1-up 1” Roll Labels
	Printing Non 1” 1-up Labels
	Using Custom Page Size to Print Labels
	Using Standard Page Sizes to Print Labels
	2, 3, and 4-Up Roll Labels
	4-Up Cheshire Labels
	Selecting Font and Print Quality

	Chapter 23: Formulas
	Formulas In Action
	Displaying/Printing A Formula
	Storing Formula Results in the Database
	Using a Formula to Locate/Select Information
	Formulas in Procedures
	Using the Formula Wizard
	Calculations with Database Fields
	Changing the Active Database
	Using Fields from Other Databases
	Saving a Formula for Later Use
	Operator and Function Help Menus
	The Function Dialog
	Configure Your Own Help Menu
	Special Formula Result Formats

	Formula Components
	Formula Grammar
	Calculation Order and Parentheses
	Functions
	Multi-Parameter Functions
	Zero Parameter Functions
	Functions Menu
	Whitespace
	Grammar Errors

	Values
	Constants
	Build in Constants: Pi, Carriage Return and Tab
	Fields
	Using the Current Field
	Line Item Fields

	Variables
	Variable Names
	What’s Inside A Variable?
	The Life Cycle of a Variable
	Creating Variables in a Procedure
	Initializing Variables
	Variables and Data Types
	SuperObject Variables
	Variable Name Conflicts
	Permanent Variable Tips

	Special Characters
	Working With Extremely Complex Formulas
	How Large Should the Buffer Be?

	Arithmetic Formulas
	Dividing by Zero
	Overflow/Underflow Problems
	Adding Line Item Fields
	Basic Numeric Functions
	Scientific Functions
	Financial Functions

	Text Formulas
	Gluing Strings Together
	Taking Strings Apart (Text Funnels)
	Numeric Start and End Positions
	Specifying Numeric Length Instead of Position
	Start/End Positions by Character Matching
	Cascading Text Funnels
	Character Matching in Reverse Gear
	Stripping Out Individual Words
	Multiple Matching Characters for Start/End Position
	Non-Matching Character for Start/End Position
	Limitations of Text Funnels
	String Testing Functions
	String Modification Functions
	Converting Between Numbers and Strings
	Characters and ASCII Values
	Working with Character Values
	Invisible Characters
	The ASCII Chart Wizard
	Showing Character Ranges with the ASCII Wizard
	Text Arrays
	Picking a Separator Character
	Working With Arrays
	HTML Tag Parsing Functions
	Tag Parameter Functions
	HTML/URL Conversion Functions

	Date Arithmetic
	Today’s Date
	Converting Between Dates and Text
	Date Functions
	Calendar Functions

	Time Arithmetic
	Converting Between Times and Text
	Time Calculations
	Calculating Time Intervals Smaller Than One Second

	SuperDates (combined date and time)
	Reminders
	Appointments vs. To-Do’s
	Creating and Modifying a Reminder
	Reminder Functions
	Alarms

	True/False Formulas
	Comparison Operators
	A beginswith B
	A endswith B
	A contains B
	A notcontains B
	A soundslike B
	A match B
	A matchexact B
	A notmatch B
	A notmatchexact B
	A like B
	Combining Comparisons
	A and B
	A or B
	A xor B
	not A
	Equals Comparison vs. Assignment
	True/False Values
	The ? Function

	Linking With Another Database
	The Lookup Wizard
	Type Mismatch Problems
	Lookup Variations
	Looking Up Rates in a Rate Table
	Looking Up Multiple Fields From One Record
	The GrabData Function
	Looking Up Multiple Values at Once
	Linking Clairvoyance to the Lookup Key Field
	Looking Up Data in the Current File

	Zip Code Lookup
	Graphic Co-Ordinates
	Points
	Rectangles

	Colors
	Raw Binary Data
	The RPN Programmer’s Calculator
	Converting Between Different Bases
	Calculations with Reverse Polish Notation
	Boolean Operators

	Disk Files and Folders
	Resource Files

	Import/Export Functions
	System and Database Information Functions
	System Information
	User Information
	Variable Information
	Database Information
	Window, Form and Report Information
	SQL Database Information

	Chapter 24: Procedures
	Programming Isn’t Magic!
	Introduction to (Panorama) Programming
	Procedures
	Statements
	A Simple Procedure in Action
	Creating a Procedure with the Recorder
	Recording Mouse Clicks
	Non Recordable Menus and Tools
	Recording Data Entry
	Writing a Procedure from Scratch
	Writing Statements
	Trying Out a Procedure
	Checking for Mistakes
	Mysterious Errors
	Closing the Window When a Procedure is Finished
	Re-Opening a Procedure
	Font and Size
	Adding a Recording to an Existing Procedure

	Data Flow
	Assignment Statements
	Triggering Automatic Calculations
	The Define Statement
	Variables
	Creating a Variable
	Assigning a Value to a Variable
	Using a Variable in a Formula
	The Birth and Death of a Local Variable
	Long Life Variables
	Destroying a Variable
	Variable Accessibility
	Accessing “Dormant” Variables
	“Hidden” Variables and Fields
	Accessing Variables In Form Objects (Text or Images)
	Creating Variables with a SuperObject
	Permanent Variable Tips

	Control Flow
	True/False Formulas
	Equals Comparison vs. Assignment
	True/False Values
	IF Statements
	ELSE Statements
	Nested if Statements
	Error Handling with if error
	CASE Statements
	LOOP Statements
	Stopping a Loop in the Middle
	Restarting a Loop in the Middle
	Subroutines
	CALL Statement
	Calling Procedures With Unusual Names
	Passing Values to a Subroutine (Parameters)
	Passing Values Back From a Procedure
	What if the parameters don’t match the procedure?
	Calling a Subroutine in Another Database
	Terminating a Subroutine in the Middle
	Mini Subroutines within a Procedure
	Subroutines and Local Variables
	Recursive Subroutines
	Other Control Flow Statements
	Jumping to an Another Location in the Program
	Stopping the Program
	Aborting a Program
	Controlling the Abort Process
	Doing Nothing for a While
	Building Subroutines On The Fly (The Execute Statement)
	Tips for On-The-Fly Program Writing
	Execute and Local Variables
	Using Execute to Process Arrays
	Do It Yourself Data Merge
	On-The-Fly Subroutine Error Checking
	Catching Program Errors (Especially for Web and other Server Applications)

	Program Formatting
	Notes To Yourself
	“Commenting Out” Statements

	Suppressing Display of Text and Graphics
	Updating the Display After (or Within) a NoShow Block
	ShowPage
	ShowLine
	ShowFields field,field,…,field
	ShowColumns field,field,…,field
	ShowVariables var,var,…,var
	ShowRecordCounter
	ShowOther field,code
	Disabling the Watch Cursor
	Hide and Show

	Debugging a Procedure
	The Panorama Interactive Debugger
	The Debug Statement
	Using the Debugger
	Single Stepping
	Resuming Full Speed Execution
	Making Corrections to a Procedure
	Watching Computations
	Using the Inspector to Examine Fields, Variables and Formulas
	What Fields or Variables can be Displayed?
	Displaying Functions
	Procedure Debug Log
	The Procedure Log Window
	Recording a New Log
	Decoding Parameters and Assignment Statements
	The LogMessage Statement
	The Log Menu

	Cross Referencing
	Building a Cross Reference Database
	Updating a Cross Reference Database
	Looking Up References

	50 Ways to Trigger a Procedure
	The Action Menu
	Action Menu Options
	Setting Different Menu Item Styles (Bold, Italic, etc.)
	Shortcuts/Command Key Equivalents
	Disabled Menu Items
	Separator Lines in a Menu
	Renaming the Action Menu
	Dividing the Action Menu into Multiple Menus
	“Unlisted” Procedures

	Custom Menus
	Custom Menu Overview
	Preparing a Resource File
	Creating a New Resource File
	Editing Within a Menu
	Command Key Equivalents/Shortcuts
	Adding and Removing Entire Menus
	Opening and Closing Resource Files
	Saving Resource Files
	Opening a Resource File in Panorama
	Sharing A Resource File Between Databases
	Assigning Custom Menus to a Form
	The .CustomMenu Procedure
	Programming the .CustomMenu Procedure
	The info("trigger") Function
	Processing Custom Menus with Simple IF’s
	Processing Custom Menus with Nested IF’s
	Splitting the Trigger into Menu/Item Names
	Menus with Modifier Keys
	Submenus (Hierarchal Menus)
	Changing Custom Menus on the Fly
	Specifying Menus and Menu Items
	Menu Marks (Checkmarks, etc.)
	Checkmark On/Off Toggle
	Checking One Item in a Group
	Groups with Other…
	Disabling Menu Items
	Changing Menu Text on the Fly
	Rebuilding Entire Menus
	Reassigning Menus in the Menu Bar
	Custom Menu Troubleshooting

	Buttons
	Hidden Triggers
	Creating Hidden Trigger Procedures
	.About
	AutoGrow
	.ClearRecord
	.CloseWindow
	.CurrentRecord
	.CustomMenu
	.DeleteRecord
	.DialogKeyDown
	.Help
	.Initialize
	.KeyDown
	.ModifyRecord
	.NewRecord
	.OutOfBounds
	.ZoomFailed
	Data Entry Triggers
	Data Entry Triggers (Part Two)
	Hot Key Procedures
	Universal HotKey Procedure
	Triggering a Procedure Every Second
	Triggering a Procedure Every Minute
	Event Handler Procedures
	Text Editor SuperObject ..Handler Option
	Focus Procedure
	..OpenForm
	..ActivateForm
	..CustomAbout

	Chapter 25: Programming Techniques
	Accessing Files
	Files and Folders
	Combined Folder Location and File Name
	Folder ID’s and Paths
	Locating a File with Standard Dialogs
	Customizing the Standard File Dialogs
	Customizing the Open File Dialog
	Customizing the Save File Dialog
	Opening a Panorama Database
	Supressing the Default Extension
	Appending Databases End-to-End
	Eliminating Duplicates in Appended Data
	Replacing the Data in a Database
	Saving a Panorama Database
	Closing a Database
	Shutting Down Panorama
	Importing Text Files
	Carriage Returns in the Data
	Importing a Text File into an Existing Database
	Importing from a Variable
	Importing HTML Tables
	Re-Arranging the Order of Imported Data
	Building the ImportUsing Formula on the Fly
	Exporting Text Files
	Exporting Line Items as Separate Records
	Analyzing Line Items
	Exporting Array Elements as Separate Records
	Opening a Document in Another Application
	Smart Merge Synchronization
	How Smart Merge Synchronization Works
	Adding Smart Merge to Your Database
	The Modified Field
	Adding New Records
	The Smart Merge Procedure
	Directly Reading and Writing Disk Files
	What’s in a File?
	Reading Data Files
	Writing Data Files
	Using FileSave and ArrayBuild to Export Data
	Reading and Writing Resource Forks
	Erasing a File
	Changing a File’s Name
	Changing a File’s Type and Creator
	Creating a New Folder
	Getting Information about a File
	Getting and Setting Additional File Information
	Building a List of Files or Folders
	Building a List of Disks (Volumes)
	Working with Resources
	Opening and Closing Resource Files
	Opening a Resource File in the .Initialization Procedure
	Reading a Resource
	Reading STR and STR# Resources
	Writing a Resource
	Deleting a Resource
	Renumbering a Resource
	Listing Resources
	Working with Multiple Resource Files
	Accessing the Windows Registry
	Getting Information About Registry Items
	Modifying Registry Entries
	Deleting a Registry Entry

	Monitoring Memory Usage
	Changing the Scratch Memory Allocation

	Windows
	Opening a Window
	Specifying the New Window Location
	New Window Options
	Non Standard Window Styles
	Changing a Window’s Position/Options
	Changing a Window’s View
	Changing the Name of a Window
	Scrolling Inside a Form Window
	Closing a Window
	Trapping the Close Box
	Changing The Window Order (Who’s on Top?)
	Temporary “Invisible” Windows
	Databases Without Windows
	“Magic” Windows
	Window Clones
	Designing A Clone Window Application

	Alerts
	Supressing Alerts

	Dialogs
	“Off the Shelf” Dialogs
	Custom Dialogs
	Using Custom Dialogs
	The Custom Dialog Wizard
	Installing the Dialog Wizard
	Preparing a Form for Use as a Dialog
	Customizing the Dialog Code
	Options to the .dialog Procedure
	Editing Data with a Dialog

	Accessing and Modifying the Database Structure (Fields)
	Getting Information About Field Structure
	Modifying Field Structure Directly
	Working With the Design Sheet
	Updating Database Structure From Another Database
	Transferring Permanent Variables
	Verifying Database Identity

	Database Navigation and Editing
	Moving Up and Down in the Database
	Moving Left and Right
	Moving “Left” and “Right” on a Form
	Moving to an Empty Line Item Field
	Adding and Deleting Records
	Modifying the Database One Cell at a Time
	Accessing and Modifying the Current Cell
	Accessing and Modifying the Clipboard
	Triggering Automatic Calculations
	Triggering Automatic Procedures
	The Set Statement
	The FormulaCalc Statement
	Opening the Input Box
	“Natural” Data Entry
	Natural Data Display
	Natural Data Entry
	Validating a Credit Card Number

	Sorting
	Reducing Screen “Flashing”
	Making Sorts Even Faster

	Locating Information
	Finding Information
	A Handy Universal Find Procedure
	Find Next
	Selecting Information
	Handling Empty Selections
	Selecting Duplicates

	Summaries and Outlines
	Summary/Outline Examples
	Calculating Grand Totals
	Running Total
	Running Difference

	Transforming Big Chunks of Data
	Making Transformations Even Faster
	Numeric Calculations with FormulaFill
	Suppressing Zero’s
	Fill vs. FormulaFill
	Using FormulaFill to Transform Text
	Date Calculations with Formula Fill
	The SEQ Function
	Filling Empty Cells
	Automatic Numbering
	Propagate and UnPropagate
	Using UnPropagate to Eliminate Duplicates
	Change (Find and Replace)
	Changing with the Replace(Function
	Data Style and Color
	Accessing Style and Color in a Formula

	Processing/Transforming an Entire Array
	“Filtering” an Array
	Stripping Blank Elements From An Array
	Reversing the Order of an Array
	Using Regular Text Functions with Arrays
	Sorting an Array
	Removing Duplicate Items from an Array
	Building an Array from a Database
	Appending an Array to a Database
	Copying Between Multiple Variables and an Array
	Editing an Array using Separate Variables

	Programming Graphic Objects on the Fly
	Basics of Graphic Object Programming
	Selecting an Object by Name
	Selecting Multiple Objects
	Getting Information About Individual Objects
	Modifying Selected Objects
	Getting Information About Selected Objects
	Object ID Values
	Redrawing an Object
	Dragging a Rectangle
	Movable Dividers
	Drag and Drop

	Program Control of SuperObjects™
	The Active SuperObject
	Accessing and Modifying a SuperObject’s Internal Data
	Internal Data Types
	Text Editor SuperObject Commands
	Text Editor Internal Data
	Text Display SuperObject Internal Data
	Word Processor SuperObject Commands
	Word Processor Internal Data
	Super Flash Art Commands (Including Movie Control)
	Super Flash Art Internal Data
	Converting Between Image Formats
	Building Web Like HyperText Systems with Super Flash Art
	Preparing Pictures with Extractable Text
	Programming a HyperText Engine
	Extracting All Text of a Specific Style
	Creating Multi-Page Pictures
	Push Button Internal Data
	Flash Art Push Button Internal Data
	Data Button SuperObject Internal Data
	Flash Art Data Button SuperObject Internal Data
	Sticky Push Button SuperObject Internal Data
	Pop-Up Menu SuperObject Internal Data
	List SuperObject™ Commands
	Using Drag and Drop to Change the Order of Items in a List
	List SuperObject Internal Data
	Auto Grow SuperObject™ Commands (Elastic Forms)
	Auto Grow SuperObject Internal Data
	Super Matrix SuperObject™ Commands
	Super Matrix SuperObject Internal Data
	Scroll Bar SuperObject™ Commands

	Printing
	Selecting a View for Printing
	Selecting a Printer
	Adjusting Page Setup
	Preparing Data For Printing
	Printing the Database
	Printing a Single Record
	Print Preview
	Printing Using an Alternate Form
	Printing Data in an Array
	Form Comments
	The FormSelect Statement
	Reading and Modifying Form Comments in a Procedure

	Chapter 26: Cross Platform Databases
	File Type/Creator vs. Extensions
	Panorama Platform Converter
	Selecting a Folder
	Converting a Folder
	Converting Resources
	Reverse Conversion (PC to Macintosh)
	Converting from Panorama 3.x to 4.0 (Macintosh)

	Sharing Databases Across a Cross Platform Network
	Cross Platform vs. Older Versions of Panorama

	Cross Platform Font Usage
	Cross Platform Programming
	File Name Extensions and the OpenFile Statement
	Name Extensions and Window Names
	Flash Art Formulas
	Using Partial Paths to Reference SubFolders
	Hard Coded Folder Locations
	Is It a Mac or a PC?

	Chapter 27: AppleScript
	Learning Basic AppleScript
	AppleScript and Panorama
	Everything You Really Need to Know…
	Value of Cell
	Executing Panorama Programs
	Transferring Data Between AppleScript and a Panorama Program
	Working with Lists
	Launching a Script from Panorama

	AppleScript & Panorama… The Rest of the Story
	The Required Suite
	The Core Suite
	The Objects

	History of Panorama
	Version 4.0.2
	New Activation Dialog
	Displaying Balloon Help Text Directly on the Form

	Balloon Help text can now be displayed on the form itself as well as using the Macintosh Show Bal...
	New Search Option
	Separate Close File & Close Window Commands
	Assorted User Interface Fixes and Improvements

	Panorama 4.0.2 a number of small changes for improving the general operation of the program.
	Improved Formula Calculations

	Panorama 4.0.2 corrects a number of problems with numeric calculations and functions.
	Improved Procedures and Programming

	Panorama 4.0.2 corrects a number of problems with program statements and tools.
	Version 4.0.1
	Automatic Guides when Nudging Graphic Objects
	Improved Enhanced Image Pack
	New Wizard Manager
	New Search All Fields Wizard
	New Mini Statistics Wizard
	Tiling and Stacking Windows
	Personal Use License
	Setting Exact Window Dimensions
	Run Automatic Calculations Wizard
	Hiding Windows
	More Complex Charts
	Alternate Key for Opening New Windows
	Using the Esc Key to Cancel Data Entry
	Using the Esc Key to Toggle Form Modes
	Using the Option/Alt Key to Zoom Out
	Simulating Panorama Direct and Panorama Engine
	New Page Numbering for Panorama Reference
	Documentation Code Sample Corrections
	New KeyNow Statement Simulates Keystrokes Immediately
	New info("imagepack") function
	Displaying Images and Icons from Resource Files

	Version 4.0
	Cross Platform Compatibility
	Performance Enhancements
	Converting from Panorama 3.x to 4.0 (Macintosh)
	Converting using the Platform Converter
	Wizards
	Font Management across Multiple Computers and Platforms
	Enhanced Image Pack
	View Menu Moved to Menu Bar
	View Wizard
	Using the View Menu with Custom Menus
	Graphics Mode Keyboard Shortcuts
	Improved Procedure Editor
	Status Bar
	Shifting a Block of Text Left or Right
	On-Line Programming Reference
	Improved Debugging Tools
	Displaying Values While Single Stepping
	New Command Key Equivalents (Shortcuts) for Debugging
	Debug Log
	Hot Keys
	Triggering a Procedure Every Minute or Second
	Credit Card Data Entry Validation
	Calculating Time Intervals Smaller Than One Second
	Elastic View-As-List Forms
	New QuickTime Features
	SuperObject Enhancements
	Text Display SuperObject
	Flash Art SuperObject
	List SuperObject
	SuperMatrix SuperObject
	Form Preferences Dialog
	Change Command Reports Changes
	Stop Cursor Flashing
	Destroy Variables At Any Time
	Improved Resource Editing Tools
	Opening Documents with Other Applications
	Windows Registry
	Memory Allocation on Windows PC Systems
	Autoload File Set
	Working with Files
	New Procedure Statements
	Revised Procedure Statements
	New Functions
	Custom Dialog Wizard
	New Documentation
	Unsupported Panorama 3.1 Features

	Version 3.1.5
	Mac OS 8.5 Bug Fix
	Improved Butler/SQL Performance
	New FileTypeCreator Statement

	Version 3.1.4
	Version 3.1.3
	Special Keyboard Support
	Update Server Every Cell Option
	MakeFolder Statement
	Minimum Window Size (Elastic Forms)
	AlertMode Statement
	Info("FreeMemory") Function
	New Action Menus Security Option
	OS 8 Bug Fixes

	Version 3.1.2
	Info("Abort") Function
	Long Window Names
	SetPlugAndRun Statement
	Disabling Up/Down Arrows in a Form
	Window Management

	Version 3.1.1
	Sleep Statement

	Version 3.1
	HTML Table Import
	HTML Tag Parsing Functions
	HTML/URL Conversion Functions
	Window Clones
	Dragging To/From a List
	Suppressing Display of Text and Graphics
	Unlisted Procedures
	Disabling Command-Period
	Text Editor Padding and Grow Box Options
	Working With Complex Formulas
	ReplaceMultiple(Function
	ExportCell(Function
	OnError Statement
	Customizing the About Panorama Menu Item
	SuperObjectClose Statement
	Customizing the Open File Dialog and Save File Dialog
	Loading/Saving Multiple Variables

	Version 3.0
	Client/Server
	SuperObjects™
	Word Processing
	Graphics/Forms
	Elastic Forms
	Reports
	Duplicates
	AppleScript
	Programming Language
	Development Tools
	Import/Export
	Security

	Version 2.1
	Version 2.0
	Version 1.0, 1.1 and 1.5
	General Corporate History
	PolyVUE
	SuperVUE and DataVUE
	OverVUE
	Panorama
	Power Team
	SurfScout
	SiteWarrior

	Additional Resources
	On-Line Resources
	Signing Up For Panorama News Via E-Mail
	Signing Up to Join Other Panorama Users On-Line (QNA List)
	QNA Digest Mode
	QNA Log Database

	Technical Support
	Telephone Support
	Fax and E-mail Support
	Getting the Most from Technical Support

	Panorama Conferences
	ProVUE 98 Conference
	Panorama Skills Track
	Advanced Track
	Programming Track
	Internet Track
	Cross Platform Track
	ProVUE 99 Conference
	Web Track
	Basic Skills Track
	Intermediate Skills Track
	Advanced Skills Track

	Publications
	Panorama Real World Programming Guide
	Panorama Security Handbook
	Panorama Partner/Server Handbook

	Consulting Services

