

Panorama Reference

Introduction: This Panorama Reference supplement contains detailed reference information for every
statement and function available in Panorama as of Panorama 4.0.2. It has not, however,
been updated for Panorama V or later versions, and ProVUE no longer intends to keep
this reference updated as new features are added. (It is still retained, however, because
many sections of the Panorama Handbook link to topics in this reference.) For the most
up-to-date and complete reference available we refer you to the Programming Refer-
ence wizard. This wizard is in the Developer Tools subfolder of the Wizard menu, and
also can be accessed at any time by pressing Control-R on MacOS systems.

Online
Reference:

To open the online reference select Programming Reference from the Documentation
submenu of the Wizard menu.

Page 5001

Once the wizard opens the reference window is divided into four sections: search panel,
template panel, topic list and topic panel.

Navigation Using the Search Panel and Topic List

The search panel and topic list work together to help you locate a specific topic. As you
type into the search panel, the topic list updates to show topics that match.

Page 5002

When you see the topic you want, click on it to display the topic in the topic panel.

If there is only one topic in the topic list, the wizard will display the topic automatically
(without having to click on the list).

To quickly erase the query in the search panel, click on the button.

Page 5003

The Full Text Search Option

The search panel normally searches only the name and category of each topic. When the
Full Text Search option is checked the wizard will also search the complete text of each
topic. This makes it possible to quickly find every topic that references a particular func-
tion or statement, as well as the function or statement itself. For example, a normal
search for the word hue will turn up only one match.

Repeating the search with the Full Text Search option turned on yields 14 matches. You
can click on the match you are interested in.

Page 5004

Navigation Using the Topic, Statement and Function Menus

To jump directly to any topic use the Topic, Statement or Function menus. The Topic
menu divides topics into about two dozen submenus. (Some topics may be display
under more than one submenu, and some topics may not be listed under any topics.)

The Statements menu lists every statement in alphabetical order. The Functions menu
lists every function in alphabetical order. Simply select a statement or function from one
of these menus to jump to see the description of that topic in the topic panel.

Navigation Using HyperLinks

Like a web browser, the Programming Reference contains links from one page to other
related topics. These links are underlined in the text. To jump any linked topic simply
click on the underlined text.

Page 5005

Built In vs. Custom Statements and Functions

Panorama supports both built in and custom statements and functions. Several hundred
custom statements and functions are included with Panorama, and these are also
included as topics in the Programming Reference wizard. (You can also create your own
custom statements and functions, but these are not included in the Programming Refer-
ence wizard.) For most custom statements and functions the topic panel uses a basic
"plain text" format instead of the more graphical format used for built-in statements and
functions.

Don't adjust your set -- this plain text view is normal for custom statements and func-
tions.

Using the Template Panel

The template panel displays a sample that illustrates how this statement or function
would be used in a formula or procedure. In this case the panel shows an example of the
rgb(function, which has three parameters.

Page 5006

To copy the template into the topmost procedure window, hold down the Control key
and click on the template panel. (If you are using a PC system you should right-click on
the template panel.) The template will be pasted into the procedure at the current inser-
tion point, and the procedure window will be brought to the front so that you can edit it
further (for example, filling in the actual parameters).

You can also copy the template into the procedure window using the Reference menu.

The Copy to Procedure command copies the template into the procedure and brings the
procedure window forward (exactly like control-clicking on the template panel). The
Copy to Proc & Close command does the same, but also closes the Programming Refer-
ence wizard.

Minimizing the Programming Reference Wizard

In addition to its normal "wide-screen" view, the wizard can also be used in a minimized
view. To minimize the wizard, either choose Minimize Window from the Reference
menu or click on the button in the template panel. As shown here the minimized
wizard hides the search panel, topic list, and topic display panel.

Page 5007

Although you can't search for topics when the window is minimized, you can still use
the Reference, Topics, Statements and Function menus. When you want to maximize
the window again choose either the Maximize Window from the Reference menu or
click on the button.

General Top-
ics:

The following topics contain background information about various aspects of Pan-
orama programming

ascii
binary data
c/pascal structures
colors
date patterns
functions
graphic coordinates
non decimal numbers
numeric patterns
reminder data
statements
text arrays

Page 5008

?(...)
?(

Syntax: ?(truefalse,trueTormula,falseFormula)

Description: The ?(function allows a formula to make an either-or decision. (If X is true, then Y, else
Z.)

Parameters: This function has three parameters: truefalse, trueFormula and falseFormula.

truefalse is a “mini-formula” that controls the decision of the ? function…will it be door
number 1 or door number 2? This mini-formula must result in a true or false answer.
Here are some typical “mini-formulas” that produce a true or false answer.

Age>18
Middle=""
Country="USA"
Attendance

trueFormula is a “mini-formula” that will provide the result of the ?(function if the true-
false parameter turns out to be true.

falseFormula is a “mini-formula” that will provide the result of the ?(function if the
truefalse parameter turns out to be false.

Result: This function returns the value of either the trueFormula or the falseFormula, depending
on whether truefalse is true or false. The trueFormula and the falseFormula may calcu-
late numbers or text, but usually both should calculate the same type of data.

Examples: The first example assumes that a database has three fields containing a person’s name:
First, Middle , and Last . The formula below combines these three names into one,
but if the middle name is empty the formula makes sure there is only one space between
the first and last names.

Name=First+" "+?(Middle ≠"",Middle+" ","")+Last

The three parameters to the ? function are:

Middle ≠""
Middle+" "
""

 The first parameter, Middle ≠"" , checks to see if this person has a middle name or not. If
they do, the ?(function will use the trueFormula, Middle+" " , which includes the mid-
dle name followed by a space. If the person does not have a middle name the ?(function
will use the falseFormula, which is simply an empty text item.

The next example is a formula that could be used in an auto-wrap text object or Text Dis-
play SuperObject™ to display real estate information. If a house has not sold yet, this
formula will display something like this: 5492 Miramar (asking $186,000). If the house
has already sold it will display like this: 321 Olive (sold 3/14/95). The formula below
uses the ?(function to pick which format use, depending on whether or not the SoldOn
field is empty or not.

Page 5009

Address+" ("+
?(sizeof(SoldOn)=0,

"asking "+pattern(AskingPrice,"$#,")+")",
"sold "+ datepattern(SoldOn,"mm/dd/yy")+")")

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the truefalse parameter.

See Also: if statement

Page 5010

A

ABS(...)
ABS(

Syntax: ABS(value)

Description: The abs(function returns the absolute (positive) value of the numeric parameter. In other
words, negative numbers are converted to positive numbers, while positive numbers
stay positive.

Parameters: This function has one parameters: value.

value is the value you want to convert to a positive number. You may use any numeric
value, for example 1, 1000, 2.5, or -500.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This simple example calculates the difference between two prices. The result will always
be positive, even if Price2 is greater than Price1.

abs(Price1-Price2)

Price1 and Price2 must contain numeric values.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example abs("34") . If you have
a number in a text item you must convert the text to a numeric value before taking the
absolute value, for example abs(val("34")) .

See Also: val(function

Page 5011

ACTIVERESOURCE
ACTIVERESOURCE

Syntax: ACTIVERESOURCE file

Description: The activeresource statement specifies that a particular resource file should be the pri-
mary resource file for reading and writing. This gives you greater control when working
with multiple resource files.

Parameters: This statement has one parameter: file.

file identifies the resource file you want to make the primary resource file. This file must
have previously been opened with the openresource or openresourcerw statements. If
the parameter is "" the original priority of the files is restored.

Action: This statement makes a resource file the primary resource file for reading and writing. It
does not disable other resource files, however, Panorama will look in this primary file
first when reading and will always write into the primary file.

Examples: For these examples we will assume that three resource files have been opened, like this.

openresourcerw "alpha"
openresourcerw "beta"
openresourcerw "gamma"

The program below will write a resource into the beta resource file instead of the gamma
file.

activeresource "beta"
writeresource "DATA",2000,"This is not a test"
activeresource ""

The program below will only read the DATA 2000 resource from the beta file, not alpha
or gamma.

activeresource "beta"
temp= getresource("DATA",2000)
activeresource ""

Views: This statement may be used in any view

See Also: openresource statement
openresourcerw statemen
closeresource statement
writeresource statement
getresource(function
getstring(function
getnstring(function
getstringmatch(function
resources(function
resourcetypes(function

Page 5012

ACTIVESUPEROBJECT
ACTIVESUPEROBJECT

SYNTAX: ACTIVESUPEROBJECT command,param1,param2,…paramN

Descriptive: The activesuperobject statement allows a procedure to communicate with a SuperObject
on the current form. This statement is similar to the superobject statement, but instead of
specifying a named object this statement sends a command to the SuperObject that is
currently being edited (if any).

For information on using this command with specific types of SuperObjects, see:

text editor programming
word processor programming
super flash art programming
list superobject programming
super matrix programming
scroll bar programming

Parameters: This statement has a variable number of parameters, but always at least one: command.

command is an instruction that will be sent to a specific SuperObject. Different types of
SuperObjects understand different types of commands. For example the Text Editor
SuperObject understands commands like "InsertText" and "GetSelection", while the List
SuperObject understands commands like "AddCell" and "FindCell". (Note: The Active-
SuperObject statement can only be used with Text Editor and Word Processor types of
objects, since these are the only types of SuperObjects that can become active. For other
types of SuperObjects you must use the superobject statement.)

param1…paramNN are additional parameters used by individual commands, if
required. For example the Text Editor’s "InsertText" command requires one additional
parameter which specifies the text to be inserted. The List SuperObject’s "DeleteCell"
command requires two additional parameters, the numbers of the first and last cells to
be deleted. Parameters may also receive values from the SuperObject. For example the
List SuperObject’s "GetCount" command has one parameter into which the number of
items in the list is stored. If a parameter is used to receive a value from the SuperObject,
that parameter must be a single field or variable with no operators (myValue , not
myValue+yourValue or strip(myValue)).

Action: This statement allows a procedure to communicate with a SuperObject on the current
form. This statement is similar to the SuperObject statement, but instead of specifying a
named object this statement sends a command to the SuperObject that is currently being
edited (if any). Many SuperObjects have one or more commands that they understand.
For example, the Text Editor SuperObject has commands for selecting text, locating text,
modifying text, etc.

Examples: This example insert the current date and time into whatever SuperObject is currently
being edited. This procedure will work with both Text Editor and Word Processor Super-
Objects. The first line of the procedure checks to make sure that there actually is an active
SuperObject (i.e. something is really being edited at this time).

Page 5013

if info("activesuperobject") ≠""
activesuperobject "InsertText",

datepattern(today(),"mm/dd/yy")+"@"+
timepattern(now(),"hh:mm am/pm")

endif

Views: This statement may be used in Form views.

See Also: superobject statement
info("activesuperobject") statement
text editor programming
word processor programming
super flash art programming
list superobject programming
super matrix programming
scroll bar programming

Page 5014

ADDFIELD
ADDFIELD

Syntax: ADDFIELD name

Description: The addfield statement adds a new field to the current database.

Parameters: This statement has one parameter: name.

name is the name of the new field you want to create. If the parameter is the keyword
dialog the procedure will stop and display the Field Properties dialog, allowing the user
to set up the field name, type, and other properties of the new field.

Action: This statement adds a new field to the database at the end of all the current fields. (If you
want to insert a new field into the middle of the current fields, use the insertfield state-
ment. The new field is created as a text field. Use the fieldtype statement if you need to
convert the new field to a numeric, date, choice or picture field. (Note: the new field does
not become the current field. Use the field statement to make the new field current before
changing the type or performing other operations on the field.)

Examples: This simple example adds a new field called Notes at the end of the current database.

addfield "Notes"

This example creates a new field called Ratio, converts it to floating point, and then cal-
culates values for the new field.

addfield "Ratio"
field "Ratio"
fieldtype "float"
formulafill "Price/Cost"

 The example below creates a new field, allowing the user to set up the field name and
properties. After the new field is created the procedure determines the name of the new
field and loads it into the variable newFieldName.

local newFieldName
addfield dialog
newFieldName=

array(dbinfo("fields",""),
arraysize(dbinfo("fields",""),¶),¶)

Views: This statement may be used in the Data Sheet, Cross Tab view, and Form views only.

See Also: dbinfo() function
deletefield statement
field statement
fieldname statement
fieldstyle() function
fieldtype statement
info("datatype") function

Page 5015

info("fieldname") function
insertfield statement
newgeneration statement

Page 5016

ADDLINES
ADDLINES

Syntax: ADDLINES field,start,end,bump,copies

Description: The addlines statement allows Panorama to add a specified number of records to the
end of a database. This statement will be faster than setting up a loop and using the
addrecord statement.

Parameters: This statement has five required parameters: field, start, end, bump, and copies.

field is the name of the field you wish to increment as the new records are added to the
database. This parameter must either be a 0-digit numeric or date type field or it may be
a variable if you don’t want to store the incrementing values in the database.

start is the beginning sequence number or date value. start can be an integer number, a
variable containing a numeric integer or date value, or a formula or function which
results in a numeric integer or date value. start must be less than and not equal to end

end is the ending sequence number or date value. end can be an integer number, a vari-
able containing a numeric integer or date value, or a formula or function which results in
a numeric integer or date value. end must be greater than and not equal to start.

bump is the increment value for your sequence. bump may be a number, a numeric vari-
able, or a formula which results in a positive numeric integer. The bump value must be a
positive integer for a numeric field. For a date field bump may also be one of the follow-
ing:

"M" - for month (the M must be in quotes)
"Y" - for year (the Y must be in quotes)
1 - for day
7 - for week

copies is the number of records generated for each sequence number. copies may be a
number, a numeric variable, or a formula which results in a positive numeric integer (in
most cases this value will be 1).

Action: This statement will allow a procedure to add a predetermined number of records to the
end of any database. The new records may be sequenced with incrementing integer or
date values in a specified field.

Examples: This example shows how a procedure can add 100 records to a database and sequence
those new records from 1200 to 1299 in a numeric, 0-digit field called CheckNum.

addlines CheckNum,1200,1299,1,1

This example shows how a procedure can add 31 records to a database and sequence
those new records from October 1 to October 31 in a date field called EntryDate (Pan-
orama will assume the year based on the computers system date). Also notice that a
function was used to determine the values for the start and end parameters

addlines EntryDate, date("oct 1"), date("oct 31"),1,1

Page 5017
This procedure will add one record for each month to a database and sequence those
new records from a start date to an end date that the user specifies. The date field
sequenced is called Date. This time the bump value is "M", indicating that the value
should be incremented by one month for each record.

local Start,End
gettext "Enter Start date, ex: 1/1/95",Start
Start = date(Start) /* converts to a date value */
gettext "Enter End date, ex: 12/1/95",End
End = date(End) /* convert to a date value */
addlines Date,Start,End,"M",1

 This example adds 20 records to a database and sequences those new records from 1 to
10 in a field called In/Out, but makes two records for each sequence value by setting
copies to 2. Notice also that the end value is a simple formula 1+9. The resulting
sequence will be 11223344 ...

addlines «In/Out»,1,1+9,1,2

This example adds 10 records to a database, however no field will be sequenced because
a variable is used as the first parameter.

local Useless
Useless = ""
addlines Useless,1,1+9,1,1

Views: This statement may be used in a procedure which runs from the Data Sheet or Form
views. This statement cannot be used to add records to the Design Sheet or a Cross Tab.

See Also: addrecord statement
cutrecord statement
deleterecord statement
printonemultiple statement

Page 5018
ADDRECORD
ADDRECORD

Syntax: ADDRECORD

Description: The addrecord statement adds a new record at the end of the current database.

Parameters: This statement has no parameters.

Action: This statement adds a new record to the end of the database. It has the same effect as
choosing the Add New Record command in the Edit menu.

Examples: This simple example adds twelve new records at the end of the current database.

loop
addrecord

until 12

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: insertrecord statement
insertbelow statement
returnkey statement
deleterecord statement
info("records") function

Page 5019
ADDWINDOWSFONT
ADDWINDOWSFONT

Syntax: ADDWINDOWSFONT font

Description: The addwindowsfont statement notifies Windows that you have installed a new font.
This is a very specialized statement used by the Panorama installer. It has no effect on
MacOS computers..

Parameters: This statement has one parameter: font.

font is the name of the font you are installing.

Action: This statement will notify Windows that a new font has installed. Before you use this
statement you should copy the font into the Fonts folder. After you use this statement
you should set up the registry entries for the font.

Examples: This example installs the font true-type font San Diego. The example assumes that the
file has already been copied into the Fonts folder (perhaps with the filesave statement).

local fontRegistryFolder
fontRegistryFolder=

"HKLM\Software\Microsoft\Windows\CurrentVersion\Fonts:"
AddWindowsFont "San Diego.ttf"
RegistryWrite fontRegistryFolder+

array(File,1,".")+" (TrueType)","","San Diego.ttf"

 For installation on a Windows NT system the second line must be slightly modified.

fontRegistryFolder=
"HKLM\Software\Microsoft\Windows NT\CurrentVersion\Fonts:"

Views: This statement may be used in any view.

See Also: registrywrite statement

Page 5020
ADJUSTXY(...)
ADJUSTXY(

Syntax: ADJUSTXY(rectangle,boundary,deltav,deltaH)

Description: The adjustxy(function adjusts the four corners of a rectangle. However, only corners
that are inside a boundary are adjusted. Corners outside the boundary are left alone.

Parameters: This function has four parameters: rectangle, boundary, deltav and deltah.

rectangle is the rectangle that is being adjusted

boundary is a rectangle describing the area to be adjusted. Only points inside this rectan-
gle will be adjusted.

deltav is the vertical distance each corner inside the boundary should be adjusted.

deltah is the horizontal distance each corner inside the boundary should be adjusted.

Result: This function returns a rectangle. A rectangle is an 8 byte binary data item. Like all other
binary data items, rectangles are actually stored as text (see binary data)

Examples: The procedure below uses adjustxy to help move a slider on a form. This procedure is
designed to be triggered by a button with the Click/Release option turned off.

local drag,dragstart,deltaV,deltaH,slider,slidebox
drag= info("buttonrectangle")
dragstart=drag
slider= xytoxy(drag,"s","f")
slider= rectangleadjust(slider,0,0,1,1)
selectobjects
intersectionrectangle(

xytoxy(drag,"s","f"),
objectinfo("rectangle") ≠ rectangle(0,0,0,0)

slidebox= xytoxy(objectinfo("boundary"),"f","s")
slidebox= rectangleadjust(insidewindow,0,16,0,-16)
draggraybox drag,slidebox, info("windowrectangle") ,1
if drag="" stop endif
deltaV= rtop(drag)- rtop(dragstart)
deltaH= rleft(drag)- rleft(dragstart)
changeobjects "rectangle",
adjustxy(objectinfo("rectangle"),slider,deltaV,deltaH)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the rectangle or boundary.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the delta.

See Also: point(function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function

Page 5021
intersectionrectangle(function
rectangleadjust(function
rectanglecenter(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5022
ALARMDELETE
ALARMDELETE

Syntax: ALARMDELETE reminder

Description: The alarmdelete statement tells the Team Alarm extension to delete an alarm.

Parameters: This statement has one parameter: reminder.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. see
reminder data for detailed information about reminders.

Action: If you have the optional Team Alarm extension installed, you can be notified of your
reminders even when Panorama is not currently running. To do this, the Team Alarm
extension keeps a separate private list of pending alarms. The alarmdelete statement
tells the Team Alarm extension to delete a reminder from the this private list of alarms.

Examples: If a database contains alarms you should include the following statements in the .Dele-
teRecord procedure. This example assumes that the reminders are stored in a field called
Reminder.

AlarmDelete Reminder
deleterecord

 This example deletes all unselected records from a calendar database.

selectreverse
loop
alarmdelete reminder
downrecord
until info("stopped")
selectreverse
removeunselected

 Here is another way to do the same job. If you are deleting a lot of records this method
will probably be faster.

removeunselected
alarmreset Reminder,Message

Views: This statement may be used in any view.

See Also: alarmedit statement
alarmreset statement
reminder data

Page 5023
ALARMEDIT
ALARMEDIT

Syntax: ALARMEDIT reminder,message

Description: The alarmedit statement tells the Team Alarm extension to change the message associ-
ated with an alarm.

Parameters: This statement has two parameters: reminder and message.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. see
reminder data for detailed information about reminders.

message is the message that goes with the alarm, for example Sue’s flight arrives or Pick
up kids.

Action: If you have the optional Team Alarm extension installed, you can be notified of your
reminders even when Panorama is not currently running. To do this, the Team Alarm
extension keeps a separate private list of pending alarms. The alarmedit statement
changes the message associated with an alarm. Use this statement if the procedure has
changed the message. (If the message has been changed by the user as a result of the
reminder dialog, the alarmedit statement is not necessary.)

Examples: This example finds all reminders for Big Shot and adds the words TOP PRIORITY: to the
start of the message. The example assumes that the reminder data is stored in a field
called Reminders.

find Customer = "Big Shot"
loop

stoploopif (not info("found"))
Message="TOP PRIORITY: "+Message
AlarmEdit Reminders,Message

next
while forever

Here is another way to do the same job. If you are changing a lot of records this method
will probably be faster.

field Message
formulafill
?(Customer="Big Shot","TOP PRIORITY: ","")+Message
alarmreset Reminders,Message

Views: This statement may be used in any view.

See Also: alarmdelete statement
alarmreset statement
reminder data

Page 5024
ALARMRESET
ALARMRESET

Syntax: ALARMRESET reminder,message

Description: The alarmreset statement tells the Team Alarm extension to rebuild its private list of
alarms.

Parameters: This statement has two parameters: reminder and message.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. See
reminder data for detailed information about reminders. In this case you are not specify-
ing the reminder itself, but the field containing the reminder data.

message is the message that goes with the alarm, for example Sue’s flight arrives or Pick
up kids. In this case you are not specifying the message itself, but the field containing the
messages.

Action: If you have the optional Team Alarm extension installed, you can be notified of your
reminders even when Panorama is not currently running. To do this, the Team Alarm
extension keeps a separate private list of pending alarms. The alarmreset statement tells
the extension to rebuild this list of alarms from the current database. Use this statement
when you first create the reminder database, or if you think that Team Alarms’s list may
have gotten out of sync with the Panorama database. For example, this may happen if
the user quits without saving changes (the changes have been made to Team Alarm’s
database), or when new data is imported into the database.

Examples: This example imports some new reminders into a calendar database, then makes sure
that the Team Alarm list of alarms is kept up-to-date. The example assumes that the
reminder data is stored in a field called Reminders.

openfile "+Sandy’s Appointments"
alarmreset Reminders,Message

 This example deletes all reminders more than 12 months old. The reminders are deleted
from both the Panorama database and Team Alarm’s private list of alarms. (Actually this
is not technically necessary in this case, since the Team Alarm extension automatically
deletes an alarm after its time has passed.)

select reminder data (Reminder)> monthmath(today(,-12)
removeunselected
alarmreset Reminders,Message

 This example changes the message for all of Big Shot’s reminders.

field Message
formulafill
?(Customer="Big Shot","TOP PRIORITY: ","")+Message
alarmreset Reminders,Message

Views: This statement may be used in any view.

Page 5025
See Also: alarmdelete statement
alarmedit statement
reminder data

Page 5026
ALERT
ALERT

Syntax: ALERT resource#,message

Description: The alert statement allows a Panorama procedure to open an alert dialog and display a
specified message within that dialog.

Parameters: This statement has two required parameters: resource# and message.

resource# is the number that identifies an alert resource. The resource can either be con-
structed using a program like ResEdit or you can specify a resource number for an inter-
nal Panorama resource (resource numbers below 5000 are reserved for the Panorama
program.)

This is a list of alert dialogs in Panorama that you may find useful in your procedures.

Warning: Specifying an undefined or unopened resource in an alert statement will cause
Panorama to crash to the Finder.

message is the text string you wish to display within the alert dialog. This parameter can
either be a quoted string of characters, a field, a variable, or a formula that results in a
text string you wish to display. This parameter must be a text value.

Action: This statement will pause a procedure while Panorama displays a specified alert dialog
and a message of your own choosing. This alert dialog is a modal dialog and must be
responded to before you can continue the procedure. An alert dialog must have one or
more buttons that allow the user to respond to the alert.

Examples: This sample procedure opens a yes-no dialog included in the Panorama program
(resource number 1014) and displays the message in the second parameter. If the user
clicks on the yes button a save command will be executed.

Resource # Buttons Notes

1000 OK

1001 OK, Cancel 1st Button is default

1002 Cancel, OK

1003 Save, Don’t Save, Cancel message=filename

1005 OK Small version of 1000

1008 Wait, Cancel

1009 Cancel, Revert

1010 Delete, Cancel

1012 Re-Edit, Cancel

1013 Yes, No

1014 No, Yes

1015 Cancel, Delete

1018 Yes, No, Cancel

1101 Cancel, OK, Select Problem Data

Page 5027
alert 1014,"Do you want to save now?"
if info("dialogtrigger") contains "yes"

save
endif

This is the same example except that the text string is stored in a local variable called
AlertMessage.

local AlertMessage
AlertMessage = "Do you want to save now?"
alert 1014,AlertMessage
if info("dialogtrigger") contains "yes"

save
endif

This is a similar example except that the resource (resource number 5001) was created in
a resource file called Alerts, which means it must be opened before it can be used. To do
so you use the openresource statement.

openresource "Alerts"
alert 5001,"Do you want to save now?"
if info("dialogtrigger") contains "yes"

save
endif

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: cancelok statement
customalert statement
customdialog statement
getscrap statement
gettext statement
info("dialogtrigger") function
message statement
noyes statement
okcancel statement
openresource statement
yesno statement

Page 5028
ALERTMODE
ALERTMODE

Syntax: ALERTMODE

Description: The alertmode statement allows you to suppress error and message alerts that Panorama
would normally display. This is especially useful when using Panorama with a web
server, since in that case there is no one to see the alert and you want to make sure the
server keeps running no matter what.

Parameters: This statement has one parameter: option

option controls whether Panorama displays alerts. If option is "yes", "true", or "on", alerts
will be displayed. If option is "no", "false", or "off", alerts will not be displayed.

Action: Use the alertmode statement when you want to make sure that Panorama does not stop
to display error message, no matter what happens. Note: This option disables all Pan-
orama alert dialogs until you either turn them back on or quit from Panorama - no
matter what database is open.

Examples: This example turns off all error message alerts (including alerts created by the message
statement).

alertmode "off"

Views: This statement may be used in any view.

See Also: onerror statement
message statement
alert statement
okcancel statement
cancelok statement
yesno statement
noyes statement

Page 5029
ALLINDEX
ALLINDEX

Syntax: ALLINDEX item,formula

Description: The allindex statement can be used to help locate the original data retrieved by the look-
upall(or lookupcalendar(function.

Parameters: This statement has two required parameters: item and formula.

item tell what item retrieved by lookupall(you want to locate. The item parameter must
be a variable. Before the statement is used this variable should be set up with a number,
1, 2, 3, etc. This tells allindex whether you want to locate the first, second, third, etc. item
of data retrieved by lookupall. After the allindex statement the item variable will contain
the line number in the target database that corresponds to the item, or zero if there is no
such item.

formula must be a formula with a lookupall(or lookupcalendar(function as the primary
function. You may use other functions or operators inside the parameters to this func-
tion, but the formula must not process the result of the lookup with any other function or
operator.

Action: This statement calculates the line number of a record. The record is one of a set of records
computed with the lookupall(or lookupcalendar(function.

Examples: The procedure example below will find out what item the user selected from a SuperOb-
ject list that has been filled with lookupall, then use the AllIndex and find statements to
locate the original record in the Reminders database for that item.

local AgendaItem AgendaItem=1
superobject "AgendaList","FindSelected",AgendaItem
if AgendaItem=0 stop endif ; nothing clicked!
allindex
AgendaItem,
lookupcalendar("Reminders",When, today(,Message,¶)
window "Reminders"
if info("selected") ≠info("records") selectall endif
find seq()=AgendaItem
/* now we can modify the original data the mouse was pointing to */
reminder When,Message

Views: This statement may be used in a Data Sheet or Form view.

See Also: lookupall(function
lookupcalendar(function
seq(function

Page 5030
ARCCOS(...)
ARCCOS(

Syntax: ARCCOS(value)

Description: The arccos(function calculates the inverse cosine of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value, which must be between -1 and +1.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse cosine function given input values from
-1 to +1.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example arccos("0.5") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the inverse cosine, for example arccos(val("0.665")) .

Floating point error. This error occurs if you use an input value less than or equal to -1 or
greater than or equal to +1. Mathematically, the inverse cosine function is only defined
for values between -1 and +1.

See Also: sin(function
cos(function
tan(function
arcsin(function
arctan(function
val(function

Page 5031
ARCCOSH(...)
ARCCOSH(

Syntax: ARCCOSH(value)

Description: The arccosh(function calculates the inverse hyperbolic cosine of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value, which must be between +1 and +∞ (positive infinity).

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse hyperbolic cosine function given input
values from -100 to +100.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example arccosh("23") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the inverse hyperbolic tangent, for example arccosh(val("34")).

Floating point error. This error occurs if you use an input value less than 1. Mathemati-
cally, the inverse hyperbolic cosine function is only defined for input values 1 or greater.

See Also: sinh(function
cosh(function
tanh(function
arcsinh(function
arctanh(function
val(function

Page 5032
ARCSIN(...)
ARCSIN(

Syntax: ARCSIN(value)

Description: The arcsin(function calculates the inverse sine of a numeric value.

Parameters: This function has one parameter: value. value is a numeric value that must be between -
1 and +1.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse cosine function given input values from
-1 to +1.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example arcsin("0.5") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the inverse cosine, for example arcsin(val("0.665")) .

Floating point error. This error occurs if you use an input value less than or equal to -1 or
greater than or equal to +1. Mathematically, the inverse sine function is only defined for
values between -1 and +1.

See Also: sin(function
cos(function
tan(function
arccos(function
arctan(function
val(function

Page 5033
ARCSINH(...)
ARCSINH(

Syntax: ARCSINH(value)

Description: The arcsinh(function calculates the inverse hyperbolic sine of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse hyperbolic sine function given input
values from -6 to +6.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example arcsinh("23") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the hyperbolic sine, for example arcsinh(val("34")) .

See Also: sinh(function
cosh(function
tanh(function
arccosh(function
arctanh(function
val(function

Page 5034
ARCTAN(...)
ARCTAN(

Syntax: ARCTAN(value)

Description: The arctan(function calculates the inverse tangent of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse hyperbolic sine function given input
values from -10 to +10.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example arctan("23") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the inverse tangent, for example arctan(val("34")) .

See Also: sin(function
cos(function
tan(function
arccos(function
arcsin(function
val(function

Page 5035
ARCTANH(...)
ARCTANH(

Syntax: ARCTANH(value)

Description: The arctanh(function calculates the inverse tangent of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value, which must be between -1 and +1.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the inverse hyperbolic sine function given input
values from -2 to +2.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example arctanh("23") . If you have a
numeric value in a text item you must convert the text to the number data type before
taking the inverse hyperbolic tangent, for example arctanh(val("34")) .

Floating point error. This error occurs if you use an input value less than or equal to -1 or
greater than or equal to +1. Mathematically, the inverse hyperbolic tangent function is
only defined for values from -1 to +1.

See Also: sinh(function
cosh(function
tanh(function
arcsinh(function
arccosh(function
val(function

Page 5036
ARRAY(...)
ARRAY(

Syntax: ARRAY(text,item,separator)

Description: The array(function extracts a single data item from a text array (see text arrays).

Parameters: This function has three parameters: text, item and separator.

text is the item of text that contains the data you want to extract.

item is the number of the data item you want to extract. The first item is item 1, the sec-
ond is item 2, the third item is 3, etc.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns an item of text from the array. Only the item itself is returned, the
separator characters on each end are not included. If the item does not exist (for example
if you ask for item 12 from a 7 item array) the function will return empty text ("").

Examples: There are 7 VHF television stations in Los Angeles. The procedure below will convert
channel numbers into the names of the stations. For example, the procedure converts
Channel 7 into KABC.

Stations=",KCBS,,KNBC,KTLA,,KABC,,KCAL,,KTTV,,KCOP"
«Channel Name»=array(Stations,7,",")

The example uses an array called Stations. This array uses commas as a separator charac-
ter.

The more complete example below displays the name of an element after the user enters
the atomic number from 1 to 103. In this example the variable Elements contains an array
of atomic element names, separated by semicolons (some of the assignment statement
has been left out for clarity).

local Elements,AtomicNumber,AtomicName
Elements="Hydrogen;Helium;Lithium;Beryllium;Boron;"+
"Carbon;Nitrogen;Oxygen;Fluorine;Neon;"+
...
"Mendelevium;Nobelium;Lawrencium"
AtomicNumber="1"
gettext "Enter Atomic Number",AtomicNumber
AtomicNumber=val(AtomicNumber)
if error

AtomicNumber=0
endif
AtomicName=array(Elements,AtomicNumber,";")
if AtomicName ≠ ""

message "Atomic name is: "+AtomicName
else

message "Atomic number must be an integer "+
"between 1 and 103."

endif

Page 5037
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: text arrays
arrayrange(function
arraysearch(function
arrayelement(function
extract(function

Page 5038
ARRAYBUILD
ARRAYBUILD

Syntax: ARRAYBUILD array,separator,database,formula

Description: The arraybuild statement builds an array by scanning a database and creating an array
element for each record in the database (see “TEXT ARRAYS” on page 5844).

Parameters: This statement has four parameters: array, separator, database and formula.

array is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field.

separator is the separator character for the array, usually a carriage return (¶), tab (¬) or
comma.

database is the database that will be scanned. This database must be open. If this param-
eter is "" then the current database will be scanned. The arraybuild statement will scan
every record in the database, including records that are not currently selected. If you
want to build an array from only selected records, use the arrayselectedbuild statement.

formula is the formula that will be used to extract data from the database and build each
array element. If the formula results in empty text ("") for a record then no element is
added to the array for that record. The formula usually references fields in the database
being scanned. It may also use the seq() function to find out the number of each record.

Action: This statement converts some of the data in a database into an array. Be sure to keep an
eye on your scratch memory usage, since this statement can create a gigantic variable in
no time flat! If a procedure needs to increase the scratch memory allocation it can use the
scratchmemory statement.

Examples: The example below will display all the fish from the Fish Tank database with prices
greater than $30. Each fish name will be separated from the next by a comma.

local FishList
arraybuild FishList,",","Fish Tank",?(Price>30,Fish,"")
message FishList

Since the arraybuild statement can scan any open database, it can serve as a sophisti-
cated lookup. This example looks up an address, given both the first and last names (the
regular lookup(function can only search one field at a time). This example is hard coded
for the name John Grant to make it clearer, but you can easily substitute fields or vari-
ables.

local CustAddress
arraybuild CustAddress,¶,"Customers",
?(FirstName="John" and LastName="Grant",

Address+¬+City+¬+State+¬+Zip,"")
if arraysize(CustAddress,¶)>1
message "There is more than one John Grant!"
endif
Address= array(CustAddress,¬,1)
City= arraybuild (CustAddress,¬,2)
State= array(CustAddress,¬,3)
ZipCode= array(CustAddress,¬,4)

Page 5039

Views: This statement may be used in any view.

See Also: arrayselectedbuild statement
arraylinebuild statement
seq(function
arrayscan(function

Page 5040
ARRAYCHANGE(...)
ARRAYCHANGE(

Syntax: ARRAYCHANGE(text,newvalue,item,separator)

Description: The arraychange(function changes a single value inside a text array (see text arrays).
Only the one item is changed, all the other items in the array remain the same.

This function has four parameters: text, newvalue, item and separator.

Parameters: text is the text array that contains the data you want to change.

newvalue is the new value of the data item.

item is the number of the data item you want to change. Items are numbered starting
from 1 (1,2, 3,…). This item must already exist in the array. The arraychange(function
will not add the item if it does not exist.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the text array, with the data item changed. If you want to
change the original array you should use an assignment statement (see below).

Examples: Suppose you have an array called Colors, and that this array uses a semicolon separator.
The procedure below will change the 5th item of the array to Navajo White.

Colors=arraychange(Colors,"Navajo White",5,";")

The arraychange(function can only change an existing array element. If the array ele-
ment does not already exist, it will not add it. In fact, it will do nothing. If it is possible
that the array item does not exist you should check first with the arraysize(function. The
example below is a procedure that places a color name somewhere in the Colors array. If
the specified array item does not exist it is created by replicating the separator character
multiple times with the rep(function.

loop ColorCount, ColorName, ColorNumber
ColorName= parameter(1)
ColorNumber= parameter(2)
ColorCount= arraysize(Colors,";")
if ColorNumber ≥ColorCount

Colors=Colors+ rep(";",ColorNumber-ColorCount)
endif
Colors=arraychange(Colors,ColorName,ColorNumber,";")

 Here’s how another procedure might call this procedure to change a color item.

call .SetColor,"Boxcar Red",15

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array, newvalue or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

Page 5041
See Also: text arrays
array(function
arraysize(function
arrayinsert(function
arraydelete(function
arrayfilter statement

Page 5042
ARRAYDEDUPLICATE
ARRAYDEDUPLICATE

Syntax: ARRAYDEDUPLICATE oldarray,newarray,separator

Description: The arraydeduplicate statement removes duplicate elements from an array (see text
arrays).

Parameters: This statement has three parameters: oldarray, newarray and separator.

oldarray is a formula that calculates the original array. Usually this is a text field or vari-
able, but it is allowed to be any formula that produces a text result.

newarray is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field. If you want to change the array in place, use the same
field or variable for both the oldarray and the newarray.

separator is the separator character for the array, usually a carriage return (¶), tab (¬) or
comma.

Action: This statement removes duplicate elements from an array. As a side effect it also sorts the
array into alphabetical (A-Z) order.

Examples: The example builds an array containing a list of all the cities in Vermont where you have
customers. Since you may have more than one customer in a given city, the arraydedu-
plicate statement removes the extras and makes sure each city is listed only once.

local Cities
select State="VT"
arrayselectedbuild Cities,¶,Customer,City
arraydeduplicate Cities,Cities,¶

Views: This statement may be used in any view.

See Also: arraysort statement
arrayfilter statement

Page 5043
ARRAYDELETE(...)
ARRAYDELETE(

Syntax: ARRAYDELETE(text,item,count,separator)

Description: The arraydelete(function deletes one or more elements from the middle of a text array
(see text arrays).

Parameters: This function has four parameters: text, count, item and separator.

text is the text array that you want to delete elements from.

item is the spot where you want the elements to be deleted.

count is the number of blank elements you want to delete from the array.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the original text array, with the specified elements
deleted from the middle.

Examples: The example below will delete the 3rd item from the SpeedDial array:

SpeedDial=arraydelete(SpeedDial,3,1,¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item or count parameters.

See Also: text arrays
array(function
arrayinsert(function
arrayfilter statement

Page 5044
ARRAYELEMENT(...)
ARRAYELEMENT(

Syntax: ARRAYELEMENT(text,position,separator)

Description: The arrayelement(function converts between character positions and array element
numbers in a text array (see text arrays). Given a character position within the overall
text, the arrayelement(function tells what array element the character is in. For example,
in the array red;blue;green the 7th character (u) is in the 2nd array element.

Parameters: This function has three parameters: text, position and separator.

text is the text array that you are working with.

position is the position of the character within the overall text (starting with 1 for the
first character).

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a number. This is the number of the data element in the array corre-
sponding to the character position parameter. If the position corresponds to a separator
character, the function will return the element number of the data element to the right of
the separator.

Examples: The procedure below adds a new color to the RecentColors array. It then arbitrarily cuts
off the array so that it is less than 200 characters long. The arrayelement(function makes
it possible to write this procedure so that the array can be cut off without cutting an
array element in the middle.

local lastElement
RecentColors= parameter(1)+ sandwich(¶,RecentColors,"")
lastElement=arrayelement(RecentColors,200,¶)
RecentColors= arrayrange(RecentColors,1,lastElement,¶)

This procedure could be useful for maintaining a pop-up menu of recently used colors.
The procedure automatically keeps the menu to a reasonable size by lopping off old col-
ors from the bottom if the array gets over 200 characters long.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the position parameter.

See Also: text arrays
array(function
arraysearch(function

Page 5045
ARRAYFILTER
ARRAYFILTER

Syntax: ARRAYFILTER oldarray,newarray,separator,formula

Description: The arrayfilter statement processes each element of an array with a formula (see text
arrays).

Parameters: This statement has four parameters: oldarray, newarray, separator and formula.

oldarray is a formula that calculates the original array. Usually this is a text field or vari-
able, but it is allowed to be any formula that produces a text result.

newarray is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field. If you want to change the array in place, use the same
field or variable for both the oldarray and the newarray.

separator is the separator character for both arrays (they must use the same separator),
usually a carriage return (¶), tab (¬) or comma.

formula is the formula for filtering. The arrayfilter statement operates by scanning old-
array element by element. For each element it processes the data with the formula you
supply. The formula can use the import() function to access the actual value of the array
element being processed. The seq() function can be used to access the array element
number. Once the formula calculates a new value the arrayfilter statement takes that
value and adds it to the end of the newarray.

Action: This statement filters the contents of an array. Rather than using a fixed processing
method to filter the array, it allows the programmer to supply a formula that is used over
and over again to filter each individual element of the array.

Examples: The example subroutine (called .ArraySequence) below adds a sequence number to the
beginning of each element in the array that is passed to it (array in parameter 1, separa-
tor in parameter 2).

local tempArray
tempArray="Bob Johnson"+¶+"Sue Miller"+¶+"Joe Wills"
call .ArraySequence,tempArray,¶

For example, suppose you passed an array of names to this subroutine, like this.

local Places
arrayfilter parameter(1),Places, parameter(2),
"("+ str(seq())+") "+ import()

 The result in the variable named Places would look like this.

(1) Bob Johnson
(2) Sue Miller
(3) Joe Wills

Views: This statement may be used in any view.

Page 5046
See Also: arraysort statement
arraydeduplicate statement
import(function
seq(function
arraystrip(function

Page 5047
ARRAYINSERT(...)
ARRAYINSERT(

Syntax: ARRAYINSERT(text,item,count,separator)

Description: The arrayinsert(function inserts one or more elements into the middle of a text array
(see text arrays).

Parameters: This function has four parameters: text, count, item and separator.

text is the text array that you want to insert elements into.

item is the spot where you want the new elements to be inserted.

count is the number of blank elements you want to insert into the array.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the original text array, with the new blank array elements
inserted into the middle.

Examples: The example below will add 5 new array items to the SpeedDial array between the 2nd
and 3rd array items:

SpeedDial=arrayinsert(SpeedDial,3,5,¶)

The new array items created by arrayinsert(are blank (empty). You can fill them in with
the arraychange(function.

The next example uses arrayinsert(and arraychange(to insert a new phone number at
the beginning of the SpeedDial array, instead of at the end.

local NewPhone
NewPhone=""
gettext "New Phone #",NewPhone
SpeedDial=arrayinsert(SpeedDial,1,1,¶)
SpeedDial= arraychange(SpeedDial,NewPhone,1,¶)

 The example above separated the arrayinsert(and arraychange(functions into two sep-
arate assignments to make the procedure easier to understand. However, they can be
combined into a single assignment like this:

local NewPhone
NewPhone=""
gettext "New Phone #",NewPhone
SpeedDial= arraychange(arrayinsert(SpeedDial,1,1,¶),NewPhone,1,¶)

 But just a minute sports fans…we’re really not inserting in the middle of the array, but
adding to the beginning. This can be done more simply with thesandwich(function, like
this.

local NewPhone
NewPhone=""
gettext "New Phone #",NewPhone
SpeedDial=NewPhone+ sandwich(¶,SpeedDial,"")

Page 5048
 Of course the arrayinsert(and arraychange(example would still be the way to go if you
need to insert the new item anywhere in the middle of the array, as opposed to the begin-
ning or the end.

Views: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item or count parameters.

See Also: text arrays
array(function
arraydelete(function
sandwich(function
arrayfilter statement

Page 5049
ARRAYLINEBUILD
ARRAYLINEBUILD

Syntax: ARRAYLINEBUILD array,separator,database,formula

Description: The arraylinebuild statement builds a one-element array array by scanning a database
and creating an array element for the current record in the database (see text arrays).

Parameters: This statement has four parameters: array, separator, database and formula.

array is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field.

separator is the separator character for the array, usually a carriage return (¶), tab (¬) or
comma.

database is the database that will be scanned. This database must be open. If this param-
eter is "" then the current database will be scanned. The arraylinebuild statement will
“scan” only the current record in the database. The purpose of this is simply to build the
array from any arrays in the record itself (see the formula section below). If you want to
build an array from multiple records in the database use the arraybuild or arrayselected-
build statement.

formula is the formula that will be used to extract data from the database and build each
array element. The formula usually references fields in the database being scanned. It
may also use the arrayscan(function to extract array elements from fields in the record.
(In fact, if your formula does not contain an arrayscan(function there is no point in using
the arraylinebuild statement.)

Action: This statement converts some of the data in a database into an array.

Examples: The example builds an array called PhoneList from the current record in the Contacts
database. This example assumes that the Contacts database has a field called Phones
which contains a carriage return separated list of phone numbers.

local PhoneList
arraylinebuild PhoneList,¶,"Contacts",
Name+": "+ arrayscan(Phones,¶)

The final array will look something like this:

Susan Williams: Home 845-9564
Susan Williams: Work 631-4715
Susan Williams: Pager 482-5229

Views: This statement may be used in any view.

See Also: arraybuild statement
seq(function
arrayscan(function

Page 5050
ARRAYRANGE(...)
ARRAYRANGE(

Syntax: ARRAYRANGE(text,firstitem,lastitem,separator)

Description: The arrayrange(function extracts a series of data items from a text array (see text arrays).

Parameters: This function has four parameters: text, firstitem, lastitem and separator.

text is the item of text that contains the data you want to extract.

firstitem is the number of the first data item you want to extract. Items are numbered
starting from 1 (1, 2, 3,…).

lastitem is the number of the last data item you want to extract. Items are numbered
starting from 1 (1, 2, 3,…).

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a series of items from the array. It returns the first item, the last
item, and everything in between (including any separators that are in between). If the
last item does not exist (for example if you ask for item 12 from a 7 item array) the func-
tion will return up to the actual last item in the array. If both requested items do not exist,
the function will return empty text ("").

Examples: This example will fill the variable WeekDays with the text Mon,Tue,Wed,Thu,Fri.

Days="Sun,Mon,Tue,Wed,Thu,Fri,Sat"
WeekDays=arrayrange(Days,2,6,",")

 The arrayrange(function is very handy for removing elements from the start or end of
an array. The example below calculates what lessons a person still must complete to
graduate, based on a numeric field or variable named Completed.

Lessons="Basic,Intermediate,Advanced"
ToDo=arrayrange(Lessons,Completed,10000,",")

 If the person has completed 1 lesson, ToDo will be Intermediate,Advanced. If the person
has completed 2 lessons, ToDo will be Advanced.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the firstitem or lastitem parameter.

See Also: text arrays
array(function
arraysearch(function
arraydelete(function
sandwich(function
arrayfilter statement

Page 5051
ARRAYREVERSE(...)
ARRAYREVERSE(

Syntax: ARRAYREVERSE(text,separator)

Description: The arrayreverse(function reverses the order of the elements in a text array (see Text
Arrays). In other words, the first element becomes the last element, the second element
becomes the second to last, etc.

Parameters: This function has two parameters: text and separator.

text is the text array that you want to modify.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the original array with the elements reversed.

Examples: The arrayreverse(function reverses the order of the elements of an array. For example,
the formula:

arrayreverse("1;2;3;4",";")

will produce the array

4;3;2;1.

The formula below could be used with an auto-wrap or text display object to display all
the checks written to a company, starting with the most recent check (assuming the
Checkbook database is sorted by date).

arrayreverse(lookupall("Checkbook",«Pay To»,Company,ChkNum,¶),¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text or separator parameters.

See Also: text arrays
array(function
arraysort statement

Page 5052
ARRAYSCAN(...)
ARRAYSCAN(

Syntax: ARRAYSCAN(field,separator)

Description: The arrayscan(function allows the individual elements of a text array in a database field
to be exported on separate lines (see text arrays).

Parameters: This function has two parameters: field and separator.

field is the name of the field that contains the array you want to export. (You can also use
a variable, but this usually doesn’t make sense).

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns one element from the array. However, unlike the array(function,
the arrayscan(modifies the way the export and arraybuild statements work. These state-
ments will repeat the formula containing arrayscan(over and over again for each record.
Each time, the function will return the next element in the array, until there are no more
items.

Examples: Suppose your database has a Phones field which contains an array of one or more phone
numbers, separated by a carriage return. Each array element contains the type of phone
number, a comma, and the phone number itself, like this:

home,(714) 555-1212 office,(714) 555-8932 fax,(714) 555-8938

The procedure below will export the phone numbers with one record per phone number:

export "Phone List",Name+¬+
array(arrayscan(Phones,¶),1,",")+¬+
array(arrayscan(Phones,¶),2,",")+¶

This procedure will output a text file something like this:

Joan Selbyhome(714) 555-1212
Joan Selbyoffice(714) 555-8932
Joan Selbyfax(714) 555-8938
Sally Rogersoffice(508) 777-8922
Sally Rogersfax(508) 777-8910
Chris Robertsoffice(909) 874-1234

Notice that no blank lines are exported. Panorama counts the number of elements in the
array, and outputs exactly that number of lines. If you use multiple arrayscan(functions
in the formula Panorama will export enough lines to handle the largest array. The array-
scan(function can also be used in the formula for the arraybuild, arrayselectedbuild, or
arraylinebuild statements. The arrayscan(function works exactly the same as it does
with the export statement, but the final result is an array instead of a text file.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text or separator parameters.

Field or variable does not exist. This error occurs if the field you specify is not in the cur-
rent database. You probably misspelled the field name.

Page 5053
See Also: text arrays
array(function
export statement
arraybuild statement
arrayselectedbuild statement
arraylinebuild statement

Page 5054
ARRAYSEARCH(...)
ARRAYSEARCH(

Syntax: ARRAYSEARCH(array,text,startitem,separator)

Description: The arraysearch(function searches a text array (see text arrays) to see it contains a spe-
cific value.

Parameters: This function has four parameters: array, text, startitem, and separator.

array is the text array that you want to search.

text is the text that you want to search for. This parameter may contain the wildcard
characters ? and * . For example, to search for array items that start with John use John*.
To search for any array item containing Pacific use *Pacific*. The array item must match
the text exactly, including upper/lower case. For more information on wildcard charac-
ters, see the matchexact operator.

startitem is the spot in the array where you want the search to begin from. If you want to
search the entire array, this parameter should be one.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: If the arraysearch(function finds an array element that matches what you are searching
for it returns the number of that array element (1, 2, 3, etc.). If there is no matching ele-
ment, the function returns 0.

Examples: The example below uses the arraysearch(function to looks up the atomic number of an
element. If it finds the element in the array, it displays the number

local Elements,AtomicNumber,AtomicName
Elements="Hydrogen;Helium;Lithium;Beryllium;Boron;"+

"Carbon;Nitrogen;Oxygen;Fluorine;Neon;"+
•••

"Mendelevium;Nobelium;Lawrencium"
AtomicName=""
gettext "Enter Name of Element",AtomicName
AtomicNumber=arraysearch(Elements, upperword(AtomicName),1,";")
if AtomicNumber ≠ 0

message "Atomic number of "+AtomicName+" is:"+ str(AtomicNumber)
else

message AtomicName+" is not an element."
endif

The arraysearch(function allows you to use wildcard searches to match a pattern, simi-
lar to the matchexact operator. The example below will search a carriage return delim-
ited array named Names, and gives the user the chance to delete each occurrence of the
name within the array. For example, if the user types in john the procedure will stop at
each name that begins with John.

local findName, soFar
findName=""
gettext "Enter first few letters of name:",findName
findName= upperword(findName)+"*"
soFar=1
loop

soFar=arraysearch(Names,findName,soFar,¶)

Page 5055
if soFar>0
yesno "Delete "+ array(Names,soFar,¶)+"?"
if clipboard() contains "yes"

Names=arraydelete(Names,soFar,1,¶)
else

soFar=soFar+1
endif

endif
while soFar > 0

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array, text or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the startitem parameter.

See Also: text arrays
array(function
search(function
arrayelement(function
matchexact operator

Page 5056
ARRAYSELECTEDBUILD
ARRAYSELECTEDBUILD

Syntax: ARRAYSELECTEDBUILDarray,separator,database,formula

Description: The arrayselectedbuild statement builds an array by scanning a database and creating
an array element for each record in the database (see text arrays).

Parameters: This statement has four parameters: array, separator, database and formula.

array is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field.

separator is the separator character for the array, usually a carriage return (¶), tab (¬) or
comma.

database is the database that will be scanned. This database must be open. If this param-
eter is "" then the current database will be scanned. The arrayselectedbuild statement
will scan only currently selected records in the database. If you want to build an array
from all the records in the database, including unselected records, use the arraybuild
statement.

formula is the formula that will be used to extract data from the database and build each
array element. If the formula results in empty text ("") for a record then no element is
added to the array for that record. The formula usually references fields in the database
being scanned. It may also use the seq() function to find out the number of each record.

Action: This statement converts some of the data in a database into an array. Be sure to keep an
eye on your scratch memory usage, since this statement can create a gigantic variable in
no time flat! If a procedure needs to increase the scratch memory allocation it can use the
scratchmemory statement.

Examples: The example below will display the name and phone number of every selected person in
the database.

local Prospects arrayselectedbuild Prospects,¶,"Customers",
Name+" "+Phone
message Prospects

Views: This statement may be used in any view.

See Also: arraybuild statement
arraylinebuild statement
seq(function
arrayscan(function

Page 5057
ARRAYSIZE(...)
ARRAYSIZE(

Syntax: ARRAYSIZE(text,separator)

Description: The arraysize(function counts the number of items in a text array (see text arrays).

Parameters: This function has two parameters: text and separator. text is the text array that you want
to count. separator is the separator character for this array. This should be a single char-
acter. For carriage return delimited arrays, use the ¶ character (option-7). For tab delim-
ited arrays use the ¬ character (option-L).

Result: This function returns a number. This is the number of elements in the array. If there is no
text in the array, the function will return one.

Examples: This example uses the arraysize(function to display the number of forms in the current
database. (The dbinfo("forms,"") function creates an array listing all the forms in the cur-
rent database, separated by carriage returns.)

message "This database contains "+
str(arraysize(dbinfo("forms",""),¶))+" forms"

 The arraysize(function can be used to check the size of an array before a procedure per-
forms an operation on that array. For example, the arraychange(function can only
change an existing array element. If the array element does not already exist, it will not
add it. The example below uses the arraysize(function to make sure that an array ele-
ment exists before the procedure attempts to change that element.

local LastColorNumber, ColorName, ColorNumber
ColorName= parameter(1)
ColorNumber= parameter(2)
LastColorNumber=arraysize(Colors,";")-1
if ColorNumber >= ColorCount
Colors=Colors+ rep(";",ColorNumber-ColorCount)
endif
Colors= arraychange(Colors,ColorName,ColorNumber,";")

 Here’s how another procedure might call this procedure to change a color item.

call .SetColor,"Boxcar Red",15

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

See Also: text arrays
array(function
extract(function

Page 5058
ARRAYSORT
ARRAYSORT

Syntax: ARRAYSORT oldarray,newarray,separator

Description: The arraysort statement alphabetizes (A-Z) the elements in an array (see text arrays).

Parameters: This statement has three parameters: oldarray, newarray and separator. (Note: Your Pan-
orama 3 Supplement may list these parameters in a different order, which is incorrect.)

oldarray is a formula that calculates the original array. Usually this is a text field or vari-
able, but it is allowed to be any formula that produces a text result.

newarray is the variable or field that will contain the new array. If you use a field for this
parameter it must be a text field. If you want to change the array in place, use the same
field or variable for both the oldarray and the newarray.

separator is the separator character for the array, usually a carriage return (¶), tab (¬) or
comma.

Action: This statement sorts the array into alphabetical (A-Z) order.

Examples: The example below builds an alphabetized list of the forms in the current database. The
list is separated by carriage returns, and could be used with a pop-up menu or List
SuperObject.

global FormList
arraysort dbinfo("forms",""),FormList,¶

Views: This statement may be used in any view

See Also: arraydeduplicate statement
arrayfilter statement

Page 5059
ARRAYSTRIP(...)
ARRAYSTRIP(

Syntax: ARRAYSTRIP(text,separator)

Description: The arraystrip(function removes any blank elements from a text array (see text arrays).

Parameters: This function has two parameters: text and separator.

text is the text array that you want to strip the blank elements from.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the original text array, with any blank array elements
removed from the array.

Examples: The procedure below builds a list of all Arizona companies in the current database. Some
of the customers in Arizona may be individuals with no company name. The procedure
uses the arraystrip(function to remove these blank elements from the array produced by
the lookupall(function.

local CompanyList
CompanyList= lookupall(info("databasename") ,"State","AZ",Company,¶)
CompanyList=arraystrip(CompanyList,¶)

 A procedure can use the arraystrip(function in combination with the arrayfilter(state-
ment to produce a subset of a database. This procedure takes the CompanyList array and
removes all companies except for companies that begin with the letter B.

arrayfilter CompanyList,CompanyList,¶,
?(import() beginswith "B", import(),"")
CompanyList=arraystrip(CompanyList,¶)

 The arrayfilter statement converts any array element that does not start with a B to an
empty array element. Once this is done, the arraystrip(function strips out the empty
array elements, leaving only array elements beginning with the letter B.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

See Also: text arrays
array(function
arrayfilter statement

Page 5060
ASC(...)
ASC(

Syntax: ASC(text)

Description: The asc(function converts the first character of a text item into a number from 0 to 255
based on the ascii table.

Parameters: This function has one parameter: text.

text is the item of text that you want to convert to an ASCII value. Only the first character
is converted, the rest of the text is ignored.

Result: The result of this function is always an integer from 0 to 255. See the table below for a list
of ASCII values and characters.

Examples: This function allows you to perform math on characters. For example, suppose you want
to know how many letters are between two letters (for example there are four letters
between C and H). This procedure will calculate the number of letters between two let-
ters.

local StartLetter,EndLetter,LetterCount
StartLetter="" EndLetter=""
gettext "Enter first letter",StartLetter
gettext "Enter second letter",EndLetter
LetterCount=asc(StartLetter)-asc(EndLetter)
message str(LetterCount-1)

 The procedure uses the asc(function to convert the letters into numbers, then subtracts
them.

Here is a procedure that generates and displays a sequenced list of characters. The user
is allowed to enter the characters they want the list to start and stop with.

local Alphabet,Letter,StartLetter,EndLetter
Alphabet=""
StartLetter="" EndLetter=""
gettext "Enter first letter",StartLetter
gettext "Enter second letter",EndLetter
if StartLetter>EndLetter stop endif
Letter=asc(StartLetter)
loop

Alphabet=Alphabet+ chr(Letter)
Letter=Letter+1

while Letter ≤asc(EndLetter)
message Alphabet

Page 5061
Table:

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example chr(34). If you have a
number you must convert the number to text before using it with this function, for exam-
ple chr(str(34)).

See Also: ascii
chr(function

Page 5062
ASCII
ASCII

On most Macintosh systems there are 256 possible characters. (Japanese and Chinese
allow thousands of characters). Each character has a number from 0 to 255. Of these 256
characters, about 200 are associated with symbols (letters, digits, punctuation, etc.). The
table below shows each of the 256 characters and the number associated with each char-
acter.

The numbers have not been assigned to symbols arbitrarily, but have been assigned
using a system called ASCII. The number associated with a character is called the ASCII
value of the character. (For you techno-weenies, ASCII stands for American Standard
Computer Interchange Interface.) Looking at the table you’ll notice that the characters
with ASCII values from 0-31 have no symbols. These characters are used for special keys
like return (13), tab (9), and enter (3). ASCII value 32 is the space character, then we have
some punctuation. ASCII values 48 through 57 are the numeric digits 0 through 9, in
order. ASCII values 65-90 are the upper case letters A through Z, in alphabetical order.
ASCII values 97-122 are the lower case letters a through z, again in alphabetical order.

Panorama uses the ASCII values of characters when it compares two text items to see
which is larger or smaller. Since the ASCII value of B (66) is greater than the ASCII value
of A (65), the text item B is “larger” than A. However, the ASCII value of a (97) is greater
than B (66), so the text item a is “larger” than B. You have to watch out for this problem
whenever you compare text that is a mixture of upper and lower case.

Page 5063
The first 32 ASCII values do not display, but are reserved for control functions. Some of
the special keys on the keyboard produce these values. Here is a set of descriptions of
some of these values, and the special keys (if any) that go with them.

These control values can also be produced by holding down the CONTROL key while
you press a letter. For example, pressing CONTROL-A produces a character with value
1, CONTROL-B is 2, etc. This technique is commonly used on PC systems, but not by
Macintosh software.

Value Description

01 Home Key

03 Enter Key

08 Delete (also sometimes called backspace)

09 Tab (use ¬ in formula)

10 Line Feed (used only by PC’s, not Macintosh)

11 Vertical Tab (used only for import/export)

12 Form Feed (used only by PC’s, not Macintosh)

13 Carriage Return (use ¶ in formula)

27 Escape Key

28 Left Arrow

29 Right Arrow

30 Up Arrow

31 Down Arrow

Page 5064
ASCII7TO8(...)
ASCII7TO8(

Syntax: ASCII7TO8(encodedtext)

Description: The ascii7to8(function takes 7 bit encoded text produced by the ascii8to7(function and
converts it back into regular 8 bit text (which may contain any ascii character from 0 to
255).

Parameters: This function has one parameter: encodedtext.

encodedtext is the encoded 7-bit text you want to convert back into regular 8 bit text.

Result: This function returns regular ascii text. However, if the encoded 7 bit text is not the exact
same text (same length and same contents) that was produced by the ascii8to7(function,
the ascii7to8(function will return empty text (""). You can add headers and trailers to the
encoded 7 bit text, but you must not modify the actual 7 bit text itself.

Examples: The example below takes the contents of the field LetterBody, packs it into 7 bit encoded
format, adds a header and trailer, then copies it onto the clipboard.

clipboard="Letter from "+ info("user") +" transmitted "+
datepattern(today(),"DayOfWeek, Month ddnth, yyyy")+¶+
"[[[[[["+¶+ ascii8to7(LetterBody)+¶+"]]]]]]"+¶

You can copy this into an e-mail message, and send it to someone else. They can convert
it back to regular text with this procedure, which uses the ascii7to8(function.

local bStart,bEnd,pLetter
pLetter= clipboard()
bStart= search(pLetter,"[[[[[[")
bEnd=search(pLetter,"]]]]]]")
if bStart=0 or bEnd=0
message "No encoded letter on the clipboard"
stop
endif
LetterBody=ascii7to8(pLetter[(bStart+6),(bEnd-1)])

 You can use this pair of functions to transmit complete Panorama records through an e-
mail system. This procedure copies all the selected records into the clipboard in the
encoded format.

local Batch
arraybuild Batch,¶, info("databasename") ,
replace(exportline(),¶, chr(11))
clipboard="Database transmission: "+
pattern(info("selected") ," record~")+
" from "+ info("databasename") +¶+
"Transmitted on: "+
pattern(today(),"DayOfWeek, Month ddnth, yyyy")+¶+
"[[[[[["+¶+ ascii8to7(Batch)+¶+"]]]]]]"+¶

The following procedure takes this encoded data and converts it back to Panorama data,
appending it to the end of the current database. (The databases at both ends of this trans-
action should have the exact same fields!)

Page 5065
local bStart,bEnd,Batch
Batch= clipboard()
bStart= search(Batch,"[[[[[[")
bEnd=search(Batch,"]]]]]]")
if bStart=0 or bEnd=0
message "No encoded letter on the clipboard"
stop
endif
Batch=ascii7to8(Batch[(bStart+6),(bEnd-1)])
if Batch=""
message "This transmission has been corrupted!"
stop
endif
openfile "+@Batch"

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the encodedtext parameter.

See Also: ascii8to7(function

Page 5066
ASCII8TO7(...)
ASCII8TO7(

Syntax: ASCII8TO7(text)

Description: The ascii8to7(function takes regular text (which may contain any ascii character from 0
to 255) and processes it into a special encoded format that only uses ASCII characters 32
through 127. This format allows the text to be sent through any e-mail system (some e-
mail systems do not allow characters 128 through 255). The encoded text can be turned
back into regular text with the ascii7to8(function. (These functions get their name
because regular text uses 8 binary bits per character. The encoded text uses only 7 binary
bits per character.)

Parameters: This function has one parameter: text.

text is the text you want to convert into 7 bit encoded format.

Result: This function returns the same text you passed to it, but converted into a special 7 bit
encoded format.

Examples: The example below takes the contents of the field LetterBody, packs it into 7 bit encoded
format, adds a header and trailer, then copies it onto the clipboard.

clipboard="Letter from "+ info("user") +" transmitted "+
datepattern(today(),"DayOfWeek, Month ddnth, yyyy")+¶+
"[[[[[["+¶+ascii8to7(LetterBody)+¶+"]]]]]]"+¶

You can copy this into an e-mail message, and send it to someone else. They can convert
it back to regular text with this procedure, which uses the ascii7to8(function.

local bStart,bEnd,pLetter
pLetter= clipboard()
bStart= search(pLetter,"[[[[[[")
bEnd=search(pLetter,"]]]]]]")
if bStart=0 or bEnd=0

message "No encoded letter on the clipboard"
stop

endif
LetterBody= ascii7to8(pLetter[(bStart+6),(bEnd-1)])

 You can use this pair of functions to transmit complete Panorama records through an e-
mail system. This procedure copies all the selected records into the clipboard in the
encoded format.

local Batch
arraybuild Batch,¶, info("databasename") ,
replace(exportline(),¶, chr(11))
clipboard="Database transmission: "+
pattern(info("selected") ," record~")+
" from "+ info("databasename") +¶+
"Transmitted on: "+
pattern(today(),"DayOfWeek, Month ddnth, yyyy")+¶+
"[[[[[["+¶+ascii8to7(Batch)+¶+"]]]]]]"+¶

Page 5067
The following procedure takes this encoded data and converts it back to Panorama data,
appending it to the end of the current database. (The databases at both ends of this trans-
action should have the exact same fields!)

local bStart,bEnd,Batch
Batch= clipboard()
bStart= search(Batch,"[[[[[[")
bEnd=search(Batch,"]]]]]]")
if bStart=0 or bEnd=0

message "No encoded letter on the clipboard"
stop

endif
Batch= ascii7to8(Batch[(bStart+6),(bEnd-1)])
if Batch=""

message "This transmission has been corrupted!"
stop

endif
openfile "+@Batch"

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text parameter.

See Also: ascii7to8(function

Page 5068
ATTACHSERVER
ATTACHSERVER

Syntax: ATTACHSERVER

Description: The attachserver statement takes a single user Panorama database and converts it into a
Partner/Server database linked into an SQL server database.

Parameters: This statement has no parameters.

Action: This statement is very useful for distributing Partner/Server database templates. The
database designer sets up all the server options in advance. The final end user simply
presses a button that uses the attachserver statement to create the actual SQL database.

Before you use the attachserver statement you must have set up the Server Options for
the database. To do this, go into the design sheet and open the Server Options dialog (in
the Server Dialog). In this dialog you must set up the server field lengths and indexes.

Examples: This example converts the current database into a Partner/Server database. As part of
the process an SQL database will be created on the server computer. The save statement
saves a local copy of the database. This local copy contains the link to the server data-
base.

attachserver
save

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: detachserver statement
serverfile statement
info("serverstatus") function
info("serverfile") function

Page 5069
AVERAGE
AVERAGE

Syntax: AVERAGE

Description: The average statement calculates averages and subaverages for the selected records in
the current field.

Parameters: This statement has no parameters.

Action: This statement calculates averages for the current field. The current field must be
numeric. If the database contains summary records, this statement will calculate subav-
erages for each summary record, along with an overall average for the whole database. If
there are not any summary records in the database, one will be added at the end of the
database and the overall average calculated and placed into the summary record. This
statement has the same effect as choosing the Average command in the Math menu.

Examples: This simple example calculates the average of the Balance field.

field Balance
average

This example calculates the average total for each state, along with the overall average.

field State
group
field Total
average

Views: This statement may be used in the Data Sheet and Form views.

See Also: total statement
count statement
group statement

Page 5070
B

BACKSPACEKEY
BACKSPACEKEY

Syntax: BACKSPACEKEY

Description: The backspacekey statement deletes the current record from the current database.

Parameters: This statement has no parameters.

Action: This statement deletes the current record from the database. The cursor will move up to
the previous record (if any). The contents of the current line are copied into the clipboard
before the line is deleted (use the pasterecord statement to insert the line back into the
database.) The statement has the same effect as pressing the backspace key in the data
sheet.

Examples: This example erases the current record if the Name field is empty.

if Name=""
backspacekey

endif

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views (view-as-
list forms only).

See Also: deleterecord statement
cutrecord statement
copyrecord statement
deleteall statement
info("records") function

Page 5071
BAUD
BAUD

Syntax: BAUD rate

Description: The baud statement specifies the baud rate for subsequent dialmodem and dialprinter
statements.

Parameters: This statement has one parameter: rate.

rate is the baud rate that should be used the next time Panorama dials using a serial port
(using the dialmodem or dialprinter statements). Choose the rate from the list below:

300
1200
2400
4800
7200
9600
14400
28800
38700

Action: This statement doesn’t perform any visible action on its own. However, the next dialmo-
dem or dialprinter statement will use the rate specified by this command.

Examples: This example dials toll free information using a 9600 baud Hayes compatible modem
that is connected to the modem port.

baud 9600
dialmodem "ATDT8005551212"

Views: This statement may be used in any view.

See Also: dialmodem statement
dialprinter statement

Page 5072
BEEP
BEEP

Syntax: BEEP

Description: The beep statement makes the Macintosh speaker beep once.

Parameters: This statement has no parameters.

Action: This statement makes the speaker “beep.” The actual sound may be a beep, or it may be
whatever sound you have set up as the system beep. If you want to play another sound
use the sound or playsound statements, which can play any sound in a resource file.

Examples: This example causes the Macintosh to beep if the Name field is empty.

if Name=""
beep

endif

Views: This statement may be used in any views.

See Also: sound statement
playsound statement

Page 5073
BINARY DATA
BINARY DATA

Background: By now probably everyone who has ever used a computer for more than a week has
heard that at their core, computers work with 1's and 0's, on and off, true and false. This
is call binary data, because there are only two options. Fortunately, users don't ever have
to deal with raw binary data. The programmers take the 1's and 0's and give them struc-
ture to create test, numbers, pictures, and other complex elements.

It's not much fun, and it's rarely necessary, but Panorama does allow a procedure pro-
grammer to work with raw unstructured, binary data 1's and 0's. When you work with
raw binary data, it will always be in a text field or variable. Panorama normally inter-
prets text as a series of characters, as described earlier in this chapter. The binary func-
tions, however, do not interpret the binary data as characters. Instead, they allow you to
directly access and manipulate the 1's and 0's. Panorama used the text data type to hold
raw binary data because text may be of any length and places no restrictions on the
binary information that is places in it. (However, the text may look very strange if you
display it in the data sheet or on a form, more on this later).

Bits: The fundamental unit of computer information is a bit. A bit contains a single 1 or 0.
However, a bit is too small to be of much use by itself, so usually several bits are grouped
together into a collection called a byte, word, or longword.

Bytes: A byte is a collection of 8 bits. There are 256 possible combinations of 1's and 0's within a
byte (2 multiplied by itself 8 times, i.e 2*2*2*2*2*2*2*2=256). These 256 combinations
could represent characters, they could represent numbers from 0 to 256 or anything else.
The byte(function takes a number from 0 to 255 and converts it into the corresponding
pattern of 8 bits.

Words: A word is a collection of 16 bits (or 2 bytes). There are 65,536 possible combinations of 1's
and 0's within a word (2 multiplied by itself 16 times). These 65,536 possible combina-
tions could represent numbers from 0-65,535 or they could represent 65,536 of anything
else. the word(function takes a number from 0 to 65,536 and converts it into the corre-
sponding pattern of 16 bits.

Longwords: A longword is a collection of 32 bits (or 4 bytes). There are over 4 billion possible combi-
nations of 1's and 0's within a longword (2 multiplied by itself 32 times). The longword(
function takes a number from 0 to 4,294,967,295 and converts it into the corresponding
pattern of 32 bits.

Creating
Binary Val-
ues:

Binary values are created with the byte(, word(and longword(functions. The example
below builds a text data value from a longword, a word, a word and a byte. The result-
ing text item has a length of 9 (4+2+2+1).

global rawData
rawData=
longword(96345)+
word(1249)+
word(9004)+
byte(80)

Page 5074
Accessing
Binary Infor-
mation:

Numeric values can be recovered from a text data item with the binaryvalue(function.
The text input into this function must have a length of 1, 2, or 4. You can use text funnels
to control the position and length of the data being converted. The example below will
extract four values from a text item that is at least 9 bytes long.

global rawData
local myLong,myFirstWord,mySecondWord,myByte
myLong=binaryvalue(rawData[1;4])
myFirstWord= binaryvalue(rawData[5;2])
myFirstWord= binaryvalue(rawData[7;2])
myByte= binaryvalue(rawData[9;1])

If rawData contains the information stored in it from the previous example, the myLong
will be 96345, myFirstWord will be 1249, mySecondWord will be 9004, and myByte will
be 80.

See Also: byte(function
word(function
longword(function
binaryvalue(function
string255(function
text255(function
radix(function
radixstr(function
textstuff(function
c/pascal structures

Page 5075
BINARYVALUE(...)
BINARYVALUE(

Syntax: BINARYVALUE(data)

Description: The binaryvalue(function converts binary data (a byte, word, or longword) into a num-
ber (see binary data).

Parameters: This function has one parameter: data.

data is the binary value that you want to convert into a number. This value must be a
byte, a word (2 bytes) or a longword (4 bytes).

Result: This function converts the binary data into a number.

Examples: See c/pascal structures for examples of the binaryvalue(function.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the data parameter.

Illegal number. This error occurs if you attempt to convert a value that is not 1, 2, or 4
bytes.

See Also: byte(function
word(function
longword(function
radix(function
radixstr(function

Page 5076
BLUE(...)
BLUE(

Syntax: BLUE(COLOR)

Description: The blue(function extracts the blue intensity from a color.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the intensity of the blue component of this color. This intensity is a
number between 0 (black) and 65535 (full intensity).

Examples: The example below calculates the blue intensity of the color (in percent, from 0 to 100%).

Intensity=blue(HighlightColor)*100/65535

Errors: For more examples of color, see colors.

Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
green(function
red(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors.

Page 5077
BRIGHTNESS(...)
BRIGHTNESS(

Syntax: BRIGHTNESS(color)

Description: The brightness(function extracts the brightness of a color. Brightness specifies how
light or dark the color is. Is the color very bright, or is it almost black? This sounds simi-
lar to Saturation, but it isn’t. Imagine a blue ball under a white light. As the light gets
dimmer, the Hue and Saturation of the color don’t change, but the Brightness does. On
the Apple color picker the Brightness is specified by the scroll bar on the right. This is a
number from 0 to 65535.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the brightness of the color. This intensity is a number between 0
and 65535.

Examples: The example below calculates the brightness of the color (in percent, from 0 to 100%).

SquintFactor=saturation(HighlightColor)*100/65535

For more examples of color, see colors.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
objectinfo(function
changeobjects function
colorwheel statement
colors.

Page 5078
BUILDREMINDER
BUILDREMINDER

Syntax: BUILDREMINDER date,time,type,reminderfield

Description: The buildreminder statement builds a new reminder (see reminder data).

Parameters: This statement has four parameters: date, time, type and reminderfield.

date is the date for the new reminder. The buildreminder statement cannot create recur-
ring reminders. Recurring reminders (2nd tuesday of the month, etc.) must be created
manually using the reminder dialog.

time is the time for the new reminder.

type is the type of the new reminder: 0 for appointments or 1 for to-dos (see reminder
data).

reminderfield is the field (or variable) where the new reminder data should be stored.

Action: This statement builds an appointment or to-do reminder at the specified time and date.

Examples: This example creates a new reminder for tomorrow at 9am. It then allows the user to
modify the reminder with a dialog.

buildreminder today(+1,time("9am"),0,Reminder
Message= grabdata("Contacts","Name")
reminder Reminders,Message

Views: This statement may be used in a Data Sheet or Form view.

See Also: reminder(function
reminderdate(function
remindertime(function
remindertype(function
reminder statement
reminder data

Page 5079
BYTE(...)
BYTE(

Syntax: BYTE(number)

Description: The byte(function converts a number into a single byte of binary data (see binary data).
(Note: the byte(function is basically the same as the chr(function.)

Parameters: This function has one parameter: number.

number is the value that you want to convert into a binary number. This value must be
between 0 and 255.

Result: This function converts the number into a single byte of binary data (8 bits). This binary
data should be handled as text data.

Examples: This example selects all records where the Text field contains tabs.

select Text contains byte(9)

See c/pascal structures for additional examples of the byte(function.

Errors: Type mismatch: text argument used when number was expected. This error occurs if
you attempt to use a text value for the number parameter. Illegal number. This error
occurs if you attempt to convert a value less than 0 or greater than 255.

See Also: word(function
longword(function
radix(function
radixstr(function

Page 5080
C

C/Pascal Structures
C/PASCAL STRUCTURES

Background: The binary data functions allow the procedure programmer to build, read, and modify C
and Pascal structures. Why would you want to do that? Perhaps you want to pass a
structure to an external procedure, or you might want to read or write a data file that
contains such structures. In C on the Macintosh, a char is a byte, a short is a word, and a
long is a longword. In Pascal, a byte is a byte, an integer is a word, and a longint is a
longword. The example below shows a typical 70 byte C structure with three elements.
This particular structure is used by the Macintosh toolbox to identify a file or folder.

typedef struct FSSpec {
short vRefNum;/* volume reference number */
long parID;/*directory ID of parent directory */
Str63 name;/* file name or directory name */
} FSSpec;

Here’s a Panorama subroutine called .BuildFileSpec that can build such a structure. The
subroutine has three parameters: the volume reference number (a number), the directory
ID of the parent (a number), and the file or directory name (text). For this example it’s
not really important to understand what these numbers mean, but you do want to see
how they are combined into the C structure. The structure is left in a global variable
called FileSpec where it could be passed to an external procedure.

global FileSpec
FileSpec= word(parameter(1))+
longword(parameter(2))+
string255(parameter(3),64)

 The next example extracts the three elements of the structure in FileSpec and places
them into three global variables.

global FileSpec,vRefNum,parentID,fileName
vRefNum=binaryvalue(FileSpec[1;2])
parentID= binaryvalue(FileSpec[3;4])
fileName= text255(FileSpec[7;64])

Using the textstuff(function you can change individual elements in the C or Pascal
structure. This example changes the file name:

FileSpec=textstuff(FileSpec,string255(NewName,64),6)

Remember, with the textstuff(function the offset starts at 0 for the first character, not 1 as
it does for text funnels.

See Also: byte(function
word(function
longword(function
binaryvalue(function
string255(function
text255(function
radix(function
radixstr(function
textstuff(function

Page 5081
CALCCROSSTAB
CALCCROSSTAB

Syntax: CALCCROSSTAB

Description: The calccrosstab statement recalculates the currently active crosstab window.

Parameters: This statement has no parameters.

Action: This statement recalculates the information in the current cross tab window. It has the
same effect as choosing the Calculate Crosstab Tool in the tool palette.

Examples: This example opens the Budget crosstab and re-calculates it using the latest information
in the database.

opencrosstab "Budget"
calccrosstab

Views: This statement may be used only in the Crosstab view.

See Also: opencrosstab statement
gocrosstab statement

Page 5082
CALENDARDATE(...)
CALENDARDATE(

Syntax: CALENDARDATE(date,boxnumber)

Description: The calendardate(function is designed to help in creating monthly calendars. A stan-
dard monthly calendar has 6 rows and 7 columns (Sunday through Saturday) for a total
of 42 boxes. For any given month from 28 to 31 of these boxes will be valid dates. The cal-
endarday(function calculates what date corresponds to one of these 42 boxes.

Parameters: This function has two parameters: date and boxnumber.

date is any date in the month being displayed.

boxnumber is the box within the monthly calendar being displayed. The boxes are num-
bered from 1 to 42, starting with the upper left hand corner. The table below shows the
position of all 42 monthly calendar boxes.

Result: This function returns a number corresponding to a date, or zero if the specified calendar
box does not contain a day in this month.

Examples: The output of the calendardate(function is usually fed into a lookupall(, lookupcalen-
dar(, or lookuprtime(function. The last two functions can be used to lookup the events
(appointments, to-do’s, etc.) that occur on a particular day. You’ll probably want to cre-
ate your monthly calendar with a Matrix SuperObject™. The matrix should be 6 rows by
7 columns, with the cells numbered in horizontal order. To display the reminders that
should appear in each of the calendar’s 42 boxes use the formula below in an auto-wrap
text object or a Text Display SuperObject™ inside the matrix frame. (This example
assumes your reminders are stored in a database called Reminders . This database has
at least two fields: When, which contains the Reminder data type (see reminder data),
and Message , which contains text for each reminder.)

lookupcalendar(
"Reminders",
When,
calendardate(Date, info("matrixcell")),
Messages,¶)

 This formula displays the times for each reminder.

S M T W T F S

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

Page 5083
lookuprtime(
"Reminders",
When,
calendardate(Date, info("matrixcell")),
"HH:MM AM/PM",¶)

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date or box parameter.

See Also: calendarday(function
info("matrixcell") function
lookupcalendar(function
lookuprtime(function
reminder data

Page 5084
CALENDARDAY(...)
CALENDARDAY(

Syntax: CALENDARDAY(date,boxnumber)

Description: The calendarday(function is designed to help in creating monthly calendars. A standard
monthly calendar has 6 rows and 7 columns (Sunday through Saturday) for a total of 42
boxes. For any given month from 28 to 31 of these boxes will be valid dates. The calen-
darday(function calculates what number from 1 to 31 (if any) should be displayed in one
of these 42 boxes.

Parameters: This function has two parameters: date and boxnumber.

date is any date in the month being displayed.

boxnumber is the box within the monthly calendar being displayed. The boxes are num-
bered from 1 to 42, starting with the upper left hand corner. The table below shows the
position of all 42 monthly calendar boxes.

Result: This function returns a number from 1 to 31, or zero if the specified calendar box does
not contain a day in this month.

Examples: The example below creates a basic calendar for a month. It builds a list of the days in a
month in a field named Days.

local box,aday,DayList
box=1
DayList=""
loop

aday=(" "+ str(calendarday(Date,box)))[-2,-1]+" "
if aday=" 0 "

aday=" "
endif
DayList=DayList+aday
if (box mod 7)=0

DayList=DayList+¶
endif
box=box+1

until 42
Days=DayList

 If you display the field Days using the Monaco font it will look something like this (this
shows July 1995):

S M T W T F S

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

Page 5085
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30 31

For more complicated calendars you’ll probably want to use a Matrix SuperObject™.
The matrix should be 6 rows by 7 columns, with the cells numbered in horizontal order.
To display the date use the formula below in an auto-wrap text object or a Text Display
SuperObject™ inside the matrix frame.

zeroblank(calendarday(Date, info("matrixcell")))

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date or box parameter.

See Also: calendardate(function
info("matrixcell") function

Page 5086
CALL
CALL

Syntax: CALL name[,parameter1,parameter2,…parameterN]

Description: The call statement executes another procedure, in the same database, as a subroutine.

Parameters: This statement has one required parameter: name.

There may also be additional parameters that you can define for passing data between
the main program and the subroutine.

name is the name of the procedure you wish to execute as a subroutine. This must be the
name of a procedure in the same database as the currently running procedure. (To call a
procedure in another database, use the farcall statement. To execute a subroutine within
the same procedure use the shortcall statement.) If the name contains blanks, symbol
characters, or punctuation characters it must be surrounded by quotes (" ") or chevrons
(« »).

parameter1, parameter 2, etc. are optional parameters that are defined by you, the sub-
routine programmer! Each parameter may be a field, variable, or a complete formula.
(However, if you want to change the value of a parameter from inside the subroutine, the
parameter must be a field or variable, not a formula.) The subroutine can find out the
value of a parameter using the parameter(function. To change the value of a parameter,
the subroutine can use the setparameter statement.

Action: This statement allows a procedure programmer to execute a second procedure from a
first as a subroutine to that procedure. Subroutines become important when you wish to
use the same code at different times within the same procedure or within multiple proce-
dures. This allows you to write the code once and use it again and again rather than
duplicating the same code over and over again.

Subroutines normally finish when the end of the procedure is reached. To stop the sub-
routine before the end of the procedure, use the rtn statement. The rtn statement makes
Panorama return control to the original procedure.

Examples: This simple example shows how to call a procedure called Summarize.

call Summarize

This example calls a subroutine named Calculate %. The subroutine's name is more than
one word and contains symbol characters.

call "Calculate %"

The example below shows that a subroutine can be called from within the middle of a
procedure. Once the subroutine finishes the parent procedure will continue executing.

global area,width,height
gettext "Enter Width in inches.",width
gettext "Enter Height in inches.",height
area = val(width) * val(height)
call Conversion
field Dimensions
...
...
...

Page 5087

Views: This statement may be used in any view.

See Also: farcall statement
parameter() function
rtn statement
setparameter statement
shortcall statement

Page 5088
CANCELOK
CANCELOK

Syntax: CANCELOK text

Description: The cancelok statement pauses a procedure and displays a modal dialog showing the
text and two buttons Cancel (the default button) and Ok. The name of the button clicked
on will be written to the clipboard.

Parameters: This statement has one parameter: text.

text is the character string that will appear in a modal dialog displayed on screen. This
text string must be surrounded by quote marks (" "). The string limit is dependent on
the characters used and assumes the system font (Chicago, 12 point).

Action: This statement allows the procedure programmer to pause the procedure by presenting
the user with a modal dialog that asks a question requiring one of two responses Cancel
or Ok. Whichever response is selected will be written to the clipboard and it can be
tested for later in the procedure.

Examples: This simple example will have Panorama display a modal dialog asking you if you wish
to cancel or continue the procedure. If you click on the Cancel button the procedure will
stop.

cancelok "Do you wish to continue this procedure?"
if clipboard() = "Cancel"

stop
endif
...
...

 This example first tests to see if a select command failed to select any records and if it
fails asks you if you wish to cancel or try again.

local companyname
beginning:
gettext "Enter Company Name.",companyname
select «Company» contains companyname
if info("empty")

cancelok "Cancel to stop, Ok to try again."
if clipboard() contains "cancel"

stop
endif
if clipboard() contains "ok"

goto beginning
endif

endif

The example is a procedure that runs again and again in a loop until you end the loop by
clicking on the Cancel button.

local companyname
loop

gettext "Enter Company Name.",companyname
select «Company» contains companyname
if info("empty")

beep
message "No records meeting select criteria."

Page 5089
endif
cancelok "Cancel to stop, Ok to try again."

until clipboard() contains "cancel"
message "You are done."

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: alert statement
clipboard() function
customalert statement
customdialog statement
getscrap statement
gettext statement
info("dialogtrigger") function
message statement
noyes statement
okcancel statement
openresource statement
yesno statement
alertmode statement

Page 5090
CARDVALIDATE
CARDVALIDATE

Syntax: CARDVALIDATE cardnumber,result

Description: The todopriority statement allows statement allows a procedure to verify that a number
is a valid credit card number.

Parameters: This statement has two parameters: cardnumber and result.

cardnumber is a text parameter containing the credit card number. This number should
contain only numeric digits — any dashes, spaces or punctuation should be removed
before using this.

result will be either Ok or Error.

Action: Credit cards have an internal checksum that allows a number to be validated for simple
data entry errors (for example missing or transposed digits). This statement checks to
make sure that a number is a valid credit card number. Of course the statement cannot
tell whether this card number has actually been issued, or what the credit limit is or any
other financial information about the card. It simply provides a simple check for missing
or transposed numbers. (Basically, if this statement says that the number is in error you
know for sure that the number is wrong, but if this statement says the number is valid
you would still need to check with the issuer to determine if this is a valid card.)

Examples: This example checks the card number in the field CCNumber to see if it is a valid credit
card number.

local cctemp,ccvalid
cctemp= striptonum(CCNumber)
cardvalidate cctemp,ccvalid
if ccvalid<>"Ok"

message "This credit card number is not valid!"
endif

Views: This statement may be used in any view.

See Also: striptonum(function

Page 5091
CASE
CASE

Syntax: CASE true-false test

Description: The case statement is used in place of an if endif structure to execute a section of code
when the case is true; false cases are bypassed. All cases after the first true case are
ignored. Case statements are terminated by an endcase statement. An optional default-
case statement is available and will execute when all cases evaluate as false. You may
have up to 75 case statements in a row before you need an endcase statement. Case state-
ments cannot be nested inside other case statements.

Parameters: This statement has one parameter: true-false test.

true-false test is an equation, formula, or function that resolves itself in a true or false
result.

If the result is false Panorama goes on to the next case statement and evaluates the test. If
the test is true Panorama will execute all commands after that case statement up to but
not including the next case, defaultcase, or endcase statement. Afterwards Panorama
executes all code after the endcase statement. If all cases evaluate false Panorama will
either execute code between the defaultcase statement and endcase statement if the
optional defaultcase is present or it will continue executing code after the endcase state-
ment.

Action: These statements are used for evaluating a series of possible results and executing code
based on the first true result or an optional default if all previous results were false.

Using the Check Procedure tool on a procedure that has a case statement with no corre-
sponding endcase statement will result in an error alert. Attempting to run a similar
procedure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: This example has Panorama assigning a dollar amount to the field Rate based on the
chosen shipper.

case Shipby = "UPS Ground"
Rate = 5.00

case Shipby = "UPS Blue"
Rate = 7.50

case Shipby = "UPS Red"
Rate = 10.00

case Shipby = "Fed-ex standard"
Rate = 12.00

case Shipby = "Fed-ex overnight"
Rate = 18.00

case Shipby = "Fed-ex overnight Saturday"
Rate = 25.00

defaultcase
Rate = 4.50

endcase

This example has Panorama calculate pricing and determining inclusions and customer
status based on the quantity ordered.

case Qty Ω = 1
UnitCost Ω = 50.00
PΩ = 50.00

case Qty Ω > 1 and Qty Ω ≤ 3

Page 5092
UnitCost Ω = 47.50
PΩ = Qty Ω * UnitCost Ω

case Qty Ω > 3 and Qty Ω ≤ 7
UnitCost Ω = 45.00
PΩ = Qty Ω * UnitCost Ω
«Inclusions» = "T-shirt"
«Status» = "Bonus Customer"

case Qty Ω > 7 and Qty Ω UnitCost Ω = 42.50
PΩ = Qty Ω * UnitCost Ω
«Inclusions» = "Sweatshirt & hat"
«Status» = "Value Customer"

case Qty Ω ≥ 10
UnitCost Ω = 40.00
PΩ = Qty Ω * UnitCost Ω
«Inclusions» = "Coffee mug & T-shirt & hat"
«Status» = "Deluxe Customer"

endcase

Views: This statement may be used any view, and also works when no windows are open at all.

See Also: defaultcase statement
else statement
endcase statement
endif statement
if statement

Page 5093
CELL
CELL

Syntax: CELL value

Description: The cell statement enters the value into the currently active field (or cell).

Parameters: This statement has one parameter: value

value is the data that will be placed into the currently active field. value may be a literal
value, a variable that contains a value or a formula which returns a value.

Value 's type can be text, numeric, date or picture but it must match that of the field it is
going into, otherwise the procedure will return a Type mismatch error.

Action: This statement places value into the currently active field. If that field has any automatic
equations assigned to it in the Design Sheet those equations will trigger after the cell
statement does it's job. However, an automatic procedure assigned as an equation will
not trigger. This is a safety feature to prevent that procedure from executing in an infinite
loop.

Examples: This example has the cell statement change the Price field in the first selected record to
30% more than the current value in that numeric field.

firstrecord
field Price
cell Price* 1.30

 The example above is almost equivalent to this example. The only difference is that the
example below will not trigger any automatic equations associated with the Price field.

firstrecord
Price=Price*1.30

This simple example shows a procedure that replaces the value in the active field with
the same value. This could be useful if the field has equations assigned to it in the Design
Sheet so that those equations would trigger after the cell statement is finished. This same
process could be accomplished by doing a copycell and then a pastecell, but is faster.

cell «» /* Note: «»represents the current field */

This procedure checks each selected record in the database to see if the customer has
paid $500 or more. If so it tags them as a Value Customer in the text field called Status.

If Status has the equation «Commission» = «Total Paid» * .10 in the Design Sheet it
will be triggered for each record tagged Value Customer.

hide
firstrecord
loop

if «Total Paid» ≥ 500
field «Status»

cell "Value Customer"
endif

Page 5094
downrecord
until info("stopped")
show

 This example shows a procedure that makes all choices type fields in the database center
aligned.

opendesignsheet
firstrecord
field Align ;«Align» is a Design Sheet field
loop

if «Type» = "Choices"
cell "Center"

endif
downrecord

until info("stopped")
newgeneration
closewindow
save

Views: This statement may be used for the Data Sheet, Design Sheet, or Form view.

See Also: editcell statement
editselect statement
formulafill statement
pastecell statement
scrapcalc statement

Page 5095
CHANGE
CHANGE

Syntax: CHANGE from to words caps

Description: The change statement allows Panorama to replace one string with another in the current
field for all selected records. You may also control whether you replace full or partial
strings and whether those string must match upper and lower case before the substitu-
tion. Panorama temporarily converts the field to text type before making the change and
converts it back after the change so this statement will work on any field type except pic-
ture.

Parameters: This statement has two required parameters: from and to and two optional parameters:
words and caps. Each parameter must be separated by at least one space.

from is the text string you want replaced in the current field. This text string can be a sin-
gle character, a portion of a larger string, one word, several words, or the entire field.
This parameter can either be a quoted text string, a variable which contains a text string,
or a formula which results in a text string. This string cannot exceed 150 characters.

to is the text string you want to replace the from value with in the current text field. This
text string can be a single character, a portion of a larger string, one word, several words,
or the entire field. This parameter can either be a quoted text string, a variable which
contains a text string, or a formula which results in a text string. This string cannot
exceed 150 characters.

words (optional) tells the change statement to make the change only if the text string
being replaced is not part of a larger text string.

caps (optional) tells the change statement to make the change only if the text string being
replaced has the same upper and lower case characters in the same order as the from
parameter.

Action: This statement will work on any fields. It will allow you to make a global replace in one
field only (the active field) for all selected records.

This statement has the same effect as choosing the Change command from the Search
menu without necessarily bring up the Change dialog.

Warning: The total number of characters being changed in the column of the database for
all selected records cannot exceed 10,000 characters before or after the change.

Examples: This example would replace the abbreviation Corp. with the full word Corporation in
the current field. However, if Corp does not end in a period (.) it will not be replaced.

change "Corp." "Corporation"

This example could be use to police typos. It will change all double dash characters (--)
to a single dash character (-) in the text field called Home Phone.

field «Home Phone»
change "--" "-"

This example would simply open the change dialog and allow you to fill it in yourself.

change dialog

This example will change the word new to old, but WILL NOT change newton to oldton.

Page 5096
change "new" "old" words

This procedure will ask the user to input the from and to values then change the data-
base accordingly. However, the capitalization in the database must exactly match how
the user entered it. For example, if the user asks to change lead to gold, this procedure
WILL NOT change Lead to Gold.

local From,To
From = "" ;initializing the variable
To = "" ;initializing the variable
gettext "Enter text to change.",From
gettext "Enter replacement text",To
change From To caps

 This example will change any width in the Design Sheet that contains a 10. For example
10 will change to 6, and 104 will change to 64.

godesignsheet
field Width
change "10" "6"
newgeneration
gosheet

Views: This statement may be used in any view.

See Also: replace() function

Page 5097
CHANGEOBJECTS
CHANGEOBJECTS

Syntax: CHANGEOBJECTSattribute,formula

Description: The changeobjects statement changes an attribute (size, font, color, etc.) of selected
graphic objects in the current form. You can only change one attribute at a time. This
statement is usually used with the selectobjects statement to define which objects are to
be modified.

Parameters: This statement has two parameters: attribute and formula. attribute controls what
attribute of the selected object is changed. There are twelve different attributes that may
be modified (see Action section below). formula calculates the new value of the attribute.
This value may need to be text, a number, a rectangle, or a color depending on what
attribute you are changing.

Action: This statement changes an attribute (size, font, color, etc.) of selected graphic objects in
the current form. You may choose from the twelve different attributes shown in this
table:

 1. Applies only to data cells
 2. Applies only to objects that contain text
 3. 0=plain, 1=bold, 2=italic, 4=underline, 8=outline, 16=shadow
 4. Use "" for none (empty pattern)
 5. Specify line width in pixels
 6. 0=false, -1=true.

Examples: The example below changes all objects in the body of a report to Palatino 9 point, and all
objects in the header of a report to Eurostile 14 point. (Note: For this example to work the
objects in the form must be set up so that the names of objects in the body contain "Body"
and the names of objects in the header contains "Header".)

selectobjects objectinfo("name") contains "Body"
changeobjects "font","Palatino"
changeobjects "textsize",9
selectobjects objectinfo("name") contains "Header"
changeobjects "font","Eurostyle"
changeobjects "textsize",14
selectnoobjects

Views: This statement may be used in the Form view.

Page 5098
See Also: selectobjects statement
selectallobjects statement
selectnoobjects statement
objectinfo(function

Page 5099
CHR(...)
CHR(

Syntax: CHR(number)

Description: The chr(function converts a number from 0 to 255 into a single character of text based on
the ascii table.

Parameters: This function has one parameter: number.

number is the value of the ASCII character you want to generate. See the table below for
a list of values and characters.

Result: The result of this function is always a single character text item.

Examples: This function can be used to generate any character, including characters that cannot
normally be entered from the keyboard. This function also makes it easy to generate
sequences of characters, for example ABC or 123. Here is a procedure that generates and
displays the complete alphabet from A to Z. (The ASCII value for A is 65 and the value
for Z is 90.)

local Alphabet,Letter
Alphabet=""
Letter=65
loop

Alphabet=Alphabet+chr(Letter)
Letter=Letter+1

while Letter ≤90
message Alphabet

The chr(function can also be used to generate special control characters, including

chr(13) carriage return
chr(9) tab

Here is a formula that uses the chr(function to create a three line address.

Name+chr(13)+Address+chr(13)+City+", "+State+Zip

(Formulas like this are so common that Panorama has special symbols for carriage return
and tab. The symbol for carriage return is ¶ (option-7), the symbol for tab is ¬ (option-L).
Here is the same formula re-written using the ¶ symbol instead of chr(13).)

Name+¶+Address+¶+City+", "+State+Zip

Page 5100
ASCII Table:

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value with this function, for example chr("34"). If you have text item
you must convert the text to a number before using it with this function, for example
chr(val("34")).

See Also: ascii
asc(function

Page 5101
CITY(...)
CITY(

Syntax: CITY(zip)

Description: The city(function uses Panorama’s optional zip code dictionary to look up the name of a
city associated with a zip code.

Parameters: This function has one parameter: zip.

zip is a US 5 digit zip code. You can specify the zip code either as a number or as text.

Result: The function returns the name of the city for the zip code. If there is more than one possi-
ble name, the function returns the primary zip code name as defined by the US Post
Office. If the optional zip code dictionary is not installed, the function will return --
instead of a city name.

Examples: One primary use for the city(function is to enter the city automatically when the zip
code is entered, saving keystrokes and reducing the probability of data entry errors. This
example assumes that the database has a ZipCode field that contains text. The example
uses a text funnel to strip off any extra characters in the zip code (for example 9 digit zip
codes).

City=city(ZipCode[1,5])
State= state(ZipCode[1,5])

 Another use for the city(function is to double-check data entry. This example locates all
records where the zip code does not match the city name.

select City ≠city(ZipCode[1,5])

Errors: This function does not generate any error message. However, if the zip code dictionary is
not installed the function will always return -- instead of a city name.

See Also: state(function
county(function

Page 5102
CLEAR
CLEAR

Syntax: CLEAR

Description: The clear statement will delete the contents of the current field and not place the deleted
data or picture on the clipboard.

Parameters: This statement has no parameters.

Action: This statement removes the data or picture from any type of field and, unlike the cutcell
statement, will not place the deleted data on the clipboard. This statement will only
affect the currently active field (or cell).

The clear statement does the same job as the clearcell statement, but will only work in
the Data Sheet and Design Sheet.

This statement has the same effect as choosing the Clear command from the Edit menu.

Examples: This simple example will remove the contents of the active field leaving the clipboard as
is.

clear

This example checks all selected records one by one and clears the Name field only if the
Status field contains the word old for that record.

firstrecord
loop

field Name
if Status contains "old"

clear
endif
downrecord

until info("stopped")

Views: This statement may be used in the Data Sheet and Design Sheet views only.

See Also: clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cutstatement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5103
CLEARCELL
CLEARCELL

Syntax: CLEARCELL

Description: The clearcell statement will delete the contents of the current field and not place the
deleted data or picture on the clipboard.

Parameters: This statement has no parameters

Action: This statement removes the data or picture from any type of field and, unlike the cutcell
statement, will not place the deleted data or picture on the clipboard. This statement will
only affect the currently active field (or cell).

This statement does the same job as the clear statement, but will work in all views.

This statement has the same effect as choosing the Clear command from the Edit menu.

Examples: This simple example will remove the contents of the active field, leaving the clipboard as
is.

clearcell

This example checks all selected records one by one and clears the Name field only if the
Status field contains the word old for that record.

firstrecord
loop

field Name
if Status contains "old"

clearcell
endif
downrecord

until info("stopped")

Views: This statement may be used in any view.

See Also: clear statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5104
CLEARMENUMARKS
CLEARMENUMARKS

Syntax: CLEARMENUMARKS menu

Description: The clearmenumarks statement clears all the marks in an entire menu. You could do this
by using setmenumark over and over again, but clearmenumarks is much faster.

Parameters: This statement has one parameter: menu.

menu is the name or ID number of the menu you want to clear. The menu ID is assigned
in ResEdit.

Action: This statement clears all the marks (checkmarks, diamonds, etc.) from an entire menu.
(Note: Only custom menus can be cleared. You cannot clear Panorama’s standard
menus or the Action menu.)

Examples: This example changes the baud rate, and marks the new rate in the Baud menu with a
diamond.

Rate=9600
clearmenumarks "Baud"
setmenumark "Baud", str(Rate), chr(19)

Views: This statement may be used in any view that has custom menus installed.

See Also: setmenumark statement
getmenumark statement
setmenutext statement
getmenutext statement
menudisable statement
menuenable statement
menubuild statement
getmenus statement
setmenus statement

Page 5105
CLEARRECORD
CLEARRECORD

Syntax: CLEARRECORD

Description: The clearrecord statement will delete the currently selected record and not place the
deleted record on the clipboard.

Parameters: This statement has no parameters.

Action: This statement removes the entire active record from the database and, unlike the dele-
terecord statement or cutrecord statement, will not place the deleted record on the clip-
board. After deleting the record all other records move up one row in the window and
the cursor will reside on the next visible record immediately following the deleted
record. On a single record view form the display will change to the next visible record
after the deleted record.

This statement will delete the currently active record unless there is only one record
selected, then it will do nothing except cause Panorama to beep once. The beep is a
warning because you can never delete the last visible record from any Panorama data-
base.

Examples: This simple example will remove the active record from the database leaving the clip-
board as is.

clearrecord

This example checks all selected records one by one and deletes the record when the Sta-
tus field contains the word old for that record. If only one record remains and it is an old
record the procedure will warn you that you cannot delete it.

firstrecord
loop

if Status contains "old"
if info("selected") = 1

beep
message "You cannot delete the last record."
stop

else
clearrecord

endif
endif
downrecord

until info("stopped")

Views: This statement may be used in any view

See Also: clear statement
clearcell statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement

Page 5106
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5107
CLIPBOARD(...)
CLIPBOARD(

Syntax: CLIPBOARD()

Description: The clipboard(function returns whatever text is currently on the Macintosh clipboard.

Parameters: This function has no parameters.

Result: This function returns whatever text is currently on the Macintosh clipboard.

Examples: Here’s an example that grabs a name from the clipboard and selects all the records con-
taining that name:

local findThis
findThis=clipboard()
select Name contains findThis

This example copies the contents of the clipboard into a variable before using it in the
select statement. This is not absolutely necessary—in fact this procedure could have been
written in a single line like this:

select Name contains clipboard()

However, the original procedure will be much faster. Because of the overhead involved
in accessing the operating system, accessing the clipboard is much slower than accessing
a variable. If you’re only going to be accessing the clipboard a few times, by all means
use it directly. But if you are going to access the clipboard over and over again (as the
select statement does) it’s much better to copy the value into a variable first.

Errors: This function does not produce any errors.

See Also: scrapcalc statement
cut statement
copy statement
cutcell statement
copycell statement

Page 5108
CLIPTOPICTFILE
CLIPTOPICTFILE

Syntax: CLIPTOPICTFILE filename

Description: The cliptopictfile statement converts a PICT image on the clipboard into a PICT file on
disk.

Parameters: This statement has one parameter: filename

filename is a text string that will be used as the file name for the PICT file when it is cre-
ated on disk. This parameter can either be quoted text, a variable or field that contains
the name of the file you wish to create, or a formula that results in the PICT file name.

This string may also be a full path name if you intend to write the PICT file to a different
folder or disk than the location of the Panorama database the image came from. It may
also be a variable or field name containing the path name or a formula which results in
the path name.

Action: This statement will cause a generic file icon to appear on the disk you are writing to
which contains the PICT image from the clipboard in Panorama. The created file will
have a Type = PICT and a Creator = KAS1. This means the file is a PICT image file cre-
ated by the Panorama application, but it is not a Panorama database.) This statement will
return the alert message "The clipboard doesn't contain a picture." if the clipboard is
empty.

Examples: This example creates a PICT file called Logo from the PICT image on the clipboard (if
any). Panorama will put it in the same folder as the database that controls this proce-
dure.

cliptopictfile "Logo"

This example will copy a picture from a picture type field called Photo and create a PICT
file with a name that is the contents of the PhotoName field. It will create the PICT file in
a folder called pictures on the disk called mac 660. (Path name strings are not case sensi-
tive.)

field «Photo»
copycell
cliptopictfile "mac 660:pictures:"+«PhotoName»

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: clipboard() function
copycell statement
pastecell statement

Page 5109
CLOSEFILE
CLOSEFILE

Syntax: CLOSEFILE

Description: The closefile statement will close the currently active database.

Parameters: This statement has no parameters

Action: This statement closes the entire database associated with the active window when the
statement is triggered. As a result all windows for this database will also close.

Note: Closing the database does not stop the procedure. If the procedure has additional
steps it will continue running. For example a procedure can close the current database
and then open another one.

Warning: This statement will not automatically save the database it is closing unless two
conditions are met: 1. The file being closed has been changed and 2. closefile is the last
procedure statement. Note: If the database being closed is in a Design Sheet window
which has changed Panorama will always ask for a New Generation prior to closing the
file.

Examples: This example closes the database connected to the currently active window and will
prompt you to save if the database has changed since its last save.

closefile

 This nearly identical example closes the database connected to the currently active win-
dow and will never save the database being closed.

closefile
nop

 This example attempts to make the Data Sheet for the database Archives active, verifies
that Archives is active, asks if you would like to save the database, and then closes that
database. If Archives is not found it will do nothing.

window "Archives"
if info("databasename") = "Archives"

yesno "Save this file?"
if clipboard() contains "yes"

save
endif
closefile

endif

Views: This statement may be used in any view even if there are no visible windows open.

See Also: closewindow statement
info("changes") function
info("databasename") function
info("formname") function
info("windowname") function
gocrosstab statement

Page 5110
godesignsheet statement
goform statement
gosheet statement
opencrosstab statement
opendesignsheet statement
opendialog statement
openfile statement
openform statement
opensheet statement
window statement

Page 5111
CLOSERESOURCE
CLOSERESOURCE

Syntax: CLOSERESOURCE file

Description: The closeresource statement closes a resource file that has been opened with the openre-
source statement.

Parameters: This statement has one parameter: file.

file identifies the resource file you want to close.

Action: This statement closes a resource file that has been opened with the openresource state-
ment. (If this file has not been previously opened with the openresource statement, the
closeresource statement will have no effect.)

If a resource file is open, it cannot be edited with a program resource editor program like
ResEdit. Closing the resource file allows the resources within the file to be modified with
such a program.

Examples: The example procedure below closes the resource file My Menus. (Warning: Once the
resource file is closed, any custom menus based on the resource will no longer function.)

closeresource "My Menus"

Views: This statement may be used in any view.

See Also: openresource statement
getresource(function
getstring(function
getnstring(function
getstringmatch(function
resources(function
resourcetypes(function

Page 5112
CLOSESOUND
CLOSESOUND

Syntax: CLOSESOUND

Description: The closesound statement will close the currently open sound resource if one is open.

Parameters: This statement has no parameters.

Action: This statement closes the sound resource currently opened by an opensound statement.
When the sound resource is closed it is also removed from Scratch Memory.

A sound resource contains one or more SND resource for each sound and each SND
resource is given a name. Sound resources may be created with a sound program like
Farallon's MacRecorder or shareware programs like Sound->snd or SoundMover. Sys-
tem 7 users may even create sound resources with the Sound control panel and a Macin-
tosh which supports a microphone.

Examples: This example opens a sound resource called Bird Calls, plays the sound titled Robin and
then closes Bird Calls.

opensound "Bird Calls"
playsound "Robin"
closesound

This example asks the user a question to answer, opens a sound resource called Remarks,
and depending on the answer plays the sound called Correct or Wrong. It then closes
Remarks.

local Answer,Reply
message "The Alamo is in:"+¶+"1. New Mexico"+

¶+"2. Texas"+¶+"3. California"
gettext "Is the answer 1, 2, or 3",Answer
opensound "Remarks"
case Answer = "1"

Reply = "Wrong"
case Answer = "2"

Reply = "Correct"
case Answer = "3"

Reply = "Wrong"
endcase
playsound Reply
closesound

Views: This statement may be used in any view even if there are no visible windows open.

See Also: sound statement
playsound statement

Page 5113
CLOSEWINDOW
CLOSEWINDOW

Syntax: CLOSEWINDOW

Description: The closewindow statement will close the currently active window, even if the window
is not visible.

Parameters: This statement has no parameters.

Action: This statement closes the currently active window for any database. The window
affected may be from any area in the database or even a form opened as a dialog.

Warning: If only one window is open for the database, the database will close as soon as
the window closes. When this happens Panorama will ask you to save changes if:

1. The file being closed has been changed and
2. closewindow is the last procedure statement.

This statement has the same effect as choosing the Close Window command from the
File menu or clicking on the closebox for any window.

Examples: This example assumes the window entitled Budget:Monthly Budget is open. It makes
the window active and closes that window. If Budget:Monthly Budget is the only win-
dow open for the Budget database and that database has changed Panorama will ask if
you wish to save the file.

window "Budget:Monthly Budget"
closewindow

 This nearly identical example closes the same window as the previous example. How-
ever the nop statement will suppress the Save dialog if Budget:Monthly Budget is the
only window open for the Budget database and that database has changed. Budget will
close unchanged.

window "Budget:Monthly Budget"
closewindow
nop

 This example attempts to go to the Chart form window in the database called Taxes,
checks to see if it is active, and if so, closes Chart only.

window "Taxes:Chart"
if info("windowname") contains "chart"

closewindow
endif

Views: This statement may be used in any view even if there are no visible windows open.

See Also: closefile statement
info("changes") function
info("databasename") function
info("formname") function
info("windowname") function

Page 5114
gocrosstab statement
godesignsheet statement
goform statement
gosheet statement
opencrosstab statement
opendesignsheet statement
opendialog statement
openfile statement
openform statement
opensheet statement
window statement

Page 5115
COLLAPSE
COLLAPSE

Syntax: COLLAPSE

Description: The collapse statement hides the detail records associated with the currently active sum-
mary record.

Parameters: This statement has no parameters.

Action: This statement makes all records associated with the currently active summary record
that have a level lower than that summary record to become invisible, however they still
remain in your database.

If the active record is not a summary record this statement is ignored by Panorama.

The visible record count will accurately change after a proper collapse is performed.

This statement has the same effect as clicking on the Collapse tool on a tool palette
(when available).

Examples: This example totals a numeric field called Expenses and writes the answer to a summary
record created by the total statement, then goes to that summary record, and collapses
the database to see just that summary record.

field Expenses
total
lastrecord
collapse

 This example groups a database by the GL Category field, totals the Balance field and
then checks record by record, collapsing the records when it finds a level 1 summary
record only.

field «GL Category»
groupup
field Balance
total
firstrecord
loop

if info("summary") =1
collapse

endif
downrecord

until info("stopped")

 Note: The previous example could be simplified and made to run faster by using the
outlinelevel statement.

field «GL Category»
groupup
field Balance
total
outlinelevel 1

Page 5116
This example uses the collapse, expand, and expandall statements in a procedure to cal-
culate percentages of Balance values for each data record associated with a specific sum-
mary 1 record for that group.

local BalTotal
field «GL Category»
groupup
field Balance
total
outlinelevel 1
firstrecord
field Percentage
loop

if info("summary") =1
BalTotal = Balance
expand
formulafill (Balance/BalTotal)*100
collapse

endif
downrecord

until info("eof") or info("summary") >1
lastrecord
fill Percentage
fill "100"
Percentage = zeroblank(0)
expandall

Views: This statement may be used in the Data Sheet or Form views only

See Also: average statement
count statement
expand statement
expandall statement
group statement
groupdown statement
groupup statement
info("records") function
info("selected") function
info("summary") function
maximum statement
minimum statement
outlinelevel statement
removesummaries statement
selectsummaries statement
total statement

Page 5117
COLORS
COLORS

Background: We think of colors as the spectrum of the rainbow, but the computer builds up all colors
from just three: red, green, and blue. By varying the relative intensity of these three col-
ors the computer can generate all the colors of the rainbow. A Panorama color data item
combines red, green, and blue intensity values into a single raw binary data item (like
other binary data, colors are stored as text items).

RGB Color: The Macintosh measures color intensity on a scale from 0 (completely dark) to 65,535
(full brightness). Values in between denote intermediate intensity. By combining the
three primary colors with different intensities you can create virtually any color. The
table below shows a small sample of the colors that are possible.

RED GREEN BLUE COLOR SAMPLE

0 0 0 Black

65535 65535 65535 White

15000 15000 15000 Dark Gray

45000 45000 45000 Light Gray

65535 0 0 Pure Red

0 65535 0 Pure Green

0 0 65535 Pure Blue

65535 0 65535 Purple

65535 65535 0 Yellow

0 65535 65535 Cyan

3441 4276 32336 Dark Blue

39235 30211 30211 Brown

24367 23356 31931 Light Green

65535 23356 2936 Orange

Page 5118
Using Color: A color in a field or variable is just a piece of data that describes a color…you can’t actu-
ally see the color. However, some SuperObjects allow you to control their color using a
color data item, and you can look at or modify the color of any graphic object in a form.
See changeobjects and objectinfo(for more information.

HSB Color: Another way to specify a color is the HSB, or Hue, Saturation, Brightness system. Like
the RGB system, the HSB system uses three numbers from 0 to 65,535 to describe a color.
However, the three components have different meanings in this system.

The Hue component specifies where this color falls in the spectrum. If you are familiar
with the standard Apple color picker, the Hue would specify the angle of the color from
the center of the wheel.

The Saturation component refers to how intense this color is. Is it a very intense deep
color, or is it a soft pastel color, or somewhere in between? Again using the standard
Apple color picker, the Saturation would specify the distance of the color from the center
of the wheel.

The Brightness component refers to how light or dark the color is. Is the color very
bright, or is it almost black? This sounds similar to Saturation, but it isn’t. Imagine a blue
ball under a white light. As the light gets dimmer, the Hue and Saturation of the color
don’t change, but the Brightness does. On the Apple color picker the Brightness is speci-
fied by the scroll bar on the right.

See Also: rgb(function
hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement

Page 5119
COLORWHEEL
COLORWHEEL

Syntax: COLORWHEEL prompt,color

Description: The colorwheel statement allows the user to pick a color using the operating system’s
standard color picker dialog (see also colors).

Parameters: This statement has two required parameters: prompt and color.

prompt is a message that will be displayed in the color picker dialog. The prompt should
be a text item like "Background Color" or "Negative Highlight Color".

color must be a variable or text field. The color the user picks (a six byte binary data
value) will be placed into the field or variable.

Action: This statement displays the color picker dialog. The user can pick a color, then press the
Ok or Cancel buttons (the procedure can tell what button was pressed by using the
info("dialogtrigger") function.

Examples: The procedure below lets the user pick a color, then changes the color of foreground
objects to that color. (Note: For this example, “foreground” objects are defined as objects
that contain the word foreground in the object name.)

local foreColor
colorwheel "Foreground Color",foreColor
if info("dialogtrigger") contains "Cancel"

stop
endif
selectobjects objectinfo("name") contains "Foreground"
changeobjects "color",foreColor
selectnoobjects

Views: This statement may be used in any view.

See Also: colors
rgb(function
hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function

Page 5120
CONVERTIMAGE
CONVERTIMAGE

Syntax: CONVERTIMAGE input,output,type,height,width

Description: The convertimage statement can convert an image file from one format to another (for
example from PICT to JPEG or JPEG into PICT) and can also adjust the size of an image.
This statement requires the optional Enhanced Image Pack, which much be purchased
separately. It also requires the Apple Quicktime Version 4 (or later) be installed. You can
download QuickTime from www.apple.com, and it is also on the Panorama CD.

Parameters: This statement has five parameter: input, output, type, height and width.

input specifies the original image file. If the image file is in the same folder as the cur-
rently active database then only the file name is required (for example Cool Sunset.jpg).
If the image file is in a different folder then both the folder and file name must be
included (for example D:\Photography\Cool Sunset.jpg). (Note: The original image file
may be a GIF file, but the output file cannot be.)

output specifies the new, converted image file. If you want to put this new image file in
the same folder as the current database then only the file name is required, if you want to
put it in a different folder then both the folder and file name must be included. If a file
with this name already exists in this location it will be erased.

type specifies the type of image that will be created. If the output file has an extension
(for example .jpg, .pct, .tif) you should leave this parameter blank ("") and let Panorama
automatically figure out the type. If the output file does not have an extension you must
specify the type from the list below.

height specifies the new height of the image. If this is zero the original height will be
used.

width specifies the new width of the image. If this is zero the original width will be used.

Action: This statement allows a procedure to extract and look at the text (source code) of other
procedures. This statement is disabled if the user is not authorized to see the contents of
the procedure.

Examples: This example that converts a BMP image into a TIFF image. Since the output file has an
extension (.tif) the output image type does not need to be specified. The TIFF image will
have the same dimensions as the original PICT image.

convertimage "my picture.bmp","my picture.tif","",0,0

Image Type PC Extensions Notes

PICT .pct Apple PICT bitmap

BMP .bmp Windows and OS/2 bitmap

JPEG .jpg .jpeg JPEG compressed image

PNG .png Portable Network Graphics bitmap

TIFF .tif .tiff Does not support LZW compressed TIFF

TARGA .targa

PHOTOSHOP .psg Adobe Photoshop

FLASHPIX .fpx FlashPix bitmap

Page 5121
This example converts an image into a 32 by 32 pixel icon. Since the files do not have any
extensions this example can only work on a Macintosh, not on a Windows PC.

convertimage "my picture","my icon","PICT",32,32

Here is a similar example that can work on a Windows PC (it can work on a Macintosh
also, if the file names have extensions).

convertimage "my picture.jpg","my icon.jpg","",32,32

Views: This statement may be used in any view.

See Also: imagequality statement

Page 5122
COPY
COPY

Syntax: COPY

Description: The copy statement will duplicate the contents of the current field onto the clipboard,
replacing anything previously on the clipboard.

Parameters: This statement has no parameters.

Action: This statement duplicates the data or picture from any type of field to the clipboard. This
statement will only affect the currently active field (or cell).

Note: When you copy from a date type field the date will transcribe to the clipboard in
the format of MM/DD/YYYY regardless of the date field's established output pattern.

The copy statement does the same job as the copycell statement, but will not work cor-
rectly in a cross tab window.

This statement has the same effect as choosing the Copy command from the Edit menu.

Examples: This simple example will duplicate the contents of the active field into the clipboard.

copy

This example copies the value in the Qty field into the clipboard in order to use that
value in a cost calculation for that record; turning the clipboard into a variable. The
answer is stored in the field Cost.

field Qty
copy
Cost = «Price» * val(clipboard())

 This example checks all selected records one by one and copies and clears the Name
field into the clipboard only if the Status field contains the word old for that record. The
copied name is pasted into Old Name.

firstrecord
loop

field Name
if Status contains "old"

copy
clear
field «Old Name»
paste

endif
downrecord

until info("stopped")

Views: This statement may be used in the Data Sheet, Design Sheet and form views only.

See Also: clear statement
clearcell statement
clearrecord statement
copycell statement

Page 5123
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5124
COPYCELL
COPYCELL

Syntax: COPYCELL

Description: The copycell statement will duplicate the contents of the current field onto the clipboard,
replacing anything previously on the clipboard.

Parameters: This statement has no parameters.

Action: This statement duplicates the data or picture from any type of field to the clipboard. This
statement will only affect the currently active field (or cell).

Note: When you copy from a date type field the date will transcribe to the clipboard in
the format of MM/DD/YYYY regardless of the date field's established output pattern.

The copycell statement does the same job as the copy statement, but will work correctly
in all views.

This statement has the same effect as choosing the Copy command from the Edit menu.

Examples: This simple example will duplicate the contents of the active field into the clipboard.

copycell

This example copies the value in the Qty field into the clipboard in order to use that
value in a cost calculation for that record; turning the clipboard into a variable. The
answer is stored in the field Cost.

field Qty
copycell
Cost = «Price» * val(clipboard())

 This example checks all selected records one by one and copies and clears the Name
field into the clipboard only if the Status field contains the word old for that record. The
copied name is pasted into Old Name.

firstrecord
loop

field Name
if Status contains "old"

copycell
clear
field «Old Name»
paste

endif
downrecord

until info("stopped")

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copyrecord statement

Page 5125
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5126
COPYFORM
COPYFORM

Syntax: COPYFORM

Description: The copyform statement copies the current form onto the clipboard.

Parameters: This statement has no parameters

Action: This statement copies the entire current form onto the clipboard. This includes the
graphic objects on the form, the page setup, the custom menu setup, and form and report
preferences. Using the copyform and pasteform statements creates an exact duplicate of
a form.

This statement has the same effect as choosing the Copy Form command from the Edit
menu (graphics mode).

Examples: This example will make a copy of the form Report Template. The pasteform statement
will stop and ask the user what to call the new form.

openform "Report Template"
copyform
pasteform

Views: This statement may be used in a Form view.

See Also: pasteform statement
openform statement
copy statement
cut statement
paste statement

Page 5127
COPYRECORD
COPYRECORD

Syntax: COPYRECORD

Description: The copyrecord statement will duplicate the contents of the current record onto the clip-
board, replacing anything previously on the clipboard. The record on the clipboard will
be tab delimited fields.

Parameters: This statement has no parameters.

Action: This statement duplicates the data from all fields except picture type fields onto the clip-
board for the current record only. Panorama will leave a blank space for each picture
field, so field order will not be disturbed.

Note: Data in date type fields will transcribe to the clipboard in the format of MM/DD/
YY regardless of the date field's established output pattern. Numeric field's output pat-
terns are ignored.

This statement has the same effect as clicking on the Copy Record tool on a tool palette
(when available).

Examples: This simple example will duplicate the contents of the active record onto the clipboard
separating each field's value with a tab character.

copyrecord

This example copies the current record from the Current Records database, goes to the
Old Records database, pastes the copy into that file, and returns to Current Records.

copyrecord
window "Old Records"
pasterecord
window "Current Records"

Views: This statement may be used in any view

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
cutcell statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5128
COS(...)
COS(

Syntax: COS(angle)

Description: The cos(function calculates the cosine of an angle.

Parameters: This function has one parameter: angle.

angle is a numeric value, an angle. The angle is usually specified in a mathematical unit
of measurement called radians, however, within a procedure you can temporarily force
Panorama to use degrees (see below). One radian is equal to approximately 57.2958
degrees (the exact value is 180/π).

Result: The result of this function is a numeric floating point value between -1 and 1.

Examples: The graph below shows the result of the cosine function given input values from 0 to +20
radians.

This formula calculates the cosine of an angle in degrees.

cos(Angle*180/ π)

In this example the angle is in a field or variable named Angle, however, you may use
any formula that produces a numeric result in this location. (On the Macintosh the pi
symbol (π) is produced by pressing Option-P. On Windows systems the pi symbol is cre-
ated by pressing Alt-0254.)

Here is another way to calculate angles in degrees in a procedure.

degree
NewAngle=cos(Angle)

 The degree statement tells Panorama to use degrees instead of radians in all trigonome-
try calculations. Panorama will continue to use degrees until the end of the procedure, or
until a radian statement is encountered.

Page 5129
Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example cos("23"). If you have a numeric value
in a text item you must convert the text to the number data type before calculating the
cosine, for example cos(val("34")).

See Also: sin(function
tan(function
degree statement
radian statement
arcsin(function
arccos(function
arctan(function
val(function

Page 5130
COSH(...)
COSH(

Syntax: COSH(value)

Description: The cosh(function calculates the hyperbolic cosine of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the hyperbolic cosine function given input values
from -6 to +6.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example cosh("23") . If you have a numeric
value in a text item you must convert the text to the number data type before taking the
hyperbolic cosine, for example cosh(val("34")) .

See Also: sinh(function
tanh(function
arcsinh(function
arccosh(function
arctanh(function
val(function

Page 5131
COUNT
COUNT

Syntax: COUNT

Description: The count statement counts all non-empty data cells for the current field.

Parameters: This statement has no parameters.

Action: This statement counts the non-empty entries for the current field. The current field may
be numeric, text, or a choices type field, however you cannot count a date or picture type
field because the count cannot be formatted for those field types.

If the database contains summary records, this statement will perform counts for each
group of records placing the count in the summary record for that group. It will also
place an overall count for the whole database in the grand total summary.

If there are not any summary records in the database, one will be added at the end of the
database and the overall count is placed into that summary record. This statement has
the same effect as choosing the Count command from the Math menu.

Examples: This simple example counts the entries in the Name field.

field Name
count

This example groups up on the State field, copies the State field into a newly created field
called Temp and counts the State field and collapses the database to show you only the
summary records.

field State
groupup
i insertfield "Temp"
field Temp
formulafill State
count
outlinelevel 1

Views: This statement may be used in the Data Sheet and Form views.

See Also: group statement
groupdown statement
groupup statement
maximum statement
minimum statement
total statement

Page 5132
COUNTY(...)
COUNTY(

Syntax: COUNTY(zip)

Description: The county(function uses Panorama’s optional zip code dictionary to look up the name
of a county associated with a zip code.

Parameters: This function has one parameter: zip.

zip is a US 5 digit zip code. You can specify the zip code either as a number or as text.

Result: The function returns the name of the county for the zip code. If the optional zip code dic-
tionary is not installed, the function will return -- instead of a county name.

Examples: One primary use for the county(function is to enter the state automatically when the zip
code is entered, saving keystrokes and reducing the probability of data entry errors. For
example, you might need to know the county to calculate sales tax. This example
assumes that the database has a ZipCode field that contains text. The example uses a text
funnel to strip off any extra characters in the zip code (for example 9 digit zip codes).

Country=county(ZipCode[1,5])

Another use for the county(function is to double-check data entry. This example locates
all records where the zip code does not match the county name.

select County ≠county(ZipCode[1,5])

Errors: This function does not generate any error message. However, if the zip code dictionary is
not installed the function will always return -- instead of a county name.

See Also: city(function
state(function

Page 5133
CUSTOMALERT
CUSTOMALERT

Syntax: CUSTOMALERT resource#

Description: The customalert statement allows a Panorama procedure to open an preexisting Pan-
orama alert dialog in a format you have customized using a resource editing program
like ResEdit or Resourcerer™.

Parameters: This statement has one parameter: resource#

resource# is the number that identifies an alert resource. The resource for the alert must
be created using a resource editing program. The alert resource must have the same
items in the same order as the preexisting alert you wish to emulate, but the sizes, loca-
tions and text may be different. You may also add additional static text and/or picture
items to the alert as long as they are at the end of the item list.

Warning: Specifying a resource# that is undefined or contained in an unopened resource
will cause Panorama to crash to the Finder.

Action: You must use the customalert statement immediately before one of the following state-
ments:

cancelok
noyes
okcancel
yesno

The customalert statement allows you to change the appearance of the dialog that opens
for the alert statement that follows it in the procedure.

The custom resource must have the same items as the original, but the position of the
buttons and the length of text strings can be different.

Alert statements like yesno and okcancel that return button names to the clipboard will
return the name of the actual button pressed in the custom alert.

Examples: In this example a alert resource (resource number 5001) was created in a resource file
called Alerts. This resource must have the same items as the yesno alert dialog it emu-
lates. The resource file Alerts must be opened before it can be used. To open the file use
the openresource statement.

openresource "Alerts"
customalert 5001
yesno "Do you want to save?"
if info("dialogtrigger") contains "yes"

save
endif

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

Page 5134
See Also: cancelok statement
clipboard(function
customdialog statement
getscrap statement
gettext statement
info("dialogtrigger") function
message statement
noyes statement
okcancel statement
openresource statement
yesno statement

Page 5135
CUSTOMDIALOG
CUSTOMDIALOG

Syntax: CUSTOMDIALOG resource#

Description: The customdialog statement allows a Panorama procedure to open an preexisting Pan-
orama dialog in a format you have customized using a resource editing program like
ResEdit or Resourcerer.

Parameters: This statement has one parameter: resource#

resource# is the number that identifies a dialog resource. The resource for the dialog
must be created using a resource editing program. The dialog resource must have the
same items in the same order as the preexisting dialog you wish to emulate, but the
sizes, locations and text may be different. You may also add additional static text and/or
picture items to the dialog as long as they are at the end of the item list.

Warning: Specifying a resource# that is undefined or contained in an unopened resource
will cause Panorama to crash.

Action: You must use the customdialog statement immediately before one of the following state-
ments:

getscrap
gettext
message

 The customdialog statement allows you to change the appearance of the dialog that
opens for the dialog statement that follows it in the procedure.

The custom resource must have the same items as the original, but the position of the
buttons and the length of text strings can be different.

Examples: In this example a dialog resource (resource number 6001) was created in a resource file
called Dialogs. This resource must have the same items as the getscrap dialog it emu-
lates. The resource file Dialogs must be opened before it can be used. To open the file use
the openresource statement.

openresource "Dialogs"
customalert 6001
Step1:
getscrap "Enter the start date. ex: 1/12/95"
if date(clipboard()) < today()

message "Your date must be after todays date."
goto Step1

endif

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: cancelok statement
clipboard() function
customalert statement
getscrap statement

Page 5136
gettext statement
info("dialogtrigger") function
message statement
noyes statement
okcancel statement
openresource statement
yesno statement

Page 5137
CUT
CUT

Syntax: CUT

Description: The cut statement will delete the contents of the current field and will place the deleted
data or picture on the clipboard.

Parameters: This statement has no parameters.

Action: This statement removes the data or picture from any type of field and places the deleted
data on the clipboard. This statement will only affect the currently active field (or cell).

The cut statement does the same job as the cutcell statement, but will not work correctly
in a cross tab window

This statement has the same effect as choosing the Cut command from the Edit menu.

Examples: This simple example will remove the contents of the active field and puts it on the clip-
board.

cut

This example checks all selected records one by one and cuts the data from the Name
field only if the Status field contains the word old for that record.

firstrecord
loop

field Name
if Status contains "old"

cut
endif

downrecord
until info("stopped")

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views only.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5138
CUTCELL
CUTCELL

Syntax: CUTCELL

Description: The cutcell statement will delete the contents of the current field and places the deleted
data or picture on the clipboard.

Parameters: This statement has no parameters.

Action: This statement removes the data or picture from any type of field and places the deleted
data or picture on the clipboard. This statement will only affect the currently active field
(or cell).

This statement does the same job as the cut statement, but will work in all views.

This statement has the same effect as choosing the Cut command from the Edit menu.

Examples: This simple example will remove the contents of the active field and place it on the clip-
board.

cutcell

This example checks all selected records one by one and cuts the data from the Name
field only if the Status field contains the word old for that record.

firstrecord
loop

field Name
if Status contains "old"

cutcell
endif
downrecord

until info("stopped")

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5139
CUTRECORD
CUTRECORD

Syntax: CUTRECORD

Description: The cutrecord statement will first copy to the clipboard and then delete the currently
selected record. There is no difference between this statement and the deleterecord state-
ment.

Parameters: This statement has no parameters.

Action: This statement removes the entire active record from the database after first copying the
record to the clipboard. After deleting the record all other records move up one row in
the window and the cursor will reside on the next visible record immediately following
the deleted record. On a single record view form the display will change to the next visi-
ble record after the deleted record.

This statement will delete the currently active record unless there is only one record
selected, then it will only copy the record to the clipboard and beep once. The beep is a
warning because you can never delete the last visible record from any Panorama data-
base.

Note: If this statement is the last procedure statement it will present you with a Delete/
Cancel alert dialog saying About to delete current record., otherwise this alert is sup-
pressed.

This statement has the same effect as clicking on the Cut Record tool on a tool palette
(when available). Holding down the Option key while clicking on this tool will suppress
the alert.

Examples: This simple example will copy to the clipboard and remove the active record from the
database after alerting you to the action.

cutrecord

 This nearly identical example will copy to the clipboard and remove the active record
from the database, but will suppress the alert.

cutrecord
nop

 This example checks all selected records in the Stock database one by one and deletes a
record when the Status field contains the word old for that record. It then pastes the
deleted record into the Old Stock database. If only one record remains in Stock and it is
an old record the procedure will warn you that you cannot delete it.

firstrecord
loop

if Status contains "old"
if info("selected") = 1

beep
message "You cannot delete the last record."
stop

else
cutrecord
window "Old Stock"
pasterecord

Page 5140
window "Stock"
endif

endif
downrecord

until info("stopped")

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5141
D

DATAFORK
DATAFORK

Syntax: DATAFORK

Description: The datafork statement cancels the effect of the resourcefork statement.

Parameters: This statement has no parameters.

Action: This statement has no direct action of it's own. However, this statement modifies any file
access functions that are used later in the procedure. Instead of accessing the resource
fork, Panorama will access the data fork.

Examples: This example copies the resource fork of MyResources into the data fork of MyRe-
sources.RSR. This .RSR file can be transferred to a PC for use with the PC version of Pan-
orama.

local rezdata
resourcefork
rezdata= fileload("","MyResources")
datafork
filesave "","My Resources.RSR","",rezdata

Views: This statement may be used in any view.

See Also: resourcefork statement
filesave statement
fileappend statement
fileload(function
filesize(function
openresource statement
openresourcerw statement
resources(function
resourcetypes(function
getresource(function
getstring(function
getnstring(function

Page 5142
DATATYPE(...)
DATATYPE(

Syntax: DATATYPE(fieldvariablename)

Description: The datatype(function determines what kind of data is in a field or variable: text, num-
ber, etc.

Parameters: This function has one parameter: fieldvariablename.

fieldvariablename is the name of the field or variable that you want to get information
about. If this is the name of a variable it must be surrounded with quotes (").

Result: The function returns the type of data from the list below:

Text
Compressed
Picture
Date
Floating Point
Integer
Fixed 1 Digit (#.#)
Fixed 2 Digits (#.##)
Fixed 3 Digits (#.###)
Fixed 4 Digits (#.####)

 Note: The Compressed, Picture, and Date types can only occur if the datatype(function
is used with a field as the parameter. Variables cannot contain data of these types (for a
date, the data type is Integer).

Examples: Here’s an example which checks the AreaCode variable. If it is text, it converts it into a
number.

if datatype("AreaCode")="Text"
AreaCode= val(AreaCode)

endif

Errors: Field or variable does not exist. This error occurs if there is no variable or field in the cur-
rent database with the name you have specified. You probably misspelled the field or
variable name or forgot to put the variable name in quotes.

See Also: sizeof(function
info("datatype") function

Page 5143
DATE PATTERNS
DATE PATTERNS

Background: In Panorama dates are represented as a number which is the number of days since Janu-
ary 1, 4713 B.C. For example, the date August 7, 1991 corresponds to the number
2,448,476. Most people aren’t too interested in knowing that a certain day is 2 million
plus days from some pre-historic date. Date patterns allow you to control how dates are
formatted when they are converted to text. Date patterns can be used in the Design Sheet
and by the datepattern(function.

Common
Patterns:

Panorama date patterns supports a wide variety of date formats. The table below lists
several common date patterns.

Date Pattern Display

3/9/2002 mm/dd/yy 3/9/02

3/9/2002 MM/DD/YY 03/09/02

3/9/2002 mm-dd-yyyy 3-9-2002

3/9/2002 dd-MON-yy 9-MAR-02

3/9/2002 dd-Month-yy 9-March-02

3/9/2002 Month dd, yyyy March 9, 2002

3/9/2002 Month ddnth, yyyy March 9th, 2002

3/9/2002 DayOfWeek, Month ddnth, yyyy Saturday, March 9th, 2002

3/9/2002 qqqyy 1q02

3/9/2002 Week ww of yyyy Week 11 of 2002

5/23/2002 Quarter "Quarter" yyyy Second Quarter 2002

7/11/2004 Qtr "Qtr" yyyy 3rd Qtr 2004

3/9/2002 "Day" dd, "Month" mm Day 9, Month 3

3/1/2002 ddnth "day of" Month, yyyy 1st day of March, 2002

3/2/2002 ddnth "day of" Month, yyyy 2nd day of March, 2002

3/9/2002 ddnth "day of" Month, yyyy 9th day of March, 2002

3/1/1867 mmnth "month of" yyyy 3rd month of 1867

3/9/1978 wwnth week of yyyy 3rd week of 1978

Page 5144
Components: There are 15 different basic components that can be used as part of a date pattern. A date
pattern is built up by combining these components together with punctuation to build a
complete pattern.

Upper/Lower
Case:

Some of these components (qtr , quarter , mon, month , day , and dayofweek) can be
either upper or lower case. The table below shows how a component can be displayed in
all lower case, initial caps, or all upper case.

Quoted Liter-
als:

If you need to include the words qtr , quarter , mon, month , or day in your date, you
must quote them so that they are not treated as components. (Note: the quote key (Shift-
") is just to the left of the Return key. Be sure to use regular quotes, not smart quotes ("
not “ ”)). Since the text itself contains quotes, you will need to surround the pattern with
another quote character. In the following examples we have used {} as the quote charac-
ters surrounding each pattern.

Component Example Description

yy 02 Year (within century)

yyyy 2002 Year (including century)

qq 2 Quarter (numeric)

qtr 2nd Quarter (abbreviated)

quarter second Quarter (spelled out)

mm 9 Month (numeric)

MM 09 Month (with leading zero)

mon sep Month (abbreviated)

month september Month (spelled out)

ww 46 Week (within year)

dd 5 Day (numeric)

DD 05 Day (with leading zero)

day tue Day Of Week (abbreviated)

dayofweek tuesday Day Of Week (spelled out)

dow 3 Day Of Week (0[sun]-6[sat])

Pattern Display

month september

Month September

MONTH SEPTEMBER

dayofweek friday

DayOfWeek Friday

DAYOFWEEK FRIDAY

Pattern Converted Text

{Quarter "Quarter" YYYY} First Quarter 1992

{"Day" dd, "Month" mm} Day 9, Month 3

Page 5145
You can add the suffix nth to the mm, ww, or dd components, as shown below.

Panorama automatically adds the correct suffix.

See Also: datepattern(function
date(function
numeric patterns

Date Pattern Converted Text

3/1/89 {ddnth "day of" Month} 1st day of March

3/2/89 {ddnth "day of" Month} 2nd day of March

3/9/89 {ddnth "day of" Month} 9th day of March

3/9/89 {Month ddnth, yyyy} March 9th, 1989

3/9/89 {mmnth "month of" yyyy} 3rd month of 1989

3/9/89 {wwnth week of yyyy} 11th week of 1989

Page 5146
DATE(...)
DATE(

Syntax: DATE(text)

Description: The date(function converts text into a number representing a date.

Parameters: This function has one parameter: text.

text is the text that you want to convert to a number representing a date. The text must
contain a valid date. Here are some examples of valid dates:

5/7/96
August 8, 1957
may 12
today
yesterday
tomorrow
tuesday
last fri
next monday

Result: This function returns a number representing the date. The number is the number of days
since January 1, 4713 B.C. For example, if the date is August 7, 1991 this function will
return the number 2,448,476.

Examples: The example below asks the user to enter a date, then selects all the records printed on
that date (assuming the database has a date field called PrintDate). The text entered by
the user is converted to a number by the date(function before it is compared with the
PrintDate field.

local xDate
xDate=""
gettext "Select invoices printed on what date?",xDate
select PrintDate=date(xDate)

If the date(function is handed text it cannot interpret as a date, the procedure will stop
and an error message is displayed. You can trap this error with the if error statement and
handle it yourself within the procedure, as you can see in this example.

local xDate
xDate=""
gettext "Select invoices printed on what date?",xDate
xDate=date(xDate)
if error

message "Sorry, invalid date. Please try again."
stop

endif
select PrintDate=xDate

This example has another advantage: the select statement will run slightly faster. This is
because it does not have to convert the text to date over and over again for each record.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to convert a numeric value.

Illegal date. This error occurs if the text does not contain a valid date that Panorama
understands.

Page 5147
See Also: datepattern(function
today(function

Page 5148
DATEPATTERN(...)
DATEPATTERN(

Syntax: DATEPATTERN(number,pattern)

Description: The datepattern(function converts a number representing a date into text. The function
uses a pattern to control how the date is formatted (see date patterns).

Parameters: This function has two parameters: number and pattern.

number is the number that you want to convert to text. This number is treated as the
number of days since January 1, 4713 B.C. (the date(function can convert text into such a
number).

pattern is text that contains a pattern for formatting the date (see date patterns).

Result: This function returns an item of text containing the formatted date.

Examples: The datepattern(function is useful for displaying dates via a formula in an auto-wrap
text object or Text Display SuperObject™. Here is a pattern that will output dates in
european format (for example 9-AUG-98)

datepattern(OrderDate,"dd-MON-yy")

For more information on the variety of patterns that are possible, see date patterns

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the pattern parameter.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the number parameter.

See Also: date patterns
date(function
numeric patterns
pattern(function

Page 5149
DAYOFWEEK(...)
DAYOFWEEK(

Syntax: DAYOFWEEK(date)

Description: The dayofweek(function computes the day of the week (0-6) of a date, with Sunday
being 0, Monday 1, etc.

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: The dayofweek(function returns a number from 0 to 6. The days of the week are:

0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 riday
6 Saturday

Examples: The procedure below uses the dayofweek(function to select all weekday records (mon-
day through friday).

select
dayofweek(Date) ≥1 and dayofweek(Date) ≤5

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: date(function
datepattern(function
week1st(function

Page 5150
DBINFO(...)
DBINFO(

Syntax: DBINFO(option,database)

Description: The dbinfo(function gets information about a database: what forms it contains, what
fields, what flash art pictures, etc.

Parameters: This function has two parameters: option and database.

option controls what kind of information this function will retrieve. There are eight pos-
sible options:

"fields"
"forms"
"procedures"
"crosstabs"
"flash art"
"permanent"
"folder"
"level"
"autosave"

The "fields" option produces a text array (with carriage return separators) containing a
list of the fields in the database. (If a field name contains carriage returns, they are con-
verted to spaces before being placed into the array.)

The "forms" option produces a text array (with carriage return separators) containing a
list of the forms in the database.

The "procedures" option produces a text array (with carriage return separators) contain-
ing a list of the procedures in the database.

The "crosstabs" option produces a text array (with carriage return separators) containing
a list of the crosstabs in the database.

The "flash art" option produces a text array (with carriage return separators) containing
a list of the flash art in the database’s Flash Art™ gallery.

The "permanent" option produces a text array (with carriage return separators) contain-
ing a list of the permanent variables associated with this database. However, the perma-
nent variables will not be listed if the database is in user or custom mode (the database
must be in author mode).

The "folder" option produces a binary data item that describes the exact location of the
folder containing the database. (See the folder(and folderpath(functions.)

The "level" option returns a number that indicates the privilege level for this database: 0
= author mode, 1 = user mode, or 2 = custom mode.

The "autosave" option returns the number the number of minutes between automatic
saves, or zero if the auto-save option is turned off. (See also setautosave.)

database is the name of the database you want to get information about. This must be a
database that is currently open. If you want to get information about the current data-
base you can use the info("databasename") function or simply use empty text ("").

Result: This function returns a text array, number or binary data, depending on the option
selected. See the descriptions for each option listed above.

Page 5151
Examples: This example displays the number of forms in the current database.

message "This database contains "+
str(arraysize(dbinfo("forms",""),¶))+" forms."

This example displays the folder the current database is in.

message "This database is in the "+
folderpath(dbinfo("folder",""))[1,-2]["-:",-1][2,-1]+" folder."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric item for the option or database parameters.

Illegal info() argument. This error occurs if the option parameter is not one of the six
options listed above.

See Also: folder(function
folderpath(function
info("panoramafolder") function
info("systemfolder") function
openform statement
goform statement
openprocedure statement
goprocedure statement
opencrosstab statement
gocrosstab statement
permanent statement

Page 5152
DEBUG
DEBUG

Syntax: DEBUG

Description: The debug statement stops the current program, allowing you to examine variables or
single step.

Parameters: This statement has no parameters.

Action: This statement stops the current program, allowing you to examine variables or single
step. (Note: If the procedure window is not open, it will not stop.)

After the procedure is stopped you may proceed one step at a time by using the Single
Step tool (or menu item), or you can continue at full speed using the Proceed tool (or
menu item).

You may use as many debug statements as you like to stop the program wherever you
want to see what is going on inside your program. If you want the procedure to stop
only if a certain condition is met, put the debug statement inside a pair of if endif state-
ments.

Examples: This procedure will stop just after the start of the loop (if the window is open).

local X,theChar,aPhone
X=1
aPhone=""
loop

debug
theChar=Memo[X;1]
X=X+1
stoploopif theChar=""
repeatloopif theChar ≠"(" and aPhone=""
aPhone=aPhone+theChar

until aPhone match "(???) ???-????"
message aPhone

Views: This statement may be used in any view.

See Also: if statement
endif statement

Page 5153
DEFAULTCASE
DEFAULTCASE

Syntax: DEFAULTCASE

Description: The defaultcase statement is an optional statement used in a case construct to define a
default that will trigger when all previous cases test false.

Parameters: This statement has no parameters.

Action: This optional statement may only be used in a case construct and must come after the
last case statement, but before the endcase statement. If no default is required this state-
ment may be omitted from the case construct.

When a defaultcase is triggered Panorama will execute all statements between the
defaultcase and the endcase statement and then continue on with the procedure.

Using the Check Procedure tool on a procedure that has a defaultcase statement with no
corresponding case statement will result in an error alert. Attempting to run a similar
procedure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: In this example the defaultcase will ask the user to enter a Rate if the other cases test
false, meaning the Shipby method is not one listed in the procedure.

case Shipby = "UPS Ground"
Rate = 5.00

case Shipby = "UPS Blue"
Rate = 7.50

case Shipby = "UPS Red"
Rate = 10.00

case Shipby = "Fed-ex standard"
Rate = 12.00

case Shipby = "Fed-ex overnight"
Rate = 18.00

case Shipby = "Fed-ex overnight Saturday"
Rate = 25.00

defaultcase
getscrap "Enter shipping rate."
Rate = val(clipboard())

endcase

Views: This statement may be used in any view.

See Also: case statement
else statement
endcase statement
endif statement
if statement

Page 5154
DEFINE
DEFINE

Syntax: DEFINE variable,formula

Description: The define statement performs an assignment, much like an equals sign or the set state-
ment. However, the define statement only performs the assignment if the variable is cur-
rently undefined. If the variable already has a value, the define statement leaves it alone.
The define statement is especially useful for initializing permanent variables.

Parameters: This statement has two parameters: variable and formula.

variable is the name of the field or variable that you want to modify.

formula calculates the value that will be placed into the destination.

Action: This statement defines a value for a variable, unless that variable already has a value. In
other words, this statement will initialize the variable if the variable’s value has not been
defined yet, but if the variable already has a value it will not touch the value.

Examples: The procedure below will initialize the variables DefaultAreaCode and TaxRate unless
they have already been initialized.

permanent DefaultAreaCode,TaxRate
define DefaultAreaCode,"714"
define TaxRate,4.25

 In other words, if some other procedure has already assigned the DefaultAreaCode as
323 and the TaxRate as 8.25, this procedure will not change those values. But if the
DefaultAreaCode and TaxRate have never been set, they will be initialized to 714 and
4.25.

Views: This statement may be used in any view.

See Also: set statement
formulacalc statement
info("globalvariables") function

Page 5155
DEGREE
DEGREE

Syntax: DEGREE

Description: The degree statement tells Panorama that all values in trigonometric functions should be
treated as degree's rather than radian's (the program's default).

Parameters: This statement has no parameters.

Action: This statement doesn’t perform any visible action on its own. However, all attributes for
any trig functions in the procedure will be treated as degree values. Panorama will revert
back to radian after the procedure is finished; radian is the default setting

Examples: This example tells Panorama to calculate the tan of 30 degrees, not 30 radians, and put
the answer in Height.

degree
Height = tan(30)

Views: This statement may be used in any view.

See Also: arccos() function
arccosh() function
arcsin() function
arcsinh() function
arctan() function
arctanh() function
cos() function
cosh() function
radian statement
sin() function
sinh() function
tan() function
tanh() function

Page 5156
DELETEABOVE
DELETEABOVE

Syntax: DELETEABOVE

Description: The deleteabove statement will first copy to the clipboard, then delete the current
record, and then move the cursor to the record above the deleted record was

Parameters: This statement has no parameters

Action: This statement removes the entire active record from the database after first copying the
record to the clipboard and then moves the cursor to the record directly above where the
deleted record used to be.

This statement will delete the currently active record unless there is only one record
selected, then it will only copy the record to the clipboard and beep once. The beep is a
warning because you can never delete the last visible record from any Panorama data-
base.

Note: This statement will not generate a warning alert even if it is the last statement in a
procedure.

This statement has the same effect as hitting the Backspace or Delete key on the key-
board.

Examples: In this example assume we have a database of three records and we are on record 2
before we run the following procedure statement. Afterwards, record 2 is copied to the
clipboard and then deleted and the cursor ends up on record 1.

deleteabove

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteall statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5157
DELETEALL
DELETEALL

Syntax: DELETEALL

Description: The deleteall statement will remove all of the database's records and replace them with
one blank record.

Parameters: This statement has no parameters.

Action: This statement removes the active database's entire collection of record, whether they are
visible or invisible and replaces them with one blank record. This statement must leave
one blank record because you must always have at least one record in any Panorama
database at all times.

Warning: This statement can be extremely dangerous if used incorrectly; saving after
running this statement will eliminate all of your database records permanently, you can-
not undo this command. However, deleteall is the quickest way to clear a database of all
records. It can be very useful when making a copy of a databases and clearing the copy
to begin new record keeping (see example below).

Note: If Auto Save is turned on and deleteall is the last procedure statement Panorama
will ask if you wish to suspend Auto Save before deleting all records. This will allow
you to do a Revert To Saved (File menu) later on to restore your records.

Warning: This statement will not bring up an alert dialog even if it is the last statement
in a procedure.

Note: In a cross tab window deleteall will only delete the cross tab records for that cross
tab. This statement has the same effect as choosing the DeleteALL command from the
Edit menu, except no alert precedes the deletion.

Examples: This simple example will delete all record from the active database and leave one blank
record in their place.

deleteall

This example makes a copy of the current database and then deletes all the records from
the copy called My Second File.

saveas "My Second File"
deleteall
save

 This example shows how the procedure can ask you if you wish to do a deleteall and
only do so if you click Ok.

cancelok "Do you really want to delete ALL records?"
if clipboard() contains "ok"

deleteall
save

endif

Views: This statement may be used in the Data Sheet, Form view, or Cross Tab view only.

Page 5158
See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleterecord statement
paste statement
pastecell statement
pasterecord statement

Page 5159
DELETEFIELD
DELETEFIELD

Syntax: DELETEFIELD

Description: The deletefield statement will remove the current field from the database.

Parameters: This statement has no parameters.

Action: This statement removes the currently active field from the database and all data con-
tained in that field without any prior warning. This statement will delete any type of
field, however Panorama will not allow you to delete the last field in the database.

Warning: This statement can be extremely dangerous if used incorrectly; saving after
running this statement will eliminate the field and all of the data contained in the field
permanently, you cannot undo this command. You may wish to turn off Auto Save
before using this statement. If you do not save you may reclaim the deleted field(s) by
using the revert statement or by using the Revert to Saved command in the File menu.

Warning: This statement will not bring up an alert dialog even if it is the last statement
in a procedure.

This statement has the same effect as choosing the Delete Field command from the
Setup menu, except no alert precedes the deletion of the field.

Examples: This simple example will delete the field called Temp.

field Temp
deletefield

This example ask you if you wish to delete the current field and only does so if you click
Yes.

noyes "Do you really want to delete The Field: "
+info("fieldname") +"?"

if clipboard() contains "yes"
deletefield
save

endif

 This example copies the current database to a database called New File and then deletes
all the fields that are Picture type fields in New File.

saveas "New File"
field «Field 1» ;first field in database.
loop

if info("datatype") = 1 ;for Picture type fields.
deletefield
left

endif
right

until info("stopped")

Views: This statement may be used in the Data Sheet view only.

Page 5160
See Also: addfield statement
dbinfo() function
field statement
fieldname statement
fieldstyle() function
fieldtype statement
info("datatype") function
info("fieldname") function
insertfield statement
newgeneration statement

Page 5161
DELETERECORD
DELETERECORD

Syntax: DELETERECORD

Description: The deleterecord statement will first copy to the clipboard and then delete the currently
selected record. There is no difference between this statement and the cutrecord state-
ment.

Parameters: This statement has no parameters.

Action: This statement removes the entire active record from the database after first copying the
record to the clipboard. After deleting the record all other records move up one row in
the window and the cursor will reside on the next visible record immediately following
the deleted record. On a single record view form the display will change to the next visi-
ble record after the deleted record.

This statement will delete the currently active record unless there is only one record
selected, then it will only copy the record to the clipboard and beep once. The beep is a
warning because you can never delete the last visible record from any Panorama data-
base.

Note: If this statement is the last procedure statement it will present you with a Delete/
Cancel alert dialog saying "About to delete current record.", otherwise this alert is sup-
pressed.

This statement has the same effect as clicking on the Cut Record tool on a tool palette
(when available). Holding down the Option key (Macintosh only) while clicking on this
tool will suppress the alert.

Examples: This simple example will copy to the clipboard and remove the active record from the
database after alerting you to the action.

deleterecord

 This nearly identical example will copy to the clipboard and remove the active record
from the database, but will suppress the alert.

deleterecord
nop

 This example checks all selected records in the Stock database one by one and deletes a
record when the Status field contains the word old for that record. It then pastes the
deleted record into the Old Stock database. If only one record remains in Stock and it is
an old record the procedure will warn you that you cannot delete it.

firstrecord
loop

if Status contains "old"
if info("selected") = 1

beep
message "You cannot delete the last record."
stop

else
deleterecord
window "Old Stock"
pasterecord

Page 5162
window "Stock"
endif

endif
downrecord

until info("stopped")

Views: This statement may be used in any view

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
paste statement
pastecell statement
pasterecord statement

Page 5163
DELETERESOURCE
DELETERESOURCE

Syntax: DELETERESOURCE type,id

Description: The deleteresource statement deletes a resource item. The resource file must be opened
with the openresourcerw statement.

Parameters: This statement has two parameters: type and id.

type is the resource type. This must be a four letter text item. Standard resource types
include "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dia-
log items), "MENU" (menu).

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

Action: This statement deletes a resource item.

Examples: The procedure below deletes STR resource number 2000.

deleteresource "STR ",2000

Views: This statement may be used in any view.

See Also: openresource statement
openresourcerw statement
closeresource statement
writeresource statement
renameresource statement
activeresource statement

Page 5164
DELETEWINDOW
DELETEWINDOW

Syntax: DELETEWINDOW

Description: The deletewindow statement allows you to delete the active form from it's correspond-
ing database.

Parameters: This statement has no parameters

Action: This statement allows you to delete the active form from the database it is stored in. This
statement will first warn you that you are about to delete the active window, if you click
the Ok button the form will be deleted and it's window will be removed from the screen,
if you click on the Cancel button the operation will be dismissed and the procedure will
continue on. The alert cannot be suppressed for this statement.

Note: if the only window open for the database is a form window and you use this state-
ment Panorama will delete the form and replace the form window on screen with the
Data Sheet window for that database.

Examples: This example will delete the active window provided it is a form window and that you
respond by hitting the Ok button.

deletewindow

 This example allows you to choose the form you wish to delete, provided it exists.

getscrap "Enter form name."
openform clipboard()
if error

message "Form: "+ clipboard()+" not found."
stop

endif
deletewindow

 This example allows you to select a form from the list provided by the formselect state-
ment and, if the Delete button is selected, will open the form window and then delete
the form from the database

local B,F
formselect 2086,0,B,F
if B contains "delete" and F ≠ ""

windowbox "99 77 244 435"
openform F
deletewindow

endif

Views: This statement may be used in a Form view only.

Page 5165
See Also: goform statement
graphicsmode statement
openform statement
renamewindow statement
window statement

Page 5166
DETACHSERVER
DETACHSERVER

Syntax: DETACHSERVER

Description: The detachserver statement takes a Partner/Server database and removes the connec-
tion to the SQL server database, leaving a standard Panorama database.

Parameters: This statement has no parameters.

Action: This statement takes a multi-user Partner/Server Panorama database and converts it
into a single user database. After this statement is used the database is no longer linked
to an SQL database, and will no longer be able to access data from the SQL database.

Before using this statement you may wish to use the subsetselectall statement to load all
the server data into the local Panorama database. You may use this statement in the data
sheet, design sheet or any form. Note: The Panorama database is not permanently
detached from the SQL database until you save it.

Examples: This example first makes sure that the entire SQL server database is loaded into the local
Panorama database, then converts the database to single user, removing all links to the
server database.

subsetselectall
detachserver

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: attachserver statement
serverfile statement
info("serverstatus") function
info("serverfile") function

Page 5167
DIAL
DIAL

Syntax: DIAL dialstring

Description: The dial statement generates dialing touch-tones for number characters and plays them
through the Macintosh's speaker. (On Windows systems this statement is ignored.)

Parameters: This statement has one parameter: dialstring

dialstring must be in a text format. It can be a quoted string, text formula, field, or vari-
able that contains the numeric characters you wish to dial. Non-numeric characters in
dialstring will cause Panorama to pause momentarily, but are ignored. The Mac's
speaker volume may be adjusted using the dialvolume statement.

Action: This statement takes the numeric characters in dialstring, converts them to dialing
touch-tones, and plays them through the computer's speaker. Theoretically, you could
hold the handset to your telephone up to the speaker and have the computer dial the
telephone, however most Mac speakers are not powerful enough to generate the proper
signal strength for the telephone to respond to.

It may be possible to hook up auxiliary speakers that are stronger or you can purchase
hardware like Sophisticated Circuits': Desktop Dialer which will allow you to dial the
telephone through your computer. Panorama has a dialdesktop statement for use with
this hardware.

Hint: You may use the dial statement to test a dialstring prior to using it with a dialmo-
dem or dialprinter statement.

Examples: This simple example plays the tones for 555-1212 through the speaker, pausing briefly
for the dash (-) character.

dial "555-1212"

This example dials the numeric characters in the text field called Phone ignoring non-
numeric characters.

dial Phone

If Phone were a numeric field you could convert the characters to text for dial with this
example.

dial str(Phone)

The example shows how a phone number can be typed in and read from the clipboard
by dial.

getscrap "Enter the phone number."
dial clipboard()

The example stores the area code in a variable called AreaCode and stores the phone
number in a variable called Phone# and uses them in a formula as the dialstring.

Page 5168
local AreaCode,Phone#
AreaCode = "714"
«Phone#» = "8417779"
dial AreaCode+«Phone#»

Views: This statement may be used in any view.

See Also: baud statement
dialdesktop statement
dialmodem statement
dialprinter statement
dialvolume statement
str() function
pattern() function

Page 5169
DIALDESKTOP
DIALDESKTOP

Syntax: DIALDESKTOP dialstring

Description: The dialdesktop statement sends numeric characters to Sophisticated Circuits': Desktop
Dialer hardware, which in turn sends them to a telephone connect to it.

Parameters: This statement has one parameter: dialstring

dialstring must be in a text format. It can be a quoted string, text formula, field, or vari-
able that contains the numeric characters you wish to dial.

Action: This statement will only be useful if you are using Sophisticated Circuits': Desktop
Dialer hardware. The Desktop Dialer allows you to connect your telephone to your Mac-
intosh computer through the ADB port. This statement will allow Panorama to dial the
telephone connected to the device.

This statement takes the numeric characters in dialstring and sends them to the Desktop
Dialer which in turn converts them to dial signals and sends them to the telephone,
thereby allowing the computer to dial the phone.

For more information on the Desktop Dialer you can reach Sophisticated Circuits':,
located in Bothel Washington, at (425) 458-7979. Or you can go to their web site, http://
www.sophisticated.com.

Examples: This simple example sends the characters 555-1212 to the Desktop Dialer.

dialdesktop "555-1212"

This example dials the numeric characters in the text field called Phone.

dialdesktop Phone

If Phone were a numeric field you could convert the characters to text for dialdesktop
with this example.

dialdesktop str(Phone)

The example shows how a phone number can be typed in by the user and then read from
the clipboard by dialdesktop.

getscrap "Enter the phone number."
dialdesktop clipboard()

 The example stores the area code in a variable called AreaCode and stores the phone
number in a variable called Phone# and uses them in a formula as the dialstring.

local AreaCode,Phone#
AreaCode = "714"
«Phone#» = "8417779"
dialdesktop AreaCode+«Phone#»

Views: This statement may be used in any view.

Page 5170
See Also: baud statement
dial statement
dialmodem statement
dialprinter statement
dialvolume statement
str() function
pattern() function

Page 5171
DIALMODEM
DIALMODEM

Syntax: DIALMODEM dialstring

Description: The dialmodem statement sends any characters in dialstring out through your Mac's
modem serial port. This statement is similar to the dialprinter statement.

Parameters: This statement has one parameter: dialstring

dialstring must be in a text format. It can be a quoted string, text formula, field, or vari-
able that contains the characters you wish to send to your modem port. dialstring may
contain numeric and non-numeric characters. For example, a modem connected to your
modem port that is Hayes compatible will accept commands beginning with the letters
AT. These commands give the modem instructions; for example, ATH0 will hang up the
modem. See your modem guide for information on acceptable modem commands.

Action: This statement takes the characters in dialstring and sends them out through the com-
puter's modem serial port. Normally, you will have a modem connected to this port
which will allow Panorama to send characters to it. However, any device with a Macin-
tosh serial connector attached to the modem port should be able to accept characters sent
by Panorama.

Examples: This simple example sends the characters ATDT 555-1212 through the modem port. The
letters ATDT instruct Hayes compatible modems to dial tone characters. The dash char-
acter (-) is optional.

dialmodem "ATDT555-1212"

This example sends the characters in the text field called ModemPhone to the modem
port.

dialmodem ModemPhone

This example could be used when you have your telephone connected to a modem
which is connected to the modem port. Once the number in the field Phone is dialed by
the modem it is then hung up using the command ATH0; this should allow you to talk
on the telephone. You must have the telephone off hook prior to running this procedure.

dialmodem "ATDT"+Phone
dialmodem "ATH0"

 The example shows how a phone number can be typed in by the user and then read
from the clipboard by dialmodem.

getscrap "Enter the phone number."
dialmodem "ATDT"+ clipboard()

 The example shows a formula as the dialstring that tells Panorama to dial 6 digits if the
phone number has a 714 area code, otherwise dial a 1 followed by the 10 digit number.
This example assumes the field Phone is a text field containing phone numbers format-
ted with parenthesis () and dashes -; ex.: (714) 841-7779.

Page 5172
baud "9600"
dialmodem "ATDT"+

?(Phone[2,4] ≠"714","1"+Phone,Phone[6,-1])

Views: This statement may be used in any view.

See Also: baud statement
dial statement
dialdesktop statement
dialprinter statement
dialvolume statement
str() function
pattern() function

Page 5173
DIALPRINTER
DIALPRINTER

Syntax: DIALPRINTER dialstring

Description: The dialprinter statement sends any characters in dialstring out through your Mac's
modem serial port. This statement is similar to the dialmodem statement.

Parameters: This statement has one parameter: dialstring

dialstring must be in a text format. It can be a quoted string, text formula, field, or vari-
able that contains the characters you wish to send to your printer port. dialstring may
contain numeric and non-numeric characters. For example, a modem connected to your
modem port that is Hayes compatible will accept commands beginning with the letters
AT. These commands give the modem instructions; for example, ATH0 will hang up the
modem. See your modem guide for information on acceptable modem commands.

Action: This statement takes the characters in dialstring and sends them out through the com-
puter's printer serial port. Normally, you will have a modem connected to this port
which will allow Panorama to send characters to it. However, any device with a Macin-
tosh serial connector attached to the modem port should be able to accept characters sent
by Panorama.

Examples: This simple example sends the characters ATDT 555-1212 through the printer port. The
letters ATDT instruct Hayes compatible modems to dial tone characters. The dash char-
acter (-) is optional.

dialprinter "ATDT555-1212"

This example sends the characters in the text field called ModemPhone to the printer
port.

dialprinter ModemPhone

This example could be used when you have your telephone connected to a modem
which is connected to the printer port. Once the number in the field Phone is dialed by
the modem it is then hung up using the command ATH0; this should allow you to talk
on the telephone. You must have the telephone off hook prior to running this procedure.

dialprinter "ATDT"+Phone
dialprinter "ATH0"

The example shows how a phone number can be typed in by the user and then read from
the clipboard by dialmodem.

getscrap "Enter the phone number."
dialprinter "ATDT"+ clipboard()

The example shows a formula as the dialstring that tells Panorama to dial 6 digits if the
phone number has a 714 area code, otherwise dial a 1 followed by the 10 digit number.
This example assumes the field Phone is a text field containing phone numbers format-
ted with parenthesis () and dashes -; ex.: (714) 841-7779.

Page 5174
baud "9600"
dialprinter "ATDT"+

?(Phone[2,4] ≠"714","1"+Phone,Phone[6,-1])

Views: This statement may be used in any view.

See Also: baud statement
dial statement
dialdesktop statement
dialmodem statement
dialvolume statement
str() function
pattern() function

Page 5175
DIALVOLUME
DIALVOLUME

Syntax: DIALVOLUME level

Description: The dialvolume statement controls the volume of the Macintosh's speaker.

Parameters: This statement has one parameter: level

level must be a number between 1 (soft) and 7 (loud), however level can be in a text or
numeric format. level can be a literal numeric value, a formula, a field, or a variable that
contains the numeric character you wish the volume to be.

Action: This statement takes the numeric character in level and uses it to set the volume of the
Mac's speaker. Using this command prior to a dial statement will control the volume as
the characters are played through the speaker.

This statement has the same effect as adjusting the volume in the Sound control panel.

Examples: This simple example plays the tones for 555-1212. through the speaker as loudly as possi-
ble.

dialvolume 7
dial "555-1212"

 This example allows you to set the volume prior to dialing the numeric characters in the
text field called Phone.

getscrap "Enter the volume number."
dialvolume clipboard()
dial Phone

 This almost identical example also works, but notice that the clipboard value is con-
verted to a numeric format by the val() function.

getscrap "Enter the volume number."
dialvolume val(clipboard())
dial Phone

 The example stores the volume in a variable called Volume, sets the volume to 5., and
then dials the number in the field called Phone through the speaker.

local Volume
Volume = 5
dialvolume Volume
dial Phone

Views: This statement may be used in any view.

See Also: baud statement
dial statement
dialdesktop statement
dialmodem statement

Page 5176
dialprinter statement
str() function
pattern() function

Page 5177
DISABLEABORT
DISABLEABORT

Syntax: DISABLEABORT

Description: The disableabort statement tells Panorama not to stop the current procedure if the Com-
mand-Period keys are pressed. Pressing Command-Period normally stops any proce-
dure right in it’s tracks, no matter what the procedure is doing. This is normally an
important safety valve, but you may have a procedure that should not be stopped in the
middle with a job halfway done. Command-Period may be re-enabled with the
enableabort statement.

Parameters: This statement has no parameters.

Examples: The example below shows how disableabort and enableabort can be used to make sure
that a sequence of steps is always completed -- even if the user presses Command-
Period (Macintosh) or Control-Period (Windows). In this case there is no way that the
new record can be added without being filled in by the lookup formulas. You either get
all or nothing, but not a halfway done job.

disableabort
addrecord
Name=dialogName
Address= lookup("Contacts","Name",Name,Address,"",0)
City= lookup("Contacts","Name",Name,City,"",0)
State= lookup("Contacts","Name",Name,State,"",0)
Zip= lookup("Contacts","Name",Name,Zip,"",0)
enableabort

When using the disableabort statement you must be careful, especially when using
loops. The procedure below will hang Panorama because tag="" will never be true. The
only way to stop the loop is to reboot the computer or do a force quit on Panorama
(Command-Shift-Option-Escape on Macintosh, Control-Alt-Delete on Windows).

disableabort
local i,tag
i=1
loop

tag="<"+ array(Text,i,¶)+">"
stoploopif tag<>""
i=i+1

while forever
enableabort

While this example may look silly, it is easy to create an endless loop without realizing it.
It is also possible to check for Command/Control-Period yourself. To learn how to do
this, see info("abort").

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: enableabort statement
info("abort") function

Page 5178
DIVZERO(...)
DIVZERO(

Syntax: DIVZERO(numerator,denominator)

Description: The divzero(function divides two numbers. However, unlike the / operator, the divzero
function does not care if you attempt to divide by zero. If you attempt to divide by zero,
this function simply returns zero.

Parameters: This function has two parameters: numerator and denominator.

numerator is the number you want to divide.

denominator is the number you want to divide by.

Result: This function returns the numerator divided by the denominator (numerator/denomi-
nator) unless the denominator is zero. If the denominator is zero, the function returns
zero.

Examples: This example calculates the unit price of an item. If the Quantity is zero (or is not filled in
yet) the UnitPrice will also be zero.

UnitPrice=divzero(Price,Quantity)

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text item for the numerator or denominator parameter.

Page 5179
DOWNRECORD
DOWNRECORD

Syntax: DOWNRECORD

Description: The downrecord statement moves the cursor down one visible record in the active win-
dow. This is the opposite of the uprecord statement.

Parameters: This statement has no parameters

Action: This statement moves the cursor down one visible record in the Data Sheet, Design
Sheet, Cross Tab view, or View-as-list Form view. In a Individual Record Form view the
view will change to the next record down in the database. If the cursor is already on the
last visible record this statement will do nothing.

You can use this statement in conjunction with the info("eof") or info("stopped") func-
tions to test to see if you are on the last visible record in the window.

This statement has the same effect as clicking on the Down Record tool on a tool palette
(when available).

Examples: This simple example could be used in either the Data Sheet, Form view or Cross Tab
view to move the cursor to the next visible record below the current record, making this
next record the current record.

downrecord

This example moves the cursor down record by record until it finds the last visible
record in the window. You could replace info("eof") with info("stopped").

loop
downrecord

until info("eof")

 This example moves the cursor to the third record in the Design Sheet window, which is
the third field in the database, and changes it's width to 6.

opendesignsheet
loop

downrecord
until 3
Width = 6
newgeneration
closewindow

Views: This statement may be used in any view.

See Also: firstrecord statement
info("eof") function
info("stopped") function
lastrecord statement
uprecord statement

Page 5180
DRAGGRAYBOX
DRAGGRAYBOX

Syntax: DRAGGRAYBOX dragrectangle,limits,slop,axis

Description: The draggraybox statement allows the user to drag a gray box around on the screen. It
can be used for drag-and-drop or for manipulating graphic objects.

Parameters: This statement has four required parameters: dragrectangle, limits, slop and axis.

dragrectangle is the original co-ordinates of the rectangle the user will drag around.
Often these co-ordinates are the same as the co-ordinates for the button the user pressed
on. (Note: the co-ordinates for this rectangle, along with the next two, are relative to the
upper left hand corner of the screen.) This parameter should be a field or variable (not a
more complex formula) because after the user has released the mouse Panorama will
copy the final co-ordinates into this parameter.

limits is the co-ordinates of a boundary rectangle that defines how far the dragrectangle
can be dragged in each direction. For example if you don’t want the user to be able to
drag the box outside of the current window you should supplied the co-ordinates of the
current window for limits. If the limits parameter is empty ("") there will be no limit on
how far the rectangle can be dragged.

slop is the co-ordinates of a boundary rectangle past the limits boundary. If the user
drags the mouse beyond the slop rectangle the gray rectangle will disappear completely
(until the user drags back inside the slop rectangle). If the slop parameter is empty ("") it
will be the same as the limits boundary rectangle.

axis allows the procedure to restrict the direction the rectangle can be dragged to either
horizontal or vertical. If the axis parameter is 0 the rectangle can be dragged in any direc-
tion. If the axis is 1 the rectangle can only be dragged horizontally. If the axis is 2 the rect-
angle can only be dragged vertically.

Action: This statement allows the user to drag a gray box around on the screen. It is designed to
be used in a procedure that is triggered by a transparent button with the click/release
option turned off. When the user presses on the button, the procedure is triggered imme-
diately. The procedure calculates size and location of the original rectangle to drag

Page 5181
around, as well as the limits to where this rectangle can be dragged. Then the DragGray-
Box statement takes over. As long as the user continues to hold down the mouse a gray
box will follow the mouse around. When the user lets up on the mouse button the Drag-
GrayBox statement tells the procedure the final position of the box. The procedure can
then take whatever action is appropriate (moving a graphic object, copying data, etc.)

Examples: The procedure below allows the user to drag a button around the window. When the
user releases the mouse, the procedure moves the button to the new location.

local drag,insidewindow
drag= info("buttonrectangle")
selectobjects xytoxy(drag,"s","f")= objectinfo("rectangle")
insidewindow= rectangle(
rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)
draggraybox drag,insidewindow, info("windowrectangle") ,0
if drag="" /* was mouse released outside slop area? */

stop /* yes, so stop */
endif
drag= xytoxy(drag,"s","f")
changeobjects "rectangle",drag

 The procedure below implements drag and drop. When the button is dragged onto the
object named Landing Zone, an item is added to the order.

local drag,insidewindow
drag=info("buttonrectangle")
insidewindow= rectangle(
rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)
draggraybox drag,insidewindow, info("windowrectangle") ,0
object "Landing Zone"
if inrectangle(xytoxy(info("mouse") ,"s","f"),

objectinfo("rectangle"))
/* dragged into the landing zone, so copy data */
call .AddToOrder

endif

Views: This statement may be used in a Form view.

See Also: graphic coordinates

Page 5182
DRAWMENUS
DRAWMENUS

Syntax: DRAWMENUS

Description: The drawmenus statement redraws the menus in the menu bar at the top of the screen
for the current window.

Parameters: This statement has no parameters.

Action: This statement is primarily used to draw custom menus on the screen after they have
been set up for your database's window(s). Setting up custom menus requires creating a
menu resource using a program like ResEdit or Resorcerer™. Once created you must
indicate which windows in your database are to use these custom menus. When you first
open the database you will need to include the drawmenus statement in an .Initialize
procedure so that the proper menu comes up with the window when the database first
opens.

Examples: This example opens a menu resource called Custommenus and then draws the menus in
the menu bar. These two statements should be included in an .Initialize procedure for
any database using custom menus.

openresource "Custommenus"
drawmenus

Views: This statement may be used in the Data Sheet, Form views and Cross Tab views only.

See Also: clearmenumarks statement
getmenus statement
getmenumark statement
getmenutext statement
menubuild statement
menudisable statement
menuenable statement
openresource statement
setmenus statement
setmenumark statement
setmenutext statement

Page 5183
DRAWOBJECTS
DRAWOBJECTS

Syntax: DRAWOBJECTS

Description: The drawobjects statement redraws one or more objects on the current form.

Parameters: This statement has no parameters.

Action: This statement forces one or more objects in the current form to be redrawn. To specify
which object or objects should be redrawn you muse use either the object, objectid or
selectobjects statements immediately before the drawobjects statement.

Examples: This example redraws the object called Swiss Cheese.

object "Swiss Cheese"
drawobjects

This example redraws all of the objects in the current form that are displayed in the font
Courier.

selectobjects objectinfo("font")="Courier"
drawobjects

Views: This statement may be used in a Form view only.

See Also: object statement
objectid statement
selectobjects statement
noshow statement
show statement

Page 5184
E

EDITCELL
EDITCELL

Syntax: EDITCELL

Description: The editcell statement opens the edit window for the currently active field (or cell), high-
lighting the data, and allows you to edit that field.

Parameters: This statement has no parameters.

Action: This statement opens the edit window for the current field allowing you to make
changes to the field manually. After this statement opens the edit window the procedure
will suspend operations temporarily until you manually close the edit window, then the
procedure will continue after the editcell statement.

Warning: opening a field containing data will cause that data to be highlighted (selected)
which will cause the data to be replaced with the keystrokes that follow. Remember to
insert the cursor into the field before editing begins. If you prefer you may use the editse-
lect statement in the same procedure to preset the insertion point for the editing cursor
(see examples below).

Note: This statement will work on any type of field with the exception of a picture type
field.

This statement has the same effect as Double-clicking on the current field (or cell).

Examples: This simple example will open the edit window for the active field to allow you to edit
that cell.

editcell

This example combines the editcell statement with the editselect statement to insert the
edit cursor at the end of the Notes field.

field Notes
editselect 32768,32768
editcell

 This example is a trick you can use if you wish to open and close an edit window for a
text field without actually editing the field. This trick is useful for clearing the Find/
Select dialog. This trick will only work if Name is a text type field.

local A
A = 0
field Name ; This can actually be any text field.
editcell
A=A+1

Views: This statement may be used in a Form view

See Also: editselect statement
editcellstop statement
field statement
floatingedit statement

Page 5185
EDITCELLSTOP
EDITCELLSTOP

Syntax: EDITCELLSTOP

Description: The editcellstop statement opens the edit window for the currently active field (or cell),
highlighting the data, and allows you to edit that field. The procedure then stops imme-
diately. This is not quite the same as using the regular editcell statement followed by a
stop statement. In that case the procedure doesn’t stop immediately, but waits until the
user finishes editing. Use editcellstop if you want automatic procedures to trigger when
the user finishes editing.

Parameters: This statement has no parameters.

Action: This statement opens the edit window for the current field allowing you to make
changes to the field manually. After this statement opens the edit window the procedure
will stop.

Warning: opening a field containing data will cause that data to be highlighted (selected)
which will cause the data to be replaced with the keystrokes that follow. Remember to
insert the cursor into the field before editing begins. If you prefer you may use the edit-
cell statement in the same procedure to preset the insertion point for the editing cursor
(see examples below).

Note: This statement will work on any type of field with the exception of a picture type
field.

This statement has the same effect as Double-clicking on the current field (or cell).

Examples: This example combines the editcellstop statement with the editselect statement to insert
the edit cursor at the end of the Notes field.

if Notes ≠""
field Notes
editselect 32768,32768
editcellstop

else
Notes= datepattern(today(),"Month ddnth, yyyy")

endif

 If the Notes field has an automatic procedure defined in the design sheet, it will be trig-
gered when the user has finished editing. The example below, which uses the regular
editcell statement, will not trigger the automatic procedure.

if Notes ≠""
field Notes
editselect 32768,32768
editcell
stop

else
Notes= datepattern(today(),"Month ddnth, yyyy")

endif

Views: This statement may be used in a Form view.

Page 5186
See Also: editcell statement
editselect statement
stop statement
field statement
floatingedit statement

Page 5187
EDITSELECT
EDITSELECT

Syntax: EDITSELECT start,end

Description: The editselect statement allows you to highlight a specified section of data or establish
an insertion point inside an edit window of a text, numeric, or date field you wish to
edit.

Parameters: This statement has two parameters: start and end.

start is a number between 0 and 32768 which indicates the beginning of the highlighted
characters by number of characters from the beginning of the field. start may be a num-
ber, a field or variable containing a number, or a formula that results in an integer value
between 0 and 32768.

end is a number between 0 and 32768 which indicates the ending of the highlighted
characters by number of characters from the beginning of the field. end may be a num-
ber, a field or variable containing a number, or a formula that results in an integer value
between 0 and 32768. Note: Specifying an ending value greater than the length of the
field will place the highlight at the end of the field's data.

Note: If start and end are the same value Panorama will simply insert the edit cursor at
that point in the field's edit window.

Action: This statement allows you to specify which characters, if any, are to be highlighted after
an edit window is opened for a field. Once the text is highlighted it can be copied,
deleted, or replaced manually. If the values for start and end values are equal then Pan-
orama will insert the edit cursor (blinking cursor) at that point in the field. This state-
ment must be combined with the editcell or floatingedit statement in order to be used in
a procedure (see examples below).

Warning: Any data selected by the editselect statement is subject to being replaced when
you edit the field. Caution should be used when working with this statement to insure
no lose of data due to accident. Note: This statement will work for text, numeric, and
date type fields. It will not apply to choice or picture type fields.

This statement has the same effect as Double-clicking on the current field (or cell) and
manually inserting a cursor or highlighting some or all of the text in the edit window.

Examples: This simple example will open the edit window for the active field and insert the edit
cursor at the beginning of the field to begin typing. This procedure will work provided
that the field being edited is a text, numeric, or date type field.

editselect 0,0
editcell

 This example combines the editcell statement with the editselect statement to insert the
edit cursor at the end of the text field called Notes.

field Notes
editselect 32768,32768
editcell

 This example opens an edit window and highlights the text string -name- , only if it is
present in the text field Comments, allowing you to change it.

Page 5188
local start,end
field Comments
start = search(«Comments»,"-name-")
end = search(«Comments»,"-name-") + 5
if start ≠ 0

editselect start-1,end
editcell

endif

 This nearly identical example shows how you can combine editselect with the floatinge-
dit statement.

local start,end
openform "Edit Sheet"
field Comments
start = search(«Comments»,"-name-")
end = search(«Comments»,"-name-") + 5
if start ≠ 0

editselect start-1,end
floatingedit "Comments",20,20,90,90,"Times",12,0

endif

Views: This statement may be used in any view.

See Also: editcell statement
field statement
floatingedit statement
length() function
search() function

Page 5189
ELSE
ELSE

Syntax: ELSE

Description: The else statement is an optional statement used to separate procedure code for a true if
test from a false if test in an if construct. See if and endif for more information.

Parameters: This statement has no parameters.

Action: This statement is used to mark the division between procedure code you wish to run
when an if test is true vs. when the test is false. This statement must be placed after an if
statement and before its corresponding endif statement and cannot be used as a stand-
alone statement.

In the event of a true if test: all procedure code between the if and the else will be exe-
cuted and then the procedure will continue with everything after the endif statement. In
the event of a false if test: all procedure code between the else and the endif will be exe-
cuted and then the procedure will continue with everything after the endif statement.

All procedure statements after an endif statement will execute, regardless of which por-
tion of the if construct executes.

Using the Check Procedure tool on a procedure that has an else statement with no corre-
sponding if and endif statements will result in an error alert. Attempting to run a similar
procedure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: In this example the else statement shows where the separation is between what is to hap-
pen if the sex field equals Male or Female. The prompt will differ based on the sex.

if sex = "Male"
getscrap "Please enter his name."

else
getscrap "Please enter her name."

endif
...
...
...

In this example the info("empty") is the true/false test; if it is true the message is dis-
played before going to the Sales Rep field, if it is false everything between the else and
the endif statement is executed before going to Sales Rep.

select «#Sold» ≥ 0 and «Sale Date» ≥ month1st(today())
if info("empty")

message "No sales records for this month."
else

field «#Sold»
total
field Bonus
formulafill ?(«#Sold»> 500.00,«#Sold»*.05,0)

endif
field «Sales Rep»
...
...
...

Page 5190

Views: This statement may be used in any view.

See Also: ?(function
case statement
defaultcase statement
endcase statement
endif statement
if statement

Page 5191
EMPTYFIELD
EMPTYFIELD

Syntax: EMPTYFIELD fieldname

Description: The emptyfield statement tells Panorama to move to the next available (or empty) field
in a series of line item fields.

Parameters: This statement has one parameter: fieldname

fieldname can be a quoted string, field or variable, or formula that returns the name of a
line item field. This field name should include the symbol (typed Option-Z) in place of
the number portion of the line item field name.

Action: This statement moves Panorama's cursor to the next line item field that is blank typically
so you may begin editing that field or to place a value into that field. This command
would be useful if you wished to add something to an invoice record that had been pre-
viously created, allowing you to go to the next available line item field to add the addi-
tionally ordered items.

Note: If there are no available line item fields to go to this statement will be ignored.

Examples: This simple example tells Panorama to go to the next line item PriceΩ field that is blank.

emptyfield "Price Ω"

This example looks for the next available line item field similar in name to the current
field name.

local theFieldName
theFieldName = info("fieldname") ["A-z","-A-z"]
emptyfield theFieldName+" Ω"

 This example shows a procedure which looks for a previously made invoice record and
then goes to the next available ItemΩ field to begin editing that field if it is blank. It will
warn you when you've run out of fields, too.

local InvNo
goform "Order Entry"
gettext "Enter Invoice number.",InvNo
find «Invoice#» = InvNo
if (not info("found"))

message "No record found for Invoice "+InvNo
stop

endif
emptyfield "Item Ω"
if «» = ""

editcell
else

message "This are no empty Item Ω fields available."
endif

Views: This statement may be used in the Data Sheet and Form views.

See Also: field statement

Page 5192
EMPTYFILL
EMPTYFILL

Syntax: EMPTYFILL value

Description: The emptyfill statement fills every empty visible cell in the active field with the specified
value.

Parameters: This statement has one parameter: value

value can be a literal, a field or a variable, or a formula that returns the value you wish to
put into the empty cells of the current field. The resulting value must match the type and
format (if any) of field you are placing it in or an error will result. If value is the word
dialog Panorama will present you with an input dialog so you may enter your own
value.

Action: This statement evaluates value and if it is compatible with the current field type writes it
to every empty cell in that field for all selected records only. When value is the word
dialog Panorama will pause the procedure and present the user with the Empty Fill...
dialog allowing the user to enter their own value. Clicking on the Ok button will allow
the procedure to continue. This statement will work for all field types except picture
type fields.

This statement has the same effect as using the Empty Fill command from the Math
menu.

Examples: This simple example tells Panorama to fill the empty cells with the text string n/a in the
active field. Therefore, the active field should be a text or choice type field.

emptyfill "n/a"

This example will have Panorama open the Empty Fill... dialog which allows you to
enter a value to be filled into the empty cells in the current field.

emptyfill dialog

This example uses a formula to fill the empty cells in the field Date to Renew with a date
that is one year beyond the current date. The final date will be the 1st of the month.

field «Date to Renew»
emptyfill month1st(today() + 365)

Views: This statement may be used in any view.

See Also: fill statement
formulafill statement

Page 5193
ENABLEABORT
ENABLEABORT

Syntax: ENABLEABORT

Description: The enableabort statement tells Panorama to stop the current procedure if the Com-
mand-Period keys are pressed. Pressing Command-Period normally stops any proce-
dure right in it’s tracks, no matter what the procedure is doing. However, this feature
may be turned off with the disableabort statement.

Parameters: This statement has no parameters.

Examples: The example below shows how disableabort and enableabort can be used to make sure
that a sequence of steps is always completed -- even if the user presses Command-
Period (Macintosh) or Control-Period (Windows). In this case there is no way that the
new record can be added without being filled in by the lookup formulas. You either get
all or nothing, but not a halfway done job.

disableabort
addrecord
Name=dialogName
Address= lookup("Contacts","Name",Name,Address,"",0)
City= lookup("Contacts","Name",Name,City,"",0)
State= lookup("Contacts","Name",Name,State,"",0)
Zip= lookup("Contacts","Name",Name,Zip,"",0)
enableabort

When using the disableabort statement you must be careful, especially when using
loops. The procedure below will hang Panorama because tag="" will never be true. The
only way to stop the loop is to reboot the computer or do a force quit on Panorama
(Command-Shift-Option-Escape on Macintosh, Control-Alt-Delete on Windows).

disableabort
local i,tag
i=1
loop

tag="<"+ array(Text,i,¶)+">"
stoploopif tag=""
i=i+1

while forever
enableabort

While this example may look silly, it is easy to create an endless loop without realizing it.

It is also possible to check for Command/Control-Period yourself. To learn how to do
this, see info("abort")

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: disableabort statement
info("abort") function

Page 5194
ENDCASE
ENDCASE

Syntax: ENDCASE

Description: The endcase statement is used to terminate a case construct.

Parameters: This statement has no parameters.

Action: This statement is used to mark the end of a case construct and must come after the last
procedure statement that is part of the final case statement or an optional defaultcase
statement.

In the event of a true case: after the last statement for that case executes the procedure
will perform the next statement after the endcase statement. In the event of all cases test-
ing false: the procedure will execute a defaultcase or continue executing after the end-
case statement.

All procedure statements will execute after an endcase statement even if all cases test
false and no defaultcase is present.

Using the Check Procedure tool on a procedure that has a endcase statement with no cor-
responding case statement will result in an error alert. Attempting to run a similar proce-
dure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: In this example, the endcase statement shows where the case construct ends and the rest
of the procedure, starting with the message statement, begins.

case medal = "Gold"
Score = Score + 10

case medal = "Silver"
Score = Score + 5

case metal = "Bronze"
Score = Score + 2

endcase
message "The Score is: "+ str(Score)
...
...

 In this example, the message statement, after the endcase statement, will always execute
regardless of which case comes up true.

case Shipby = "UPS Ground"
Rate = 5.00

case Shipby = "UPS Blue"
Rate = 7.50

case Shipby = "UPS Red"
Rate = 10.00

case Shipby = "Fed-ex standard"
Rate = 12.00

case Shipby = "Fed-ex overnight"
Rate = 18.00

case Shipby = "Fed-ex overnight Saturday"
Rate = 25.00

defaultcase

Page 5195
getscrap "Enter shipping rate."
Rate = val(clipboard())

endcase
message "The rate is: "+ str(Rate)

Views: This statement may be used in any view.

See Also: case statement
defaultcase statement
else statement
endif statement
if statement

Page 5196
ENDIF
ENDIF

Syntax: ENDIF

Description: The endif statement is needed to mark the end of an if construct.

Parameters: This statement has no parameters.

Action: This statement is used to mark the end of an if construct and separate the PanTalk code
to be executed inside the if construct from the code to be executed after the if construct is
completed. All if statements must have a corresponding endif in the same procedure
regardless of whether the if constructs are nested or not. Therefore, a procedure with,
say, five if statements must have five endif statements.

See the help files for if and else for more information on if constructs.

All procedure statements after an endif statement will execute, regardless of which por-
tion, if any, of the if construct executes.

Using the Check Procedure tool on a procedure that has an endif statement with no cor-
responding if statements will result in an error alert. Attempting to run a similar proce-
dure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: In this example, the PanTalk code after the endif statement will only be executed if the
variable Password is equal to the words: Open Sesame, otherwise the procedure displays
a message regarding an incorrect password and stops.

local Password
gettext "Enter Password:",Password
if Password ≠ "Open Sesame"

message "Your password is incorrect."
stop

endif
goform "Secret Stuff"
beep
message "You're in."

In this example, the info("empty") is the true/false test; if it is true the message is dis-
played before going to the Sales Rep field, if it is false everything between the else and
the endif statements is executed before going to Sales Rep.

select «#Sold» ≥ 0 and «Sale Date» ≥ month1st(today())
if info("empty")

message "No sales records for this month."x
else

field «#Sold»
total
field Bonus
formulafill ?(«#Sold»> 500.00,«#Sold»*.05,0)

endif
field «Sales Rep»
...
...
...

Page 5197
In this example, there are two nested if constructs both which have a corresponding
endif statement. Only if both if statements test true will the record be marked Closed.
Notice the indenting of code within the if constructs, this is not required, but is helpful
when trying to follow the PanTalk code logically through.

selectall
firstrecord
field Status
loop

if Status = "New"
if «Final Payment» > 0

«Date Closed» = today()
«Status» = "Closed"

endif
endif
downrecord

until info("eof")

Views: This statement may be used in any view.

See Also: ?(function
case statement
defaultcase statement
else statement
endcase statement
if statement

Page 5198
ENDNOSHOW
ENDNOSHOW

Syntax: ENDNOSHOW

Description: The endnoshow statement resumes the output of text and graphics after it has been dis-
abled with the noshow statement. You should use this command in a procedure when
you want to disable the display of intermediate steps.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to resume all output of text and graphics. Although out-
put will resume after this statement, the endnoshow statement does not update the dis-
play. To show any changes that have been made since the noshow statement you should
use showpage, showline, showfields, showvariables, showcolumns or showrecord-
counter.

Examples: Here is an example that performs several operations on the current database, but only
updates the display once.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage
endnoshow

Views: This statement should only be used when a form or data sheet is active.

See Also: noshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement
nowatchcursor statement
watchcursor statement

Page 5199
ENDSIMULATE
ENDSIMULATE

Syntax: ENDSIMULATE

Description: The endsimulate statement restores full Panorama operation after it has been tempo-
rarily downgraded by the simulatedirect or simulateengine statements.

Parameters: This statement has no parameters.

Examples: This procedure tells Panorama to simulate Panorama Engine. If you are already using a
copy of Panorama Direct or Panorama Engine this statement will be ignored.

simulateengine

This procedure restores full Panorama operation (assuming that you started with a full
copy of Panorama).

endsimulate

Views: This statement may be used in any view.

See Also: simulatedirect statement
simulateengine statement

Page 5200
EXECUTE
EXECUTE

Syntax: EXECUTE program.

Description: The execute statement allows a procedure to build a “mini-procedure” on the fly, and
then run that procedure.

Parameters: This statement has one parameter: program.

program is the text (source code) of the program you want to run.

Action: This statement allows a program to build a “mini-procedure” on the fly, and then run
that procedure. The text of the “mini-procedure” can be in a field, a variable, or con-
structed using a formula. You can use the if error statement to check for syntax errors in
the mini-program. Run time errors (missing variable, type mismatch, etc.) are handled
just as they would be for any other program. You cannot use the debugger (single step,
etc.) on a mini-procedure. After the mini-procedure has finished the main program con-
tinues from the next statement, just like a subroutine (unless the mini-procedure contains
a stop statement).

If there is a syntax error in the mini-program (misspelled command, unexpected formula
operator, etc.) two special local variables will be created: ExecuteErrorStart and Execu-
teErrorEnd. These two variables contain the numbers for the starting and ending posi-
tion of the error (the number of characters from the start of the mini-program.) The
procedure can also find out the exact error with the info("error") function.

Examples: The example below illustrates how the execute statement works, but is rather silly since
the mini-program could simply have been included in the main program. The real
power of this statement is the ability to generate the mini-program on the fly, in response
to changing circumstances. You could even keep mini-programs in a database field, giv-
ing each record its own program!

local myProgram
myProgram=

{ if clipboard() beginswith "Error"}+
{ message clipboard()}+
{ endif }

execute myProgram

If you want to check the mini-program for syntax errors without running it, put a rtn at
the beginning of the mini-program. The rtn statement will prevent the mini-program
itself from executing. This example assumes that the mini-program is in a field called
Source. If there is an error it displays the error and selects the offending section of the
program (this assumes that Source is being edited in a SuperObject Text Editor.) The -4
compensates for the rtn statement and carriage return.

execute "rtn"+¶+Source
if error

message "Mini-program contains an error: "+
info("error")

activesuperobject "SetSelection",
ExecuteErrorStart-4,ExecuteErrorEnd-4

else
message "Mini-program is A-OK"

endif

Page 5201

Views: This statement may be used in any view.

See Also: call statement
rtn statement

Page 5202
EXP(...)
EXP(

Syntax: EXP(value)

Description: The exp(function raises e to a power specified by value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: E is a mathematical constant that is approximately 2.71828. This function raises e to a
power. For example, the formula

exp(10.2)

Is equivalent to the mathematical formula:

e10.2

The graph below shows the result of the exp function given input values from -5 to +5.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example exp("23") . If you have a numeric
value in a text item you must convert the text to the number data type before rasing e to
a power, for example exp(val("34")) .

See Also: log(function
val(function

Page 5203
EXPAND
EXPAND

Syntax: EXPAND

Description: The expand statement makes visible the next lowest level of records associated with the
currently active summary record.

Parameters: This statement has no parameters.

Action: This statement makes all records associated with the currently active summary record
that are one level lower than that summary record to become visible.

If the active record is not a summary record (data record) this statement is ignored by
Panorama.

The visible record count will accurately change after a proper expand is performed.

This statement has the same effect as clicking on the Expand tool on a tool palette (when
available).

Examples: This example goes to the last record in the database and, if it is a summary record,
expands it to the next level below that summary record's level.

lastrecord
expand

 This example uses the collapse, expand, and expandall statements in a procedure to cal-
culate percentages of Balance values for each data record associated with a specific sum-
mary 1 record for that group.

local BalTotal
field «GL Category»
groupup
field Balance
total
outlinelevel 1
firstrecord
field Percentage
loop

if info("summary") =1
BalTotal = Balance
expand
formulafill (Balance/BalTotal)*100
collapse

endif
downrecord

until info("eof") or info("summary") >1
lastrecord
field Percentage
fill "100"
Percentage = zeroblank(0)
expandall

Views: This statement may be used in the Data Sheet or Form views only.

Page 5204
See Also: average statement
count statement
collapse statement
expandall statement
group statement
groupdown statement
groupup statement
info("records") function
info("selected") function
info("summary") function
maximum statement
minimum statement
outlinelevel statement
removesummaries statement
selectsummaries statement
total statement

Page 5205
EXPANDALL
EXPANDALL

Syntax: EXPANDALL

Description: The expandall statement makes visible all lower level of records associated with the cur-
rently active summary record.

Parameters: This statement has no parameters.

Action: This statement makes all records associated with the currently active summary record
that are any level lower than that summary record to become visible. For example, if you
are on the highest level summary record when you use the expandall statement it will
make all selected records visible.

If the active record is not a summary record (data record) this statement is ignored by
Panorama.

The visible record count will accurately change after a proper expand is performed.

This statement has the same effect as clicking on the Expand All tool on a tool palette
(when available).

Examples: This example goes to the last record in the database and, if it is a summary record,
expands all levels below that summary record's level.

lastrecord
expandall

This example uses the collapse, expand, and expandall statements in a procedure to cal-
culate percentages of Balance values for each data record associated with a specific sum-
mary 1 record for that group.

local BalTotal
field «GL Category»
groupup
field Balance
total
outlinelevel 1
firstrecord
field Percentage
loop

if info("summary") =1
BalTotal = Balance
expand
formulafill (Balance/BalTotal)*100
collapse

endif
downrecord

until info("eof") or info("summary") >1
lastrecord
field Percentage
fill "100"
Percentage = zeroblank(0)
expandall

Views: This statement may be used in the Data Sheet or Form views only.

Page 5206
See Also: average statement
count statement
collapse statement
expand statement
group statement
groupdown statement
groupup statement
info("records") function
info("selected") function
info("summary") function
maximum statement
minimum statement
outlinelevel statement
removesummaries statement
selectsummaries statement
total statement

Page 5207
EXPORT
EXPORT

Syntax: EXPORT file,formula

Description: The export statement exports the current database into a text file. If the text file does not
already exist it will be created. If it does already exist its contents will be replaced!

Parameters: This statement has two parameters: file and formula.

file is the name of the file you wish to save. If you are using a Macintosh, the file name
may be up to 31 characters long, and may not contain / characters. If you are using win-
dows, the file name may be up to 255 characters long and may not contain the \ or : char-
acters.

If the file should be saved in a different folder than the current database the file name
must contain a complete path description. A path description is a list of the folders the
file is in, with each folder separated by a colon (for example Disk:Joe:January or
C:\MyStuff\January.txt). You can create a path from a folder id with the folderpath(
function. The path and file name may be up to 255 characters long.

formula is the formula that will be used to extract data from the database and build each
line in the text file. If the formula results in empty text ("") for a record then no line is
added to the text file for that record. The formula usually references fields in the data-
base being exported. It may also use the seq() function to find out the number of each
record.

To export line items add a Ω (Option-Z or ALT-0166) after the line item field names in
the formula. Each line item will be output on a separate line. Warning: All the line item
fields must have the same number of fields, for example Qty1…Qty6, Price1…Price6, etc.
If some line items have more or less fields, the export will not work correctly. Remember,
any field name that ends with a number will be treated as a line item, so if your invoice
database contains fields named Address1 and Address2 you will not be able to export
the line items using this method.

Action: This statement exports data by scanning the current database and processing each record
with a formula (similar to arraybuild, but builds a text file instead of an array). The result
of the formula is placed into a text file. By changing the formula you can control what
data is exported, and the arrangement of the data.

Examples: This example exports all fields from all selected records in the current database. The pro-
cedure asks the user to specify the name and folder for the new file.

local file,folder
savefiledialog folder,file,"Export file name"
if file="" stop endif
export folderpath(folder)+file, exportline()+¶

The procedure below creates a text file named List.TXT in that contains the Name,
Address, City, State and Zip code (separated by tabs) of every record in Iowa.

select State="IA"
export "List.TXT",Name+¬+Address+¬+
City+¬+State+¬+Zip+¶

Page 5208
The procedure below outputs line items on separate lines in the text file. Each line will
contain the date and the quantity, description and price for a specific line item, for exam-
ple 3/21/97,4,Widgets,3.39. The Ω symbols cause the export statement to output a sepa-
rate line for each line item.

export "products",
datepattern(Date,"mm/dd/yy")+","+Qty Ω+","+Description Ω+","+Price Ω+¶

Views: This statement may be used in a Data Sheet or Form view.

See Also: arraybuild statement
filesave statement
filetrash statement
openfiledialog statement
savefiledialog statement
saveastext statement
exportline(function
folder(function
folderpath(function
fileload(function
filesize(function

Page 5209
EXPORTCELL(...)
EXPORTCELL(

Syntax: EXPORTCELL(field)

Description: The exportcell(function takes any database field and converts it to text, using the appro-
priate pattern if one has been defined in the design sheet.

Parameters: This function has one parameter: field

field is the name of the field to be converted to text.

Result: The export(function always returns a text type data item. The power of the exportcell(
function is that it does not require you to know what type of data you are exporting. It
simply takes whatever kind of data is in the field (text, number, date, whatever) and con-
verts it into text.

Examples: This example takes any database and outputs it in a comma separated format with
quotes around each field.

global LineFormula
LineFormula= dbinfo("fields","")
arrayfilter LineFormula,LineFormula,¶,

{""""+exportcell(«}+ import()+{»)+""""}
LineFormula= replace(LineFormula,¶,{+","+}+¶)
execute {export "Comma.txt",}+LineFormula

 For example, the output of this procedure might look something like this if used with a
checkbook database:

"145","12/5/97","Acme Widgets","356.78"
"146","12/6/97","Wilson Publishing","2,994.12"
"147","12/9/97","Yellow Freight","390.12"

If you've never used the execute statement before, this procedure may be a bit unclear.
The first five lines of the procedure build a formula. The final formula will be something
like this

""""+exportcell(«CheckNo»)+""""+","+
""""+exportcell(«Date»)+""""+","+
""""+exportcell(«Pay To»)+""""+","+
""""+exportcell(«Amount»)+""""

The final line in the original procedure uses this formula to export the data from the
database.

Errors: This function does not produce any errors.

See Also: import(function
exportline(function
str(function
pattern(function
datepattern(function

Page 5210
EXPORTLINE(...)
EXPORTLINE(

Syntax: EXPORTLINE()

Description: The exportline(function generates a tab delimited line of data containing all the fields in
the current record. This function is designed to be used with the export and arraybuild
statements.

Parameters: This function has no parameters.

Result: The exportline(function returns a a tab delimited line of data containing all the fields in
the current record. Any non-text fields (numeric, date) will be converted to text as they
are placed into the tab delimited line. The tab delimited line does NOT include a carriage
return on the end.

Examples: This function make it easy to export the entire database with a procedure.

local file,folder
savefiledialog folder,file,"Export file name"
if file="" stop endif
export folderpath(folder)+file,exportline()+¶

Here is a modified version of this procedure that converts any carriage returns inside a
cell into vertical tabs as the data is being exported.

local file,folder
savefiledialog folder,file,"Export file name"
if file="" stop endif
export folderpath(folder)+file,
replace(exportline(),¶, chr(11))+¶

Errors: This function does not produce any errors.

See Also: export statement
savefiledialog statement
replace(function

Page 5211
EXTRACT(...)
EXTRACT(

Syntax: EXTRACT(text,separator,item)

Description: The extract(function extracts a single data item from a text array (see text arrays). This
function is almost identical to the array(function. The extract(function is excellent for
extracting a word, line or phrase from a larger text item. It can also be used to count the
number of items in the array.

Parameters: This function has three parameters: text, separator. and item.

text is the item of text that contains the data you want to extract.

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

item is the number of the data item you want to extract. The first item is item 1, the sec-
ond is item 2, etc.

Using an item number of -1 tells the extract(function to count the number of data items
in the array. This is similar to the arraysize(function. In this case the extract(function
will return a number, not text.

Result: If the item parameter is 1 or greater, this function returns an item of text from the array.
Only the item itself is returned, the separator characters on each end are not included. If
the item does not exist (for example if you ask for item 12 from a 7 item array) the func-
tion will return empty text (""). If the item parameter is -1, the extract(function returns a
number—the number of data items in the array.

Examples: The example below displays the name of an element after the user enters the atomic
number from 1 to 103. In this example the variable Elements contains an array of atomic
element names, separated by semicolons (some of the assignment statement has been left
out for clarity).

local Elements,AtomicNumber,AtomicName
Elements="Hydrogen;Helium;Lithium;Beryllium;Boron;"+

"Carbon;Nitrogen;Oxygen;Fluorine;Neon;"+
…
"Mendelevium;Nobelium;Lawrencium"

AtomicNumber="1"
gettext "Enter Atomic Number",AtomicNumber
AtomicNumber= val(AtomicNumber)
if error

message "Atomic number must be an integer "+
"between 1 and 103."

endif
AtomicName=extract(Elements,";",(AtomicNumber))
if AtomicName ≠""

message "Atomic name is: "+AtomicName
else

message "Atomic number must be an integer "+"between 1 and 103."
endif

 This example shows how the extract(function can be used to count the number of items
in an array. This simple procedure displays the number of database files that are cur-
rently open.

Page 5212
message extract(info("files") ,¶,-1)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the array or separator parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

Illegal function argument. This error occurs if you attempt to use zero as the item param-
eter. The item parameter must be 1 or greater to extract individual data items, or -1 to
count data items.

See Also: text arrays
array(function
arraysize(function

Page 5213
EXTRAPAGES(...)
EXTRAPAGES(

Syntax: EXTRAPAGES(pagelist)

Description: The extrapages(function is used to control the printing of extra pages This function
must be used in an auto-wrap text object, it has no effect in any other situation.

Parameters: This function has one parameter: pagelist.

pagelist is a text item listing the extra pages that should be printed. For example, if you
want to print data tiles 3 and 5 the page list should be "35".

Result: This function returns an empty text item ("").

Examples: This function must be used in an auto-wrap text object on a form to be printed. The form
must have extra data tiles (Data Tile 2, Data Tile 3, etc.) Panorama will always print the
main data tile, but the extrapages(function can control what other data tiles are printed
on a record by record basis.

For example, suppose that your form contains a statement (main data tile) and a
reminder letter (data tile 2). The reminder letter should only be printed if the account is
more than 45 days overdue. To do this put the formula below in an auto-wrap text object
somewhere on the main data tile.

{extrapages(?(today()-45>ShipDate,"2",""))}

Errors: This function does not generate any error messages.

See Also: print statement

Page 5214
F

FACT(...)
FACT(

Syntax: FACT(value)

Description: The fact(function computes the factorial of a value. The value must be an integer. A fac-
torial is a value multiplied by the next lower value and the next lower etc. For example 4
factorial (written 4! by mathematicians) is the same as 4*3*2*1. Factorials get big in a
hurry as the value increases. Panorama cannot calculate a factorial for a value larger than
170. Larger values cause a floating point overflow because the answer is too large!

Parameters: This function has one parameter: value.

value is a numeric value. The value must be an integer between 1 and 170 (1, 2, 3, … 169,
170).

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the factorial function given input values from 1 to 6.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example fact("23") . If you have a numeric
value in a text item you must convert the text to the number data type before calculating
a factorial, for example fact(val("34")) .

Illegal function argument. This error occurs if you attempt to calculate the factorial of a
negative value, or of a value greater than 170.

See Also: val(function

Page 5215
FARCALL
FARCALL

Syntax: FARCALL file,procedure[,param1,param2,…paramN]

Description: The farcall statement executes another procedure, in a separate database open in mem-
ory, as a subroutine.

Parameters: This statement has two required parameter: file and procedure. There may also be addi-
tional parameters that you can define for passing data between the main program and
the subroutine.

file is the name of the database that contains the procedure you wish to execute as a sub-
routine. This must be the name of a database currently open in memory. If file contains
blanks, symbol characters, or punctuation characters it must be surrounded by quotes ("
") or chevrons (« »).

procedure is the name of the procedure you wish to execute as a subroutine. Warning:
This must be the name of a procedure in the database specified by file and that database
must be open in memory. If procedure contains blanks, symbol characters, or punctua-
tion characters it must be surrounded by quotes (" ") or chevrons (« »).

parameter1, parameter 2, etc. are optional parameters that are defined by you, the sub-
routine programmer! Each parameter may be a field, variable, or a complete formula.
(However, if you want to change the value of a parameter from inside the subroutine, the
parameter must be a field or variable, not a formula.) The subroutine can find out the
value of a parameter using the parameter(function. To change the value of a parameter,
the subroutine can use the setparameter statement.

Action: This statement allows a procedure programmer to execute a second procedure from a
first as a subroutine to that procedure, however, it has the added advantage that the
called procedure does not need to part of the active database. Subroutines become
important when you wish to use the same code at different times within the same proce-
dure or within multiple procedures. This allows you to write the code once and use it
again and again rather than duplicating the same code over and over again. Farcall
allows you use that same procedure for any Panorama database and only have it stored
in one database.

Subroutines normally finish when the end of the procedure is reached. To stop the sub-
routine before the end of the procedure, use the rtn statement. The rtn statement makes
Panorama return control to the original procedure.

Warning: Even though you have called a procedure in another database, the active data-
base may not have the same field or form names as the one associated with the called
procedure. This means that all references to field names or form names must match the
names in the active database when the procedure is running.

Note: To call a procedure in the same database, use the call statement. To execute a sub-
routine within the same procedure use the shortcall statement.

Examples: This simple example shows how to call a procedure called Summarize from a database
called Tax File.

farcall "Tax File",Summarize

This example calls a subroutine named Calculate % from the database called Calculator.
The subroutine's name is more than one word and contains symbol characters.

Page 5216
farcall "Calculator","Calculate %"

The example below shows that a subroutine, named Conversion, can be called from
within the middle of a procedure. Once the subroutine finishes the parent procedure will
continue executing. Note: The parameter area (a global variable) is handed off to the
subroutine.

global area,width,height
gettext "Enter Width in inches.",width
gettext "Enter Height in inches.",height
area = val(width) * val(height)
openfile "Calc"
farcall "Calc",Conversion,area
window "Calc"
closefile
«Sq. Ft.» = area
field Dimensions
...
...

Views: This statement may be used in any view

See Also: call statement
parameter() function
rtn statement
setparameter statement
shortcall statement

Page 5217
FIELD
FIELD

Syntax: FIELD fieldname

Description: The field statement tells Panorama to move to the specified field for the current record.

Parameters: This statement has one parameter: fieldname

fieldname can be a literal field name, a quoted string, field, variable, or formula that
returns the name of a valid field for the active database. This field name is case sensitive
and must match the field names as they were established in the database's Design Sheet.
If the field name is two or more words it must be enclosed in chevron characters « »to be
recognized as a valid field name.

Note: If fieldname is a field or variable which contains the name of the field you wish to
move to you must enclose it inside parenthesis () so that Panorama treats fieldname as a
formula and not a literal value. See second example below.

Action: This statement moves Panorama's cursor to the field indicated by fieldname for the cur-
rently active record.

Note: If fieldname does not match a valid field for the active database Panorama will
return an error alert.

This statement has the same effect as choosing a field name from the Fields menu in the
Data Sheet.

Examples: This simple example tells Panorama to go to the Address field.

field Address

This example assumes a database that has a field for each day of the week Sunday, Mon-
day, etc. The following procedure will place the cursor on the field matching the current
day. To distinguish FieldName as a formula it must be enclosed inside parenthesis ()
characters.

local theFieldName
theFieldName = datepattern(today(),"Day")
field (theFieldName)

 This example goes from line item field Price 1 to Price 10 blanking out the fields as it
goes along.

local TheCount
TheCount = 0
loop

TheCount = TheCount +1
field "Price "+str(TheCount)
clearcell

until TheCount = 10

 This example shows a procedure that makes all choices type fields in the database center
aligned.

Page 5218
opendesignsheet
firstrecord
field Align ;«Align» is a Design Sheet field
loop

if «Type» = "Choices" ;«Type» is a Design Sheet field
cell "Center"

endif
downrecord

until info("stopped")
newgeneration
closewindow
save

Views: This statement may be used in any view.

See Also: emptyfield statement

Page 5219
FIELDMAX(...)
FIELDMAX(

Syntax: FIELDMAX(fieldname)

Description: The fieldmax(function returns the maximum number of characters that can be stored in
a field.

Parameters: This function has one parameter: fieldname.

fieldname is the name of the field that you want to calculate the maximum size of.

Result: The function returns the maximum number of bytes that can be stored in this field. If this
is not an SQL client database, this number is always 65535. If this is an SQL client, this
function returns the length of the corresponding SQL field in the server database.

Examples: Use the fieldmax(function when you are programming a SQL database. The function
below looks up the city name and if it will fit it stores it in the City field.

local theCity
theCity=city(Zip)
if length(theCity) ≤fieldmax(City)

City=theCity
else

message "The city name is too long."
endif

Errors: Field or variable does not exist. This error occurs if there is no field in the current data-
base with the name you have specified. You probably misspelled the field name.

See Also: length(function
sizeof(function

Page 5220
FIELDNAME
FIELDNAME

Syntax: FIELDNAME fieldname

Description: The fieldname statement changes the current field's name to that specified by fieldname.

Parameters: This statement has one parameter: fieldname

fieldname can be in the form of a quoted string, field, variable, or formula that returns a
text value.

Action: This statement changes the name of the currently active field to the value in fieldname.

Examples: This example changes the active field's name to Notes.

fieldname "Notes"

This example changes the current field's name to Ratio, converts it to a floating point
numeric field, and then calculates values for Ratio.

fieldname "Ratio"
fieldtype "float"
formulafill "Price/Cost"

Views: This statement may be used in the Data Sheet and Form views only.

See Also: addfield statement
dbinfo() function
deletefield statement
fieldstyle() function
fieldtype statement
info("datatype") function
info("fieldname") function
insertfield statement
newgeneration statement

Page 5221
FIELDSTYLE(...)
FIELDSTYLE(

Syntax: FIELDSTYLE(fieldname)

Description: The fieldstyle(function determines the style and color of a field (see also the style state-
ment, which can set the style and color of a field).

Parameters: This function has one parameter: fieldname.

fieldname is the name of the field that you want to determine the style of.

Result: The function returns a text data item listing all the styles that apply to this field in the
current record. The possible styles are:

bold
italic
underline
shadow
black
red
green
blue
cyan
magenta
yellow

Examples: The example below selects all the records where the name is bold.

select fieldstyle(Name)="bold"

It there is more than one style for a cell, this function will list each one. The example
below will select all records where the name is italic, even if other styles also apply (for
example bold italic or underline italic).

select fieldstyle(Name) contains "italic"

This final example selects all the records where the name is plain (no styles at all).

select fieldstyle(Name)=""

Errors: Field or variable does not exist. This error occurs if there is no variable or field in the cur-
rent database with the name you have specified. You probably misspelled the field or
variable name.

See Also: style statement

Page 5222
FIELDTYPE
FIELDTYPE

Syntax: FIELDTYPE datatype

Description: The fieldtype statement changes the current field to the specified datatype.

Parameters: This statement has one parameter: datatype

datatype must be one of the listed values below. It can be in the form of a quoted string,
field, variable, or formula that returns one of the text values listed below.

text
0 digits
1 digit
2 digits
3 digits
4 digits
float
date
choices
picture

Action: This statement changes the type of the currently active field to that specified in datatype.
If datatype contains the word digit or float Panorama will convert both the field's type to
Numeric and set the number of digits to match datatype.

Note: If the contents of the currently active field will not be compatible with the new
fieldtype Panorama will warn you with an alert dialog. You may hit Cancel, Ok, or Select
Problem Data from this dialog. This warning dialog cannot be suppressed.

Examples: This simple example changes the current field to the a 4-digit numeric field.

fieldtype "4 digits"

 This example creates a new field called Ratio, converts it to floating point, and then cal-
culates values for the new field.

addfield "Ratio"
field "Ratio"
fieldtype "float"
formulafill "Price/Cost"

Views: This statement may be used in the Data Sheet and Form views only.

See Also: addfield statement
dbinfo() function
deletefield statement
field statement
fieldname statement
fieldstyle() function

Page 5223
info("datatype") function
info("fieldname") function
insertfield statement
newgeneration statement

Page 5224
FILEAPPEND
FILEAPPEND

Syntax: FILEAPPEND folder,filename,typecreator,data

Description: The fileappend statement saves data directly into a file. If the file does not already exist it
will be created. If the file does already exist the new data will be appended to the exist-
ing data.

Parameters: This statement has four parameters: folder, filename, typecreator and data.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder where the file should be saved. A path id is a binary data item that unam-
biguously describes the location of a folder on the hard disk. Path id’s are created by the
folder(, dbinfo(and some info(functions, and the openfiledialog and savefiledialog
statements. If this parameter is empty text ("") the folder containing the current database
is assumed.

filename is the name of the file you wish to save. The file name may be up to 31 charac-
ters long, and may not contain / characters.

typecreator is the type and creator of the new file. This parameter only applies when
using Panorama on a Macintosh system - the typecreator parameter is ignored when
using Panorama on a Windows system. The type and creator identify the type of file and
the application that should be launched when the file is double clicked, and each is four
characters long. If the typecreator is "" then the type and creator default to TEXTttxt ,
the type and creator for SimpleText text files.

The 4 character TYPE code identifies the type of data in the file. Here are some 4 charac-
ter types codes:

Type Code Description

TEXT Text File

PICT Picture File

ESPF Encapsulated Postscript

APPL Application (Program)

ZEPD Panorama Database

KSET Panorama File Set

GIFf GIF Image File

JPEG JPEG Image File

MooV QuickTime Movie

PDF Adobe Acrobat PDF Format

Page 5225
The 4 character CREATOR code identifies what application created the file (and will be
launched when the file is double clicked.) Here are some 4 character creators:

data is the actual data that will be placed into the file. This may be in a field, variable, or
constructed with a formula.

Action: This statement saves data directly into a disk file. Using this statement you can create
any kind of disk file you want.

Examples: The procedure below adds to a text file named TIME STAMP in the system folder that
contains the current date and time.

fileappend info("systemfolder") ,"TIME STAMP","",
datepattern(today(),"mm/dd/yy ")+"@"+
timepattern(now(),"hh:mm:ss am/pm")+¶

Each time this procedure runs, another line will be added to the TIME STAMP file. The
result will be something like this:

3/17/98 @3:42:03 PM
3/17/98 @4:18:28 PM
3/18/98 @10:21:51 PM
3/18/98 @2:07:41 PM
3/19/98 @8:47:09 PM

Views: This statement may be used in any view.

See Also: filesave statement
filerename statement
filetrash statement
datafork statement
resourcefork statement
openfiledialog statement
savefiledialog statement

Creator Code Description

KASX Panorama 3.5 or later

KAS1 Panorama 3.1 or earlier

CARO Adobe Acrobat

ToyS AppleScript Editor

WILD HyperCard

XCEL Microsoft Excel

WBDN Microsoft Word

8BIM Adobe Photoshop

ttxt SimpleText

R*ch BBEdit

TVOD MoviePlayer

MPS Macintosh Programmers Workshop (MPW)

Page 5226
folder(function
folderpath(function
fileload(function
filesize(function

Page 5227
FILEGLOBAL
FILEGLOBAL

Syntax: FILEGLOBAL variables

Description: The fileglobal statement creates one or more global variables that are specific to the cur-
rent database. File global variables may be used by any procedure as long as the same
database is open, and remain active until you close the database.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be created. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement creates one or more file global variables. Variables can be used to hold
pieces of information (numbers or text). Each variable has a name.

The fileglobal statement reduces that chance for conflict between databases. If two dif-
ferent database define a global variable with the same name, they can conflict with each
other. (On the other hand, the two database can also use the global variable to communi-
cate with each other.)

Fileglobal variables are not shared between databases. If two different databases have
fileglobal variables with the same name, they will not conflict with each other. In fact,
Panorama will keep two separate variables…one for each database. When you are using
the fileglobal statement you don’t have to worry about whether your variable names
conflict with variables in any other database. (You do still need to worry about conflicts
with field names, however. You should not define a fileglobal variable with the same
name as one of the fields in your database.)

Globals vs. File Globals

Since using fileglobal eliminates conflicts, why would you ever use the global statement
to define variables? Most of the time you would not, and you may want to review your
existing databases and change most or all of the global statements to fileglobals. How-
ever, there are two cases where you may want to continue to use global variables.

If you need to share data between multiple databases, a global variable may be the way
to go. (However, it is also possible to access fileglobal variables from another file using
the grabfilevariable(function.)

If you need the variable to remain even after the database is closed, use a global variable.
Global variables remain active until you quit from Panorama. Variables created with file-
global disappear when the file is closed.

Examples: The example creates two fileglobal variables, Channel and Home Timeouts.

fileglobal Channel, «Home Timeouts»

You may change the value of a variable with an assignment, like this:

«Home Timeouts»=«Home Timeouts»-1

However, if you switch to another database, the fileglobal variables can no longer be
accessed.

window "New Zealand" /* switch to another db */
Channel=7/* this will produce a runtime error! */

Page 5228

Note: If you need to get the value of a fileglobal variable in another database you can use
the grabfilevariable(function.

Views: This statement may be used in any view.

See Also: global statement
local statement
windowglobal statement
permanent statement
globalize statement
grabfilevariable(function
undefine statement

Page 5229
FILEINFO(...)
FILEINFO(

Syntax: FILEINFO(folder,filename)

Description: The fileinfo(function gets information about a file (or folder) on the disk, including the
size, creation and modification date and time, type, creator and lock status.

Parameters: This function has two parameters: folder and filename.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder containing the file. A path id is a binary data item that unambiguously
describes the location of a folder on the hard disk. Path id’s are created by the pathid(,
dbinfo(and some info(functions, and the openfiledialog and savefiledialog state-
ments.

filename is the name of the file (or folder) you want to get information about.

Result: This function returns a text array with 8 elements separated by carriage returns. (How-
ever, if the specified file does not exist it returns empty text ("")). The eight elements are:

Type of item. This is either "File" or "Folder" .

Type (4 bytes) and Creator (4 bytes). This identifies the file’s type and creator codes
(Macintosh only). Here are some typical Type/Creator values:

This is only a small sample of the types and creators you will find on your hard disk. (On
Windows computers this field will be ???????? .)

Creation Date in internal Panorama format. Although this is a number, it has been con-
verted to text. If you convert the number back to text you can format the date with date-
pattern(.

Creation Time in seconds since midnight. Although this is a number, it has been con-
verted to text. If you convert the number back to text you can format the time with time-
pattern(.

Modification Date in internal Panorama format. Although this is a number, it has been
converted to text. If you convert the number back to text you can format the date with
datepattern(.

Modification Time in seconds since midnight. Although this is a number, it has been
converted to text. If you convert the number back to text you can format the time with
timepattern(.

Type/Creator Description

ZEPDKASX Panorama Database (3.5 or later)

KSETKASX Panorama File Set (3.5 or later)

ZEPDKAS1 Panorama Database (3.1 or earlier)

ZEPDKAS1 Panorama File Set (3.1 or earlier)

JPEG8BIM JPEG Image (Photoshop)

TEXTttxt Text File (SimpleText)

MooVTVOD QuickTime Movie (MoviePlayer)

Page 5230
File size in bytes. (Or if the specified file is actually a directory, this is the number of files
in directory

File status: This is either "Locked" or "Unlocked".

Examples: Here is what the result of FileInfo might look like for a typical Panorama database:

File
ZEPDKAS1type (ZEPD) and creator (KAS1)
2449476 creation date (5/3/94)
43423 creation time (12:03:43 PM)
2449834 modification date (4/26/95)
85804 modification time (11:50:04 PM)
45769 file size
Unlocked

This example displays the creation date and size of the currently running copy of Pan-
orama.

local PanoramaInfo
PanoramaInfo=fileinfo(info("panoramafolder") ,"Panorama")
message "This copy of Panorama was created on "+

datepattern(val(array(PanoramaInfo,3,¶)),"mm/dd/yy")+
" and is "+
array(PanoramaInfo,7,¶)+" bytes long."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric item for the folder or filename parameters

See Also: folder(function
folderpath(function
listfiles(function
info("panoramafolder") function
info("systemfolder") function

Page 5231
FILELOAD(...)
FILELOAD(

Syntax: fileload(folder,file)

Description: The fileload(function reads the entire contents of any file on disk. It is especially useful
for reading text files.

Parameters: This function has two parameters: folder and file.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder. A path id is a binary data item that unambiguously describes the location of
a folder on the hard disk. Path id’s are created by the folder(, dbinfo(and some info(
functions, and the openfiledialog and savefiledialog statements. If this parameter is
empty text ("") the folder containing the current database is assumed.

file is the name of the file that is to be read.

Result: This function returns the entire contents of the file as an item of text. (Technical note:
Macintosh files may be split up into two components, called the “data fork” and the
“resource fork.” The fileload(function normally reads the data fork, but not the resource
fork. If you wish to read the resource fork you must use the getresource(and related
functions or use the resourcefork statement.)

Examples: The example below reads the contents of the Macintosh notebook file.

message fileload(info("systemfolder") ,"Note Pad File")

The example below creates a list of all text files in the current folder that contain the
word “Internet.”

local fileList,fileFolder
fileFolder= dbinfo("folder","")
fileList= listfiles(fileFolder,"TEXT????")
arrayfilter fileList,fileList,¶,

?(fileload(fileFolder, import()) contains "Internet",
import(),"")

fileList = arraystrip(fileList,¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder or file parameters.

File not found. The specified file does not exist.

File is too large, cannot load. The specified file is larger than the available memory and
cannot be read. If you trap this with if error you can try reading part of the file with the
fileloadpartial(function.

See Also: fileloadpartial(function
filesize(function
filesave statement
datafork statement
resourcefork statement

Page 5232
openfiledialog statement
folder(function
folderpath(function

Page 5233
FILELOADPARTIAL(...)
FILELOADPARTIAL(

Syntax: FILELOADPARTIAL(folder,file,start,length)

Description: The fileloadpartial(function reads a portion of the contents of any file on disk. It is espe-
cially useful for reading text files.

Parameters: This function has four parameters: folder, file, start and length.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder. A path id is a binary data item that unambiguously describes the location of
a folder on the hard disk. Path id’s are created by the folder(, dbinfo(and some info(
functions, and the openfiledialog and savefiledialog statements. If this parameter is
empty text ("") the folder containing the current database is assumed.

file is the name of the file that is to be read.

start is the first byte (character) of the file that should be read. This function assumes
bytes in the file are numbered starting from 0.

length is the number of bytes that should be read.

Result: This function returns a portion of the contents of the file as an item of text. (Technical
note: Macintosh files may be split up into two components, called the “data fork” and
the “resource fork.” The fileloadpartial(function normally reads the data fork, but not
the resource fork. If you wish to read the resource fork you must use the getresource(
and related functions or use the resourcefork statement.)

Examples: The example below displays the contents of the first line of the Macintosh notebook file.
A maximum of 512 bytes is used, so this procedure will work even if the note pad con-
tains megabytes of information.

message
array(

fileloadpartial(
info("systemfolder") ,
"Note Pad File",0,512),1,¶)

The example below searches the text file “System Log” for a word. The search is con-
ducted a small section at a time (2000 bytes) so that it will work properly (although
somewhat slowly) even if the System Log file is very large.

local searchWord,fileSpot,fileChunk
searchWord=""
gettext searchWord,"Search for:"
fileSpot=0
loop

fileChunk=fileloadpartial("","System Log",fileSpot,2000)
stoploopif fileChunk="" or fileChunk contains searchWord
fileSpot=fileSpot+2000- length(searchWord)

while forever
if fileChunk contains searchWord

message "Found "+searchWord+" in System Log"
endif

Page 5234
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder or file parameters.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use text for the start or length parameters.

File not found. The specified file does not exist.

File is too large, cannot load. The specified portion of the file is larger than the available
memory and cannot be read. If you trap this with if error you can try reading a smaller
portion.

See Also: fileload(function
filesize(function
filesave statement
openfiledialog statement
folder(function
folderpath(function

Page 5235
FILERENAME
FILERENAME

Syntax: FILERENAME folder,filename,newfilename

Description: The filerename statement renames a disk file.

Parameters: This statement has three parameters: folder, filename and newfilename.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder that contains the file. A path id is a binary data item that unambiguously
describes the location of a folder on the hard disk. Path id’s are created by the folder(,
dbinfo(and some info(functions, and the openfiledialog and savefiledialog state-
ments. If this parameter is empty text ("") the folder containing the current database is
assumed.

filename is the current name of the file.

newfilename is the new name of the file. The new file name may be up to 31 characters
long. On MacOS systems the filename may not contain the : character. On Windows sys-
tems the filename may not contain the \, * or ? characters. There must not already be a
file with the same name in the folder.

Action: This statement changes the name of a file on the disk. This is the same as if you clicked
on the file’s name in the finder, then typed in a new name.

Examples: The procedure below renames a file named Sales. This file is in the same folder as the
currently open database. The new name for this file is based on the date, it will be some-
thing like Sales (10/97) .

filerename "","Sales",
"Sales"+" ("+ datepattern(today()-30,"mm/yy")+")"

Views: This statement may be used in any view.

See Also: filesave statement
filetypecreator statement
filetrash statement
openfiledialog statement
folder(function
folderpath(function
fileload(function
filesize(function

Page 5236
FILESAVE
FILESAVE

Syntax: FILESAVE folder,filename,typecreator,data

Description: The filesave statement saves data directly into a file. If the file does not already exist it
will be created. If it does already exist its contents will be replaced! If you want to add
to the contents of the file, use the fileappend statement.

Parameters: This statement has four parameters: folder, filename, typecreator and data.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder where the file should be saved. A path id is a binary data item that unam-
biguously describes the location of a folder on the hard disk. Path id’s are created by the
folder(, dbinfo(and some info(functions, and the openfiledialog and savefiledialog
statements. If this parameter is empty text ("") the folder containing the current database
is assumed.

filename is the name of the file you wish to save. The file name may be up to 31 charac-
ters long. On MacOS systems the filename may not contain the : character. On Windows
systems the filename may not contain the \, * or ? characters.

typecreator is the type and creator of the new file. The type and creator identify the type
of file and the application that should be launched when the file is double clicked, and
each is four characters long. If the typecreator is "" then the type and creator default to
TEXTttxt, the type and creator for SimpleText text files.

The 4 character TYPE code identifies the type of data in the file. Here are some 4 charac-
ter types codes:

Type Code Description

TEXT Text File

PICT Picture File

ESPF Encapsulated Postscript

APPL Application (Program)

ZEPD Panorama Database

KSET Panorama File Set

GIFf GIF Image File

JPEG JPEG Image File

MooV QuickTime Movie

PDF Adobe Acrobat PDF Format

Page 5237
The 4 character CREATOR code identifies what application created the file (and will be
launched when the file is double clicked.) Here are some 4 character creators:

data is the actual data that will be placed into the file. This may be in a field, variable, or
constructed with a formula.

Action: This statement saves data directly into a disk file. Using this statement you can create
any kind of disk file you want.

Examples: The procedure below creates a text file named TIME STAMP in the system folder that
contains the current date and time.

filesave info("systemfolder") ,"TIME STAMP","",
datepattern(today(),"mm/dd/yy ")+"@"+
timepattern(now(),"hh:mm:ss am/pm")+¶

Views: This statement may be used in any view.

See Also: fileappend statement
filerename statement
filetypecreator statement
filetrash statement
datafork statement
resourcefork statement
openfiledialog statement
savefiledialog statement
folder(function
folderpath(function
fileload(function
filesize(function

Creator Code Description

KASX Panorama 3.5 or later

KAS1 Panorama 3.1 or earlier

CARO Adobe Acrobat

ToyS AppleScript Editor

WILD HyperCard

XCEL Microsoft Excel

WBDN Microsoft Word

8BIM Adobe Photoshop

ttxt SimpleText

R*ch BBEdit

TVOD MoviePlayer

MPS Macintosh Programmers Workshop (MPW)

Page 5238
FILESIZE(...)
FILESIZE(

Syntax: filesize(folder,file)

Description: The filesize(function determines the size of any file on disk.

Parameters: This function has two parameters: folder and file.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder. A path id is a binary data item that unambiguously describes the location of
a folder on the hard disk. Path id’s are created by the folder(, dbinfo(and some info(
functions, and the openfiledialog and savefiledialog statements. If this parameter is
empty text ("") the folder containing the current database is assumed.

file is the name of the file.

Result: This function returns a number—the size of the entire contents of the file. (Technical
note: Macintosh files may be split up into two components, called the “data fork” and
the “resource fork.” The filesize(function reads the size of the data fork, but not the
resource fork.)

Examples: The example below displays the size of the Macintosh notebook file.

message filesize(info("systemfolder") ,"Note Pad File")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder or file parameters.

File not found. The specified file does not exist.

See Also: fileload(function
fileloadpartial(function
filesave statement
openfiledialog statement
folder(function
folderpath(function

Page 5239
FILETRASH
FILETRASH

Syntax: FILETRASH folder,filename

Description: The filetrash statement erases a disk file. This is the same as dragging the file into the
trash can and choosing Empty Trash from the Special menu.

Parameters: This statement has two parameters: folder and filename.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder that contains the file you want to erase. A path id is a binary data item that
unambiguously describes the location of a folder on the hard disk. Path id’s are created
by the folder(, dbinfo(and some info(functions, and the openfiledialog and savefiledi-
alog statements. If this parameter is empty text ("") the folder containing the current
database is assumed.

filename is the name of the file to be erased.

Action: This statement erases a file on the disk.
There is no way to get the file back, so be careful!

Examples: The procedure below erases a file named Invoice Worksheet. This file is in the same
folder as the currently open database.

filetrash "","Invoice Worksheet"

Views: This statement may be used in any view.

See Also: filesave statement
filerename statement
openfiledialog statement
folder(function
folderpath(function
fileload(function
filesize(function

Page 5240
FILETYPECREATOR
FILETYPECREATOR

Syntax: FILETYPECREATOR folder,filename,typecreator

Description: The filetypecreator statement allows a procedure to change the type and creator of a file.

Parameters: This statement has three parameters: folder, filename, and typecreator.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder where the file should be saved. A path id is a binary data item that unam-
biguously describes the location of a folder on the hard disk. Path id’s are created by the
folder(, dbinfo(and some info(functions, and the openfiledialog and savefiledialog
statements. If this parameter is empty text ("") the folder containing the current database
is assumed.

filename is the name of the file you wish to save. The new file name may be up to 31
characters long. On MacOS systems the filename may not contain the : character. On
Windows systems the filename may not contain the \, * or ? characters.

typecreator is the type and creator of the new file. The type and creator identify the type
of file and the application that should be launched when the file is double clicked, and
each is four characters long. If the typecreator is "" then the type and creator default to
TEXTttxt, the type and creator for SimpleText text files. Here are some other 4 character
types:

The 4 character TYPE code identifies the type of data in the file. Here are some 4 charac-
ter types codes:

Type Code Description

TEXT Text File

PICT Picture File

ESPF Encapsulated Postscript

APPL Application (Program)

ZEPD Panorama Database

KSET Panorama File Set

GIFf GIF Image File

JPEG JPEG Image File

MooV QuickTime Movie

PDF Adobe Acrobat PDF Format

Page 5241
The 4 character CREATOR code identifies what application created the file (and will be
launched when the file is double clicked.) Here are some 4 character creators:

Action: This statement changes a disk file’s type and creator codes (Macintosh only). Using this
statement you can control what icon appears for this file and what application is
launched when the file is double clicked.

Examples: The procedure below examines a file that has been transferred from a PC computer.
Depending on the three character "extension" at the end of the filename, it converts the
file into a text file, a Panorama file, or a Photoshop picture file.

case myfile endswith ".txt"
filetypecreator myfolder,myfile,"TEXTttxt"

case myfile endswith ".pan"
filetypecreator myfolder,myfile,"ZEPDKAS1"

case myfile endswith ".pct"
filetypecreator myfolder,myfile,"PICT8BIM"

endcase

Views: This statement may be used in any view.

See Also: fileappend statement
filerename statement
filesave statement
filetrash statement
datafork statement
resourcefork statement
openfiledialog statement
savefiledialog statement
folder(function

Creator Code Description

KASX Panorama 3.5 or later

KAS1 Panorama 3.1 or earlier

CARO Adobe Acrobat

ToyS AppleScript Editor

WILD HyperCard

XCEL Microsoft Excel

WBDN Microsoft Word

8BIM Adobe Photoshop

ttxt SimpleText

R*ch BBEdit

TVOD MoviePlayer

MPS Macintosh Programmers Workshop (MPW)

Page 5242
folderpath(function
fileload(function
filesize(function

Page 5243
FILL
FILL

Syntax: FILL value

Description: The fill statement fills every visible cell in the active field with the specified value.

Parameters: This statement has one parameter: value

value can be a literal, a field or a variable, or a formula that returns the value you wish to
put into the cells of the current field. The resulting value must match the type and format
(if any) of the field you are placing it in or an error will result. If value is the word dialog
Panorama will present you with an input dialog so you may enter your own value.

Action: This statement evaluates value and if it is compatible with the current field type writes it
to every cell in that field for all selected records only.

Warning: If a cell already has a value in it fill will replace that value with the new one.

When value is the word dialog Panorama will pause the procedure and present the user
with the Fill... dialog allowing the user to enter their own value. Clicking on the Ok but-
ton will allow the procedure to continue. This statement will work for all field types
except picture type fields.

This statement has the same effect as using the Fill command from the Math menu.

Examples: This simple example tells Panorama to clear all the selected cells of the active field.
Therefore, the active field should be a text or choice type field.

fill ""

This similar example works for numeric or date type fields.

fill zeroblank(0)

This example tells Panorama to fill all the selected cells of the active field with the text
string n/a. Therefore, the active field should be a text or choice type field.

fill "n/a"

This example fills the numeric field Starting Value with the number 1200.

field "Starting Value"
fill 1200

 This example will have Panorama open the Fill... dialog which allows you to enter a
value to be filled into the visible cells in the current field.

fill dialog

This example uses a formula to fill the visible cells in the field Date to Renew with a date
that is one year beyond the computer's current date. The final date will be the 1st of the
month.

field «Date to Renew»
fill datepattern(month1st(today() + 365),"mm/dd/yy")

This example changes all the field types in the database to text type fields.

Page 5244
opendesignsheet
field Type
fill "Text"
newgeneration
closewindow

Views: This statement may be used in any view.

See Also: emptyfill statement
formulafill statement

Page 5245
FIND
FIND

Syntax: FIND true-false test

Description: The FIND statement locates the first visible record, if any, which matches the true-false
test for the active database.

Parameters: This statement has one parameter:true-false test.

true-false test may be one or more functions or equations which result in a true or a false
condition. Multiple true-false tests must be separated by an and or an or operator.
Grouping true-false tests inside parenthesis () will give those tests priority in the pro-
cessing order when Panorama evaluates them.

Action: This statement is used to locate and make active the first record, starting from the begin-
ning of the database, that matches the true portion of the true-false test. If a subset of
records are selected from the database find will only examine that sub-set for a match.
You do not need to have the cursor on the field you are performing the find on prior to
executing the find.

Compound true-false tests connected by an or operator(s) requires only one of the tests
to be true to make the test true. Compound true-false tests connected by an and opera-
tor(s) requires all tests to evaluate true to make the test true.

If no records match a true test then Panorama will leave the cursor where it was before
the find statement executed. You may test to see if any records were found by using the
info("found") function as the parameter of an if statement immediately after the find
statement (see examples below.)

This statement will work on all fields except Picture type fields.

This statement has the same effect as clicking on the Find button in the Find/Select dia-
log, Search menu.

Examples: This example makes the first visible record for John Smith the active record.

find Customer = "John Smith"

This example makes the first visible record over 850 pounds the active record.

find Weight > 850

This example makes the first visible record for Jan. 1995 the active record.

find «Date Opened» >= date("1/1/95")

This example shows how you can test to see if a record was found matching the input
Work Order No. using the info("found") function.

getscrap "Enter Find value."
find «Work Order No.» = val(clipboard())
if info("found")

«Mark Record» = "X"
else

message "There is no record for Work Order: "+
clipboard()

Page 5246
stop
endif
...

 In this example the info("found") function is used to test to see if no record was found
for the date entered. Since the not operator is used, the entire formula must be enclosed
inside parenthesis ().

local ADate
gettext "Enter date ex. 12/31/95",ADAte
find «Process Date» = date(ADate)
if (not info("found"))

beep
message "No records match this date: "+ADate
stop

endif
field «Sales Rep»
...

 This example uses a compound true-false test that must match a name to either Cus-
tomer or Company and who has made a Purchase Price more than $500.

local Name
gettext "Enter name:",Name
find (Customer contains Name or Company contains
Name) and «Purchase Price» > 500
if (not info("found"))

beep
message "No records match found."

endif

This example uses a formula to test multiple text fields to find the record where the vari-
able's contents matches any one of the fields.

local TheText
gettext "Enter text to find:",TheText
find " "+Customer+" "+Company+" "+Address+" "+

Comments contains TheText
if (not info("found"))

beep
message "No matching records found."

endif

Views: This statement may be used in any view

See Also: findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectadditional statement
selectall statement

Page 5247
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5248
FINDSELECT
FINDSELECT

Syntax: FINDSELECT

Description: The findselect statement pauses a procedure while opening the Find/Select dialog
allowing the user to manually perform one of the find or select options.

Parameters: This statement has no parameters.

Action: This statement pause the procedure while displaying the standard Find/Select dialog.
The user can then enter their search criteria and choose one of the four search options:
Find, Select, Select Additional, or Select Within or they can hit the Cancel button. Hit-
ting the Cancel button will cancel the search operation, but it will not terminate the pro-
cedure. The procedure will continue running after the findselect statement.

Compound searches may be performed by expanding the Find/Select dialog by clicking
on the double arrow icon pointing downward (at the left of the dialog.)

This statement cannot be used in combination with the info("found") or info("empty")
functions as the parameter of an if statement immediately after the findselect statement
to test for a null find or select.

All search options will work on all fields except Picture type fields.

This statement has the same effect as choosing the Find/Select command from the
Search menu.

Examples: This example opens the Find/Select dialog.

findselect

This example allows you to use the Find/Select dialog and then it sorts the selected
records and brings you to the first one.

message "Use the upcoming dialog to select the records you wish to work
with."
findselect
field «Company Name»
sortup
firstrecord

Views: This statement may be used in the Data Sheet, Form views and Cross Tab views only.

See Also: find statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectadditional statement
selectall statement

Page 5249
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5250
FINDWINDOW(...)
FINDWINDOW(

Syntax: FINDWINDOW(point)

Description: The findwindow(function checks to see if a point (in screen relative co-ordinates) is
inside any Panorama window. If it is inside a window, this function returns the name of
the window.

Parameters: This function has one parameter: point.

point is a point. This point must be in screen relative co-ordinates. All measurements are
in pixels (1 pixel = 1/72 inch).

Result: This function returns a text item. If the point is inside a Panorama window, the function
returns the name of the window. You can use the window statement to bring this win-
dow to the top. If the point is not inside any Panorama window the function returns
empty text ("").

Examples: This illustration shows a window and two points. The green point is inside the window,
so the findwindow(function will return the window name, in this case Sample:Form.
The purple point is not inside the window, so the findwindow(function will return "".

Here’s an example that uses findwindow(as part of a drag and drop procedure. The pro-
cedure lets the user drag from a button. When the user releases the mouse the procedure
checks to see if the mouse is over a Panorama window, and if so, attempts to drag the
name and address to the database for this window. (This procedure is designed to be
triggered by a pushbutton with the click/release option turned off.)

local drag,landingWindow,landingDatabase,landingFields
local dragname,dragAddress,dragCity,dragState,dragZip
dragName=Name
dragAddress=Address
dragCity=City
dragState=State
dragZip=Zip
drag= info("buttonrectangle")
draggraybox drag,"","",0
if drag="" stop endif
landingWindow=findwindow(info("mouse"))
if landingWindow=""

stop
endif
landingDatabase= stripchar(landingWindow[1,":"],"!9;ÿ")

Page 5251
if landingDatabase= info("databasename")
stop

endif
landingFields= dbinfo("fields",landingDatabase)
if (not (landingFields contains "Name" and

landingFields contains "Address" and
landingFields contains "City" and
landingFields contains "State" and
landingFields contains "Zip"))

message "Cannot drag name/address to this database"
stop

endif
window landingWindow
Name=dragName
Address=dragAddress
City=dragCity State=dragState Zip=dragZip

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the point parameter.

See Also: point(function
window statement
info("windowname") function
rectangle(function
rectanglesize(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5252
FIRSTRECORD
FIRSTRECORD

Syntax: FIRSTRECORD

Description: The firstrecord statement moves the cursor to the first visible record in the active win-
dow. This is the opposite of the lastrecord statement.

Parameters: This statement has no parameters.

Action: This statement moves the cursor directly to the first visible record in the Data Sheet,
Design Sheet, Cross Tab view, or View-as-list Form view. In a Individual Record Form
view the view will change to the first record in the database. If the cursor is already on
the first visible record this statement will do nothing.

This statement has the same effect as clicking on the First Record tool on a tool palette
(when available).

Examples: This simple example could be used in either the Data Sheet, Form view or Cross Tab
view to move the cursor to the first visible record in the window, making this record the
current record.

firstrecord

This example adds a record to the beginning of the database, finds a record where the
field City contains Huntington Beach, copies the zip code, returns to the new record, and
pastes in the copied zip code as well as updating the City and State fields.

firstrecord
insertrecord
find City contains "Huntington Beach"
field "Zip Code"
copycell
firstrecord
pastecell
City = "Huntington Beach"
State = "CA"

 This example changes the first and last field's widths to 6.

opendesignsheet
lastrecord
Width = 6
firstrecord
Width = 6
newgeneration
closewindow

Views: This statement may be used in any view

See Also: downrecord statement
lastrecord statement
uprecord statement

Page 5253
FITWINDOW
FITWINDOW

Syntax: FITWINDOW

Description: The fitwindow statement makes certain the window you are zooming will not exceed
your current monitor's screen size.

Parameters: This statement has no parameters

Action: This statement, if needed, must be used immediately before a setwindow or zoomwin-
dow statement and will insure that the window in question will not exceed the size of
the current screen it is displayed on, whether that screen is a 9" screen, a 20" screen, or
larger.

By using a fitwindow statement into your procedure you can set the co-ordinates for the
setwindow orzoomwindow statement to accommodate the largest possible monitor size
and the procedure will scale down that size if the computer's screen is smaller.

Examples: This example will scale down the size of the form World Map if you open it on a screen
smaller than 680 x 680 pixels.

fitwindow
setwindow 20,20,700,700,""
openform "World Map"

 This example zooms the cross tab window Yearly Sales to a larger size, unless the screen
cannot accommodate that larger size.

window "Yearly Sales"
fitwindow
zoomwindow 20,20,1200,1200,"nopalette"

Views: This statement may be used in Cross Tab views or Form views only.

See Also: getwindow statement
getmaxwindow statement
setwindow statement
window statement
windowbox statement
zoomwindow statement

Page 5254
FIX(...)
FIX(

Syntax: FIX(value)

Description: The fix(function truncates a number to an integer. It always truncates towards zero. (If
you want to truncate to -∞ use the int(function.)

Don’t confuse the fix(function with the fixed(function, which converts floating point
numbers to fixed point.

Parameters: This function has one parameters: value.

value is the value you want to convert to an integer. You may use any numeric value, for
example 1, 563.14, -2.5, or even π.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This simple example calculates the temperature in whole degrees.

fix(Temperature)

Temperature must contain a numeric value.

The table below shows how the fix(and int(functions work with some typical values.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example abs("34"). If you have a
number in a text item you must convert the text to a numeric value before taking the
absolute value, for example abs(val("34")).

See Also: int(function
fixed(function

Value fix(int(

98.700 98 98

4.5640 4 4

-3.14000 -3 -4

Page 5255
FIXED(...)
FIXED(

Syntax: FIXED(value)

Description: The fixed(function converts a floating point number to a fixed point number. Since for-
mulas usually perform this conversion automatically when necessary, you’ll probably
never need this function.

Don’t confuse the fixed(function with the fix(function, which truncates a number to an
integer.

Parameters: This function has one parameter: value.

value is the value you want to convert to a fixed point number. You may use any
numeric value, for example 1, 563.14, -2.5, or even π.

Result: The result of this function is always a fixed point numeric value, using the least number
of digits possible.

Examples: This simple example converts the temperature into a fixed point number.

fixed(Temperature)

Temperature must contain a numeric value.

Warning: The number may lose some precision when it is processed with the fixed(func-
tion. For example, if the number has more than 4 places after the decimal point, the extra
precision will be truncated.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example fixed("34") . If you
have a number in a text item you must convert the text to a numeric value before using it
with this function, for example abs(fixed("34")).

Fixed point overflow. This error occurs if you convert a floating point value that is too
large to fit into the fixed point number format. If the value is an integer it must not be
larger than ±2,100,000,000. If the value has four (or more) places after the decimal point it
must not be larger than ±210,000.

See Also: float(function
int(function
fix(function

Page 5256
FLOAT(...)
FLOAT(

Syntax: FLOAT(value)

Description: The float(function converts a fixed point number to a floating point number. You can use
this function to avoid the overflow, underflow and accuracy problems that can occur
when using fixed point arithmetic.

Note: If the destination of a formula is a floating point value (or is text) Panorama per-
forms an implicit float(function for every numeric value.

Parameters: This function has one parameter: value.

value is the value you want to convert to a floating point number. You may use any
numeric value, for example 1, 563.14, -2.5, or even pi (π).

Result: The result of this function is always a floating point numeric value.

Examples: This simple example converts the temperature into a floating point number.

float(Temperature)

The float(function can solve underflow, overflow and accuracy problems when perform-
ing calculations with fixed point numbers. Suppose you have three fields: Tax, SubTotal
and TaxRate. Each of these fields is set up as 2 digit fixed point numbers. To calculate the
tax you use this formula.

Tax=SubTotal*(TaxRate/100)

This formula will work fine as long as the tax rate is an integer value like 4 or 7. But what
if it is a non-integer value, say 8.25? In this case the intermediate calculation TaxRate/100
will produce a value of .0825. This value will be cut off to .08 to fit in the 2 digit fixed
point value, and the calculation will be incorrect. One solution is to convert all values to
floating point. This forces Panorama to perform intermediate calculations using floating
point, eliminating the accuracy problem.

Tax=float(SubTotal)*(float(TaxRate)/float(100))

Note: In this particular example, there is another way to solve the problem. By changing
the location of the parentheses we can re-arrange the calculation to eliminate the preci-
sion problem.

Tax=(SubTotal*TaxRate)/100

This calculation is slightly faster than the formula using the float(function (Panorama
performs fixed point math faster than floating point math). However, if you cannot re-
arrange your formula to eliminate fixed point math problems, just use the float(function.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example float("34"). If you have a
number in a text item you must convert the text to a numeric value before using it with
this function, for example abs(float("34").

See Also: fixed(function

Page 5257
FLOATINGEDIT
FLOATINGEDIT

Syntax: FLOATINGEDIT field,x,y,hi,wide,font,size,just

Description: The floatingedit statement allows you to open an edit window for a database field any-
where over a form window, even if there is no data cell for that field on the form.

Parameters: This statement has eight required parameters: field, x, y, hi, wide, font, size, and just.

field is the name of the field in the active database you wish to edit. This field can be of
any type.

x and y are the screen's pixel co-ordinates of the position of the upper left hand corner of
the edit window you wish to open. These co-ordinate are internal form co-ordinates
which are measured from the top left edge of the form window. Warning: if the form
window is not visible on the screen unwanted results may ensue with respect to the edit
window's position.

hi and wide specify the size of the edit window, in pixels, you wish opened for the field.

font is the name of the font your wish the edit window to display the characters in. The
font may be any font currently installed in your computer's System. You may view the
available System fonts from the Font submenu on Panorama's Text menu.

size is the point size of the font you wish used inside the edit window. System font point
sizes will display in an outline style on the Size submenu on Panorama's Text menu.

just sets the justification for the edit window based on the three choices below:

The parameters listed above may be specified as literal values, values in a field or vari-
ables, or a formula which results in the proper value for that parameter. You may mix
them any way you like. All literal text parameters must be in quotes (" ").

Action: This statement will pause a procedure and allow you to open and control the attributes
of a floating edit window for the specified database field anywhere over an active form
window. The field you wish to edit must be part of the database associated with the
active form window.

Warning: If the active window is not a form window the results may be a variety of
errors from alert dialogs to unwanted font changes.

Examples: This example opens an edit window for the field CheckNum, assigning the edit window
a 10 point Helvetica font that is center justified in the edit window.

floatingedit "CheckNum",20,20,20,50,"helvetica",10,-1

This procedure will loop through all the fields in the database between the field First and
Last and present you with an edit window for each field.

local thefieldname field "First"
openform "Edit Fields"
loop

thefieldname = info("fieldname")

0 Left Justification

1 Right Justification

-1 Center Justification

Page 5258
floatingedit thefieldname,20,20,20,50,"Geneva",10,0
right

until thefieldname = "Last"
left ; so the cursor remains on the field "Last"

 This procedure, assigned to a button on a form, will determine the co-ordinates of the
button and place the edit window over it.

local x,y,hi,wide
getlocalbutton x,y,hi,wide
floatingedit "Start Date",x,y,hi,wide,"Geneva",10,0

Views: This statement may be used in a Form view only.

See Also: editcell statement
editselect statement
info("fieldname") function

Page 5259
FOLDER(...)
FOLDER(

Syntax: FOLDER(folder)

Description: The folder(function creates a binary data item that unambiguously describes the loca-
tion of a folder on the hard disk. This pathid can be used in other functions and state-
ments.

Parameters: This function has one parameter: folder.

folder is a complete description of the path to this folder, for example HD:System
Folder:Extensions: or C:\Business\Documents\.

Result: This function returns a 6 byte binary data item that unambiguously describes the loca-
tion of the folder. However, if the folder does not exist the function returns an empty
binary data item ("").

Examples: This example checks to see if a folder exists.

if ""=folder("HD:Panorama Accounting:Order Entry:")
message "You do not have the Order Entry option."
stop

endif

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder parameter.

See Also: folderpath(function
listfiles(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function
openfiledialog statement
savefiledialog statement
makefolder statement

Page 5260
FOLDERPATH(...)
FOLDERPATH(

Syntax: FOLDERPATH(folder)

Description: The folderpath(function takes a path id and converts it to a description of the path to
that folder. A path id is a binary data item that unambiguously describes the location of a
folder on the hard disk. Path id’s are created by the folder(, dbinfo(and some info(
functions, and the openfiledialog and savefiledialog statements.

Parameters: This function has one parameter: folder.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder.

Result: This function returns complete description of the path to this folder, for example
HD:System Folder:Extensions: or C:\Personal\Shopping\.

Examples: This example displays the folder the currently running copy of Panorama is located in.

message "This database is in the "+
folderpath(info("panoramafolder"))+" folder."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder parameter. This error can also occur if the
folder parameter is more or less than 6 bytes long.

See Also: folder(function
listfiles(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function
openfiledialog statement
savefiledialog statement
makefolder statement

Page 5261
FONT
FONT

Syntax: FONT font

Description: The font statement specifies the font for the current Data Sheet, Design Sheet, or Cross
Tab window.

Parameters: This statement has one parameter: font

font is the name of the font you wish assigned to the active Data Sheet, Design Sheet, or
Cross Tab window. This parameter may be a quoted string, field, variable, or formula
which results in a name of a font currently loaded into your computer's system. All avail-
able system fonts will be listed on Panorama's Font submenu (Text menu).

Action: This statement will immediately set the font for the active window to the one specified
provided the window is a Data Sheet, Design Sheet, or Cross Tab window. All other
views will ignore the font statement.

You may also change the point size for the window using the size statement or change
the style using the style statement.

This statement has the same effect as using the Font submenu from the Text menu.

Examples: This example changes the font for the Data Sheet to Helvetica.

opensheet
font "Helvetica"

 This example opens a cross tab window called Budget, changes the font to palatino,
changes the point size to 14, prints the window and then returns to the original form.

local form
form = info("formname")
gocrosstab "Budget"
calccrosstab
font "palatino"
size 14
print ""
goform form

Views: This statement may be used in the Data Sheet, Design Sheet, or Cross Tab views only.

See Also: fieldstyle() function
size statement
style statement

Page 5262
FORMCOLOR
FORMCOLOR

Syntax: FORMCOLOR color

Description: The formcolor statement changes the background color of the current form (see colors).

Parameters: This statement has one parameter: color.

color is the new background color for the form. A color can be created with the rgb(or
hsb(functions, or with the colorwheel statement.

Action: This statement changes the background color of the current form. The default back-
ground color is white, but you can change it to any color with this statement. The back-
ground color can be changed manually by going into Graphics Mode, selecting Form
Preferences from the Setup Menu, then choosing the color from the pop-up menu. A
procedure can find out what the current background form color is with the info("form-
color") function.

Examples: The example sets the background color to light gray.

formcolor rgb(56000,56000,56000)

Views: This statement may be used in a form view.

See Also: colors
info("formcolor") function
rgb(function
hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
brightness(function

Page 5263
FORMCOMMENT(...)
FORMCOMMENT(

Syntax: FORMCOMMENT(database,form)

Description: The formcomment(function returns the form comment for any form in any open data-
base. The form comment is a description of the form that you can set up using the Form
Comment dialog in the Setup menu (graphics mode).

Parameters: This function has two parameters: database and form.

database is the name of the database that contains the form. The database must be cur-
rently open. If this parameter is empty text ("") the current database is assumed.

form is the name of the form.

Result: This function returns a textual description of the specified form. This description must
be set up in advance with the Form Comment dialog in the Setup menu (graphics mode)

Examples: The example below builds a list of all forms in the current database that have the word
“label” in the form comment.

local theDatabase,allForms,labelForms
theDatabase="" /* could be set to another db */
allForms= dbinfo("forms",theDatabase)
arrayfilter allForms,labelForms,¶,

?(formcomment(theDatabase, import()) contains "label", import(),"")
labelForms = arraystrip(labelForms,¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the database or form parameters.

See Also: info("formcomment") function

Page 5264
FORMCOMMENTS
FORMCOMMENTS

Syntax: FORMCOMMENTS

Description: The Formcomments statement allows you to pause a procedure to open and edit the
Form Comments dialog.

Parameters: This statement has no parameters.

Action: This statement is used to open the Form Comments dialog so that you may edit the com-
ments associated with the active form window. If the active window is not a form win-
dow this statement will result in an alert dialog warning you that you cannot do that in
this window.

The Form Comments dialog has three sub-divisions:

Primary Purpose of Form... which allows you to set an arbitrary "class" for that form.
This setting does not effect how Panorama deals with the form, it is simply used by the
designer as a means to categorize what the form is used for.

Notes... allows you to assign a description of the form's purpose. You may also use this
section to give the form's dimensions, orientation, or number of pages it prints, etc.

Preview... allows you to paste in a PICT image of what the form will look like. This may
be useful say, if someone is looking for a specific print format before choosing a print
form.

This statement has the same effect as choosing the Form Comments... command from
the Setup menu (Graphics Design mode of any form window.)

Examples: Running this example from a form window will open the Form Comments dialog for the
form and allow you to make changes to it.

formcomments

Page 5265
This example takes you to a form called date entry and allows you to edit the form com-
ments for it.

goform "data entry"
formcomments

Views: This statement may be used in a Form view only.

See Also: formcolor statement
formselect statement
formcomment(function
formtype() function
goform statement
info("formcolor") function
info("formname") function
info("typeofwindow") function
info("windowname") function
openform statement
window statement

Page 5266
FORMCOMMENTTYPE
FORMCOMMENTTYPE

Syntax: FORMCOMMENTTYPE type,subtype

Description: The formcommenttype statement allows a procedure to change the “type” of a form.
The form “type” is a pair of numbers that can be used to identify the purpose of the form
(display, printing, dialog, etc.). Panorama does not enforce the form type, so you can des-
ignated a form as a report and then use it as a dialog if you wish. However, you can use
the form type to help you keep track of what each form is used for. See the formselect
statement.

Parameters: This statement has two parameters: type and subtype.

type is a numeric integer from 0 to 255. New forms default to zero. 1 is reserved for data
entry forms, 2 for reports, and 3 for dialogs. You may use 4 through 255 for your own
special designations.

subtype is a numeric integer from 0 to 255. If the main type is 2, the subtype is suggested
to be either 0 (full page form) or 1 (multiple line report). Otherwise you can use this
value any way you like.

Action: This statement changes the “form type,” which is usually done manually with the Form
Comments dialog. If the active window is not a form window this statement will result
in an alert dialog warning you that you cannot do that in this window.

Examples: This example creates a new form and designates it as a report.

newform
formcommenttype 2,1

Views: This statement may be used in a Form view only.

See Also: formcolor statement
formselect statement
formcomment(function
formtype() function
goform statement
info("formcolor") function
info("formname") function
info("typeofwindow") function
info("windowname") function
openform statement
window statement

Page 5267
FORMSELECT
FORMSELECT

Syntax: FORMSELECT dialog#,filter,button,form

Description: The formselect statement pauses a procedure and displays a dialog through which the
user can choose a form from the active database. The dialog may also show the Form
Comments information (see formcomments.)

Parameters: This statement has four required parameters: dialog#, filter, button, and form.

dialog# is the resource number that identifies the dialog you wish to display. If you do
not wish to create your own dialog, with ResEdit for example, you may use Panorama's
built in dialog# 2086 This parameter may be a literal value, a field or variable containing
a numeric value or a formula which results in the proper numeric value.

filter is a numeric value used to determine which type of forms will be displayed in the
dialog. filter can be set for each form using the formcomments, or formcommenttype
statements or by using the Form Comments... command from the Setup menu (Graphics
Design mode of a form window.) This value is set in the Primary Purpose of Form... sec-
tion of the Form Comments dialog. This parameter may be a literal value, a field or vari-
able containing a numeric value or a formula which results in the proper numeric value.
The following list shows the possible filter values.

button is the name of a variable that will contain the name of the button that was
pressed inside the Form Select dialog. Clicking on any button in the dialog closes the dia-
log and allows the procedure to continue.

form is the name of a variable that will contain the name of the form selected in the dia-
log. If the variable is pre-set to the form name before the formselect statement is reached
this form will be selected when the dialog opens. If no form is select this variable will
equal "".

Action: This statement will pause a procedure while opening a Form Selection dialog allowing
the user to select a form and choose an operation from a series of buttons in the dialog
before continuing on with the procedure.

Examples: This example opens the built-in Panorama Form Selection dialog, displaying all forms. It
will store the button selection and form selection in the global variables defined.

global buttonname,formname
formselect 2086,0,buttonname,formname

This procedure opens a custom Form Selection dialog (# 3000) displaying Print forms
only and pre-selects the form called Sheet. The procedure makes a decision based on one
of three buttons pressed: Cancel, Print., or Edit.

0 All Forms

1 Data entry forms

2 Printing forms

3 Dialog & related forms

4 or greater Custom Forms

Page 5268
local PrintButton, PrintForm PrintForm = "Sheet"
openresource "Dialogs"
formselect 3000,2,PrintButton,PrintForm
if PrintButton = "Cancel"

stop
endif
if PrintButton = "Print"

openform PrintForm
print dialog
closewindow

endif
if PrintButton = "Edit"

openform PrintForm
graphicsmode
stop

endif

 This procedure asks the user to choose a form type, opens the standard Panorama Form
Select dialog, allowing them to select a form, and then hands off to another procedure,
called FormHandeling, to process the form.

local FormType
global TheButton,TheForm
gettext "Enter Form Type 0-4",FormType
formselect 2086,FormType,PrintButton,PrintForm
call FormHandeling,TheButton,TheForm

Views: This statement may be used in the Data Sheet of Forms view only.

See Also: formcomments statement
goform statement
info("formname") function
openform statement

Page 5269
FORMSERVERLOOKUP
FORMSERVERLOOKUP

Syntax: FORMSERVERLOOKUP status

Description: The formserverlookup statement allows a procedure to turn the User Server for Lookup
option on or off. (This option can also be turned on or off in the Form Preferences Dia-
log.)

Parameters: This statement has one parameter: status.

status should be either 0 or 1. If the value is 0 then lookups in this form will come from
the local database. If the value is 1 then lookups will be made directly from the SQL
Server database. Note: In addition to 0 and 1, you may also use "off" or "on, "no" or "yes",
or "false" or "true".

Action: This statement allows the database designer to trade off speed vs. up-to-the-minute
accuracy in lookups on a form. This option only affects Partner/Server databases that
are linked to an SQL server database. For up-to-the minute accuracy lookups should be
made directly from the server. However lookups from the server are substantially slower
than lookups from the local database. This option does not affect lookups made in proce-
dures, only lookups in auto-wrap text objects and Text Display SuperObjects.

Examples: The example forces lookups in the form Patient Status to be made from the local data-
base.

openform "Patient Status"
formserverlookup 0

Views: This statement may be used in Form views.

See Also: lookup(function

Page 5270
FORMTYPE(...)
FORMTYPE(

Syntax: FORMTYPE(database,form)

Description: The formtype(function returns the form type (a number) for any form in any open data-
base. The form type is a number that you can set up using the Form Comment dialog in
the Setup menu (graphics mode).

Parameters: This function has two parameters: database and form.

database is the name of the database that contains the form. The database must be cur-
rently open. If this parameter is empty text ("") the current database is assumed.

form is the name of the form.

Result: This function returns a number (integer) from 0 to 255. The value of this number
depends on the Primary Purpose of Form area of the Form Comment dialog (in the
graphics mode Setup Menu.) There are predefined radio buttons for 1) Data Entry, 2)
Printing, and 3) Dialog and other. Or you may enter any value from 0 to 255 in the Cus-
tom area.

Examples: The example below builds a list of all forms in the current database that are designated
for printing (type = 2).

local theDatabase,allForms,labelForms
theDatabase="" /* could be set to another db */
allForms=dbinfo("forms",theDatabase)
arrayfilter allForms,labelForms,¶,

?(formtype(theDatabase, import())=2, import(),"")
labelForms = arraystrip(labelForms,¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the database or form parameters.

See Also: formcomments function
info("formcomment") function

Page 5271
FORMULABUFFER
FORMULABUFFER

Syntax: FORMULABUFFER size

Description: The formulabuffer statement allows you to increase the size of the buffer Panorama uses
for evaluating formulas. The default value is 2000 bytes. If your formulas are too com-
plex you will get the error message Expression too complicated. This problem can be
cured with the formulabuffer statement.

Parameters: This statement has one parameter: size.

size is the new size of the formula buffer. If you specify a size of zero, Panorama will use
the default 2000 byte buffer, freeing any extra memory you have allocated for a larger
buffer.

Action: This statement forces Panorama to expand the formula evaluation buffer. The expanded
formula buffer is not created until the procedure is run. That means that if the complex
formula is in the same procedure as the formulabuffer statement, you won’t be able to
compile the procedure because the buffer hasn’t been expanded yet. The best way to
eliminate this problem is to put the formulabuffer statement into your .Initialize proce-
dure.

The formulabuffer statement is semi-permanent: it applies to all formulas in all data-
bases until you quit Panorama or change the setting again. If you want to cancel
expanded buffer and go back to the internal buffer, use formulabuffer statement with a
size of 0.

How large should you make the formula buffer? Most users have never encountered the
Expression too complicated error message and have no need to expand the buffer. If you
do encounter this error, you should probably start by modestly expanding the buffer,
perhaps to 3000 to 4000 bytes. If you still have a problem you can expand it further until
the problem disappears. However, if your database allows users to enter formulas of any
length, you may wish to expand the buffer in advance to a very large size, perhaps 32000
bytes.

Examples: This example expands the formula buffer to a very large size. Keep in mind that this
buffer is taken from your scratch memory space, which you may want to adjust accord-
ingly.

formulabuffer 3200

Views: This statement may be used in any view

See Also: none

Page 5272
FORMULACALC
FORMULACALC

Syntax: FORMULACALC result,formula

Description: The formulacalc statement allows you to evaluates a formula that you are not able to
code into the procedure when it was being written.

Parameters: This statement has two parameters: result and formula.

result must be the name of a field or a variable where you wish the result of the formula
to be placed. The formula's resulting value must match the type and format (if any) of
result or an error alert dialog will be displayed.

formula can be a literal value, a field or a variable, or an expression that returns the
value you wish to put into result. The resulting value must match the type and format (if
any) of result or an error alert dialog will be displayed.

Action: This statement evaluates formula and, if it is compatible with result’s type, writes the
answer to result.

Warning: If result already has a value in it formulacalc will replace that value with the
new one.

Examples: This example evaluates the formula in the field Expression and writes the answer to field
A.

formulacalc «A»,«Expression»

This example allows you to enter the formula you wish evaluated into the clipboard and
then placed the answer in a global variable called Answer.

global Answer
getscrap "Enter formula: "
formulacalc Answer, clipboard()

 This example is basically the same but stored the formula into a local variable called for-
mula and writes the answer to a global variable called Result which you could later dis-
play on a form.

global Result
local formula
gettext "Enter formula: ",formula
formulacalc Result,formula

 This example increases the width for the third field in the database to the amount deter-
mined by the formula entered.

opendesignsheet
local expression
downrecord
downrecord
gettext "Enter formula: ",expression
formulacalc Width,expression
newgeneration
closewindow

Page 5273

Views: This statement may be used in any view

See Also: emptyfill statement
fill statement
formulafill statement
formulasum statement
scrapcalc statement
set statement

Page 5274
FORMULAFILL
FORMULAFILL

Syntax: FORMULAFILL formula

Description: The formulafill statement fills every visible cell in the active field with the result of the
specified formula.

Parameters: This statement has one parameter: formula

formula can be a literal value, a field or a variable, or an expression that returns the
value you wish to put into the cells of the current field. The resulting value must match
the type and format (if any) of the field you are placing it in or an error will result. If for-
mula is the word dialog Panorama will present you with an input dialog so you may
enter your own formula.

Action: This statement evaluates formula and if it is compatible with the current field type writes
it's result to every cell in that field for all selected records only.

Warning: If a cell already has a value in it formulafill will replace that value with the
new one.

When formula is the word dialog Panorama will pause the procedure and present the
user with the Formula Fill dialog allowing the user to enter their own formula. Clicking
on the Ok button will allow the procedure to continue. This statement will work for all
field types except picture type fields.

This statement has the same effect as using the Formula Fill command from the Math
menu.

Examples: This simple example tells Panorama to clear all the selected cells of the active field.
Therefore, the active field should be a text or choice type field.

formulafill ""

This similar example works for numeric or date type fields.

formulafill zeroblank(0)

This example tells Panorama to look at all the selected cells of the field Options and only
fill the empty ones with the text string n/a.

field Options
formulafill ?(Options = "","n/a",Options)

 This example alters the area code for the selected records in the numeric field Phone
Number from 213 to 310.

field "Phone Number"
select strip(«Phone Number») beginswith "213"
formulafill val("310"+str(«Phone Number»)[4,-1])

 This example will have Panorama open the Formula Fill... dialog which allows you to
enter a formula, the result of which will be filled into the visible cells in the current field.

formulafill dialog

Page 5275
This example uses a formula to fill the visible cells in the field Date to Renew with a date
that is one year beyond the computer's current date. The final date will be the 1st of the
month.

field «Date to Renew»
formulafill datepattern(month1st(today() +

365),"mm/dd/yy")

 This example increases all the field widths by 10%.

opendesignsheet
field Width
formulafill Width * 1.10
newgeneration
closewindow

Views: This statement may be used in any view.

See Also: emptyfill statement
fill statement

Page 5276
FORMULAFINDSELECT
FORMULAFINDSELECT

Syntax: FORMULAFINDSELECT

Description: The formulafindselect statement pauses a procedure while opening the Formula Find/
Select dialog allowing the user to manually enter their search formula and perform one
of the find or select options.

Parameters: This statement has no parameters.

Action: This statement pause the procedure while displaying the standard Formula Find/Select
dialog. The user can then enter their search formula and choose one of the four search
options: Find, Select, Select Additional, or Select Within or they can hit the Cancel but-
ton. Hitting the Cancel button will cancel the search operation, but it will not terminate
the procedure. The procedure will continue running after the formulafindselect state-
ment.

Compound searches may be performed by writing your search formula correctly.

This statement cannot be used in combination with the info("found") or info("empty")
functions as the parameter of an if statement immediately after the formulafindselect
statement to test for a null find or select.

All search options will work on all fields except Picture type fields.

This statement has the same effect as choosing the Formula Find/Select command from
the Search menu.

Examples: This example opens the Formula Find/Select dialog.

formulafindselect

 This example allows you to use the Formula Find/Select dialog and then it sorts the
selected records and brings you to the first one.

message "Use the upcoming dialog to select the records you wish to work
with."
formulafindselect
field «Company Name»
sortup
firstrecord

Views: This statement may be used in the Data Sheet, Form views and Cross Tab views only.

See Also: find statement
findselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectadditional statement

Page 5277
selectall statement
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5278
FORMULASUM
FORMULASUM

Syntax: FORMULASUM result,formula

Description: The formulasum statement allows you to evaluates a formula over and over again for
each selected record and return the accumulated sum to result.

Parameters: This statement has two parameters: result and formula.

result must be the name of a field or a variable where you wish the result of the summed
formula to be placed. The resulting summed value must match the type and format (if
any) of result or an error alert dialog will be displayed. If result is a variable you can pre-
set the type by assigning it an arbitrary value of the same type prior to using the formu-
lasum statement. If result is a field Panorama will write the sum to this field for the
active record only.

formula can be a literal value, a field or a variable, or an expression that returns the
value you wish to put into result. The formula's resulting value must match the type and
format (if any) of result or an error alert dialog will be displayed.

Action: This statement evaluates formula for each selected record accumulating a total on a
record by record basis and, if it is compatible with result’s type, writes the sum to result.

Warning: If result already has a value in it formulasum will replace that value with the
new one.

Examples: This example sums the numeric field Amount and writes the answer to Total.

formulasum Total,Amount

This example counts the records where Amount is over a certain Threshold value and
writes the answer to the global variable Over.

local Threshold
global Over
Over = 0
gettext "Enter Threshold value: ",Threshold
formulasum Over, ?(Amount > val(Threshold),1,0)

 This example allows you to enter the formula you wish evaluated over and over again
for each record into the clipboard. The accumulated sum for this formula is then placed
in the global variable called Answer.

global Answer
Answer = 0 ; This initializes the variable as numeric
getscrap "Enter formula: "
formulasum Answer, clipboard()

 This example is basically the same, but stored the formula into a local variable called
formula and writes the answer to a global variable called Result which you could later
display on a form.

Page 5279
global Result
local formula
gettext "Enter formula: ",formula
formulasum Result,formula

Views: This statement may be used in any view.

See Also: emptyfill statement
fill statement
formulacalc statement
formulafill statement
scrapcalc statement

Page 5280
FORMXY
FORMXY

Syntax: FORMXY vertical,horizontal

Description: The formxy statement allows you to scroll a form in any direction to a new position
within the form's window on screen.

Parameters: This statement has two required parameters: vertical and horizontal.

vertical and horizontal are the co-ordinates (in pixels) you wish to move the respective
scroll bars to reposition the form in it's window (72 pixels = 1 inch). This statement will
basically change the upper left hand corner of the form in the screen's window. These co-
ordinates are measured from the upper left most portion of the form. These parameters
can be literal values, fields, variables, or formulas which result in a positive integer num-
ber. Note: Both parameters will be rounded to the nearest multiple of 8 to insure that pat-
terns are displayed correctly.

Action: This statement allows you to perform the same task as manually adjusting the vertical or
horizontal scroll bars of any active form window; even if the scroll bars are not available
for that form's window.

Note: Using this statement in a non-form window will result in an error alert dialog.

Examples: This example opens a form called List View 1 and scrolls the window down four inches
from the top of the form.

openform "List View 1"
formxy 4*72,0

 This example first scrolls the form Enter Data down one inch to edit the field Job Num-
ber, then scroll down another inch to edit the field Customer and finally scrolls over
three inches to edit the field Description.

openform "Enter Data"
formxy 1*72,0
field «Job Number»
editcell
formxy 2*72,0
field «Customer»
editcell
formxy 2*72,3*72
field «Description»
editcell

 This example allows you to select a city name and scroll the US map form, open on
screen, to the form co-ordinates for that city stored in the fields X and Y.

getscrap "Enter city name"
find City contains clipboard() ;find the city's record
formxy X,Y

Views: This statement may be used in a Form view only.

Page 5281
See Also: magnification statement
goform statement
info("formname") function
info("typeofwindow") function
info("windowname") function
openform statement
window statement

Page 5282
FUNCTIONS
FUNCTIONS

Introduction: Functions are used within formulas to calculate or retrieve information. Most functions
have one or more parameters which are used as input to the calculation.

Functions are easy to spot because they always are followed by parenthesis: sin(angle),
int(number), today(), replace(Company,"Inc","Incorporated"). If the function has any
parameters, they must appear within the parenthesis. You must supply the exact param-
eters required by the function—no more and no less, and they must be in the correct
order.

Functions may be used in any formula—in a procedure, in an auto-wrap text object, and
in many SuperObjects.

See Also: statements

Page 5283
FV(...)
FV(

Syntax: FV(rate,periods,payment,pv,begin)

Description: The fv(function (short for future value) calculates the future value of an investment. For
example, if you invest $500 a month at 10% annual interest, how much money will you
have at the end of ten years? This function will calculate that value for you.

Parameters: This function has five parameters: rate, periods, payment, pv and begin.

rate is the interest rate of the investment (per period). For example, if there is one pay-
ment per year, this is the annual percentage rate. If there is one payment per month, then
this is the monthly percentage rate.

periods is the number of payments that will be made during the life of the investment.
For example, if this is a 36 month investment with one payment per month, this value is
36. If this is a 30 year investment with one payment per month this value is 1080.

payment is the amount being invested each period. This should actually be the negative
of the amount invested. For example, if you invest $500 per month, the payment amount
should be -500.

pv (present value) is the initial value of the investment at the start of the period (actually
the negative of the initial value). For example if your savings account starts with $2,000,
this value should be -2000.

begin specifies whether payments are made at the beginning (1) or end of each period
(0).

Result: The result of this function is always a numeric floating point value.

Examples: If the payment period is annually the calculation is simple. Suppose you start with
$3,000 and invest it in a savings account at 7% annual interest. Then you take $5,000 at
the end of each year for the next ten years and invest that also. This formula will calcu-
late the final balance in your account at the end of 10 years.

fv(0.07,10,-5000,-3000,0)

Most investments are paid more frequently than once a year…usually once a month. To
calculate the future value for such an investment you must convert the annual percent-
age rate into a monthly percentage rate by dividing by 12. Suppose you invest $200 a
month at the beginning of each month for 5 years into an investment that returns 13.5%
annual interest. The final value of this investment after 10 years can be calculated with
this formula.

fv(0.135/12,5*12,-200,0,1)

You can also use this function to calculate the appreciation of a fixed up-front invest-
ment, with no payments. Suppose you invest $50,000 for 5 years at 14% annual interest.
This formula will calculate the value of this money after 5 years:

fv(0.14,5,0,-50000,0)

Of course the fv(function only works with fixed interest rates.

Notes: Here is the formula that Panorama uses to calculate future value.

Page 5284

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example fv("12%",…). If you have
a number in a text item you must convert the text to a numeric value before calculating
the future value, for example fv(val("12%"[1,-2]),…).

See Also: pmt(function
pv(function

Page 5285
G

GENERATEVALUES
GENERATEVALUES

Syntax: GENERATEVALUES threshold

Description: The generatevalues statement automatically generates a list of choices for a field. The list
appears in the Choices attribute in the design sheet.

Parameters: There is one parameter: threshold

threshold is the number of times a field's content must appear in other records before
that content is added to a choices list.

Action: The generatevalues statement scans the database and builds a list of the values in the
field. This list is placed into the Choices column in the design sheet.

In order to understand the purpose of this statement, you need to understand Pan-
orama's various "Choices" options. First consider the Choices attribute. After a list of ele-
ments is entered in a field's Choices attribute, data editing in that field (back in the
datasheet or form view) is changed from "anything goes" to a radio button choice of only
the elements entered in that field's designsheet Choices attribute.

Creating a Choices list is also the first step in creating a popup button choice for the field.

Also, once a database contains thousands of records it might be necessary to reduce it's
size. This can be done by creating a Choices attribute of the most common content of a
field, then changing the field Type to Choices. Panorama would then builds it's own dic-
tionary of the names in the Choices list, and substitutes shorter codes in all the records.
This is mostly a benefit if the field's content is large and mostly repeating.

Note that it is not necessary to create a Choices Type, it's only an option after the choices
list has been created. Though you don't see the dictionary substitution, it still adds a little
bit of overhead. Choices Type is only used when file size becomes an issue.

Also, when you sort a field that has Choices attributes,it sorts according to the Order of
the elements in the Choices list. Any records in the "Other" category are sorted after.

So how would you decide what content to put in your Choices attribute? Panorama
automatically does that for you if you select Automatic Choices under the Special menu
in the Design Sheet, and generatevalues will do that for you in a procedure.

If all the records in the database match your threshold criteria, just a list of the fields con-
tents is created. If there are some records who's content did not make it to the list because
that content didn't appear enough to meet the threshold criteria, an "Other" element is
added to the end of the list. The width of the "Other" element is equal to the length of the
largest content of that field (from those who didn't make it to the list) in the database.

Examples: If you had six records in the database and your field «mycity» contained the following
data and you ran the sample procedure shown below

Portland
Huntington Beach
Portland
Seal Beach
Huntington Beach
Huntington Beach

Page 5286
opendesignsheet
field «mycity»
generatevalues 2
newgeneration
closewindow

The Choices attribute for «myfield» would contain

Portland Huntington_Beach __________

Note the __________ "Other" is added because at least one record, Seal Beach did not sat-
isfy the criteria of occurring two or more times.

Views: This statement may be used only in the design sheet window.

See Also: opendesignsheet statement
field statement
newgeneration statement
closewindow statement

Page 5287
GESTALT(...)
GESTALT(

Syntax: GESTALT(option)

Description: The gestalt(function makes a wide variety of system configuration information avail-
able to the Panorama programmer. Since this function is based on the MacOS Gestalt
system function most of the information options are only available on MacOS based sys-
tems, but some information is available even on Windows PC systems.

Parameters: This function has one parameter: option.

option is a four letter code that specifies what information you want to access. There are
literally hundreds of valid codes available on MacOS based systems, and new codes are
added all the time (by third parties as well as by Apple). Only a few of these options will
be discussed here, for a more information you will need to consult Apple programming
documentation as well as programming documentation provided by third party ven-
dors.

Result: The result of this function depends on the option selected. In most cases it returns a
number but some options return a text value.

Examples: This example displays the current system version (for example 8.6.1 or 9.0.4).

message radixstr(16,gestalt("sysv"))[6;1]+"."+
radixstr(16,gestalt("sysv"))[7;1]+"."+
radixstr(16,gestalt("sysv"))[8;1]

This example displays the amount of physical RAM memory installed in the machine.

message pattern(gestalt("ram "),"#, bytes")

This example displays the amount of logical RAM memory (including virtual memory)
available in the machine.

message pattern(gestalt("lram "),"#, bytes")

This example displays whether or not AppleScript is available on this machine.

message "AppleScript: "+?(1 and gestalt("ascr"),"YES","NO")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the option parameter.

See Also: radixstr(function
pattern(function
info("panoramafolder") function
info("systemfolder") function

Page 5288
GETADDRESS
GETADDRESS

Syntax: GETADDRESS raw,streetaddress,city,state,zip,country

Description: The getaddress statement divides an address into its individual components: street
address, city, state, zip code and country.

Parameters: This statement has six parameters: raw, streetaddress, city, state, zip, and country

raw may be in a field or variable. The raw address must be either 2 or 3 lines high. It con-
tains the street address in one or two lines and the city, state, and zip and country infor-
mation in the last line.

streetaddress may be in a field or variable. It holds the street address returned by getad-
dress.

city may be in a field or variable. It holds the city returned by getaddress.

state may be in a field or variable. It holds the state returned by getaddress.

zip may be in a field or variable. It holds the zip code returned by getaddress.

country may be in a field or variable. It holds country returned by getaddress.

If the city and state are left off the raw address, getaddress will look them up using the
zip code (if it is a US address and the optional Zip Magic file is installed).

Action: The getaddress statement investigates the content of the raw parameter starting from the
end (last character). That is, if the last field in the address is not a number, it's considered
the country and capitalized.

If the next field (or last field) is a number, it is considered the zip code. If the zip code has
letters in it, it is considered a Canadian zip code and CANADA is assigned to the coun-
try parameter (note capitalization). If the zip code is the last element on that line, and it's
a USA zip code, the city and state are looked up (if you have the Zip Magic file) with the
two letter state abbreviation capitalized and the first letter of the state capitalized. Alert,
the city must be separated from the state by a comma in order for the parser to properly
identify the fields.

The content of the field after the first carriage return - remember, we are looking from the
end of the field to the front - is considered the streetaddress. If another carriage return is
found, the content prior to it is the first line of the streetaddress.

Only first letter of the names in the address are capitalized. So 1015 s river road would
become 1015 S. River Road. But if there is a two letter direction like nw (north west),
you'd have to manually capitalize it at entry time, like 1015 NW river road

Examples: Given an address in the following format:

Student Building
1234 West Street
Huntington Beach, CA 92648 USA

in a field called «myaddress»

local Madr, Mcty, Mste, Mzip, Mcntry
getaddress «myaddress»,Madr,Mcty,Mste,Mzip,Mcntry

would return

Page 5289
Student Building
1234 West Street in Madr
Huntington Beach in Mcty
CA in Mste
92648 in Mzip
USA in Mcntry

Because this function cannot anticipate every variation of address format, it best to try it
on your anticipated data. For example, if you also had a Name above Student Building
in the «myaddress» field, the getaddress function would incorrectly parse the rest of the
address.

Views: This statement may be used in any view

See Also: getcitystatezip statement

Page 5290
GETAUTONUMBER
GETAUTONUMBER

Syntax: GETAUTONUMBER variable

Description: The getautonumber statement finds out the automatically generated number for the
next record that will be added to database.

Parameters: This statement has one parameter: variable.

variable will be filled with the automatically generated number for the next record.
Note: If this is an SQL Partner/Server database the number will change if other users
add records to the database.

Action: Panorama can automatically number new records as they are added to the database.
This statement allows a procedure to find out what the next number will be. The next
number can be changed with the setautonumber statement.

Examples: The example skips autonumbering ahead by 100.

local xNumber
getautonumber xNumber
setautonumber xNumber+100

Views: This statement may be used in a Data Sheet or Form view.

See Also: setautonumber statement
addrecord statement
insertrecord statement

Page 5291
GETBUTTON
GETBUTTON

Syntax: GETBUTTON top,left,height,width

Description: The getbutton statement retrieves the global screen co-ordinates of the last button that
was pressed. (Global screen co-ordinates are the co-ordinates from the top left hand cor-
ner of the menu bar. The co-ordinates are measured in pixels.)

Parameters: This statement has four parameters: top, left, height and width.

The four parameters should be variables. Note: Panorama 3 has a function that returns
the same information: info("buttonrectangle").

top is a field or variable. The statement will fill this variable with the distance from the
top of the screen to the top of the button.

left is a field or variable. The statement will fill this variable with the distance from the
left side of the screen to the left side of the button.

Action: height is a field or variable. The statement will fill this variable the height of the button.

width. is a field or variable. The statement will fill this variable the width of the button.

Examples: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field. It is used in a procedure that can be triggered by a
button push.

local btop, bleft, bheight, bwidth
getbutton btop, bleft, bheight, bwidth

Views: This statement may be used in a Form view

See Also: getlocalbutton statement
getinternalbutton function
info("trigger") statement
popup statement
setwindow statement
floatingedit statement
info("buttonrectangle")

Page 5292
GETCITYSTATEZIP
GETCITYSTATEZIP

Syntax: GETCITYSTATEZIP raw,city,state,zip,country

Description: The getcitystatezip statement divides the last line of an address into separate compo-
nents.

Parameters: This statement has five parameters: raw, city, state, zip and country

raw is a text item containing the combined city, state, and zip and country information
in one line.

city may be in a field or variable. It holds the city returned by getcitystatezip.

state may be in a field or variable. It holds the state returned by getcitystatezip.

zip may be in a field or variable. It holds the zip code returned by getcitystatezip.

country may be in a field or variable. It holds country returned by getcitystatezip.

If the city and state are left off the raw address, getcitystatezip will look them up using
the zip code (if it is a US address and the Zip Magic file is installed).

Action: The getcitystatezip statement investigates the content of the raw parameter starting
from the end (last character). If the last field in the address is not a number, it's consid-
ered the country and capitalized.

If the next field (or last field) is a number, it is considered the zip code. If the zip code has
letters in it, it is considered a Canadian zip code and CANADA is assigned to the coun-
try parameter (note capitalization).

If the zip code is the last element on that line, and it's a USA zip code, the city and state
are looked up (if you have the Zip Magic file) with the two letter state abbreviation capi-
talized and the first letter of the state capitalized. Alert, the city must be separated from
the state by a comma in order for the parser to properly identify the fields.

Only first letter of the names in the address are capitalized. So 1015 s river road would
become 1015 S. River Road. But if there is a two letter direction like nw (north west),
you'd have to manually capitalize it at entry time, like 1015 NW river road

Examples: Given an address in the following format:

Huntington Beach, CA 92648 USA

in a field called «mycsz»

local Mcty, Mste, Mzip, Mcntry
getcitystatezip «mycsz»,Mcty,Mste,Mzip,Mcntry

would return

Huntington Beach in Mcty
CA in Mste
92648 in Mzip
USA in Mcntry

Because this function cannot anticipate every variation of address format, it best to try it
on your anticipated data.

Page 5293
Views: This statement may be used in a procedure.

See Also: getaddress statement

Page 5294
GETCLICK
GETCLICK

Syntax: GETCLICK vertical,horizontal

Description: The getclick statement gets the location of the mouse in global coordinates (co-ordinates
from the top left corner of the menu bar). Note: Panorama 3 has a function that returns
the same information: info("click")

Parameters: There are two parameters: vertical and horizontal

vertical holds the pixel distance from the top of the screen.

horizontal holds the pixel distance from the left edge of the screen.

Action: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field.

Examples: This example displays the distance of the click from the upper left hand corner of the
screen (for example 4.5 inches).

local mouseV,mouseH
getclick mouseV,mouseH
message str(

sqr(mouseV*mouseV+mouseH*mouseH)/72)+" inches"

Views: This statement may be used in Form views.

See Also: getlocalclick statement
info("trigger") function
popup statement
setwindow statement
floatingedit statement
info("click") function
xytoxy(function

Page 5295
GETCURSOR
GETCURSOR

Syntax: GETCURSOR top,left,height,width

Description: The getcursor statement retrieves the global screen co-ordinates of the current active
field. (Global screen co-ordinates are the co-ordinates from the top left hand corner of the
menu bar. The co-ordinates are measured in pixels.)

Parameters: This statement as four parameters: top, left, height and width.

The four parameters should be variables. Note: Panorama 3 has a function that returns
the same information: info("cursorrectangle").

top holds the pixel distance from the top of the screen.

left holds the pixel distance from the left edge of the screen.

height holds the pixel height of the button.

width. holds the pixel width of the button.

Action: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field.

Examples: This example opens the form window Detail over the currently active field.

local btop, bleft, bheight, bwidth
getcursor btop,bleft,bheight,bwidth
setwindow statement
floatingedit btop,bleft,100,250,""
openform "Detail"

Views: This statement may used in a Form view.

See Also: popup statement
setwindow statement
floatingedit statement
info("cursorrectangle")

Page 5296
GETFILEFINDERINFO
GETFILEFINDERINFO

Syntax: GETFILEFINDERINFO folder,filename,typecreator,position, flags,
creationdate, modificationdate

Description: The getfilefinderinfo statement retrieves a collection of information about a file, includ-
ing when it was created and last modified and its position within the window.

Parameters: This statement has seven parameters: folder, filename, typecreator, position, flags, cre-
ationdate, and modificationdate.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder where the file should be saved. A path id is a binary data item that unam-
biguously describes the location of a folder on the hard disk. Path id’s are created by the
folder(and dbinfo(functions, and the openfiledialog and savefiledialog statements. If
this parameter is empty text ("") the folder containing the current database is assumed.

filename is the name of the file you wish to save. The file name may be up to 31 charac-
ters long, and may not contain / characters.

typecreator may be a field or variable. Panorama will place the 4 character type code and
4 character creator code into this field or variable, for example ZEPDKASX for a Pan-
orama database file.

position is the visual x-y position of this file within the folder (see graphic coordinates).
If you don't want to change the position use 0.

flags is a number that specifies operating system specific options for this file. If bit 14 of
this value is set then the file is invisible. If you don't want to change the flags use 0.

creationdate contains the time and date the file was created, in SuperDate format (see
superdate(). If you don't want to change this date use 0.

modificationdate contains the time and date the file was last modified, in SuperDate for-
mat (see superdate(). If you don't want to change this date use 0.

Action: The getfilefinderinfo statement allows a procedure to determine the visible properties of
a disk file. It can be used with the setfilefinderinfo statement to examine and modify
those properties.

Examples: This program examines the file Sunset.jpg and checks to see if it has ever been modified.

local fileCodes,fileSpot,fileOptions,fileCreated,fileModified
getfilefinderinfo "","Sunset.jpg",fileCodes,fileSpot,

fileOptions,fileCreated,fileModified
if fileCreated=fileModified

message "This file has not been modified since it was created."
endif

Views: This statement may be used in any view.

Page 5297
See Also: setfilefinderinfo statement
filerename statement
filetypecreator statement
filesave statement
filetrash statement
folder(function

Page 5298
GETINTERNALBUTTON
GETINTERNALBUTTON

Syntax: GETINTERNALBUTTON top,left,height,width

Description: The getinternalbutton statement retrieves the form relative co-ordinates of the last but-
ton that was pressed. (Form-relative are the same co-ordinates that you would get if you
used the Dimension command to find the co-ordinates of the button (see the xytoxy(
function. The co-ordinates are measured in pixels.)

Parameters: This statement has four parameters: top, left, height and width.

The four parameters should be variables.

top holds the pixel distance from the top of the screen.

left holds the pixel distance from the left edge of the screen.

height holds the pixel height of the button.

width. holds the pixel width of the button.

Action: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field. It is used in a procedure that can be triggered by a
button push.

Examples: This example scrolls the current form so that the top left edge of the button is at the top
left edge of the window.

local btop, bleft, bheight, bwidth
getinternalbutton btop, bleft,bheight,bwidth
formxy btop,bleft

Views: This statement is used in a form view when a button triggers a procedure.

See Also: getbutton statement
getlocalbutton function
info("trigger") statement
popup statement
setwindow statement
floatingedit statement

Page 5299
GETLOCALBUTTON
GETLOCALBUTTON

Syntax: GETLOCALBUTTON

Description: The getlocalbutton statement retrieves the local screen co-ordinates of the last button
that was pressed. (Local screen co-ordinates are the co-ordinates from the top left hand
corner of the current window. The co-ordinates are measured in pixels.)

Parameters: This statement has four parameters: top, left, height and width.

The four parameters should be variables.

top holds the pixel distance from the top of the screen.

left holds the pixel distance from the left edge of the screen.

height holds the pixel height of the button.

width. holds the pixel width of the button.

Action: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field. It is used in a procedure that can be triggered by a
button push.

Examples: This example allows the user to choose a color using a button that triggers a popup
menu.

local btop,bleft,bheight,bwidth,NewColor
getlocalbutton btop,bleft,bheight,bwidth
NewColor=""
popup "Red"+¶+"Green"+¶+"Blue"+¶+"(-"+¶+"Black",

btop,bleft,"Blue",NewColor

Views: This statement is may be used in a Form view.

See Also: getbutton statement
getinternalbutton function
info("trigger") statement
popup statement
setwindow statement
floatingedit statement

Page 5300
GETLOCALCLICK
GETLOCALCLICK

Syntax: GETLOCALCLICK vertical,horizontal

Description: The getlocalclick statement gets the location of the mouse in local coordinates (co-ordi-
nates from the top left corner of the current window).

Parameters: This statement has two parameters: vertical and horizontal

vertical holds the pixel distance from the top of the screen.

horizontal holds the pixel distance from the left edge of the screen.

Action: This statement is used to capture coordinates which can be used to position a PopUp
menu, window or floating edit field.

Examples: This example checks to see if the mouse was clicked more than 5 pixels away from the
previous mouse click.

fileglobal mouseV,mouseH
local newV,newH
define mouseV=0 /* in case this is the first time! */
define mouseH=0
getlocalclick newV,newH
if abs(newV-mouseV)>5 or abs(newH-mouseH)-5

message "Clicked far away"
endif
mouseV=newV /* the new click becomes the old click for next time */
mouseH=newH

Views: This procedure statement may used in a Form view.

See Also: getclick statement
info("trigger") function
info("click") function
popup statement
setwindow statement
floatingedit statement
xytoxy(function

Page 5301
GETMAXWINDOW
GETMAXWINDOW

Syntax: GETMAXWINDOW top,left,height,width

Description: The GetMaxWindow statement returns the location and size of the largest possible win-
dow on the main screen.

Parameters: This statement has four parameters, the top edge, the left edge, the height, and the width
(all dimensions in pixels).

Action: The numeric values of the location and size of the largest window on the main screen are
returned by the GetMaxWindow statement. This is the size a window would have when
it is zoomed out.

Examples: The example below shows a typical application of this statement.

local ZTop, ZLeft, ZHght, ZWidth
GetMaxWindow ZTop, ZLeft, ZHght, ZWidth
...
...

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: getwindow statement
setwindow statement
zoomwindow statement

Page 5302
GETMENUMARK
GETMENUMARK

Syntax: GETMENUMARK menu,item

Description: The getmenumark statement gets the mark attached to a menu item (if any), and places
it into the clipboard. The mark is usually a checkmark (for example Fast), but may be any
character.

Parameters: This statement has two parameters: menu and item.

menu is the name or ID number of the menu that contains the item that may be marked.
The menu ID is assigned in ResEdit.

item is the name of the menu item, or the number of the menu item within the menu
(starting with 1 at the top). For example, suppose the third item in the Books menu is
Cleared. This menu item may be specified as either "Cleared" or 3.

Action: This statement finds out if a mark is attached to a menu item, and if so, what that mark
is. The mark character is placed in the clipboard.

Examples: Suppose a database has a Rush menu item in the Order custom menu. The example
below could be part of the .CustomMenu procedure, and handles adding and removing
a checkmark from the Rush menu item (Rush/Rush).

if info("trigger") = "Menu.Order.Rush"
getmenumark "Order","Rush"
if clipboard() = ""

setmenumark "Order","Rush",chr(18)
else

setmenumark "Order","Rush",""
endif

Views: This statement may be used in any view that has custom menus installed.

See Also: setmenumark statement
clearmenumarks statement
getmenutext statement
setmenutext statement
menudisable statement
menuenable statement
menubuild statement
getmenus statement
setmenus statement

Page 5303
GETMENUS
GETMENUS

Syntax: GETMENUS

Description: The getmenus statement gets the custom menu bar configuration and places it into the
clipboard. By using this statement in combination with the setmenus statement a proce-
dure can change the menu bar and then later change it back.

Parameters: This statement has no parameters.

Action: This statement creates a list of the menus in the menu bar, and places that list into the
clipboard. The menu numbers in the list will be separated by spaces. Menu numbers
below 128 are standard Panorama menus (see the list of standard menus below). Menus
above 128 are custom menus which you create with a resource editing program like
ResEdit.

Examples: The example below checks to see if the current menu configuration contains a Text menu
(menu number 73, see table above). If it does contain a Text menu the procedure adds
custom menu 3006 at the end of the menu bar.

local theMenus
getmenus
theMenus= clipboard()
if theMenus contains "73"
setmenus theMenus+" 3006"
endif

Menu Number Notes

Apple 1 Apple Menu

File 7 Use in Data Sheet window

File 27 Use in Form windows

Window S18 Arrange (submenu of FIle menu)

Edit E19 Use in Data Sheet window

Edit E37 Use in Form windows

Fields 28 Normally used in Data Sheet window

Text 73 Normally used in Data Sheet window

Font S3 Submenu of Text menu

Size S4 Submenu of Text Menu

Search 8

Sort 9

Math 10

Setup 68 Normally used in Data Sheet window

Setup 70 Normally used in Form window

Page 5304
Views: This statement may be used in Data Sheet and Form views.

See Also: menubuild statement
setmenus statement
setmenutext statement
getmenutext statement
setmenumark statement
getmenumark statement
clearmenumarks statement
menudisable statement
menuenable statement

Page 5305
GETMENUTEXT
GETMENUTEXT

Syntax: GETMENUTEXT menu,item

Description: The getmenutext statement finds out the text of a menu item and places that text on the
clipboard.

Parameters: This statement has two parameters: menu and item.

menu is the name or ID number of the menu that contains the item the procedure is
interested in. The menu ID is assigned in ResEdit.

item is the number of the menu item within the menu (starting with 1 at the top). For
example, suppose the third item in the Books menu may be Post Now or Post Later, and
you want to find out which. The item parameter should be 3.

Action: This statement finds out the name of a single item within a menu.

Examples: This example toggles the fifth menu item in the Preferences custom menu between Fast
and Slow.

getmenutext "Invoice",5
if clipboard() contains "Fast"
setmenutext "Preferences",5,"Slow"
else
setmenutext "Preferences",5,"Fast"
endif

Views: This statement may be used in any view that has custom menus installed

See Also: setmenutext statement
setmenumark statement
getmenumark statement
clearmenumarks statement
menudisable statement
menuenable statement
menubuild statement
getmenus statement
setmenus statement

Page 5306
GETNAME
GETNAME

Syntax: GETNAME Raw,Prefix,First,Middle,Last,Suffix

Description: The GetName statement parses a person's name in natural format into separate fields.

Parameters: There are six parameters to the GetName statement.

The first parameter is the raw name, which should be a single line of text in a field or
variable. The next five parameters are variables or fields for storing the Prefix (Mr., Mrs.,
Ms., Dr., etc.), First, Middle, Last, and Suffix(Jr., III, etc.).

Action: The GetName parses the person's name into its component parts.

Examples: The example below shows a typical application of this statement.

local name
global prfx, first, mi, lstnme, sufx
name="Mr. William J. Edwards, Jr."
GetName name, prfx, first, mi, lstnme, sufx

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

Page 5307
GETNSTRING(...)
GETNSTRING(

Syntax: GETNSTRING(type,id,number)

Description: The getnstring(function gets a text resource from an open resource file and copies it into
a variable. The string is extracted from a STR# resource, which holds a collection of mul-
tiple strings in each resource.

Parameters: This function has three parameters: type, id and number.

type is the resource type. This must be a four letter text item. You can specify any
resource type you like here, but strings are usually stored in resources of type "STR#"
(multiple Pascal Strings). (If you specify "" for the type, Panorama will assume "STR#".)

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item). number is the number of the string item within the collec-
tion. For example, if the collection contains 6 strings they will be numbered 0, 1, 2, 3, 4,
and 5.

Result: This function returns whatever text is in the specified item within the specified resource
collection.

Examples: This example displays the contents of STR# resource #693 item 12.

openresource "Accounting Messages"
message getnstring("",1296,11)

All resource have numbers, but they do not all have names. If the resource does have a
name, you can use the name for the ID. This example displays the 12th item in the Errors
collection.

openresource "Accounting Messages"
message getnstring("","Errors",11)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the type parameter. The type must be a four letter text
item.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a number for the number parameter.

See Also: openresource statement
openresourcerw statement
closeresource statement
getresource(function
getstring(function
getstringmatch(function
resourcetypes(function
resources(function

Page 5308
GETPHONE
GETPHONE

Syntax: GETPHONE raw,localarea,country,phfld1,phfldmax,phtyp

Description: The getphone statement breaks out one or more phone numbers from the raw field. It
splits them into various components and formats the number into the phone number
format (aaa) ppp-ssss.

Parameters: This statement has six parameters: raw, localarea, country, phfld1,phfldmax, phtype

Be sure to read all requirements before using. They vary depending upon the nature of
phlfld1.

raw may be in a field, variable. raw contains one or more phone numbers, separated by
spaces or carriage returns.

localarea may be a field or variable but is usually a "constant". It specifies the area code
used by getphone if the local area code is missing from the first number. Alert: if subse-
quent numbers in raw don't have and area code, they use the previous number's area
code, not the localarea number.

country may be in a field or variable or formula but is usually a "constant". If it's some-
thing other then blank [""] or USA or CANADA (note: capitalization), the phone number
won't be formatted.

phfld1 may be in a field or array. It holds the phone type, like "voice" or "fax" that's
extracted by getphone. If fields are used, they must appear as a pair with the phone field
in the design sheet. For example, phfld1, phone1, phfld2, phone2, phfld3, phone3. Note
that the field names don't matter. They must just end with a sequential number and
appear in phonetype,phonenumber order.

phfldmax may be in a field or variable but is usually a "constant". It specifies the number
of pairs of phone type and phone number field pairs set up to hold data. Alert: if you are
using an array for phfld1, then phfldmax must be zero. phtype may be in a field or vari-
able but is usually a "constant". It specifies the phone type used by getphone if one isn't
found for the number. Usually "Voice" is the default value.

Action: The parsing rules are thus: The phone type description in raw must start with a letter.
Everything up to the first number is taken as the type's description, except for a trailing
space or spaces between the last letter and the first number. Next follows the unformat-
ted phone number if the phone number starts with a 1, and the country parameter calls
for formatting, the 1 will be removed. Extension information can follow the phone num-
ber, usually separated by a space. But the extension information must begin with x, ext,
extension, rm, room, op, or operator, otherwise it could be misinterpreted.

Note: The default type only applies to the first phone number. if subsequent phone num-
bers are separated by spaces rather than carriage returns, they must have a type. If sub-
sequent phone numbers are separated by carriage returns, the default type is applied to
the number.

Because there are many ways to interpret the phone data, it's recommended that you try
this with several examples of your expected data to find the appropriate use of type
descriptions, spaces, and carriage returns.

Page 5309
Examples: In a field called «rawphones» you have the following content: 4085552345 office 5553434
fax 8971234. The Design Sheet has fields aaa, bbb, ccc, phntyp1, here1, phntyp2, here2,
phntyp3, here3, xxx, yyy, zzz

getphone «rawphones»,"714","USA",phntyp1,3,"Voice",

would return

Voice in phntyp1
(408) 555-2345 in here1
Office in phntyp2
(408) 555-3434 in here2
Fax in phntyp3
(408) 897-1234 in here3

Note that because the first number already had an area code, 714 wasn't used. Also, the
first letter of the phone types was capitalized.

If instead of splitting the phone numbers in to separate variables, you wanted to store
them in a field or variable called HoldMe, that statement would look like:

getphone «rawphones»,"714","USA",«HoldMe»,0,"Voice",

This would result in one phone type and number stored per line. it would look like:

Voice (408) 555-2345
Office (408) 555-3434
Fax (408) 897-1234

in «HoldMe»

extract(and array(are functions that could be used to pull specific types and/or num-
bers from «HoldMe»

Views: This statement can be used in any view.

See Also: extract(text,separator,element) function
array(text, item, separator) function

Page 5310
GETPROCEDURETEXT
GETPROCEDURETEXT

Syntax: GETPROCEDURETEXT database,procedure, variable

Description: The getproceduretext statement gets the contents (source) of a procedure and places it in
a variable.

Parameters: This statement has three parameter: database, procedure and variable.

database is the name of the database that contains the procedure.

procedure is the name of the procedure.

variable is the name of the variable you wish to place the procedure text into.

Action: This statement allows a procedure to extract and look at the text (source code) of other
procedures. This statement is disabled if the user is not authorized to see the contents of
the procedure.

Examples: This example scans through all of the procedures in the database named Contacts (which
must be already open) and builds a list of procedures that contain the word Name.

local tempProcedureList,tempProcedureText,
n,procedureName,activeDatabase,procedureSearchText

activeDatabase="Contacts"
procedureSearchText="Name"
tempProcedureList= dbinfo("procedures",activeDatabase)
n=1
tempProcedureText=""
viewList
loop

procedureName=array(tempProcedureList,n,¶)
stoploopif procedureName=""
getproceduretext activeDatabase,procedureName,tempProcedureText
if tempProcedureText contains procedureSearchText

viewList=sandwich("",viewList,¶)+procedureName
endif
n=n+1

while forever

Views: This statement may be used in any view.

See Also: openprocedure statement

Page 5311
GETRESOURCE(...)
GETRESOURCE(

Syntax: GETRESOURCE(type,id)

Description: The getresource(function gets a resource from an open resource file and copies it into a
variable.

Parameters: This function has two parameters: type and id.

type is the resource type. This must be a four letter text item. Standard resource types
include "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dia-
log items), "MENU" (menu).

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

Result: This function returns whatever binary data is in the specified resource (see binary data).

Examples: This example loads the contents of TEXT resource #415 into the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT",415)

 All resource have numbers, but they do not all have names. If the resource does have a
name, you can use the name for the ID. This example loads the contents of the TEXT
resource named Thank You #2 into the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT","Thank You #2")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the type parameter. The type must be a four letter text
item.

See Also: openresource statement
openresourcerw statement
closeresource statement
getstring(function
getnstring(function
getstringmatch(function
resourcetypes(function
resources(function

Page 5312
GETSCRAP
GETSCRAP

Syntax: GETSCRAP prompt

Description: The getscrap statement displays a dialog. This dialog asks the user to enter an item of
text.

Parameters: This statement has one parameter: prompt.

prompt is a message that will be displayed in the dialog. This message should explain
what the user needs to enter.

This statement displays a dialog with a single area for text entry. The user may enter
something and press Ok, or they may press the Stop button. If they press Ok, the text
they entered will be placed on the clipboard. If they press the Stop button the procedure
will stop.

Action: The dialog is usually just large enough to enter one line containing about 25 characters of
text. To make this dialog larger use the customdialog statement.

Examples: This example asks the user to enter an area code, then selects all phone numbers in that
area code. The default area code is 909.

getscrap "Area code:"
select Phone match "("+ clipboard()+")*"

Views: This statement may be used in any view

See Also: customdialog statement
getscrapok statement
gettext statement

Page 5313
GETSCRAPOK
GETSCRAPOK

Syntax: GETSCRAPOK prompt

Description: The getscrapok statement displays a dialog. This dialog asks the user to enter an item of
text.

Parameters: This statement has one parameter: prompt.

prompt is a message that will be displayed in the dialog. This message should explain
what the user needs to enter.

Action: This statement displays a dialog with a single area for text entry. The user may enter
something and press Ok. The text they entered will be placed on the clipboard. (Note:
This dialog has no Stop button. If you need a Stop button use the getscrap or gettext
statements.) The dialog is usually just large enough to enter one line containing about 25
characters of text. To make this dialog larger use the customdialog statement.

Examples: This example asks the user to enter an area code, then selects all phone numbers in that
area code. The default area code is 909.

getscrapok "Area code:"
select Phone match "("+ clipboard()+")*"

Views: his statement may be used in any view.

See Also: customdialog statement
getscrap statement
gettext statement

Page 5314
GETSTRING(...)
GETSTRING(

Syntax: GETSTRING(type,id)

Description: The getstring(function gets a text resource from an open resource file and copies it into a
variable.

Parameters: This function has two parameters: type and id.

type is the resource type. This must be a four letter text item. You can specify any
resource type you like here, but strings are usually stored in resources of type "STR "
(Pascal String). (If you specify "" for the type, Panorama will assume "STR ".)

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

Result: This function returns whatever text is in the specified resource.

Examples: This example displays the contents of STR resource #1296.

openresource "Accounting Messages"
message getstring("",1296)

All resource have numbers, but they do not all have names. If the resource does have a
name, you can use the name for the ID. This example displays the text in the Overflow
Error resource.

openresource "Accounting Messages"
message getstring("","Overflow Error")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the type parameter. The type must be a four letter text
item.

See Also: openresource statement
openresourcerw statement
closeresource statement
getresource(function
getnstring(function
getstringmatch(function
resourcetypes(function
resources(function

Page 5315
GETSTRINGMATCH(...)
GETSTRINGMATCH(

Syntax: GETSTRINGMATCH(type,id,text)

Description: The getstringmatch(function searches through a collection of multiple strings in a STR#
resource. If it finds a match with the text you supply, it returns the number of the text
item within the collection.

Parameters: This function has three parameters: type, id and text.

type is the resource type. This must be a four letter text item. You can specify any
resource type you like here, but strings are usually stored in resources of type "STR#"
(multiple Pascal Strings). (If you specify "" for the type, Panorama will assume "STR#".)

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

text is the text you want to search for. For a match, this text must be exactly the same as
one of the text items in the STR# collection.

Result: This function returns a number. If the text does not match any of the text items in the
STR# collection, the function will return 0. If there is a match, the function will return the
number of the item that matched, starting with 1 for the first item. (Notice that this num-
bering system is different than the getnstring(function, which starts with 0 for the first
item.)

Examples: One application for this function is looking up commands or keywords. Suppose you
have a STR# resource #320 that contains the following text items.

DIAL
APPOINTMENT
TODO
LETTER
CHECK

Now suppose the database has a global variable called CommandLine. The user types a
command into this variable with a Text Editor SuperObject™. Here is part of a procedure
that can process these commands using the STR# 320 resource.

local commandWord, commandNumber, commandExtras
openresource "Accounting Extras"
commandWord=upper(strip(CommandLine[1," "]))
commandExtras=strip(CommandLine[" ",-1])
commandNumber=getstringmatch("",320,commandWord)
if commandNumber=0 stop endif
if commandNumber=1
dial commandExtras
endif
if commandNumber=2
…
endif
if commandNumber=3
…

Page 5316
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the type parameter. The type must be a four letter text
item.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a number for the number parameter.

See Also: openresource statement
openresourcerw statement
closeresource statement
getresource(function
getnstring(function
getstringmatch(function
resourcetypes(function
resources(function

Page 5317
GETTEXT
GETTEXT

Syntax: GETTEXT prompt,input

Description: The gettext statement displays a dialog. This dialog asks the user to enter an item of text

Parameters: This statement has two parameters: prompt and input.

prompt is a message that will be displayed in the dialog. This message should explain
what the user needs to enter.

input is a field or variable where the user’s input will be placed. If this is a field, it
should be a text field.

The input field or variable should be assigned a value before the gettext statement is
used. This value will be displayed as the default value in the dialog.

Action: This statement displays a dialog with a single area for text entry. The user may enter
something and press Ok, or they may press the Stop button. If they press the Stop button
the procedure will stop. The dialog is usually just large enough to enter one line contain-
ing about 25 characters of text. To make this dialog larger use the customdialog state-
ment.

Examples: This example asks the user to enter an area code, then selects all phone numbers in that
area code. The default area code is 909.

local whatArea
whatArea="909"
gettext "Area code:",whatArea
select Phone match "("+whatArea+")*"

Views: This statement may be used in any view.

See Also: customdialog statement
getscrapgetscrap statement
getscrapok statement

Page 5318
GETWINDOW
GETWINDOW

Syntax: GETWINDOW Top,Left,Height,Width

Description: The GetWindow retrieves the current position and size of the current window.

Parameters: The GetWindow statement has four parameters, the top edge, the left edge, the height,
and the width (all dimensions in pixels).

Action: The GetWindow retrieves the current position and size of the current window. These
values can be used for the setwindow or zoomwindow statements.

Examples: The example below shows a typical application of this statement.

local WTop, WLeft, WHght, WWidth
GetWindow WTop, WLeft, WHght, WWidth
 ...

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: setwindow statement
zoomwindow statement

Page 5319
GLOBAL
GLOBAL

Syntax: GLOBAL variables

Description: The global statement creates one or more global variables. Global variables may be used
by any procedure, and remain active until you quit from Panorama.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be created. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement creates one or more global variables. Global variables can be used to hold
pieces of information (numbers or text). Each variable has a name.

Panorama keeps all global variables together in a common “pool” that is used by all pro-
cedures and SuperObjects. If procedure A creates a global variable named myValue, that
local variable may be used by all other procedures, in any open database. In fact you
must be careful to avoid conflicts when creating global variables. If the name of a global
variable in one procedure is the same as the name of a global variable in another proce-
dure (even in a database) that is used for a different purpose, a conflict will result. Global
variable names can also conflict with field names. One solution to variable conflicts
between databases is to use the fileglobal statement instead of the global statement.

Examples: The example creates two global variables, Channel and Home Timeouts.

global Channel, «Home Timeouts»

You may change the value of a variable with an assignment, like this:

«Home Timeouts»=«Home Timeouts»-1

Views: This statement may be used in any view.

See Also: fileglobal statement
local statement
windowglobal statement
permanent statement
globalize statement
undefine statement

Page 5320
GLOBALIZE
GLOBALIZE

Syntax: GLOBALIZE variables

Description: The globalize statement converts one or more fileglobal variables into global variables.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be converted. Each variable should be separated from
the next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement converts one or more file global, window, or local variables into global
variables. The variables keep their values. This statement is especially convenient when
you need to use a permanent variable as a global variable, instead of as a fileglobal vari-
able.

Examples: The example creates a permanent variable named pAreaCode, then makes it global so
any database can access it.

permanent pAreaCode
pAreaCode="714"
globalize pAreaCode

 An important point to keep in mind is that if you convert the file global, window or local
variable again you will now have two variables. If you want to have just one, don’t cre-
ate the variable twice. The example below shows how to do this with a permanent vari-
able.

if info("globalvariables") notcontains pAreaCode
/* we have not defined this variable yet */

permanent pAreaCode /* create the variable */
globalize pAreaCode /* convert it to a global */

endif

Views: This statement may be used in any view.

See Also: fileglobal statement
local statement
windowglobal statement
permanent statement
info("globalvariables") function
info("filevariables") function
info("windowvariables") function
dbinfo(function

Page 5321
GOCROSSTAB
GOCROSSTAB

Syntax: GOCROSSTAB crosstab

Description: The gocrosstab statement opens a crosstab from the current database in the current win-
dow.

Parameters: This statement has one parameter: crosstab.

crosstab is the name of the crosstab to open.

Action: This statement opens a crosstab in the current window. The effect is similar to selecting
the crosstab from the View menu (the pop-up menu in the window title). If the crosstab
is already open in another window, that window is simply brought to the front.

Examples: The procedure below opens the crosstab Budget. If the current window is a crosstab then
Budget will be opened in the current window. If the current window is not a crosstab
then Budget will be opened in a new window that is offset 16 pixels from the current
window.

local newWindowRect
if info("typeofwindow") contains "cross"

gocrosstab "Budget"
else

newWindowRect= rectangleadjust(
info("windowrectangle") ,16,16,16,16)

setwindowrectangle newWindowRect,
"noHorzScroll noVertScroll noPalette"

opencrosstab "Budget"
endif

Views: This statement may be used in any view.

See Also: opencrosstab statement
opensheet statement
opendesignsheet statement
openprocedure statement
openform statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
info("windows") function
listwindows((function

Page 5322
GODESIGNSHEET
GODESIGNSHEET

Syntax: ODESIGNSHEET

Description: The godesignsheet statement opens the design sheet window for the current database in
the current window.

Parameters: This statement has no parameters

Action: This statement opens the design sheet in the current window. The effect is similar to
selecting Design Sheet from the View menu (the pop-up menu in the window title. If the
design sheet is already open in another window, that window is simply brought to the
front.

Examples: The procedure below opens the design sheet in the current window.

godesignsheet

Views: This statement may be used in any view.

See Also: newgeneration statement
opensheet statement
opendesignsheet statement
openform statement
openprocedure statement
opencrosstab statement
gosheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement
windowbox statement
info("windows") function
listwindows((function

Page 5323
GOFORM
GOFORM

Syntax: GOFORM form

Description: The goform statement opens a form from the current database in the current window.

Parameters: This statement has one parameter: form.

form is the name of the form to open.

Action: This statement opens a form in the current window. The effect is similar to selecting the
form from the View menu (the pop-up menu in the window title). If the form is already
open in another window, that window is simply brought to the front.

Examples: The procedure below opens the form Utilities. If the current window is a form then Util-
ities will be opened in the current window. If the current window is not a form then Util-
ities will be opened in a new window that is offset 16 pixels from the current window.

local newWindowRect
if info("typeofwindow") contains "form"

goform "Utilities"
else

newWindowRect= rectangleadjust(
info("windowrectangle") ,16,16,16,16)

setwindowrectangle newWindowRect,
"noHorzScroll noVertScroll noPalette"

openform "Utilities"
endif

Views: This statement may be used in any view.

See Also: openform statement
formxy statement
opendialog statement
opensheet statement
opendesignsheet statement
openprocedure statement
opencrosstab statement
gosheet statement
godesignsheet statement
goprocedure statement
gocrosstab statement
info("windows") function
listwindows((function

Page 5324
GOPROCEDURE
GOPROCEDURE

Syntax: GOPROCEDURE procedure

Description: The goprocedure statement opens a procedure from the current database in the current
window.

Parameters: This statement has one parameter: procedure.

procedure is the name of the procedure to open.

Action: This statement opens a procedure in the current window. The effect is similar to selecting
the procedure from the View menu (the pop-up menu in the window title). If the proce-
dure is already open in another window, that window is simply brought to the front.

Examples: The procedure below opens the procedure .CustomMenu. If the current window is a pro-
cedure then .CustomMenu will be opened in the current window. If the current window
is not a procedure then .CustomMenu will be opened in a new window that is offset 16
pixels from the current window.

local newWindowRect
if info("typeofwindow") contains "procedure"

goprocedure ".CustomMenu"
else

newWindowRect= rectangleadjust(
info("windowrectangle") ,16,16,16,16)

setwindowrectangle newWindowRect,
"noHorzScroll noVertScroll noPalette"

openprocedure ".CustomMenu"
endif

Views: This statement may be used in any view.

See Also: openprocedure statement
opensheet statement
opendesignsheet statement
opencrosstab statement
openform statement
gosheet statement
godesignsheet statement
goform statement
gocrosstab statement
info("windows") function
listwindows((function

Page 5325
GOSHEET
GOSHEET

Syntax: GOSHEET

Description: The gosheet statement opens the data sheet for the current database in the current win-
dow.

Parameters: This statement has no parameters.

Action: This statement opens the data sheet. The effect is similar to selecting Data Sheet from the
View menu (the pop-up menu in the window title). If the data sheet is already open in
another window, that window is simply brought to the front.

Examples: The procedure below opens the data sheet in the current window. gosheet

Views: This statement may be used in any view.

See Also: opensheet statement
opendesignsheet statement
openform statement
openprocedure statement
opencrosstab statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
info("windows") function
listwindows((function

Page 5326
GOTO
GOTO

Syntax: GOTO label

Description: The goto statement allows a procedure to arbitrarily jump from one spot to another
within the procedure.

Parameters: This statement has one parameter: label.

label is the spot the procedure is supposed to jump to. A label is a unique series of letters
and numbers that identifies a location within the procedure. The label may not contain
any spaces or punctuation except for . and %, and must always end with a colon. The
colon is not actually part of the label, it simply identifies the series of letters and numbers
as a label instead of a field or variable.

Action: This statement jumps directly to another spot in the current procedure. We recommend
that you avoid the goto statement if possible. The goto statement tends to make it diffi-
cult to understand the logic of a procedure.

Examples: The example jumps back to the beginning of the procedure if there is an error. The proce-
dure has one label, which is on the first line. We have highlighted the label in bold to
make it more clear.

tryOpen:
openfile dialog
if error

goto tryOpen
endif

 Here is a procedure that does the same thing, but without the goto. If you use the goto
statement too much, your programs will start looking like “spaghetti.”

loop
openfile dialog
if error

repeatloopif 1=1
endif

while 1=0

Views: This statement may be used in any view.

See Also: if statement
loop statement
case statement

Page 5327
GRABDATA(...)
GRABDATA(

Syntax: GRABDATA(file,field)

Description: The grabdata(function grabs the contents of a field in the current record of a database.
You can grab data from the current database, or from another database.

Parameters: This function has two parameters: file and field.

file is the name of the database that you want to grab data from. The database must be
open. If you specify "" for the file name, grabdata(will grab data from the current file.

field is the name of the field that you want to grab data from. The field must be in the
database specified by the first parameter.

Result: The function returns the contents of the specified field in the specified database. Unlike
lookup(functions, the grabdata(function does not search for the data, it simply uses
whatever data is in the currently active record for that database.

Examples: The grabdata(function identifies data by position. This function retrieves data from the
current record in the specified database. For example, if the user has selected 7404 hex
inverter in the Price List database by clicking on it (or searching for it with the Find/
Select command), this procedure will copy the information into the current line item in
the Invoice database.

Item Ω=grabdata("Price List",Part)
Price Ω=grabdata("Price List",Price)

The drawback of the grabdata(function is that the user must manually locate the data,
but sometimes this is exactly what you want. You can also use the grabdata(function
to grab data the current record, but where you need to calculate the field name on the fly.
Suppose you have a database that has four fields for phone numbers: Phone1, Phone2,
Phone3, Phone4. Another field, PrimaryPhone , contains a number (1-4) telling which
of these phone numbers is the primary phone number. The procedure below will dial the
primary phone number thru the speaker.

dial grabdata("","Phone"+ str(PrimaryPhone))

If the formula calculating the field name is a single field or variable, you must surround
it with (and). For example, grabdata("",(Primary)) tells Panorama to grab the
contents of the field whose name is in Primary . The formula
grabdata("",Primary) , however, tells panorama to grab the contents of the field Pri-
mary itself.

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function

Page 5328
GRABFILEVARIABLE(...)
GRABFILEVARIABLE(

Syntax: GRABFILEVARIABLE(file,variable)

Description: The grabfilevariable(function makes it possible to access a fileglobal or permanent vari-
able from other databases. (Usually these variables can only be accessed from the data-
base in which they were created.)

Parameters: This function has two parameters: file and variable.

file is the name of the database that contains the fileglobal or permanent variable. Note:
This database must currently be open!

variable is the name of the variable you want to access. In general, this variable name
must be enclosed in quotes (unless you are using a formula to calculate the name).

Result: The result of this function is whatever value that is contained in the specified variable.
This may be text or numeric.

Examples: This example dials the phone using the default area code stored as a permanent variable
in the Prefs database

dial grabfilevariable("Prefs","DefaultAreaCode")+Phone

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for either the file or variable name.

See Also: fileglobal statement
permanent statement
info("filevariables") function

Page 5329
GRABWINDOWVARIABLE(...)
GRABWINDOWVARIABLE(

Syntax: GRABWINDOWVARIABLE(window,variable)

Description: The grabwindowvariable(function makes it possible to access a windowglobal variable
in a different window from the one in which it was created.

Parameters: This function has two parameters: window and variable.

window is the name of the window in which the variable was created.

variable is the name of the variable you want to access. In general, this variable name
must be enclosed in quotes (unless you are using a formula to calculate the name).

Result: The result of this function is whatever value that is contained in the specified variable.
This may be text or numeric.

Examples: This example below assumes that there is a series of windows with names that end with
(1), (2), (3) etc. It scans through the window until it finds a window where the Company
variable is Apple. If it finds such a window it makes it the top window.

local wX, wName
wX=1
loop

wName=info("databasename") +":"+i info("formname") +" ("+ str(wX)+")"
stoploopif info("windows") notcontains wName
if grabwindowvariable(wName,"Company")="Apple"

window wName
rtn

endif
wX=wX+1

while forever

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for either the window or variable name.

See Also: windowglobal statement
info("windowvariables") function

Page 5330
Graphic Coordinates
GRAPHIC COORDINATES

Background: Many Panorama operations refer to locations on the screen, within a window, or within a
form. In fact, Panorama has two secondary data types that refer to graphic locations:
point and rectangles.

X-Y Grid: The Macintosh uses an X-Y coordinate system to define locations. This X-Y system
divides any area into an invisible grid of criss-crossing lines. There are 72 lines per inch.
Each point where the lines intersect is identified by two numbers, the vertical and the
horizontal position. The numbers increase as you move down and to the right. The illus-
tration below shows a greatly expanded view of the X-Y coordinate system with several
sample points.

Screen Panorama actually has three different X-Y co-ordinate systems. The difference between
these systems is the location of zero-zero. Screen relative co-ordinates (sometimes called
global co-ordinates) measure all locations from the upper left hand corner of menu bar.
This actual size illustration shows screen relative co-ordinates.

Page 5331
Window Window relative co-ordinates (sometimes called local co-ordinates) measure all locations
from the upper left hand corner of the current window. This actual size illustration
shows window relative co-ordinates.

Form Rela-
tive:

Form relative co-ordinates measure all locations from the upper left hand corner of the
current form. If the form has not been scrolled, this is exactly the same as window rela-
tive co-ordinates. However, if the form has been scrolled, the zero-zero point is not visi-
ble, but is somewhere above and/or to the left of the upper left hand corner of the
window.

The xytoxy(function can convert a point or rectangle from any of the three co-ordinate
systems to any of the other three co-ordinate systems.

See Also: xytoxy(function
point(function
v(function
h(function
info("click") function
info("mouse") function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5332
GRAPHICSMODE
GRAPHICSMODE

Syntax: GRAPHICSMODE

Description: The graphicsmode statement switches a form into graphics mode. This is the same as
pressing the Switch to Graphic Design Mode tool in the tool palette.

Parameters: This statement has no parameters.

Examples: This example opens a form and sets it up for graphic editing.

openform "Letterhead"
graphicsmode

Views: This statement may be used in a Form view.

See Also: openform statement
goform statement

Page 5333
GREEN(...)
GREEN(

Syntax: GREEN(color)

Description: The green(function extracts the green intensity from a color.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the intensity of the green component of this color. This intensity is
a number between 0 (black) and 65535 (full intensity).

Examples: The example below calculates the green intensity of the color (in percent, from 0 to
100%).

Intensity=green(HighlightColor)*100/65535

Errors: For more examples of color, see colors.

Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
red(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5334
GROUP
GROUP

Syntax: GROUP period

Description: The group statement divides the database into groups. Each group has a summary
record at the end of the group. The groups are arranged in ascending alphabetical order
(A to Z).

Parameters: This statement has one parameter: period. period identifies the span of each group. This
parameter only applies if the current field is a date field. The options for this parameter
are listed below. Use the options exactly as shown, with no quotes.

by Day
by Week
by Month
by Quarter
by Year

If the current field is a text, numeric or choice field this parameter should be omitted.

Action: This statement divides the database into groups according to the current field. For exam-
ple if the current field contains company names there will be one group per company, if
the current field contains zip codes there will be one group per zip code.

Examples: This example calculates summaries for cities and states, then displays the summary
information. The original data is hidden.

field State
group
field City
group
field Amount
total
outlinelevel "1"

 This example calculates totals for each month.

field Date
group by month
field Debit
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: groupup statement
groupdown statement
groupbycolor statement
outlinelevel statement
removesummaries statement
removedetail statement
sortup statement
sortdown statement

Page 5335
GROUPBYCOLOR
GROUPBYCOLOR

Syntax: GROUPBYCOLOR

Description: The groupbycolor statement divides the database into groups of like colors. Each group
has a summary record at the end of the group.

Parameters: This statement has no parameters.

Action: This statement divides the database into groups according to the colors of cells in the
current field. The colors are grouped in this order: black, red, green, blue, cyan, magenta,
yellow.

Examples: This example calculates totals for each color of name.

field Name
groupbycolor
field Debit
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: fieldstyle(function
group statement
groupup statement
groupdown statement
outlinelevel statement
removesummaries statement
removedetail statement
sortup statement
sortdown statement

Page 5336
GROUPDOWN
GROUPDOWN

Syntax: GROUPDOWN period

Description: The groupdown statement divides the database into groups. Each group has a summary
record at the end of the group. The groups are arranged in descending alphabetical or
numeric order (Z to A).

Parameters: This statement has one parameter: period. period identifies the span of each group. This
parameter only applies if the current field is a date field. The options for this parameter
are listed below. Use the options exactly as shown, with no quotes.

by Day
by Week
by Month
by Quarter
by Year

If the current field is a text, numeric or choice field this parameter should be omitted.

Action: This statement divides the database into groups according to the current field. For exam-
ple if the current field contains company names there will be one group per company, if
the current field contains zip codes there will be one group per zip code.

Examples: This example calculates totals for each month, with the most recent months toward the
top of the database.

field Date
groupdown by month
field Debit
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: group statement
groupup statement
groupbycolor statement
outlinelevel statement
removesummaries statement
removedetail statement
sortup statement
sortdown statement

Page 5337
GROUPUP
GROUPUP

Syntax: GROUPUP period

Description: The groupup statement divides the database into groups. Each group has a summary
record at the end of the group. The groups are arranged in ascending alphabetical order
(A to Z).

Parameters: This statement has one parameter: period. period identifies the span of each group. This
parameter only applies if the current field is a date field. The options for this parameter
are listed below. Use the options exactly as shown, with no quotes.

by Day
by Week
by Month
by Quarter
by Year

If the current field is a text, numeric or choice field this parameter should be omitted.

Action: This statement divides the database into groups according to the current field. For exam-
ple if the current field contains company names there will be one group per company, if
the current field contains zip codes there will be one group per zip code.

Examples: This example calculates summaries for cities and states, then displays the summary
information. The original data is hidden.

field State
groupup
field City
groupup
field Amount
total
outlinelevel "1"

 This example calculates totals for each month.

field Date
groupup by month
field Debit
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: group statement
groupdown statement
groupbycolor statement
outlinelevel statement
removesummaries statement
removedetail statement
sortup statement
sortdown statement

Page 5338
H

H(...)
H(

Syntax: H(point)

Description: The h(function extracts the horizontal position from a point (see point(, graphic coordi-
nates).

Parameters: This function has one parameter: point

point is a number that includes both the vertical and horizontal components of a posi-
tion. This number is usually created with the point(, info("click"), or info("mouse") func-
tions.

Result: This function returns a number (an integer) that describes the horizontal position of the
point. This number will be between -32,768 and +32,767. (Like standard cartesian co-
ordinates, positive is right and negative is left.)

Examples: The procedure below displays a message if you click on a spot less than 75 pixels from
the left edge of the screen.

if h(info("click")) ≤ 75
message "You’re near the left edge!"
endif

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the point parameter.

See Also: xytoxy(function
point(function
v(function
info("click") function
info("mouse") function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5339
HIDE
HIDE

Syntax: HIDE

Description: The hide statement turns off most of the normal screen drawing Panorama does after
each statement. This makes the procedure run faster and look cleaner.

Note: Panorama 3.1 introduced the noshow and endnoshow commands, which we rec-
ommend you use instead of hide and show.

Parameters: This statement has no parameters.

Action: To eliminate unnecessary erasing and display of screens, you should use the hide and
show statements. The hide statement tells Panorama not to redraw windows after each
procedure statement or command. Redrawing remain off until the end of the procedure,
or until the show or showfields statement turns them back on again. The show statement
redraws the window immediately and restores normal operation. Warning: Never
switch windows or open new windows while redrawing is turned off! This may cause
crashes, or in rare cases, data corruption.

Examples: The example below would normally erase and re-display the window four times. Add-
ing the hide and show statements suppresses the extra drawing. The window is only
erased and re-displayed once at the end of the procedure.

Hide
field State
groupup
field City
groupup
field Fees
total
outlinelevel "1"
show

Views: This statement may be used in the Data Sheet, Design Sheet, Crosstab or Form Views.

See Also: noshow statement
endnoshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
show statement
noundo statement

Page 5340
HSB(...)
HSB(

Syntax: HSB(hue,saturation,brightness)

Description: The hsb(function creates a color by combining hue, saturation, and brightness compo-
nents. See colors.

Parameters: This function has three parameter: hue, saturation and brightness.

hue specifies where this color falls in the spectrum. If you are familiar with the standard
Apple color picker, the Hue would specify the angle of the color from the center of the
wheel. This must be a number from 0 to 65535.

saturation specifies how intense this color is. Is it a very intense deep color, or is it a soft
pastel color, or somewhere in between? Again using the standard Apple color picker, the
Saturation would specify the distance of the color from the center of the wheel. This
must be a number from 0 (black) to 65535 (full intensity).

brightness specifies how light or dark the color is. Is the color very bright, or is it almost
black? This sounds similar to Saturation, but it isn’t. Imagine a blue ball under a white
light. As the light gets dimmer, the Hue and Saturation of the color don’t change, but the
Brightness does. On the Apple color picker the Brightness is specified by the scroll bar on
the right. This must be a number from 0 (black) to 65535 (full intensity).

Result: This function returns 6 bytes of raw binary data (see binary data).

Examples: The example below changes the color of any object named Border to orange.

local Orange
Orange=rgb(3563,62600,65535)
selectobjects objectinfo("name") = "Border"
changeobjects "color",Orange

 For more examples of colors see colors.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for any parameter.

See Also: rgb(function
hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5341
HTML TABLES
HTML TABLES

Introduction: Starting with Panorama 3.1, Panorama's text import capability has been enhanced to
allow the import of HTML tables. Panorama automatically checks any text file you
import for a table tag. If the text file contains a -table- tag Panorama will parse the HTML
and input the data in the table. All other text will be ignored. If there is more than one
table, only the first will be imported. If the table data contains HTML tags (, ,
etc.) those tags are retained and become part of the Panorama database.

If the import is creating a new database (instead of appending or replacing the data in an
existing database), Panorama automatically creates the columns for you. If the HTML
table has <TH> tags (table header) Panorama will automatically set up the field names
from the table header.

Any Panorama import may use the HTML import feature, including imports set up by
procedures. You can even import an HTML table contained in a variable using the @
notation. This could be useful if you want to pre-parse the HTML before importing the
tables.

Examples: This example imports the first web page in the file SomeTables.html. The imported data
is brought into a new, untitled data sheet.

openfile "SomeTables.html"

This more extensive data imports ALL of the tables found in SomeTables.html. If there
are 10 tables, all ten will be imported.

local MyWebPage,myTable,n
MyWebPage=fileload("","SomeTables.html")
n=1
loop

myTable= tagdata(MyWebPage,"","",n
stoploopif myTable=""
myTable=""+myTable+""
openfile "@MyTable"
n=n+1

until forever

See Also: openfile statement
tagdata(function

Page 5342
HTML TAG PARSING
HTML TAG PARSING

Background: HTML (Hyper Text Markup Language) is a specification that allows commands and text
to be mixed together to create a document. Commands are embedded into the text in the
form of "tags." Some common HTML tags include:

Panorama has special functions that allow you to extract the contents of one or more tags
from a body of text. While you could do this with regular Panorama functions, the tag
parsing functions are much faster.

As you can see, each tag begins with a < and ends with a >. This is called the tag header
and the tag trailer. Panorama's tag parsing functions allow you to specify what character
is used for the header or trailer, so you could use these functions with other languages
besides HTML.

The tag parsing functions also allow you to use multiple characters as a tag header and
tag trailer. For example, using the tag header Š and tag trailer you can easily
locate all bold text within an HTML document.

See Also: tagarray(function
tagcount(function
tagdata(function
tagstart(function
tagend(function
tagnumber(function
tagparameter(function
tagparameterarray(function

Tag Description

° Start bold text

 End bold text

<I> Start italic text

</I> End italic text

<CENTER> Start centered text

</CENTER> End centered text

 Line Break

<P> Paragraph Break

Page 5343
HTMLDECODE(...)
HTMLDECODE(

Syntax: HTMLDECODE()

Description: The htmlencode(function takes HTML text and converts any special characters in the
text into standard ASCII. For example © is converted to © and & is converted
to &.

Parameters: This function has one parameter: text.

text is the ASCII text you want to convert from HTML format.

Result: This function returns regular ASCII text. Any special characters in the text are converted
from their HTML equivalents into regular ASCII characters. A complete list of HTML
equivalents is listed below.

Character HTML
Equivalent

& &

¶ ¶

Ï Ï

è

• ·

Ñ

é

` ¡

¸

æ Ò

ê

¢ ¢

º º

Ó

ë

£ £

» »

Ô

ì

¤

¿

˝ Õ

í

Page 5344
· ¥

¸ À

Ö

î

| ¦

Á

Ù

ï

⁄ §

Â

Ú

ñ

‹ ¨

Ã

Û

ò

' ©

Ä

Ü

ó

» ª

Å

&zslig;

ô

« «

fi Æ

à

õ

¬ ¬

Ç

á

ö

— ­

Ø È

â

÷ ÷

Character HTML
Equivalent

Page 5345

Examples: The example below imports the first table in the file Table.html. It then loops through
each field, converting any special characters that were in the table into regular ASCII for-
mat.

openfile "Table.html"
loop
formulafill htmldecode(«»)
right
until stopped

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text parameter.

See Also: htmlencode(function

¤ ®

É

ã

ù

ł ¯

Ê

ä

ú

ß °

Ł Ë

å

û

± ±

Ì

æ

ü

´ ´

Œ Í

ç

ÿ

µ

º Î

Character HTML
Equivalent

Page 5346
HTMLENCODE(...)
HTMLENCODE(

Syntax: HTMLENCODE(text)

Description: The htmlencode(function takes standard ascii text and converts any special characters
in the text into the HTML equivalents. For example © is converted to © and & is
converted to & . Special characters that do not have HTML equivalents are removed.
(However, the smart quote characters, “,”, ‘ and ’ are converted to regular quote charac-
ters " and '.)

Parameters: This function has one parameter: text.

text is the ascii text you want to convert to HTML format.

Result: This function returns regular ASCII text. Any special characters in the text are converted
to their HTML equivalents. A complete list of HTML equivalents is listed in the htmlde-
code(section.

Examples: The example below takes a price list and converts it into an HTML table ready to be
pasted into a web authoring application. The htmlencode function is used to make sure
that no illegal characters get into the web page.

local tablebody
arraybuild tablebody,¶,"",

"<tr><td>"+Product+"</td><td align=right>"+
str(Price)+"</td></tr>"

tablebody="<table>"+htmlencode(tablebody)+"</table>
clipboard=tablebody

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text parameter.

See Also: htmldecode(function

Page 5347
HUE(...)
HUE(

Syntax: HUE(color)

Description: The hue(function extracts the hue intensity from a color. Hue specifies where this color
falls in the spectrum. If you are familiar with the standard Apple color picker, the Hue
would specify the angle of the color from the center of the wheel. This is a number from
0 to 65535.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the intensity of the hue of this color. This intensity is a number
between 0 and 65535.

Examples: The example below calculates the hue intensity of the color (in percent, from 0 to 100%).

Color=hue(HighlightColor)*100/65535

For more examples of color, see colors.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
green(function
blue(function
red(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5348
I

IF
IF

Syntax: IF true-false test

Description: The if statement is needed to mark the beginning of an if construct.

Parameters: This statement has one parameter:true-false test.

true-false test may be one or more functions or equations which result in a true or a false
condition. Multiple true-false tests must be separated by an and or an or operator.
Grouping true-false tests inside parenthesis () will give those tests priority in the pro-
cessing order when Panorama evaluates them.

Action: This statement is used to mark the beginning of an if construct. It evaluates true-false test
and if it is true executes the PanTalk code between the if and the endif statements and
then continues on after the endif statement. If the true-false test evaluates false Pan-
orama skips the if construct and executes all code after the endif statement.

When the optional else statement is used and true-false test evaluates true all PanTalk
code between the if and the else is executed and then control resumes after the endif
statement. When true-false test evaluates false all PanTalk code between the else and
endif is executed and then control resumes after the endif statement.

See the help files for and else and endif for more information on if constructs.

All if statements must have a corresponding endif statement in the same procedure
regardless of whether the if constructs are nested or not. Therefore, a procedure with,
say, five if statements must have five endif statements.

All procedure statements after an endif statement will execute, regardless of which por-
tion, if any, of the if construct executes.

Using the Check Procedure tool on a procedure that has an if statement with no corre-
sponding endif statements will result in an error alert. Attempting to run a similar proce-
dure will result in a general warning regarding the procedure which aborts it's
operation.

Examples: This section of PanTalk code calculates the field #Available and if it is less than the field
Minimum the if construct will have Panorama beep and display a message before going
back to the window Invoices:Data Entry, otherwise the procedure just goes to
Invoices:Data Entry after the calculation.

...
 ...
window "Inventory"
«#Available» = «#Available» - NoOrdered
if «#Available» > «Minimum»
beep

message "Your low on "+«Item»
endif
window "Invoice:Data Entry"
 ...
 ...

 In this example the PanTalk code after the endif statement will only be executed if the
variable Password is equal to the words: Open Sesame, otherwise the procedure dis-
plays a message regarding an incorrect password and stops.

Page 5349
local Password
gettext "Enter Password:",Password
if Password ≠ "Open Sesame"

message "Your password is incorrect."
stop

endif
goform "Secret Stuff"
beep
message "You're in."

 In this example the info("empty") is the true/false test; if it is true the message is dis-
played before going to the Sales Rep field, if it is false everything between the else and
the endif statements is executed before going to Sales Rep.

select «#Sold» ≥ 0 and «Sale Date» ≥ month1st(today())
if info("empty")

message "No sales records for this month."
else

field «#Sold»
total
field Bonus
formulafill ?(«$Sold»> 500.00,«$Sold»*.05,0)

endif
field «Sales Rep»
...
 ...
...

 In this example there are two nested if constructs both which have a corresponding
endif statement. Only if both if statements test true will the record be marked Closed.
Notice the indenting of code within the if constructs, this is not required, but is helpful
when trying to follow the PanTalk code logically through.

selectall
firstrecord
field Status
loop

if Status = "New"
if «Final Payment» > 0

«Date Closed» = today()
«Status» = "Closed"

endif
endif
downrecord

until info("eof")

This example demonstrates how to use the error flag in an if statement to perform error
checking in a procedure. Note: error checking is not available for all procedure state-
ments.

openfile "ListFile"
if error

openfile dialog
endif

Views: This statement may be used in any view.

Page 5350
See Also: ?(function
case statement
defaultcase statement
else statement
endcase statement
endif statement

Page 5351
IMAGEQUALITY
IMAGEQUALITY

Syntax: IMAGEQUALITY quality

Description: The imagequality statement specifies the image quality (and compression ratio) to be
used when generating JPEG images with the convertimage statement. This statement
requires the optional Enhanced Image Pack, which much be purchased separately.

Parameters: This statement has one parameter: quality.

quality is the image quality factor, a number from 0 (very low quality, high compression)
to 100 (high quality, least compression).

Action: This statement must be placed just before the convertimage statement. When the con-
vertimage statement is used to convert an image to JPEG format the imagequality
statement controls the quality and level of compression.

Examples: The example procedure below creates two JPEG images from a TIFF original, one low
quality and one high quality. Each is placed in a different subfolder of the current data-
base folder.

imagequality 80
convertimage "Sunset.tif",":Hi Quality:Sunset.jpg","",0,0
imagequality 20
convertimage "Sunset.tif",":Lo Quality:Sunset.jpg","",0,0

Views: This statement may be used in any view.

See Also: convertimage function

Page 5352
IMPORT(...)
IMPORT(

Syntax: IMPORT()

Description: The import(function returns a line of imported data. This function only works in con-
junction with the importusing (see also importcell() and arrayfilter statements.

Parameters: This function has no parameters.

Result: The import(function always returns a text type data item. When it is used with the
importusing statement, the import() function returns the contents of the line that is cur-
rently being imported. Using this function you can process and re-arrange the data as it
is being imported.

When it is used with the arrayfilter statement, the import() function returns the individ-
ual array element currently being processed. Using this function you can process the
data in each array element.

When it is used at any other time, the import() function returns empty text

Examples: Suppose you have a text file named MainframeDownload that you want to load into a
Panorama database. This text file contains four fields, but these are fixed length fields
padded by spaces instead of being separated by tabs or commas. The first field is 20
characters long, the 2nd field is 5 characters long, the third is 2 characters long, and the
fourth 25 characters long. The procedure below will import this data into the first 4 fields
of the current database.

importusing
strip(import()[1,20])+¬+
strip(import()[21,25])+¬+
strip(import()[25,26])+¬+
strip(import()[27,51])
openfile "&MainframeDownload"

 Here is a procedure that uses import(with the arrayfilter statement. This procedure will
build a text array of elements with parenthesis around each element: (Hydro-
gen);(Helium);(Lithium); etc.

local Elements
Elements="Hydrogen;Helium;Lithium;Beryllium;Boron;"+

"Carbon;Nitrogen;Oxygen;Fluorine;Neon;"+
…
"Mendelevium;Nobelium;Lawrencium"

arrayfilter Elements,Elements,";","("+import()+")"

Errors: This function does not produce any errors.

See Also: importusing statement
arrayfilter statement
importcell(function

Page 5353
IMPORTCELL(...)
IMPORTCELL(

Syntax: IMPORTCELL(columnNumber)

Description: The importcell(function returns one cell of imported data. This function only works in
conjunction with the importusing statement (see also import(function, which returns an
entire line of data).

Parameters: This function has one parameter: columnNumber.

Result: columnNumber is the column of data from the imported text that you want to return.
The text being imported is separated into columns by either tabs or commas. The first
column is column 0, the next is column 1, etc.

The import(function always returns a text type data item. When it is used with the
importusing statement, the importcell() function returns the contents of the specified col-
umn from the line that is currently being imported. If the text being imported is comma
delimited, the importcell(function will strip off any quotes around the data before
returning it. Using this function you can process and re-arrange the data as it is being
imported.

When it is used at any other time, the importcell() function returns empty text. It will
also return empty text if you specify a column number that does not exist in the text
being imported.

Examples: Suppose you have a text file named Sam’s Contacts that contains data like this:

Smith,John,World Widgets,124 W. Olive St,San Jose,CA,95134
Lee,Susan,Industrial Metals,2347 N. Riverside,Cambridge,MA,02139
Marklee,Lance,Zipper Technologies,687 E. Dorothy Lane,Bothell,WA,98011
Anders,Fred,Acme Fireworks,5672 Lakewood Drive,Salinas,CA,93908

You want to import this data into a database that contains these fields:

Company, First Name, Last Name, Title, Address, City, State, Zip

Here’s a procedure that will append the data in Sam’s Contacts into the current database.
The tabs (¬) in the formula divide the output into separate columns again so it can be
imported.

importusing
importcell(2)+¬+
importcell(1)+¬+
importcell(0)+¬+
¬+
importcell(3)+¬+
importcell(4)+¬+
importcell(5)+¬+
importcell(6)

openfile "+Sam’s Contacts"

The formula re-arranges the incoming data so that third column in the input text goes
into the first field, the 2nd column goes into the 2nd field, the first column goes into the
3rd field, the 4th field is empty, the 4th column goes into the 5th field, the 5th column
goes into the 6th field, the 6th goes into the 7th field and the 7th column goes into the 8th
field.

Page 5354
In this example each column in the input corresponds with one field in the final data-
base. However, you could split up a column into multiple fields, or combine multiple
columns in the input text into a single field in the final database. For example, here is a
procedure that imports Sam’s Contacts into a database with the fields Name, Address,
City, State and Zip.

importusing
importcell(1)+" "+importcell(0)+¬+
importcell(3)+¬+
importcell(4)+¬+
importcell(5)+¬+
importcell(6)

openfile "+Sam’s Contacts"

This formula simply concatenates the first and last names with a space, but you can use
any function you want, including the ?(, sandwich(, upper(, lower(, even lookup(func-
tions.

Errors: This function does not produce any errors.

See Also: importusing statement
arrayfilter statement
import(function

Page 5355
IMPORTUSING
IMPORTUSING

Syntax: IMPORTUSING formula

Description: The importusing statement processes and re-arranges data as it is imported from a text
file. This statement is designed to be used together with the openfile statement.

Parameters: This statement has one parameter: formula.

formula is the formula used to process the import data. The importusing statement
works by “inserting” this formula into the middle of the import process. The formula
must be designed to take in a line of text and transform it into a different line of text.
Panorama uses this formula to transform each raw line of the import data into a new,
manipulated line. Panorama then imports this new manipulated line into the database
instead of the original line.

Panorama has a two functions that allows the import translation formula to access the
line that has been read from the disk: import() and importcell(). Theimport() function
returns the entire line that has been imported. The importcell(function has one parame-
ter that specifies the number of the cell you want, for example importcell(1) or import-
cell(14).

Action: This statement is designed to be used in combination with the openfile statement to
manipulate and preprocess data as it is imported. Because a formula is used to perform
the manipulation this process is very flexible: you can re-arrange fields, convert lower to
upper case (or the reverse), extract variable length data from fixed length fields, etc. The
importusing statement should be placed directly before the openfile statement. (Note:
The importusing statement only works when importing TEXT files. It cannot be used
when importing from OverVUE or other Panorama files.)

Examples: Suppose you have a text file named Sam’s Contacts that contains data like this:

Smith,John,World Widgets,124 W. Olive St,San Jose,CA,95134
Lee,Susan,Industrial Metals,2347 N. Riverside,Cambridge,MA,02139
Marklee,Lance,Zipper Technologies,687 E. Dorothy Lane,Bothell,WA,98011
Anders,Fred,Acme Fireworks,5672 Lakewood Drive,Salinas,CA,93908

You want to import this data into a database that contains these fields:

Company, First Name, Last Name, Title, Address, City, State, Zip

Here’s a procedure that will append the data in Sam’s Contacts into the current database.
The tabs (¬) in the formula divide the output into separate columns again so it can be
imported.

importusing
importcell(2)+¬+
importcell(1)+¬+
importcell(0)+¬+
¬+
importcell(3)+¬+
importcell(4)+¬+
importcell(5)+¬+
importcell(6)

openfile "+Sam’s Contacts"

Page 5356
 The formula re-arranges the incoming data so that third column in the input text goes
into the first field, the 2nd column goes into the 2nd field, the first column goes into the
3rd field, the 4th field is empty, the 4th column goes into the 5th field, the 5th column
goes into the 6th field, the 6th goes into the 7th field and the 7th column goes into the 8th
field.

In this example each column in the input corresponds with one field in the final data-
base. However, you could split up a column into multiple fields, or combine multiple
columns in the input text into a single field in the final database. For example, here is a
procedure that imports Sam’s Contacts into a database with the fields Name, Address,
City, State and Zip.

importusing
importcell(1)+" "+ importcell(0)+¬+
importcell(3)+¬+
importcell(4)+¬+
importcell(5)+¬+
importcell(6)

openfile "+Sam’s Contacts"

 This formula simply concatenates the first and last names with a space, but you can use
any function you want, including the ?(, sandwich(, upper(, lower(, even lookup(func-
tions.

Suppose you have a text file named MainframeDownload that you want to load into a
Panorama database. This text file contains four fields, but these are fixed length fields
padded by spaces instead of being separated by tabs or commas. The first field is 20
characters long, the 2nd field is 5 characters long, the third is 2 characters long, and the
fourth 25 characters long. The procedure below will import this data into the first 4 fields
of the current database.

importusing
strip(import()[1,20])+¬+
strip(import()[21,25])+¬+
strip(import()[25,26])+¬+
strip(import()[27,51])

openfile "&MainfameDownload"

Views: This statement may be used in the Data Sheet and Form views only.

See Also: openfile statement
import() function
importcell() function

Page 5357
info("abort")
INFO("ABORT")

Description: The info("abort") function returns true if the user has pressed Command-Period (Macin-
tosh) or Control-Period (Windows). You should use this procedure if you have used the
disableabort statement and want to check for Command/Control-Period yourself.

Examples: This example shows how you can manage the handling of Command/Control-Period. If
the user presses Command/Control-Period, this procedure will stop and ask the user if
he or she wants to abort. If they press Yes, the loop will stop. If they press No, the loop
will continue.

disableabort
loop

if info("abort")
alert 1014,"Abort?"
if info("dialogtrigger") contains "yes"

stoploopif 1=1
endif

endif
call ProcessFile

while currentFile enableabort

 The info("abort") function will only return true ONCE for each time Command/Con-
trol-Period is pressed. In the example above, this allows the loop to continue if the user
press the No button, and then stop again if they press Command/Control-Period a sec-
ond time. If you need to test info("abort") more than once for a single Command/Con-
trol-Period, you should copy info("abort") into a variable and then test the variable.

See Also: disableabort statement
enableabort statement

Page 5358
info("activesuperobject")
INFO("ACTIVESUPEROBJECT")

Description: The info("activesuperobject") function returns the name of the currently active text edi-
tor or word processor SuperObject, if any. If no such object is currently being edited, the
function returns empty text ("").

Examples: This example insert the current date and time into whatever SuperObject is currently
being edited. This procedure will work with both Text Editor and Word Processor Super-
Objects. The first line of the procedure checks to make sure that there actually is an active
SuperObject (i.e. something is really being edited at this time).

if info("activesuperobject") ≠""
activesuperobject "InsertText",

datepattern(today(),"mm/dd/yy")+"@"+
timepattern(now(),"hh:mm am/pm")

endif

See Also: objectinfo(function
activesuperobject statement
superobject statement

Page 5359
info("applemenufolder")
INFO("APPLEMENUFOLDER")

Description: The info("applemenufolder") function returns a binary data item that unambiguously
describes the location of the Apple Menu folder. This function is only valid when used
on MacOS computers. This folder id can be used in other functions and statements.

Examples: This procedure saves a copy of the current database in the Apple Menu folder so that it
will appear in the Apple .

saveacopyas folderpath(info("applemenufolder"))+ info("databasename")

See Also: info("systemfolder") function
folder(function
folderpath(function

Page 5360
info("bof")
INFO("BOF")

Description: The info("bof") function returns true if the database is currently on the first visible
record. (Note: "bof" stands for "beginning of file".)

Examples: This example loops until the database is at the very first record.

loop
stoploopif info("bof")
uprecord

while forever

 The example above illustrates info("bof"), but there is a much quicker way to get to the
top of the database.

firstrecord

See Also: info("eof") function
uprecord statement

Page 5361
info("buttonrectangle")
INFO("BUTTONRECTANGLE")

Description: The info("buttonrectangle") function returns a rectangle defining the edges of the button
that was clicked on (needless to say, this function should be used in a procedure that is
triggered by a button). The rectangle is in screen relative coordinates (use the xytoxy(
function to convert to window or form relative co-ordinates).

Examples: Here’s an example that times how long it takes the user to move the mouse away from a
button.

local startTime
startTime= now()
loop

nop
while inrectangle(info("mouse") ,info("buttonrectangle"))
message pattern(now()-startTime,"# second~")

As long as the mouse is over the button, the procedure will whirl around and around
doing nothing (remember, the nop statement does no operation). When the mouse
moves away from the button, the inrectangle(function goes false and the loop is broken.

See Also: info("mousedown")function
info("click") function
info("mouse")function

Page 5362
info("changecount")
INFO("CHANGECOUNT")

Description: The info("changecount") function returns the number of changes that were made the
last time the change statement was used..

Examples: This procedure changes all Saturday's to Friday's. It then uses the info("changecount")
function to see if anything actually changed.

field Day
change "Saturday","Friday"
if info("changecount")=0

message "There were no appointments on Saturday."
endif

See Also: change statement

Page 5363
info("changes")
INFO("CHANGES")

Description: The info("changes") function returns the number of changes that have been made to the
current database since the last time it was saved.

Examples: This procedure checks to see if there have been any changes to the current database. If
there have been, it saves the database, then continues with its regular job.

if info("changes")>0
save

endif
field State
sortup
field City
sortupwithin

See Also: save statement

Page 5364
info("click")
INFO("CLICK")

Description: The info("click") function returns the location of the last mouse click in screen relative
co-ordinates.

Examples: The example below selects the data cell(s) the user clicked on. The procedure uses the
inrectangle(function to determine which object (if any) was clicked on. (Note: Presum-
ably this procedure would be triggered by a push button which covers the data cell
objects.)

local hitPt, hitField
hitPt= xytoxy(info("click"),"Screen","Form")
selectobjects
inrectangle(hitPt, objectinfo("rectangle")) and
objectinfo("type") beginswith "Data Cell:"
objectnumber 1
hitField= objectinfo("type")[":",-1][-2,-1]
if hitField="" stop endif
field hitField
editcell

 If the user did click on a data cell, the procedure activates the cell.

See Also: info("mouse")function
xytoxy(function

Page 5365
info("cursorrectangle")
INFO("CURSORRECTANGLE")

Description: The info("cursorrectangle") function returns a rectangle defining the edges of the cur-
rent data cell (if any). The rectangle is in screen relative coordinates (use the xytoxy(
function to convert to window or form relative co-ordinates).

Examples: This example opens the window PopCell directly over the current data cell.

local wTop,wLeft
wTop=rtop(info("cursorrectangle"))
wLeft= rleft(info("cursorretangle"))
setwindowrectangle e rectanglesize(wTop,wLeft,200,350)
openform "PopCell"

See Also: info("buttonrectangle") function
xytoxy(function
field statement

Page 5366
info("databasefilename")
INFO("DATABASEFILENAME")

Description: The info("databasefilename") function returns the name of the file containing the cur-
rent database. This function returns the complete file name, including the .pan extension
(if any).

Examples: This procedure looks up checks to see if this database is ready to be copied to a Windows
PC computer.

if info("databasefilename") endswith ".pan"
message "This database is ready for the PC!"

endif

See Also: info("databasename") function

Page 5367
info("databasename")
INFO("DATABASENAME")

Description: The info("databasename") function returns the name of the current database.

Examples: This procedure looks up checks in the current database. The procedure will continue to
work even if you rename the database or make a copy of it.

local CheckTo
CheckTo=""
gettext "List checks written to:",CheckTo
Checks=lookupall(
info("databasename"),

Payee,
CheckTo,
«Check#»,",")

if Checks=""
message "No checks written to "+CheckTo

else
message "Checks written to "+CheckTo+":"+Checks

endif

See Also: info("windowname") function

Page 5368
info("datatype")
INFO("DATATYPE")

Description: The info("datatype") function returns the data type of the current field. The function
returns a number from 0 to 10:

Examples: This procedure below displays a dialog to allow the user to enter a new value into the
current field. The procedure adjusts automatically for numbers, dates and text fields.

local newValue
newValue=""
case info("datatype") ≥5

gettext "Enter a number",newValue
newValue= val(newValue)

case info("datatype")=4
gettext "Enter the date",newValue
newValue= date(newValue)

defaultcase
gettext "Enter new data",newValue

endcase
clipboard=newValue
pastecell

See Also: datatype(function

Number Type

0 Text

1 Compressed (Choice)

2 Compressed (Choice)

3 Picture

4 Date

5 Floating Point

6 Integer

7 Fixed 1 Digit (#.#)

8 Fixed 2 Digits (#.##)

9 Fixed 3 Digits (#.###)

10 Fixed 4 Digits (#.####)

Page 5369
info("desktopfolder")
INFO("DESKTOPFOLDER")

Description: The info("desktopfolder") function returns a binary data item that unambiguously
describes the location of the desktop folder. Any file saved in this folder will appear on
the desktop. This function is only valid when used on MacOS computers. This folder id
can be used in other functions and statements.

Examples: This procedure saves a copy of the current database in the desktop folder so that it will
appear on the desktop.

saveacopyas folderpath(info("desktopfolder"))+ info("databasename")

See Also: info("systemfolder") function
folder(function
folderpath(function

Page 5370
info("dialogtrigger")
INFO("DIALOGTRIGGER")

Description: The info("dialogtrigger") function returns the name of the last button pressed in a dia-
log. (Note: This function does not work with standard system dialogs like the Open and
Save As dialogs.)

Examples: This procedure lets the user select data with the find/select dialog. If the user presses
Cancel the procedure stops, otherwise it calculates the total of the Amount field.

findselect
if info("dialogtrigger") contains "Cancel"

stop
endif
field Amount
total

See Also: info("trigger") function

Page 5371
info("empty")
INFO("EMPTY")

Description: The info("empty") function returns true or false depending on the result of the last select
operation. If no records were selected the function will return true, otherwise it will
return false.

Examples: The procedure below selects all records that are "Ready", whatever that means. If there
are any ready records, the procedure prints them.

select Status="Ready"
if info("empty")

message "Nothing ready today!"
stop

endif
print dialog
field Status
formulafill "Printed"

See Also: info("found") function
select statement

Page 5372
info("eof")
INFO("EOF")

Description: The info("eof") function returns true if the database is currently on the last visible
record. (Note: "eof" stands for "end of file".)

Examples: This example loops until the database is at the very last record.

loop
stoploopif info("eof")
downrecord

while forever

 The example above illustrates info("eof"), but there is a much quicker way to get to the
bottom of the database.

lastrecord

See Also: info("bof") function
downrecord statement

Page 5373
info("error")
INFO("ERROR")

Description: The info("error") function can be used after an if error statement. It returns the error
message that would have been displayed if the error had not been trapped by if error.

Examples: This example asks the user to enter a temperature. When the text the user enters is con-
verted to a number with the val(function, there could be an error (for example if there
are no digits in the number!). If this happens, the if error statement traps the error, then
the message statement uses info("error") to display the error message. After the error
message is displayed the program goes back and asks the user for a temperature again.

local sometext,Temperature
readTemp:
sometext=""
gettext "Temperature",sometext
Temperature= val(sometext)
if error

message info("error")
goto readTemp

endif
if Temperature>TodaysHigh

TodaysHigh=Temperature
endif
if Temperature<TodaysHigh

TodaysLow=Temperature
endif

See Also: if statement

Page 5374
info("expandable")
INFO("EXPANDABLE")

Description: The info("expandable") function checks to see if the current record is a collapsed sum-
mary record.

Examples: This example could be used as a formula for a Flash Art or Super Flash Art object. This
object will display an arrow that shows whether this record is expandable or not, much
like the outline view in the Finder.

?(info("expandable"),"right arrow","up arrow")

See Also: info("summary") function
expand statement
collapse statement

Page 5375
info("fieldname")
INFO("FIELDNAME")

Description: The info("fieldname") function returns the name of the current field.

Examples: The procedure below clear the whole column of the current field.

noyes "Clear out all data in the "+
info("fieldname")+ " column?"

if clipboard() contains "yes"
formulafill ""

endif

See Also: info("databasename") function
info("windowname") function

Page 5376
info("files")
INFO("FILES")

Description: The info("files") function builds a carriage return separated text array containing a list of
all the currently open database files.

Examples: The example below uses info("files") to check to see if the Price List database is open. If
not, the procedure opens the database.

if 0 = arraysearch(info("files"),"Price List",1,¶)
openfile "Price List"

endif

See Also: listwindows(function
info("windows") function
info("volumes") function
dbinfo(function
openfile statement

Page 5377
info("filevariables")
INFO("FILEVARIABLES")

Description: The info("filevariables") function builds a carriage return separated text array contain-
ing a list of the currently allocated fileglobal variables in the current database.

Examples: The example below uses info("filevariables") to check to see if a fileglobal variable Sal-
esTax exists. If it does not, then it displays a message that database doesn’t support sales
tax - if it does, it sets the SalesTax to 7.75.

if 0 = arraysearch(info("filevariables"),"SalesTax",1,¶)
beep
message "This database does not support Sales Tax"
stop

endif
SalesTax=7.75

See Also: info("globalvariables")
info("localvariables")
info("windowvariables")
fileglobal statement

Page 5378
info("formcolor")
INFO("FORMCOLOR")

Description: The info("formcolor") function returns the background color of the current form. If the
current window does not contain a form, the function will return empty text ("").

Examples: The procedure below checks the to see if the current form has a white background.

if info("formcolor")= rgb(65535,65535,65535)
message "This form has a white background"

endif

See Also: formcolor statement
rgb(function
hsb(function

Page 5379
info("formcomment")
INFO("FORMCOMMENT")

Description: The info("formcomment") function returns the form comment that has been set up for
the currently open form (if any).

Examples: This example assumes that the formcomment has been set up with instructions for sort-
ing when this form is printed. For example, the form comment might look something
like this:

Sort:Zip Code;

This procedure will sort the database as instructed, then print.

local sortThis,x
x=search(info("formcomment"),"Sort:")
if x>0

sortThis=info("formcomment")[x+4,-1]
sortThis=sortThis[1,";"][1,-2]
field (sortThis)
sortup

endif
print dialog

See Also: print statement
formcomment(function

Page 5380
info("formname")
INFO("FORMNAME")

Description: The info("formname") function returns the name of the current form. If the current win-
dow does not contain a form, the function will return empty text ("")

Examples: The procedure below checks the to see if the List form is the current window. If it is, the
Detail form is opened.

if info("formname")="List"
openform "Detail"

endif

See Also: info("windowtype") function
info("windowname") function

Page 5381
info("found")
INFO("FOUND")

Description: The info("found") function returns true or false depending on the result of the last find
or next statement

Examples: The procedure below looks for Acme Widgets. If it finds this company, it increases the
quantity in this record by one.

find Company="Acme Widgets"
if info("found")

Quantity=Quantity+1
endif

See Also: info("empty") function
find statement
next statement

Page 5382
info("freememory")
INFO("FREEMEMORY")

Description: The info("freememory") function calculates how much free database memory is avail-
able (this does not include scratch memory).

Examples: This procedure checks in advance to see if a database may be loaded.

if info("freememory)< filesize("","Big File")
message "Sorry, not enough memory to load database!"

else
openfile "Big File"

endif

See Also: info("scratchmemory") function

Page 5383
info("globalvariables")
INFO("GLOBALVARIABLES")

Description: The info("globalvariables") function builds a carriage return separated text array con-
taining a list of the currently allocated global [and permanent variables if you are in
author mode] variables.

Examples: The example below uses info("globalvariables") to check to see if the global variable
«gSalesDbName» exists. If it does not, then it issues a message to open a database that
creates the variable; for example in an .Initialize procedure.

if 0 = arraysearch(info("globalvariables"),"gSalesDbName",1,¶)
beep
message "Sales Database is not open"
stop

endif

See Also: info("localvariables")
info("filevariables")
info("localvariables")
info("windowvariables")

Page 5384
info("imagepack")
INFO("IMAGEPACK")

Description: The info("imagepack") function allows a formula to make choices based on whether or
not the Enhanced Image Pack is installed.

Examples: The example below builds a list of image files in the current folder. If the image pack is
not installed only PICT files are included. If the image pack is installed then JPEG and
TIFF files will also be listed.

local imageFiles
imageFiles= listfiles(dbinfo("folder",""),

"PICT????"+?(info("imagepack"),"JPEG????TIFF????",""))

See Also: info("serialnumber") function

Page 5385
info("keyboard")
INFO("KEYBOARD")

Description: The info("keyboard") function returns the last key that was pressed.

Examples: The example below checks to see if the last key pressed was a tab:

if info("keyboard") = chr(9)

This example checks to see if the last key pressed was an upper case A:

if info("keyboard") = "A"

See Also: info("keycode") function
info("trigger") function

Page 5386
info("keycode")
INFO("KEYCODE")

Description: The info("keycode") function returns a special numeric code that represents last key that
was pressed. This code is unique for every key in the keyboard. For example, the
info("keycode") will return a different value for the 1 key on the numeric keypad and the
1 key above the Q key. The following tables list the keycode values for each key (in hexa-
decimal).

Main Key-
board:

A - 00
B - 0B
C - 08
D - 02
E - 0E
F - 03
G - 05
H - 04
I - 22
J - 26
K - 28
L - 25
M - 2E
N - 2D
O - 1F
P - 23
Q - 0C
R - 0F
S - 01
T - 11
U - 20
V - 09
W - 0D
X - 07
Y - 10
Z - 06
[- 21
] - 1E
 ; - 29
' - 27
, - 2B
. - 2F
/ - 2C
SHIFT - 38
CONTROL - 3B
OPTION - 3A
COMMAND - 37
SPACE - 31
\ - 32
1 - 12
2 - 13
3 - 14
4 - 15
5 - 17

Page 5387
6 - 16
7 - 1A
8 - 1C
9 - 19
0 - 1D
- - 1B
= 18
DELETE - 33
` - 2A
ENTER - 24

Arrow Keys: UP ARROW - 7E
DOWN ARROW - 7D

LEFT ARROW - 7B
RIGHT ARROW - 7C

Numeric Key-
pad:

0 - 52
1 - 53
2 - 54
3 - 55
4 - 56
5 - 57
6 - 58
7 - 59
8 - 5B
9 - 5C
ENTER - 4C
CLEAR - 47
= - 51
/ - 4B
* - 43
+ - 4E
- - 45

Function
Keys:

ESC - 35
F1 - 7A
F2 - 7B
F3 - 63
F4 - 76
F5 - 60
F6 - 61
F7 - 62
F8 - 64
F9 - 65
F10 - 6D
F11 - 67
F12 - 6F
F13 - 69
F14 - 6B

Page 5388
F15 - 71
HELP - 72
HOME - 73
PAGE UP - 74
PAGE DN - 79
DEL - 75
END - 77

Examples: The example below checks to see if the last key pressed was the 0 on the numeric key-
pad:

if info("keycode") = radix(16,"52")

This example checks to see if the last key pressed was the F1 key:

if info("keycode") = radix(16,"7A")

See Also: info("keyboard") function
info("trigger") function

Page 5389
info("localvariables")
INFO("LOCALVARIABLES")

Description: The info("localvariables") function builds a carriage return separated text array contain-
ing a list of the currently allocated local variables.

Examples: The example below uses info("localvariables") to check to see if the local variable «Sales-
DbName» exists. If it does not, then it issues a message to open a database.

if 0 = arraysearch(info("localvariables"),"SalesDbName",1,¶)
beep
message "Sales Database is not open"
stop

endif

See Also: info("globalvariables")
info("filevariables")
info("windowvariables")

Page 5390
info("magicwindow")
INFO("MAGICWINDOW")

Description: The info("magicwindow") function returns the name of the currently designated "magic
window," if any.

Examples: This procedure re-fills the "People List" list in the List form in the Contacts database. The
form must be open (this is checked by the info("magicwindow") function).

magicwindow "Contacts:List"
if info("magicwindow")<>""

superobject "People List","Fill List"
magicwindow ""

endif

See Also: magicwindow statement
magicformwindow statement

Page 5391
info("matrixcell")
INFO("MATRIXCELL")

Description: The info("matrixcell") function is designed to be used with matrix SuperObjects™. The
function returns the cell number within the matrix, starting with 1 in the upper left hand
corner. If the matrix order is horizontal, then the cell numbers will be consecutively
numbered from left to right in each row. If the matrix order is vertical, then the cell num-
bers will be consecutively numbered from top to bottom in each column.

Examples: The illustration shows two matrixes with the cell number displayed in the upper right
hand corner. The matrix on the left has vertical cell order, the matrix on the right has hor-
izontal cell order

The cell numbers were displayed using a Text Display SuperObject™.

See Also: info("matrixrow") function
info("matrixcolumn") function

Page 5392
info("matrixcolumn")
INFO("MATRIXCOLUMN")

Description: The info("matrixcolumn") function is designed to be used with matrix SuperObjects™.
The function returns the column number, starting with 1 for the left hand column and
increasing by one for each column to the right.

Examples: The illustration shows the columns and rows for a matrix SuperObject.

See Also: info("matrixrow") function
info("matrixcell") function

1 2 3

1

2

3

4

5

--
-

ro
w

s
--

-

--- columns ---

Page 5393
info("matrixname")
INFO("MATRIXNAME")

Description: The info("matrixname") function is designed to be used with matrix SuperObjects™.
The function returns the name of the matrix object, if any. This function allows a single
matrix frame to be used with two or more matrixes. The display for each matrix can be
adjusted based on the matrix name.

Examples: The formula below can be used to display items from a catalog in several matrixes. Each
matrix will display a different category, depending on what the name of the matrix is.

array(
lookupall(

"Catalog",
"Category",
info("matrixname"),
"Item",
¶),

info("matrixcell") ,
¶

)

See Also: super matrix programming

Page 5394
info("matrixrow")
INFO("MATRIXROW")

Description: The info("matrixrow") function is designed to be used with matrix SuperObjects™. The
function returns the row number, starting with 1 for the top and increasing by one for
each row as you go down.

Examples: The illustration shows the columns and rows for a matrix SuperObject.

See Also: info("matrixcolumn") function
info("matrixcell") function

1 2 3

1

2

3

4

5

--
-

ro
w

s
--

-

--- columns ---

Page 5395
info("maximumwindow")
INFO("MAXIMUMWINDOW")

Description: The info("maximumwindow") function returns the largest possible rectangle for this
window. This function is designed for use with an Auto Grow SuperObject for this win-
dow and will return the maximum size allowed by this object (see “Maximum Window
Size” on page 1047).

Examples: This procedure enlarges the current window to it's largest possible size. If possible, the
window will not be moved as it is enlarged.

local newWinBox,oldWinBox
newWinBox=info("maximumwindow")
oldWinBox= info("windowrectangle")
fitwindow
zoomwindow

rtop(oldWinBox),
rleft(oldWinBox),
rtop(oldWinBox)+ rheight(newWinBox),
rleft(oldWinBox)+ rwidth(newWinBox),""

See Also: info("minimumwindow") function
setwindowrectangle statement
zoomwindow statement

Page 5396
info("minimumwindow")
INFO("MINIMUMWINDOW")

Description: The info("minimumwindow") function returns the smallest possible rectangle for this
window. This function is designed for use with an Auto Grow SuperObject for this win-
dow and will return the maximum size allowed by this object (see “Maximum Window
Size” on page 1047).

Examples: This procedure reduces the current window to it's smallest possible size, without mov-
ing the window.

local newWinBox,oldWinBox
newWinBox=info("minimumwindow")
oldWinBox= info("windowrectangle")
zoomwindow

rtop(oldWinBox),
rleft(oldWinBox),
rtop(oldWinBox)+rheight(newWinBox),
rleft(oldWinBox)+rwidth(newWinBox),""

See Also: info("maximumwindow") function
setwindowrectangle statement
zoomwindow statement

Page 5397
info("modifiers")
INFO("MODIFIERS")

Description: The info("modifiers") function returns the status of the modifier keys.

"shift"
"capslock"
"option" (returned when Alt key pressed on PC)
"command" (returned when Control key pressed on PC)
"control" (returned when right mouse button pressed on PC)

The info("modifiers") function also returns the status of the last mouse click. If the last
mouse click was a double click, info("modifiers") will return "doubleclick" . If the last
mouse click was a triple click , info("modifiers") will return "tripleclick" .

If more than one modifier key is active the function will return all of them strung
together like this:

"shift option"

 You should check for a specific modifier with the contains operator.

Examples: This example opens the Status form if the user double clicks on a button.

if info("modifiers") contains "double"
openform "Status"

endif

See Also: info("click") function
info("mouse") function
info("mousedown") function
info("mousestilldown") function
key statement

Page 5398
info("mouse")
INFO("MOUSE")

Description: The info("mouse") function returns the current location of the mouse in screen relative
co-ordinates.

Examples: The example below calculates the distance (in inches) and angle between the current
mouse position and the point where the mouse was last clicked.

local dragDistance, dragAngle,mousePoint,deltaV,deltaH
mousePoint=info("mouse")
deltaV= v(mousePoint- v(info("click")))
deltaH= h(mousePoint- h(info("click")))
dragDistance= sqr(deltaV^2+deltaH^2)/72
dragAngle= tanh(deltaV/deltaH)*180/ π

Notes: The second line copies the current mouse position into the variable mousePoint.
This is necessary in case the mouse moves between the third and fourth lines of the pro-
cedure. The division by 72 at the end of the dragDistance calculation converts the dis-
tance to inches. The multiplication by 180/π in the angle calculation converts the angle
from radians to degrees.

See Also: info("click") function
xytoxy(function

Page 5399
info("mousedown")
INFO("MOUSEDOWN")

Description: The info("mousedown") function returns true or false depending on whether or not the
mouse is currently down.

Examples: The example below calculates how long the mouse is held down after the user presses a
button.

local downTime
downTime= now()
loop

nop
while info("mousedown")
downTime= now()-downTime

See Also: info("mousestilldown") function
info("click") function
info("mouse") function

Page 5400
info("mousestilldown")
INFO("MOUSESTILLDOWN")

Description: The info("mousestilldown") function returns true or false depending on whether or not
the mouse is currently down and has not been let up since the button was pressed.

Examples: The example below calculates how long the mouse is held down after the user presses a
button.

local downTime
downTime= now()
loop

nop
while info("mousestilldown")
downTime= now()-downTime

See Also: info("mousedown") function
info("click") function
info("mouse") function

Page 5401
info("multiuser")
INFO("MULTIUSER")

Description: The info("multiuser") function returns true if the database is currently in multi-user
mode. (Note: This function reflects the status of the obsolete pre-Panorama 3.0 multi-
user system, not the Panorama 3.0 client/server system. See the info("serverstatus") func-
tion.)

Examples: This example loops until the database is at the very first record.

if info("multiuser")
message "Please switch to single user mode."

else
field Date
groupup by month
field Amount
total

endif

See Also: info("serverstatus") function

Page 5402
info("openresourcefiles")
INFO("OPENRESOURCEFILES")

Description: The info("openresourcefiles") function returns a carriage return delimited list of all open
resource files (if any).

Examples: The procedure below lists all open resource files.

message info("openresourcefiles")

See Also: openresource statement
openresourcerw statement
closeresource statement

Page 5403
info("pagenumber")
INFO("PAGENUMBER")

Description: The info("pagenumber") function returns the current report page number. This function
is designed to be used as part of an auto-wrap text object or Text Display SuperObject™
in a report form.

Examples: This example formula could be used to print the page number with an auto-wrap text
object or Text Display SuperObject™. This formula causes the printed page numbers to
begin with page 25 instead of page 1.

24+info("pagenumber")

See Also: print statement

Page 5404
info("panoramabuild")
INFO("PANORAMABUILD")

Description: The info("panoramabuild") function returns a SuperDate. This value contains the date
and time when the currently running copy of Panorama was compiled. You can use this
function to differentiate between two slightly different versions of Panorama even if they
have the same version number.

Examples: The procedure below checks to make sure that it will run on the current version of Pan-
orama.

if regulardate(info("panoramabuild"))< date("1/1/2001")
message "This procedure requires Panorama 3"

endif
…
 (rest of procedure)
…

See Also: info("version") function
regulardate(function
regulartime(function

Page 5405
info("panoramafolder")
INFO("PANORAMAFOLDER")

Description: The info("panoramafolder") function returns a binary data item that unambiguously
describes the location of the folder containing the currently running copy of Panorama.
This folder id can be used in other functions and statements.

Examples: This procedure below checks to see if the optional zip code file is installed.

local inPanoramaFolder
inPanoramaFolder= listfiles(info("panoramafolder"),"")
if 0 = arraysearch(inPanoramaFolder,"Zip Magic! Data",1,¶)

message "Sorry, Zip Code database is not installed."
endif

See Also: info("panoramatoolsfolder") function
info("panoramaname") function
info("version") function
folder(function
folderpath(function
listfiles(function

Page 5406
info("panoramaname")
INFO("PANORAMANAME")

Description: The info("panoramaname") function returns the name of the currently running copy of
Panorama. In other words, if you have renamed your copy of Panorama this function
will tell what the name is.

Examples: This procedure displays the name, version and folder of the currently running copy of
Panorama. This can be useful if you have multiple copies of Panorama on your system,
and want to know which one you are using.

message "You are using "+info("panoramaname")+
"version "+ info("version") +
"in the "+ pathstr(info("panoramafolder"))+" folder."

See Also: info("panoramafolder") function
info("panoramatoolsfolder") function
info("version")function

Page 5407
info("panoramatoolsfolder")
INFO("PANORAMATOOLSFOLDER")

Description: The info("panoramtoolsfolder") function returns the folder id for the Panorama Tools
folder in the Prefs folder. If this folder is not found, it returns the folder id of the folder
containing Panorama itself. Panorama uses this folder for extra files it needs to use
(scripts, dictionaries, etc.)

Examples: This procedure saves a prefs file into the Panorama tools folder.

filesave info("panoramatoolsfolder"),"myPrefs","",thePrefs

See Also: info("panoramafolder") function
info("systemfolder")function
info("panoramaname") function
folder(function
folderpath(function

Page 5408
info("plugandrun")
INFO("PLUGANDRUN")

Description: The info("plugandrun") function tells how Panorama will resolve conflicts between the
client and server when the client database is reconnected to the server after being used
off line. There are four possible modes

off This is the value that will be returned if this is a single user Panorama database that is
not linked to an SQL server database.

client This means that if a record has been modified by both the client and the server, the
clients changes will be kept and the servers changes will be discarded.

server This means that if a record has been modified by both the client and the server, the
servers changes will be kept and the clients changes will be discarded.

manual This means that if a record has been modified by both the client and the server,
the user will be presented with a list of the changed record and allowed to "cherry pick"
which records to keep.

Examples: This procedure below warns the user if the database is set up so that the server may
override client changes.

if info("plugandrun") contains "server"
message "Warning: Your changes may be lost when you reconnect with the

server!"
endif

See Also: setplugandrun statement

Page 5409
info("preferencesfolder")
INFO("PREFERENCESFOLDER")

Description: The info("preferencesfolder") function returns a binary data item that unambiguously
describes the location of the Preferences folder. This function is only valid when used on
MacOS computers. This folder id can be used in other functions and statements.

Examples: This procedure loads preference data from a file named MyAppPref.dat in the Prefer-
ences folder.

local myAppPreferences
myAppPreferences= fileload(info("preferencesfolder"),"MyAppPref.dat")

See Also: info("panoramatoolsfolder") function
info("systemfolder") function
folder(function
folderpath(function

Page 5410
info("records")
INFO("RECORDS")

Description: The info("records") function returns the total number of records in the current database.
To find out the number of selected records, use info("selected").

Examples: This example checks to see if all records are selected. If some records are not selected, the
procedure does a selectall statement.

if info("selected") <info("records")
selectall

endif

See Also: info("selected") function
select statement

Page 5411
info("reportcolumns")
INFO("REPORTCOLUMNS")

Description: The info("reportcolumns") function returns the number and direction of report columns
that have been set up for the currently open form (if any). The function returns a text
string that contains the number of columns followed by the direction, for example "3
Down" or "2 Across".

Examples: This procedure displays the number of columns in the current report.

message "This report has "+
array(info("reportcolumns"),1," ")+ "columns."

See Also: setreportcolumns statement

Page 5412
info("rulers")
INFO("RULERS")

Description: The info("rulers") function returns the current measurement units for the rulers in this
form. The function may return five possible values: Inches, Centimeters, Pixels, Deca-
Pica, or Deca-Elite.

Examples: This procedure displays the dimensions of the logo in the current form. Depending on
the ruler setting, the dimensions will be displayed in inches, centimeters or pixels.

local logoHeight,logoWidth,Units
object "Logo"
logoHeight= rheight(objectinfo("rectangle"))
logoWidth= rwidth(objectinfo("rectangle"))
Units=info("rulers")
if Units beginswith "D"

Units="Pixels"
endif
if Units="Inches"

logoHeight=logoHeight/72
logoWidth=logoWidth/72

endif
if Units="Centimeters"

logoHeight=logoHeight/28.346
logoWidth=logoWidth/28.346

endif
message "The logo is "+
str(logoHeight)+" by "+
str(logoWidth)+" "+Units

See Also: setrulers statement

Page 5413
info("scratchmemory")
INFO("SCRATCHMEMORY")

Description: The info("scratchmemory") function returns the amount of memory allocated for scratch
memory.

Examples: The procedure below checks the to make sure that at least 350K of scratch memory is
allocated.

if info("scratchmemory")<350000
scratchmemory 350000

endif

See Also: scratchmemory statement
info("freememory") function

Page 5414
info("screenrectangle")
INFO("SCREENRECTANGLE")

Description: The info("screenrectangle") function returns a rectangle defining the edges of the main
screen (the screen that contains the menu bar). The rectangle is in screen relative coordi-
nates.

Examples: Here’s a simple procedure that displays the size of your main screen:

local sHeight,sWidth
sHeight= rheight(info("screenrectangle"))
sWidth= rwidth(info("screenrectangle"))
message "Screen dimensions are: "+
str(sWidth)+" by "+ str(sHeight)+ "pixels."

See Also: info("windowrectangle") function
info("buttonrectangle") function

Page 5415
info("selected")
INFO("SELECTED")

Description: The info("selected") function returns the number of selected records in the current data-
base. To find out the total number of records, use info("records").

Examples: This example checks to see if all records are selected. If some records are not selected, the
procedure does a selectall statement.

if info("selected")< info("records")
selectall

endif

See Also: info("records") function
select statement

Page 5416
info("serialname")
INFO("SERIALNAME")

Description: The info("serialname") function returns the name of the person this copy of Panorama is
registered to.

Examples: This procedure below displays the registration information for this copy of Panorama.
This is the same information that you typed in when you first installed your copy of Pan-
orama.

message
"Panorama Serial# "+info("serialnumber")["-","--"][2,-2]+
" is registered to "+info("serialname")+
", "+info("serialorganization")+", "+info("serialphone")+"."

See Also: info("serialorganization") function
info("serialnumber") function
info("serialphone") function
info("user") function

Page 5417
info("serialnumber")
INFO("SERIALNUMBER")

Description: The info("serialnumber") function returns the serial number of this copy of Panorama is
registered to. The serial number is returned as a text item in this format:

10000.ABC

Examples: This procedure below displays the serial number.

message
"Panorama Serial# "+info("serialnumber")

See Also: info("serialname") function
info("serialorganization") function
info("user") function

Page 5418
info("serialorganization")
INFO("SERIALORGANIZATION")

Description: The info("serialorganization") function returns the organization this copy of Panorama
is registered to.

Examples: This procedure below displays the registration information for this copy of Panorama.
This is the same information that you typed in when you first installed your copy of Pan-
orama.

message
"Panorama Serial# "+info("serialnumber")["-","--"][2,-2]+
" is registered to "+info("serialname")+
", "+info("serialorganization")+", "+info("serialphone")+"."

See Also: info("serialname") function
info("serialnumber") function
info("serialphone")function
info("user") function

Page 5419
info("serialphone")
INFO("SERIALPHONE")

Description: The info("serialphone") function returns the phone number of the person or organization
this copy of Panorama is registered to.

Examples: This procedure below displays the registration information for this copy of Panorama.
This is the same information that you typed in when you first installed your copy of Pan-
orama.

message
"Panorama Serial# "+info("serialnumber")["-","--"][2,-2]+
" is registered to "+info("serialname")+
", "+info("serialorganization")+", "+info("serialphone")+"."

See Also: info("serialname") function
info("serialnumber") function
info("serialorganization") function
info("user") function

Page 5420
info("serverfile")
INFO("SERVERFILE")

Description: The info("serverfile") function returns the name of the SQL database linked to this Pan-
orama database, if any.

Examples: This procedure below checks two Panorama databases to see if they are linked to the
same server database.

local sqlfile1,sqlfile2
sqlfile1=info("serverfile")
openfile "Another Database"
sqlfile2=info("serverfile")
if sqlfile1=sqlfile2

message "These two Panorama databases "+
"are linked to the same server database."

endif

See Also: serverfile statement

Page 5421
info("serverrecordid")
INFO("SERVERRECORDID")

Description: The info("serverrecordid") function returns the internal serial number on the server of
the current Panorama record. This number is guaranteed to be unique in this database if
this is a SQL connected database. If this is a standalone database, this function will
return zero for all records. This function will also return zero for new records created
while disconnected to the server. These new records are not assigned an internal serial
number until the next time the database is synchronized with the server.

Examples: This function is intended for debugging purposes only. It is included here for complete-
ness.

See Also: info("serverrecordts") function

Page 5422
info("serverrecordts")
INFO("SERVERRECORDTS")

Description: The info("serverrecordts") function returns the internal "time stamp" number Panorama
uses to determine which records need to be synchronized. By itself, this number is basi-
cally meaningless. However, if the time stamp for record A is higher than record B, then
record A was edited later than record B. If this is a standalone database, this function will
return zero for all records. This function will also return zero for new records created
while disconnected to the server. These new records are not assigned an internal time
stamp until the next time the database is synchronized with the server.

Examples: This function is intended for debugging purposes only. It is included here for complete-
ness. However, it could possibly have useful non-debugging purposes. Here is an exam-
ple that selects all records that have been modified after the current record. Remember,
this will only work with an SQL database.

local ts
ts=info("serverrecordts")
select info("serverrecordts") > ts

See Also: info("serverrecordid") function

Page 5423
info("serverstatus")
INFO("SERVERSTATUS")

Description: The info("serverstatus") function returns the connection status of the SQL database
linked to this Panorama database, if any. There are four possible values:

Standalone (Read/Write) This is the value that will be returned if this is a single user
Panorama database that is not linked to an SQL server database.

Connected (Read/Write) This is the value that will be returned if this is a multi user Pan-
orama database that is linked to an SQL server database, and the link is currently open
with full record locking.

No Connection (Read/Only) This is the value that will be returned if this is a multi user
Panorama database but there is currently no network connection to the SQL server data-
base. For example the user might be using this database on a laptop computer with no
connection to the server. This database does not allow off-line editing, so the database
cannot be edited.

Standalone (Read/Write) This is the value that will be returned if this is a multi user
Panorama database but there is currently no network connection to the SQL server data-
base. For example the user might be using this database on a laptop computer with no
connection to the server. This database does allow off-line editing, so the database may
be edited. The changes made off-line will be saved and synchronized the next time the
server is available.

Examples: This procedure below checks to make sure that the database is connected to the server,
and then loads a subset of the server database into the local Panorama database.

if info("serverstatus") contains "Connected"
subsetselect Region="Western"

else
message "Sorry, cannot update region now."

endif

See Also: attachserver statement
detachserver statement

Page 5424
info("servertimeout")
INFO("SERVERTIMEOUT")

Description: The info("servertimeout") function returns the maximum time Panorama will keep a
record locked with no keyboard or mouse activity. This timeout can help prevent a user
from starting to edit a record and then walking away from the computer and leaving the
record locked and unavailable to other users indefinitely. The time interval is specified in
seconds. A timeout value of zero indicates no timeout (infinite time).

Examples: This procedure below checks to see if the user has set a timeout value. If there is no time-
out value, a default value of 3 minutes is set (180 seconds).

if info("servertimeout")=0
servertimeout 180

endif

See Also: servertimeout statement
lockrecord statement
lockorstop statement
unlockrecord statement

Page 5425
info("startupfolder")
INFO("STARTUPFOLDER")

Description: The info("startupfolder") function returns a binary data item that unambiguously
describes the location of the startup folder. Any file saved in this folder will be opened
automatically when the system boots up. This function is only valid when used on
MacOS computers. This folder id can be used in other functions and statements.

Examples: This procedure saves a copy of the current database in the startup folder so that it will
open automatically when the computer is turned on.

saveacopyas folderpath(info("startupfolder"))+ info("databasename")

See Also: info("systemfolder") function
folder(function
folderpath(function

Page 5426
info("stopped")
INFO("STOPPED")

Description: The info("stopped") function returns true or false depending on the result of the last
uprecord, downrecord, left or right statement. If the statement could not move the active
cell because the active cell was already as far as it could go, the function will return true.
Otherwise it will return false.

Examples: The procedure below renames all the fields based on the data in the current record. The
procedure starts at the leftmost column and works its way to the right until it reaches the
last column, when info("stopped") will return true and stop the loop.

field (array(dbinfo("fields",""),0,¶))
loop

fieldname «»
right

until info("stopped")

If there are no other elements to the formula you can simply use the word stopped with
the if and until statements, for example if stopped or until stopped .

See Also: info("found") function
info("bof") function
info("eof") function
uprecord statement
downrecord statement
left statement
right statement

Page 5427
info("subsetformula")
INFO("SUBSETFORMULA")

Description: The info("subsetformula") function returns the formula used to extract the current local
subset from the server database. If the local database contains a copy of the entire server
database (select all) the result will be an empty string ("").

Examples: This procedure below displays the region loaded as the current local subset. It assumes
that the selection formula is something like Region="Western", in which case it will dis-
play Western.

if info("subsetselect") beginswith "Region"
message info("subsetselect")[{"},{-"}][2,-2]

endif

 One common use for this function is to save the current selection formula, make another
selection, and then go back to the original selection, like procedure which counts the
number of records after 1/1/97 and then goes back to the original selection.

local wasSubset,count97
wasSubset=info("subsetselect")
subsetselect Date>date("Jan 1, 1997")
count97= info("records")
clipboard=wasSubset
subsetselect clipboard

Note: You must be very careful in this example to use the keyword clipboard, not clip-
board().

See Also: subsetselect statement
subsetselectall statement
subsetselectdialog statement
subsetformulaselect statement

Page 5428
info("summary")
INFO("SUMMARY")

Description: The info("summary") function returns the summary level of the current record, from 0
(data record) to 7.

Examples: The procedure below finds the first summary record in the database.

find info("summary")>0

See Also: group statement
selectsummaries statement
summarylevel statement

Page 5429
info("systemfolder")
INFO("SYSTEMFOLDER")

Description: The info("systemfolder") function returns a binary data item that unambiguously
describes the location of the system folder. This folder id can be used in other functions
and statements.

Examples: This procedure below lists all the extensions in the current system folder.

local extensionFiles,extensionsFolder
extensionsFolder= folder(
folderpath(info("systemfolder"))+"Extensions")
extensionFiles= listfiles(extensionsFolder,"")

See Also: folder(function
folderpath(function
listfiles(function
info("panoramafolder") function

Page 5430
info("tabdown")
INFO("TABDOWN")

Description: The info("tabdown") function returns true if the tab down option is on, false if the tab
down option is off.

Examples: The procedure below turns off the tab down option.

if info("tabdown")
tabdown

endif

See Also: tabdown statement

Page 5431
info("tempfolder")
INFO("TEMPFOLDER")

Description: The info("tempfolder") function returns a binary data item that unambiguously
describes the location of the system temporary file folder. This folder is a handy location
for files that you want to create temporarily and then delete. This function is only valid
when used on MacOS computers. This folder id can be used in other functions and state-
ments.

Examples: This procedure exports a copy of the current database in the temporary folder.

local extensionFiles,extensionsFolder
extensionsFolder= folder(
folderpath(info("systemfolder"))+"Extensions")
extensionFiles= listfiles(extensionsFolder,"")

See Also: info("systemfolder") function
folder(function
folderpath(function

Page 5432
info("tickcount")
INFO("TICKCOUNT")

Description: The info("tickcount") function returns the number of ticks (1/60th second) since the sys-
tem started up. This function can be used to time intervals smaller than 1 second.

Examples: This example calculates the time interval between now and the last time this procedure
was triggered. The result is stored in a floating point field named Interval, and is accu-
rate to 1/60th of a second.

fileglobal lastTicks
lastTicks=lastTicks
if error

lastTicks=0
Interval=0
rtn

endif
Interval=(info("tickcount")-lastTicks)/60
lastTicks=info("tickcount")

See Also: now(function

Page 5433
info("trigger")
INFO("TRIGGER")

Description: The info("trigger") function returns information about how the current procedure was
triggered.

If the procedure was triggered by data entry this function will return the word Key fol-
lowed by a period and then the key that actually triggered the procedure:

Key.Return
Key.Enter
Key.Tab

If the procedure was triggered by a button, the function will return the word Button fol-
lowed by a period and then the name of the button, for example:

Button.Save
Button.Calculate Tax
Button.Show Chart

If the procedure was triggered by a custom menu, the function will return the word
Menu followed by a period, the name of the menu, another period, and then the menu
item. Here are some examples:

Menu.Accounting.Aging
Menu.Letter.New

Examples: The example below shows a .CustomMenu procedure written for two custom menus
with two menu items apiece.

if info("trigger") = "Menu.Organize.SortByName"
field FirstName sortupwithin
stop

endif
if info("trigger") = "Menu.Organize.SortByZip"

field Zip sortup
stop

endif
if info("trigger") = "Menu.Transaction.Add"

addrecord
stop

endif
if info("trigger") = "Menu.Transaction.Void"

Description="Void"
Amount=0
stop

endif

This example assumes that the database contains a field called Carrier, and a custom
menu called Airlines that contains menu items listing airlines: American, Delta, South-
west, etc. When the user selects an airline the name of the airline is copied into the Car-
rier field.

local MenuName,MenuItemName
MenuName=info("trigger")[6,"-."][1,-2]
MenuItemName=info("trigger")["-.",-1][2,-1]

Page 5434
if MenuName="Airlines"
Carrier=MenuItemName
stop

endif
; other menu processing continues below

See Also: info("keyboard")function
info("keycode") function
info("click") function
info("mouse") function
info("dialogtrigger") function

Page 5435
info("typeofwindow")
INFO("TYPEOFWINDOW")

Description: The info("typeofwindow") function determines what type of window the current win-
dow is. The window may be one of the types listed below:

Data Sheet
Form (Data Mode)
Draw (Graphics Mode)
View As List
Design Sheet
Cross Tab Sheet
Desk Accessory
Floating Input Window
Procedure
Flash Art Gallery
Clipboard
Memory Usage
Print Preview

Examples: This procedure checks to see if a form is currently on top. If so, the procedure opens the
data sheet (or brings it to the front if it is already open).

if info("typeofwindow")="Form"
opensheet

endif

See Also: info("windowname") function
info("windowtype") function
window statement
opensheet statement
openform statement
openprocedure statement
gosheet statement
goform statement
goprocedure statement

Page 5436
info("user")
INFO("USER")

Description: The info("user") function returns the name of the user of this computer. If you are using
System 6 you can set the name of the user with the Chooser. If you are using System 7
you can set the name of the user with the Sharing Setup control panel.

Examples: The procedure below will not work for anyone except Meg Reeves.

if info("user") ≠"Meg Reeves"
stop

endif
…
 (rest of procedure)
…

See Also: info("username") function
info("userid") function
info("userlevel") function
info("serialname") function
info("serialorganization")function

Page 5437
info("userid")
INFO("USERID")

Description: The info("userid") function works with the Panorama security system. It returns the id
(usually initials or the first name) the user has logged in under. If the user has not logged
in, this function will return empty text ("").

Examples: The formula below could be used in a report header (in an auto-wrap text object or Text
Display SuperObject™ to show who printed the report.

"Printed by: "+info("userid")+
" @"+ timepattern(now(),"hh:mm am/pm")

See Also: info("username") function
info("userlevel") function

Page 5438
info("userlevel")
INFO("USERLEVEL")

Description: The info("userlevel") function works with the Panorama security system. It returns the
current user level for this user, a number from 0 to 255. If the user has not logged in, this
function will return 0.

Examples: The procedure below only allows users with access levels of 25 or higher to use the rest
of the procedure.

if info("userlevel")<25
message "Sorry, your access level does not allow this operation"
stop

endif
…
 (rest of procedure)
…

See Also: info("username") function
info("userid") function

Page 5439
info("username")
INFO("USERNAME")

Description: The info("username") function works with the Panorama security system. It returns the
name the user has logged in under. If the user has not logged in, this function will return
empty text ("").

Examples: The formula below could be used in a report header (in an auto-wrap text object or Text
Display SuperObject™ to show who printed the report.

"Printed by: "+ info("username") +
" @"+ timepattern(now(),"hh:mm am/pm")

See Also: info("userid") function
info("userlevel") function

Page 5440
info("version")
INFO("VERSION")

Description: The info("version") function returns the version of the currently running copy of Pan-
orama.

Examples: The procedure below checks to make sure that it will run on the current version of Pan-
orama.

if info("version")[1,1]<"3"
message "This procedure requires Panorama 3"

endif
…
 (rest of procedure)
…

See Also: info("panoramaname") function
info("panoramafolder") function
info("panoramabuild") function

Page 5441
info("volumes")
INFO("VOLUMES")

Description: The info("volumes") function returns a carriage return separated array listing all of the
currently mounted volumes (disks) on the computer. On MacOS computers the startup
volume is always listed as the first element of this array.

Examples: This example checks to see if the Panorama Reference CD is currently mounted.

local mydisks
mydisks=info("volumes")
if mydisks notcontains "Panorama Reference"

message "The Panorama Reference CD is not mounted!"
endif

See Also: listfiles(function
folder(function
folderpath(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function

Page 5442
info("windowbox")
INFO("WINDOWBOX")

Description: The info("windowbox") function returns text containing four numbers which define the
edges of the current window. The rectangle is in screen relative coordinates.

Examples: This is a two part example. The first part is a .CloseWindow procedure that saves the
dimensions of the Main form window when it is closed.

global MainWindowBox
if info("formname") ="Main"

MainWindowBox=info("windowbox")
endif
closewindow

 The second half of the example is a procedure that can re-open the main window with
the same position and size it had before it was closed.

windowbox MainWindowBox
openform "Main"

 With the introduction of Panorama 3 this function is somewhat obsolete—new applica-
tions will probably want to use the info("windowrectangle") function instead.

See Also: windowbox statement
info("windowrectangle") function
info("screenrectangle") function
info("buttonrectangle") function

Page 5443
info("windowdepth")
INFO("WINDOWDEPTH")

Description: The info("windowdepth") function returns the pixel depth of the current window. This
table shows the possible values:

If the window crosses over two monitors with different pixel depths, the info("window-
depth") function will return the lower value.

Examples: The formula below could be used in a Flash Art object. If this is a black and white moni-
tor it displays the picture bwSky, otherwise it displays the picture Sky.

?(info("windowdepth")=1,"bwSky","Sky")

See Also: info("windowname") function

Depth Description

1 Black and White

2 4 colors

4 16 colors

8 256 colors

16 Thousands of Colors

32 Millions of Colors

Page 5444
info("windowoptions")
INFO("WINDOWOPTIONS")

Description: The info("windowoptions") function returns the names of any currently enabled win-
dow options, if any. The available options are:

nopalette
novertscroll
nohorzscroll
nodragbar

Examples: This procedure checks to see if the current window has a tool palette. If so, it simply
deletes the current record. If there is no tool palette it asks for confirmation before delete-
ing the record.

if info("windowoptions") notcontains "palette"
alert 1013,"Are you sure you want to delete?
if info("dialogtrigger") contains "no" rtn endif

endif
deleterecord

See Also: setwindow statement
setwindowrectangle statement
windowbox statement
zoomwindow statement

Page 5445
info("windowname")
INFO("WINDOWNAME")

Description: The info("windowname") function returns the name of the current window.

Examples: This procedure switches to the Appointments database and selects today’s appoint-
ments. When this is finished it switches back to the original window, right back where
you started.

local wasWindow
wasWindow=info("windowname")
openfile "Appointments"
select When=today()
window wasWindow

See Also: info("windowtype") function
window statement
openfile statement

Page 5446
info("windowrectangle")
INFO("WINDOWRECTANGLE")

Description: The info("windowrectangle") function returns a rectangle defining the edges of the cur-
rent window. The rectangle is in screen relative coordinates

Examples: Here’s an example that times how long it takes the user to move the mouse away from
the current window.

local startTime
startTime= now()
loop

nop
while inrectangle(info("mouse") ,info("windowrectangle"))
message pattern(now()-startTime,"# second~")

As long as the mouse is over the window, the procedure will whirl around and around
doing nothing (remember, the nop statement does no operation). When the mouse
moves away from the window, the inrectangle(function goes false and the loop is bro-
ken.

See Also: info("screenrectangle") function
info("buttonrectangle") function

Page 5447
info("windows")
INFO("WINDOWS")

Description: The info("windows") function builds a carriage return separated text array containing a
list of all the currently open windows. The windows are listed in order from front to
back.

Examples: The example below uses info("windows") to check to see if the Invoice:Status window is
open. If not, the procedure opens the form.

if 0 = arraysearch(info("windows"),"Invoice:Status",1,¶)
setwindowrectangle rectangle(20,5,120,255),""
openform "Status"

endif

See Also: listwindows(function
dbinfo(function

Page 5448
info("windowtype")
INFO("WINDOWTYPE")

Description: The info("windowtype") function determines what number type the current window is.
The window number may be one of the listed below:

2 = Data Sheet
5 = Form (Data Mode)
6 = Draw (Graphics Mode)
15 = View As List
7 = Design Sheet
10 = Cross Tab Sheet
1 = Desk Accessory
3 = Floating Input Window
8 = Procedure
11 = Flash Art Gallery
13 = Clipboard
12 = Memory Usage
14 = Print Preview

Examples: This procedure checks to see if a form is currently on top. If so, the procedure opens the
data sheet (or brings it to the front if it is already open).

if info("windowtype")= 5
opensheet

endif

See Also: info("windowname") function
info("typeofwindow") function
window function
opensheet statement
openform statement
openprocedure statement
gosheet statement
goform statement
goprocedure statement

Page 5449
info("windowvariables")
INFO("WINDOWVARIABLES")

Description: The info("windowvariables") function builds a carriage return separated text array con-
taining a list of the currently available window global variables (i.e. the windowglobal
variables defined for the active window).

Examples: The example below uses info("windowvariables") to reset all of the window variables in
the current window to empty.

local wVars,n,oneVar
wVars=info("windowvariables")
n=1
loop

oneVar= array(wVars,n,¶)
stoploopif oneVar=""
execute oneVar+"={} showvariables "+oneVar
n=n+1

while forever

See Also: info("globalvariables")
info("localvariables")
info("filevariables")
windowglobal statement

Page 5450
info("windowview")
INFO("WINDOWVIEW")

Description: The info("windowview") function determines what type of window the current window
is. The window may be one of the types listed below:

"Data Sheet"
"Floating Input Window"
"Floating Input Window"
"Form"
"Draw"
"Design Sheet"
"Procedure"
"Reserved"
"Cross Tab Sheet"
"Flash Art Gallery"
"Memory Usage"
"Clipboard"
"Print Preview"
"View As List Form"

Examples: This procedure checks to see if a form is currently on top. If so, the procedure switches to
graphics mode so that the form can be edited.

if info("windowview") contains "Form"
graphicsmode

endif

See Also: info("windowname") function
info("windowtype") function
info("typeofwindow") function
window statement
opensheet statement
openform statement
openprocedure statement
gosheet statement
goform statement
goprocedure statement

Page 5451
 INFO(...)
INFO(

Syntax: INFO(option)

Description: The info(function returns miscellaneous bits of information about the system, the cur-
rent database, the current window, etc.

Parameters: This function has one parameter: option.

option is the type of information that you want to retrieve.

See Also: info("abort") function
info("activesuperobject") function
info("applemenufolder") function
info("bof") function
info("buttonrectangle") function
info("changecount") function
info("changes") function
info("click") function
info("cursorrectangle") function
info("databasefilename") function
info("databasename") function
info("datatype") function
info("desktopfolder") function
info("dialogtrigger") function
info("empty") function
info("eof") function
info("error") function
info("expandable") function
info("fieldname") function
info("files") function
info("filevariables") function
info("formcolor") function
info("formcomment") function
info("formname") function
info("found") function
info("freememory") function
info("globalvariables") function
info("keyboard") function
info("keycode") function
info("localvariables") function
info("magicwindow") function
info("matrixcell") function
info("matrixcolumn") function
info("matrixname") function
info("matrixrow") function
info("maximumwindow") function
info("minimumwindow") function
info("modifiers") function
info("mouse") function
info("mousedown") function
info("mousestilldown") function
info("multiuser") function

Page 5452
info("openresourcefiles") function
info("pagenumber") function
info("panoramabuild") function
info("panoramafolder") function
info("panoramaname") function
info("panoramatoolsfolder") function
info("plugandrun") function
info("preferencesfolder") function
info("records") function
info("reportcolumns") function
info("rulers") function
info("scratchmemory") function
info("screenrectangle") function
info("selected") function
info("serialname") function
info("serialnumber") function
info("serialorganization") function
info("serialphone") function
info("serverfile") function
info("serverrecordid") function
info("serverrecordts") function
info("serverstatus") function
info("startupfolder") function
info("stopped") function
info("subsetformula") function
info("summary") function
info("systemfolder") function
info("tabdown") function
info("tempfolder") function
info("trigger") function
info("typeofwindow") function
info("user") function
info("userid") function
info("userlevel") function
info("username")) function
info("version") function
info("volumes") function
info("windowbox") function
info("windowdepth") function
info("windowname") function
info("windowoptions") function
info("windowrectangle") function
info("windows") function
info("windowview") function

Page 5453
INRECTANGLE(...)
INRECTANGLE(

Syntax: INRECTANGLE(point,rectangle)

Description: The inrectangle(function checks to see if a point is inside a rectangle (see point(, rectan-
gle().

Parameters: This function has two parameters: point and rectangle. These parameters may be in
screen, window, or form relative co-ordinates as long as you make sure both use the
same co-ordinate system. All measurements are in pixels (1 pixel = 1/72 inch)

point is a point.

rectangle is a rectangle.

Result: This function returns a true or false result. If the point is inside the rectangle, the function
returns true (-1). If the point is not inside the rectangle, the function returns false (0). You
can use this function with the if statement and the ?(function.

Examples: The illustration below shows a rectangle and several points. Green points are inside the
rectangle, purple points are not. Notice that points on the top and left edge of the rectan-
gle are considered inside. Points on the bottom and right edge are considered outside.

Here’s an example that times how long it takes the user to move the mouse away from a
button.

local startTime
startTime= now()
loop

nop
while inRectangle(info("mouse") , info("buttonrectangle"))
message pattern(now()-startTime,"# second~")

As long as the mouse is over the button, the procedure will whirl around and around
doing nothing (remember, the nop statement does no operation). When the mouse
moves away from the button, the inRectangle(function goes false and the loop is broken.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the point parameter.

Page 5454
See Also: point(function
rectangle(function
rectanglesize(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5455
INSERTBELOW
INSERTBELOW

Syntax: INSERTBELOW

Description: The insertbelow statement inserts a new record below the current record.

Parameters: This statement has no parameters.

Action: This statement inserts a new record just below the current record. It has the same effect
as pressing the RETURN key in the data sheet.

Examples: This simple example inserts twelve new records into the middle of the current database.

loop
insertbelow

until 12

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: addrecord statement
insertrecord statement
returnkey statement
deleterecord statement
info("records") function

Page 5456
INSERTFIELD
INSERTFIELD

Syntax: INSERTFIELD name

Description: The insertfield statement adds a new field to the current database.

Parameters: This statement has one parameter: name.

name is the name of the new field you want to create. If the parameter is the keyword
dialog the procedure will stop and display the Field Properties dialog, allowing the user
to set up the field name, type, and other properties of the new field.

Action: This statement inserts a new field into the database in front of the current field. (If you
want to add a new field at the end of the database, use the addfieldstatement.) The new
field is created as a text field. Use the FieldType statement if you need to convert the new
field to a numeric, date, choice or picture field. (Note: the new field does not become the
current field. Use the field statement to make the new field current before changing the
type or performing other operations on the field.)

Examples: This simple example adds a new field called Organization in front of the Address field.

field Address
insertfield "Organization"

 This example creates a new field called Ratio in front of the Balance field. The procedure
converts the new field to floating point, and then calculates values for the new field.

field "Balance"
insertfield "Ratio"
field "Ratio"
fieldtype "float"
formulafill "Price/Cost"

Views: This statement may be used in the Data Sheet and Form views only.

See Also: addfield statement
dbinfo() function
deletefield statement
field statement
fieldname statement
fieldstyle() function
fieldtype statement
info("datatype") function
info("fieldname") function
newgeneration statement

Page 5457
INSERTRECORD
INSERTRECORD

Syntax: INSERTRECORD

Description: The insertrecord statement inserts a new record above the current record.

Parameters: This statement has no parameters.

Action: This statement adds a new record above the current record. It has the same effect as
choosing the Insert New Record tool from the tool palette.

Examples: This simple example inserts twelve new records into the middle of the current database.

loop
insertrecord

until 12

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: addrecord statement
insertbelow statement
returnkey statement
deleterecord statement
info("records") function

Page 5458
INT(...)
INT(

Syntax: INT(value)

Description: The int(function truncates a number to an integer. It always truncates towards -∞. (If
you want to truncate to 0 use the fix(function.)

Parameters: This function has one parameters: value.

value is the value you want to convert to an integer. You may use any numeric value, for
example 1, 563.14, -2.5, or even π.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This simple example calculates the temperature in whole degrees.

int(Temperature)

Temperature must contain a numeric value. The table below shows how the fix(and int(
functions work with some typical values.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example int("34") . If you have a
number in a text item you must convert the text to a numeric value before taking the
absolute value, for example int(val("34")).

See Also: fix(function

Value fix(int(

98.700 98 98

4.5640 4 4

-3.1400 -3 -4

Page 5459
INTERSECTIONRECTANGLE(...)
INTERSECTIONRECTANGLE(

Syntax: INTERSECTIONRECTANGLE((rectangle1,rectangle2)

Description: The intersectionrectangle(function creates a rectangle by combining two rectangles. The
new rectangle is the area where the two rectangles overlap (if any). A rectangle is 8 bytes
or raw binary data (see binary data, graphic coordinates).

Parameters: This function has two parameters: rectangle1 and rectangle2.

rectangle1 is the first rectangle.

rectangle2 is the second rectangle.

Result: This function returns a rectangle with the area where the two rectangles overlap. If these
two rectangles do not touch each other the function will return an empty rectangle (
same as rectangle(0,0,0,0)).

Examples: The illustration below shows how this function combines two rectangles, creating a third
rectangle where the original two rectangles overlap:

The intersectionrectangle(function can be used to check if two rectangles overlap each
other. The procedure below checks to see if the current window is on the main screen, or
if it is on another screen.

if intersectionrectangle(
info("windowrectangle") ,
info("screenrectangle")) = rectangle(0,0,0,0)

message "This window is completely off the main screen"
else

message "This window is partially on the main screen"
endif

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for any of the four parameters.

Page 5460
See Also: point(function
rectangle(function
rectanglesize(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
unionrectangle(function
inrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5461
K

KEY
KEY

Syntax: KEY modifiers,keys

Description: The key statement allows a procedure to simulate one or more keystrokes. The key-
strokes are not simulated immediately but are buffered until the end of the procedure. If
you need the keystrokes to be processed immediately use the key statement.

Parameters: This statement has two parameters: modifiers and keys.

modifiers is a text item containing a list of the modifier keys (if any) for the simulated
keystrokes. The modifier keys may be specified by any combination of the following
words (separated by spaces, for example "shift option"):

keys is one or more characters corresponding to the keystrokes to be simulated. For
example if you want to simulate the S key this parameter should be "S".

Action: This statement allows a procedure to simulate a keystroke.

Examples: This example simulates the key sequence Command-S Command-Q.

Key "command","SQ"

The key statement is designed to be used with the .KeyDown procedure. If the .Key-
Down procedure doesn’t want to process a keystroke itself, it can pass the keystroke to
the key statement for normal processing. This .KeyDown procedure performs special
actions when the enter or $ keys are pressed, but handles all other keys normally.

local KeyStroke
KeyStroke= info("trigger") [5,-1]
case KeyStroke=chr(3) /* enter key */

closewindow
case KeyStroke="$"

field Amount
editcellstop

defaultcase
key info("modifiers") ,KeyStroke

endcase

Views: This statement may be used in any view.

Text Equivalent Key
(Macintosh)

Equivalent Key
(Windows)

"shift" ß ß

"capslock" Ò Ò

"option" å Å

"command" ˚ ç

"control" ç none

Page 5462
See Also: keynow function
info("modifiers") function
info("keyboard") function
info("keycode") function

Page 5463
KEYNOW
KEYNOW

Syntax: KEYNOW modifiers,keys

Description: The keynow statement allows a procedure to simulate keystrokes. The keystrokes are
processed immediately (not at the end of the procedure like the key statement).

Parameters: This statement has two parameters: modifiers and keys.

modifiers is a text item containing a list of the modifier keys (if any) for the simulated
keystrokes. The modifier keys may be specified by any combination of the following
words (separated by spaces, for example "shift option"):

keys is one or more characters corresponding to the keystrokes to be simulated. For
example if you want to simulate the S key this parameter should be "S".

Action: This statement allows a procedure to simulate a keystroke.

Examples: This example simulates the key sequence Command-S Command-Q.

Key "command","SQ"

This example uses types the phrase type this now! at 3 characters per second (1 tick
equals 1/60th second).

local keyStrokes,n,c
keyStrokes="type this now!"
n=1
loop

c=keyStrokes[n;1]
stoploopif c=""
keynow "",c
t= info("tickcount")
loop

nop
while t+20 > info("tickcount")

while forever

Don’t use this statement with the .KeyDown procedure — doing so will disrupt Pan-
orama’s handling of menu keyboard equivalents (shortcuts).

Views: This statement may be used in any view.

Text Equivalent Key
(Macintosh)

Equivalent Key
(Windows)

"shift" ß ß

"capslock" Ò Ò

"option" å Å

"command" ˚ ç

"control" ç none

Page 5464
See Also: key statement
info("modifiers") function
info("keyboard") function
info("keycode") function

Page 5465
L

LASTRECORD
LASTRECORD

Syntax: LASTRECORD

Description: The lastrecord statement moves the cursor to the last visible record in the active window.
This is the opposite of the firstrecord statement.

Parameters: This statement has no parameters.

Action: This statement moves the cursor directly to the last visible record in the Data Sheet,
Design Sheet, Cross Tab view, or View-as-list Form view. In a Individual Record Form
view the view will change to the last record in the database. If the cursor is already on
the last visible record this statement will do nothing.

This statement has the same effect as clicking on the Last Record tool on a tool palette
(when available).

Examples: This simple example could be used in either the Data Sheet, Form view or Cross Tab
view to move the cursor to the last visible record in the window, making this record the
current record.

lastrecord

This example groups the database by the fields City and State, moves to the last visible
record (the level 3 summary record) in the window, and deletes it.

field State
groupup
field City
groupup
lastrecord
cutrecord

 This example moves the cursor to the last record in the Design Sheet window, which is
the last field in the database, and changes it's width to 6.

opendesignsheet
lastrecord
Width = 6
newgeneration
closewindow

Views: This statement may be used in any view.

See Also: firstrecord statement
downrecord statement
uprecord statement

Page 5466
LEFT
LEFT

Syntax: LEFT

Description: The left statement moves the cursor to the previous field in the active window. To decide
what the previous field is, Panorama uses the data sheet order of the fields. This is the
opposite of the right statement.

Parameters: This statement has no parameters.

Action: This statement moves the cursor to the previous field in the active window. If the current
window is the data sheet the cursor will appear to move to the left one column. If the
cursor is already on the first visible column this statement will do nothing.

You can use this statement in conjunction with the info("fieldname") or info("stopped")
functions to test to see if you are on the last visible record in the window.

Examples: This example copies the data from the previous cell into the current cell.

left
if info("stopped")
stop
endif
copycell
right
pastecell

Views: This statement may be used in any view.

See Also: info("fieldname") function
info("stopped") function
dbinfo(function
field statement
right statement

Page 5467
LENGTH(...)
LENGTH(

Syntax: LENGTH(text)

Description: The length(function calculates the length (number of characters) of an item of text.

Parameters: This function has one parameter: text.

text is the item of text that you want to know the length of.

Result: The result of this function is always a positive integer numeric value, for example 0, 1, 2,
3, etc.

Examples: This simple example calculates the length of the city name.

length(City)

City must contain a text item. The sample procedure below uses the length(function to
check for possibly incorrect addresses.

select length(City)30

Very few valid city names contain less than 3 or more than 30 characters.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example length(34) . If you
have a number you must convert the number to text before using it with this function,
for example length(str(34)).

See Also: sizeof(function

Page 5468
LINEITEMARRAY(...)
LINEITEMARRAY(

Syntax: LINEITEMARRAY(field,separator)

Description: The lineitemarray(function converts the data in a set of line item fields into a text array
(see text arrays).

Parameters: This function has two parameters: field and separator.

field is the line item field that contains the data. You should put the line item field name
in quotes, and it should end with the Ω symbol (option-Z).

separator is the separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L).

Result: This function returns a copy of the line item data packed into an array. If the line items
contain numbers or dates they are converted to text before being added to the array.

Examples: This example will copy the data in the Price line item fields (Price1, Price2,
Price3, etc.) into a text item named PriceArray :

PriceArray=lineitemarray("Price Ω",";")

In this case the prices will be converted to text before they are added to the array. This
will produce an array something like this:

43.25;167.12;22.95;4.25

The lineitemarray(function is also useful for searching a database. This procedure will
find all line items that contain the word red, no matter what line item the item is in:

select lineitemarray("Description Ω",";") contains "red"

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text or separator parameters.

Field or variable does not exist. This error occurs if the line item field you specify is not
in the current database. You probably misspelled the field name.

See Also: text arrays
array(function
arraybuild statement

Page 5469
List SuperObject Programming
LIST SUPEROBJECT PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick "GetList",<List>
"GetSelected",<List>
"GetCount",<Number>
"GetCell",<CellNumber>,<Result>
"FindCell",<CellNumber>,<Search>
"SelectCell",<CellNumber>
"UnSelectCell",<CellNumber>
"SetCell",<CellNumber>,<Text>
"AddCell",<Text>
"InsertCell",<CellNumber>,<Text>
"DeleteCell",<StartCell>,<EndCell>
"AutoScroll"
"FindSelected",<CellNumber>
"FillList",<Formula>,<Database>
"CellRectangle",<Item>,<Rectangle>
"PointToCell",<Point>,<Cell>

GetList ,<List>

This command produces a list of all the items in the list, with each item separated from
the next by a carriage return. The list is placed into the field or variable specified by
<List>.

GetSelected ,<List>

This command produces a list of all the selected items in the list, with each item sepa-
rated from the next by a carriage return. The list is placed into the field or variable speci-
fied by <List>. (Note: This command is redundant if the list is already associated with a
field or variable.)

GetCount ,<Number>

This command returns a count of the total number of items currently in the list into the
field or variable specified by <Number>.

GetCell ,<CellNumber>,<Result>

This command extracts the contents of a particular item in the list. This command
assumes the items are numbered, starting from 1 at the top of the list. This example will
copy the first item in the list PartsList into the variable NextPart.

local NextPart
superobject "PartsList","GetCell",1,NextPart

 This example will copy the last item in the list PartsList into the variable NextPart.

Page 5470
local NextPart,ListCount
superobject "PartsList","GetCount",ListCount
superobject "PartsList","GetCell",ListCount,NextPart

FindCell ,<CellNumber>,<SearchText>

This command searches the list to find a specified value. The list item must match
exactly, or the search will be unsuccessful. The search starts with the item specified by
<CellNumber>. If successful, the number of the item containing the searched for value
will be placed in <CellNumber>, otherwise <CellNumber> will be set to zero. The exam-
ple below will locate Garlic in the list of pizza toppings and select it (tasty!).

local ListCell ListCell=1
superobject "Toppings","FindCell",ListCell,"Garlic"
if ListCell ≠0

superobject "Toppings","SelectCell",ListCell
endif

Keep in mind that the word or phrase must match exactly. In this case only Garlic will be
located; garlic or Roasted Garlic will not.

SelectCell ,<CellNumber>

This command selects a specified item in the list. The item is specified by <CellNum-
ber>, which should be a number from 1 to the maximum number of items in the list. See
the previous command for an example of this command.

UnSelectCell ,<CellNumber>

This command unselects a specified item in the list. The item is specified by <CellNum-
ber>, which should be a number from 1 to the maximum number of items in the list. The
example below makes sure that there are no anchovies on the pizza!

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Anchovies"
if ListCell ≠0

superobject "Toppings","UnSelectCell",ListCell
endif

SetCell ,<CellNumber>,<NewText>

This command changes the contents of a specified item in the list. The item is specified
by <CellNumber>, and should be from 1 to the maximum number of items in the list.
The example below changes the Cheese item to Extra Cheese.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Cheese"
if ListCell ≠0

superobject "Toppings","SetCell",ListCell,"Extra Cheese"
endif

Page 5471

AddCell ,<NewText>

This command adds a new item to the end of the list. This example adds the item Sun
Dried Tomatoes to the end of the list of pizza toppings.

superobject "Toppings","AddCell","Sun Dried Tomatoes"

InsertCell ,<CellNumber>,<NewText>

This command inserts a new item into the middle of the list. The <CellNumber> param-
eter specifies where the new item should be inserted. The new item will go above the
item specified. For example, you could insert the item Extra Cheese at the very top of the
pizza topping list:

superobject "Toppings","InsertCell",1,"Extra Cheese"

This more complex example inserts Grilled Onions after Onions.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Onions"
if ListCell ≠0

ListCell=ListCell+1
superobject "Toppings","InsertCell",ListCell,"Grilled Onions"

endif

 Notice that the example adds one to ListCell before inserting the new item. This is so the
new item (Grilled Onions) will be inserted after the original item (Onions) instead of
before it.

DeleteCell ,<StartingCell>,<EndingCell>

This command deletes one or more items from the list. If you just want to delete a single
cell, then only one number is needed. This example deletes the first item in the list.

superobject "Toppings","DeleteCell",1

To delete a bunch of cells at once, specify two numbers. This example deletes the first 5
items in the list.

superobject "Toppings","DeleteCell",1,5

This example will delete the entire list in a big hurry!

superobject "Toppings","DeleteCell",1,10000

AutoScroll This command scrolls the list so that the first selected item is visible. For example, this
procedure selects Pineapple and scrolls the list to make sure that the Pineapple item is
visible.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Pineapple"
if ListCell ≠0

superobject "Toppings","SelectCell",ListCell
superobject "Toppings","AutoScroll"

endif

Page 5472

FindSelected ,<CellNumber>

This command finds the next selected cell, starting with <CellNumber>. The result is
placed in <CellNumber>, or zero if there are no selected cells below the starting spot.
The example below deletes all the selected items from the list.

local Spot
Spot=1
loop

superobject "Toppings","FindSelected",Spot
if Spot=0

stop
endif
superobject "Toppings",DeleteCell,Spot

next

FillList ,<Formula>,<Database>

This command re-fills the specified list. You can use this command to update the list, or
to fill it with completely new information.

To update the list, leave off the <Formula> and <Database>. The FillList command will
update the list using the formula and database specified in the List dialog. For example,
if the pizza toppings list was derived from a pizza toppings database, you would want
to use this procedure when the pizza toppings database had changed:

superobject "Toppings","FillList"

You can also use the FillList command to fill the list with entirely new information, com-
pletely ignoring the formula and database originally specified in the List dialog. The
same list can be filled and refilled again and again with different items as conditions
change. Below are three samples that could be used to fill a list from the Pizza Toppings
database. The first sample lists all toppings, the next veggie only, the final meat only.

superobject "Toppings","FillList",
{Topping},"Pizza Toppings"

superobject "Toppings","FillList",
{?(Category="Veggie",Topping,"")},"Pizza Toppings"

superobject "Toppings","FillList",
{?(Category="Meat",Topping,"")},"Pizza Toppings"

 Of course you can also use the FillList command to directly specify the contents of the
list. In this case the database should be set to "".

superobject "Toppings","FillList",
{"Pepperoni"+¶+"Sausage"+¶+"Meatballs"+¶+
"Mushrooms"+¶+"Olives"+¶+"Onions"},""

 The topping list can also be created with variables. Here’s an example:

local MeatToppings,VeggieToppings,SpecialtyToppings
MeatToppings="Pepperoni"+¶+"Sausage"+¶+"Meatballs"
VeggieToppings="Mushrooms"+¶+"Olives"+¶+"Onions"
SpecialtyToppings="Anchovies"+¶+"Garlic"
superobject "Toppings","FillList",{VeggieToppings},""

Page 5473

CellRectangle ,<Item>,<Rectangle>

This command allows a procedure to determine the physical location and size (i.e. rect-
angle) of any item in the list. This command has two parameters as shown below: the
item number (from 1 to the maximum number of items in the list) and the rectangle. The
Rectangle should be a variable that will contain the final result.

Here is an example that fills in the variable dragRectangle with the dimensions of the
third item in the list.

superobject "My List","CellRectangle",3,dragRectangle

Note: The rectangle that is returned by this command is in window relative co-ordinates.
You can change this to screen or form relative co-ordinates using the xytoxy(function.

PointToCell ,<Item>,<Rectangle>

This command allows a procedure to determine what list item (if any) corresponds to
any point on the screen. For example, if someone drags something onto the list, this com-
mand allows the procedure to determine where in the list the item should be placed.
This command has two parameters as shown below: the Point and the Cell. The Cell
parameter should be a variable that will contain the final result.

superobject "object name","PointToCell",Point,Cell

An Example of Dragging from a List

This example shows how items from a list can dragged and dropped to another location
on the screen. This example assumes that there is a List SuperObject on the current form
called Alphabet List, and that this object has the Click/Release option turned off.

local cell,cellbox
cell=1
superobject "Alphabet List","findselected",cell
superobject "Alphabet List","cellrectangle",cell,cellbox
cellbox=xytoxy(cellbox,"w","s")
draggraybox cellbox,"","",0
/* normal post-drag code follows */

 The third line of this procedure finds out what item in the list is currently selected (item
1, 2, 3, etc.) The fourth line of this procedure uses this item number to find out the rectan-
gle of the selected item. The fifth line converts this rectangle to screen relative co-ordi-
nates instead of window relative co-ordinates. Finally, the draggraybox statement allows
the user to drag the item around on the screen. The Real World Programmer’s Guide
shows how to finish this procedure by allowing the item to be dragged onto another
form item or window.

Dragging to Change the Order of a List

This example shows how to set up a procedure that allows the user to drag items up or
down in a list to change the order of a list. This example assumes that there is a list of
names in a field called Names, with each name separated from the next by a carriage
return. The current form must contain a List SuperObject named Names List (use the
Object Name command in the Edit menu to change object names). The Names List object
displays the Names field, it is also linked to a global variable named theName.

Page 5474
global theName
local cell,cellbox,listbox,mouse,newcell,newNames
cell=1
superobject "Names List","findselected",cell
superobject "Names List","cellrectangle",cell,cellbox
cellbox=xytoxy(cellbox,"w","s")
object "Names List"
listbox=xytoxy(objectinfo("rectangle"),"f","s")
draggraybox cellbox,listbox,listbox,0
if cellbox="" stop endif /* user dragged out of the list */
mouse=xytoxy(info("mouse"),"s","w")

/* where is the new location for this item? */
superobject "Names List","pointtocell",mouse,newcell
if cell=newcell stop endif /* item did not move */
if newcell>cell

newcell=newcell-1 /* adjust for deleting item in old spot */
endif
/* delete item from old spot */
newNames=arraydelete(Names,cell,1,¶)
if newcell>0

/* insert item in new spot */
newNames=arrayinsert(newNames,newcell,1,¶)
newNames=arraychange(newNames,theName,newcell,¶)

else
/* add item to end of list */
newNames=newNames+¶+theName

endif
Names=newNames /* update original field */
superobject "Names List","filllist" /* re-display list */
showvariables theName/* and select correct item */

The illustration below shows this procedure in action.

Page 5475
LISTCHOICES(...)
LISTCHOICES(

Syntax: LISTCHOICES(field,separator)

Description: The listchoices(function builds a text array containing a list of all the values stored in a
specified field. (Note: this function is not related to the choices data type.)

Parameters: This function has two parameters: field and separator.

field is the name of the field that contains the values you want build a list of.

separator is the separator character for the text array you are building (see text arrays).

Result: The function scans the specified field and builds a list of all the values stored in that field.
The list is returned in the format of a text array (see text arrays).

Examples: The listchoices(function is often used to build lists for Pop-Up Menu or List SuperOb-
jects™. Here is a formula that builds a list of the states in the current database.

listchoices(State,¶)

Since this text array uses carriage returns for separators, it can be used directly in a Pop-
Up Menu or List SuperObject™. A pop-up menu from this formula might look like this:

By adding to this option we can add an Other… option to the pop-up menu.

sandwich("",listchoices(State,¶),"(-"+¶+"Other…")

Errors: Field or variable does not exist. This error occurs if there is no field in the current data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookupall(function
text arrays

Page 5476
LISTFILES(...)
LISTFILES(

Syntax: LISTFILES(folder,filter)

Description: The listfiles(function builds a text array listing the files in a folder.

Parameters: This function has two parameters: folder and filter.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder. A path id is a binary data item that unambiguously describes the location of
a folder on the hard disk. Path id’s are created by the folder(and dbinfo(functions, and
the openfiledialog and savefiledialog statements.

filter is a text item that specifies what type (or types) of files (and folders) to list. If this is
an empty text item ("") all files will be listed. Otherwise the type parameter should be a
series of one or more 8 character sections. The first four characters are the file type, the
second four are the file creator. You can also use the ? character if you do not care what a
character is. Here are some useful file types:

TEXT???? list all text files
APPL???? list all applications
????KASX list all Panorama database files (Panorama 3.5 or higher)

You can combine more than one specification into a filter, for example
TEXT????????KASX to list all text files and Panorama database files.

The listfiles(function normally does not list folders. However, if you precede the filter
specification with the ƒ (option-F) character the function will list folders as well as files.
For example:

ƒTEXT???? list all text files and folders
ƒ????KASXTEXT???? list databases, text files, and folders

If the filter is empty ("") then ALL files and folders will be included.

Result: This function returns a carriage return separated text array. Each item contains a single
file name.

Examples: This example counts and displays the number of database files in the folder that contains
the currently running copy of Panorama.

message "There are "+
str(arraysize(listfiles(info("panoramafolder") ,"????KAS1"),

¶))+" database files in the Panorama folder."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder or filter parameters. This error can also occur
if the folder parameter is more or less than 6 bytes long.

See Also: folder(function
folderpath(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function

Page 5477
info("volumes") function
openfiledialog statement
savefiledialog statement

Page 5478
LISTWINDOWS(...)
LISTWINDOWS(

Syntax: LISTWINDOWS(file)

Description: The listwindows(function builds a text array containing a list of all the open windows
associated with a particular file.

Parameters: This function has one parameter: file.

file is the name of the database file that you want to list the windows of. This should be
the name of an open database. If the file parameter is empty ("") the listwindows(func-
tion will list all open windows, no matter what database they are in.

Result: The function scans the windows and builds a text array using carriage returns (¶) as sep-
arators (see text arrays). The windows are listed in order from front to back.

Examples: The example below uses listwindows(to check to see if the Invoice:Status window is
open. If not, the procedure opens the form.

if 0= arraysearch(listwindows("Invoice"),"Invoice:Status",1,¶)
setwindowrectangle rectangle(20,5,120,255),""
openform "Status"

endif

The listwindows(function could be used to build a Pop-Up Menu SuperObject™.

listwindows("")

This formula will list all of the current Panorama windows. A pop-up menu based on
this formula will look something like this:

Errors: This function does not generate any error messages.

See Also: info("windows") function
info("files") function
dbinfo(function
text arrays

Page 5479
LOADFILEVARIABLES
LOADFILEVARIABLES

Syntax: LOADFILEVARIABLES variablelist,variablevalues,separator

Description: The loadfilevariables statement takes an array of values and splits the values into indi-
vidual variables. If the variables don’t exist, the statement will create them as fileglobal
variables. (Note: You can easily create an array of values using the savevariables state-
ment.)

Parameters: This statement has three parameters: variablelist, variablevalues and separator.

variablelist is an array containing the names of the variables to be "loaded" with the val-
ues from the variablevalues parameter. Each item in the array must be separated from
the next by the separator character.

variablevalues is the list of values to be loaded into the variables. The values may be in a
field, a variable, or may be generated with a formula. Each value must be separated from
the next with the separator character.

separator is the character that will be used to separate the values in the combined array.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays

Action: This statement takes an array of values and loads each value into a separate array. You
could perform the same operation with a loop, but the loadfilevariables statement is
much faster. One use for the loadfilevariables statement is importing a group of vari-
ables from a field or file (perhaps a field or file generated with the savevariables state-
ment.)

Examples: Here is a very simple example that loads three variables from an array.

loadfilevariables
"Gold,Silver,Bronze",
"Johnson,Smith,Fetzl",
","

 This example is exactly the same as:

fileglobal Gold,Silver,Bronze
Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

Actually it is not quite exactly the same. If the variables Gold, Silver and Bronze have
already been defined as local, global, or windowglobal variables, the loadfilevariables
statement will not re-define them. If a variable already contains a numeric value, the
loadfilevariables statement keep it numeric if possible (if all the characters in the new
value are numeric). Here is an example where three numbers are loaded into variables.

fileglobal Red,Green,Blue
Red=0 Green=0 Blue=0
loadfilevariables "Red,Green,Blue","24,58,199",","

Page 5480
This example is exactly the same as the procedure below. Notice that there are no quotes
around the numbers.

fileglobal Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting.
Suppose you had an array called ContactInfo that contained name/value pairs like this:

Name=Johnson
Email=ajohnson@worldwide.com
url=www.worldwide.com

The example below can take this array and separate it into three variables called Con-
tactName, ContactEmail, and Contacturl.

global ContactInfo
fileglobal contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+ array(
import(),1,"=")
arrayfilter ContactInfo,contactValues,¶, array(import(),2,"=")
loadfilevariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for vari-
able names and values, then creates and loads the variables with the values. For an
example of how to generate a file like this, see the savevariables statement.

Views: This statement may be used in any view.

See Also: savevariables statement
loadglobalvariables statement
loadvariables statement
loadlocalvariables statement
loadwindowvariables statement

Page 5481
LOADGLOBALVARIABLES
LOADGLOBALVARIABLES

Syntax: LOADGLOBALVARIABLES variablelist,variablevalues,separator

Description: The loadglobalvariables statement takes an array of values and splits the values into
individual variables. If the variables don’t exist, the statement will create them as global
variables. (Note: You can easily create an array of values using the savevariables state-
ment.)

Parameters: This statement has three parameters: variablelist, variablevalues and separator.

variablelist is an array containing the names of the variables to be "loaded" with the val-
ues from the variablevalues parameter. Each item in the array must be separated from
the next by the separator character.

variablevalues is the list of values to be loaded into the variables. The values may be in a
field, a variable, or may be generated with a formula. Each value must be separated from
the next with the separator character.

separator is the character that will be used to separate the values in the combined array.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays

Action: This statement takes an array of values and loads each value into a separate array. You
could perform the same operation with a loop, but the loadglobalvariables statement is
much faster. One use for the loadglobalvariables statement is importing a group of vari-
ables from a field or file (perhaps a field or file generated with the savevariables state-
ment.)

Examples: Here is a very simple example that loads three variables from an array.

loadglobalvariables
"Gold,Silver,Bronze",
"Johnson,Smith,Fetzl",
","

This example is exactly the same as:

global Gold,Silver,Bronze
Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

Actually it is not quite exactly the same. If the variables Gold, Silver and Bronze have
already been defined as local, fileglobal, or windowglobal variables, the loadglobalvari-
ables statement will not re-define them. If a variable already contains a numeric value,
the loadglobalvariables statement keep it numeric if possible (if all the characters in the
new value are numeric). Here is an example where three numbers are loaded into vari-
ables.

global Red,Green,Blue
Red=0 Green=0 Blue=0
loadglobalvariables "Red,Green,Blue","24,58,199",","

Page 5482
This example is exactly the same as the procedure below. Notice that there are no quotes
around the numbers.

global Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting.
Suppose you had an array called ContactInfo that contained name/value pairs like this:

Name=Johnson
Email=ajohnson@worldwide.com
url=www.worldwide.com

The example below can take this array and separate it into three variables called Con-
tactName, ContactEmail, and Contacturl.

global ContactInfo
global contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+ array(
import(),1,"=")
arrayfilter ContactInfo,contactValues,¶, array(import(),2,"=")
loadglobalvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for vari-
able names and values, then creates and loads the variables with the values. For an
example of how to generate a file like this, see the savevariables statement.

Views: This statement may be used in any view.

See Also: savevariables statement
loadfilevariables statement
loadvariables statement
loadlocalvariables statement
loadwindowvariables statement

Page 5483
LOADLOCALVARIABLES
LOADLOCALVARIABLES

Syntax: LOADLOCALVARIABLES variablelist,variablevalues,separator

Description: The loadlocalvariables statement takes an array of values and splits the values into indi-
vidual variables. If the variables don’t exist, the statement will create them as local vari-
ables. (Note: You can easily create an array of values using the savevariables statement.)

Parameters: This statement has three parameters: variablelist, variablevalues and separator.

variablelist is an array containing the names of the variables to be "loaded" with the val-
ues from the variablevalues parameter. Each item in the array must be separated from
the next by the separator character.

variablevalues is the list of values to be loaded into the variables. The values may be in a
field, a variable, or may be generated with a formula. Each value must be separated from
the next with the separator character.

separator is the character that will be used to separate the values in the combined array.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays

Action: This statement takes an array of values and loads each value into a separate array. You
could perform the same operation with a loop, but the loadlocalvariables statement is
much faster. One use for the loadlocalvariables statement is importing a group of vari-
ables from a field or file (perhaps a field or file generated with the savevariables state-
ment.)

Examples: Here is a very simple example that loads three variables from an array.

loadlocalvariables
"Gold,Silver,Bronze",
"Johnson,Smith,Fetzl",
","

This example is exactly the same as:

local Gold,Silver,Bronze
Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

Actually it is not quite exactly the same. If the variables Gold, Silver and Bronze have
already been defined as local, global, or fileglobal variables, the loadlocalvariables state-
ment will not re-define them. If a variable already contains a numeric value, the loadlo-
calvariables statement keep it numeric if possible (if all the characters in the new value
are numeric). Here is an example where three numbers are loaded into variables.

local Red,Green,Blue
Red=0 Green=0 Blue=0
loadlocalvariables "Red,Green,Blue","24,58,199",","

This example is exactly the same as the procedure below. Notice that there are no quotes
around the numbers.

Page 5484
local Red,Green,Blue
Red=24
Green=58
Blue=199

 So far the examples aren’t too exciting. Here is an example that is a bit more interesting.
Suppose you had an array called ContactInfo that contained name/value pairs like this:

Name=Johnson
Email=ajohnson@worldwide.com
url=www.worldwide.com

The example below can take this array and separate it into three variables called Con-
tactName, ContactEmail, and Contacturl.

global ContactInfo
local contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+ array(
import(),1,"=")
arrayfilter ContactInfo,contactValues,¶, array(import(),2,"=")
loadlocalvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for vari-
able names and values, then creates and loads the variables with the values. For an
example of how to generate a file like this, see the savevariables statement.

Views: This statement may be used in any view.

See Also: savevariables statement
loadfilevariables statement
loadvariables statement
loadglobalvariables statement
loadwindowvariables statement

Page 5485
LOADVARIABLES
LOADVARIABLES

Syntax: LOADVARIABLES variablelist,variablevalues,separator

Description: The loadvariables statement takes an array of values and splits the values into individ-
ual variables. If the variables don’t exist, the statement will create them as fileglobal vari-
ables. (Note: You can easily create an array of values using the savevariables statement.)

Parameters: This statement has three parameters: variablelist, variablevalues and separator.

variablelist is an array containing the names of the variables to be "loaded" with the val-
ues from the variablevalues parameter. Each item in the array must be separated from
the next by the separator character.

variablevalues is the list of values to be loaded into the variables. The values may be in
field, a variable, or may be generated with a formula. Each value must be separated from
the next with the separator character.

separator is the character that will be used to separate the values in the combined array.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays

Action: This statement takes an array of values and loads each value into a separate array. You
could perform the same operation with a loop, but the loadvariables statement is much
faster. One use for the loadvariables statement is importing a group of variables from a
field or file (perhaps a field or file generated with the savevariables statement.)

Examples: Here is a very simple example that loads three variables from an array.

loadvariables
"Gold,Silver,Bronze",
"Johnson,Smith,Fetzl",
","

 This example is exactly the same as:

fileglobal Gold,Silver,Bronze
Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

Actually it is not quite exactly the same. If the variables Gold, Silver and Bronze have
already been defined as local, globall, or windowglobal variables, the loadfilevariables
statement will not re-define them. If a variable already contains a numeric value, the
loadvariables statement keep it numeric if possible (if all the characters in the new value
are numeric). Here is an example where three numbers are loaded into variables.

fileglobal Red,Green,Blue
Red=0 Green=0 Blue=0
loadfilevariables "Red,Green,Blue","24,58,199",","

This example is exactly the same as the procedure below. Notice that there are no quotes
around the numbers.

Page 5486
fileglobal Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting.
Suppose you had an array called ContactInfo that contained name/value pairs like this:

Name=Johnson
Email=ajohnson@worldwide.com
url=www.worldwide.com

The example below can take this array and separate it into three variables called Con-
tactName, ContactEmail, and Contacturl.

global ContactInfo
fileglobal contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+ array(
import(),1,"=")
arrayfilter ContactInfo,contactValues,¶, array(import(),2,"=")
loadvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for vari-
able names and values, then creates and loads the variables with the values. For an
example of how to generate a file like this, see the savevariables statement.

Views: This statement may be used in any view.

See Also: savevariables statement
loadglobalvariables statement
loadlocalvariables statement
loadwindowvariables statement

Page 5487
LOADWINDOWVARIABLES
LOADWINDOWVARIABLES

Syntax: LOADWINDOWVARIABLES variablelist,variablevalues,separator

Description: The loadwindowvariables statement takes an array of values and splits the values into
individual variables. If the variables don’t exist, the statement will create them as win-
dowglobal variables. (Note: You can easily create an array of values using the savevari-
ables statement.)

Parameters: This statement has three parameters: variablelist, variablevalues and separator.

variablelist is an array containing the names of the variables to be "loaded" with the val-
ues from the variablevalues parameter. Each item in the array must be separated from
the next by the separator character.

variablevalues is the list of values to be loaded into the variables. The values may be in a
field, a variable, or may be generated with a formula. Each value must be separated from
the next with the separator character.

separator is the character that will be used to separate the values in the combined array.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays

Action: This statement takes an array of values and loads each value into a separate array. You
could perform the same operation with a loop, but the loadwindowvariables statement
is much faster. One use for the loadwindowvariables statement is importing a group of
variables from a field or file (perhaps a field or file generated with the savevariables state-
ment.)

Examples: Here is a very simple example that loads three variables from an array.

loadwindowvariables
"Gold,Silver,Bronze",
"Johnson,Smith,Fetzl",
","

This example is exactly the same as:

windowglobal Gold,Silver,Bronze
Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

Actually it is not quite exactly the same. If the variables Gold, Silver and Bronze have
already been defined as local, global, or fileglobal variables, the loadwindowvariables
statement will not re-define them. If a variable already contains a numeric value, the
loadwindowvariables statement keep it numeric if possible (if all the characters in the
new value are numeric). Here is an example where three numbers are loaded into vari-
ables.

windowglobal Red,Green,Blue
Red=0 Green=0 Blue=0
loadfilevariables "Red,Green,Blue","24,58,199",","

Page 5488
This example is exactly the same as the procedure below. Notice that there are no quotes
around the numbers.

windowglobal Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting.
Suppose you had an array called ContactInfo that contained name/value pairs like this:

Name=Johnson
Email=ajohnson@worldwide.com
url=www.worldwide.com

 The example below can take this array and separate it into three variables called Con-
tactName, ContactEmail, and Contacturl.

global ContactInfo
windowglobal contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+ array(
import(),1,"=")
arrayfilter ContactInfo,contactValues,¶, array(import(),2,"=")
loadwindowvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for vari-
able names and values, then creates and loads the variables with the values. For an
example of how to generate a file like this, see the savevariables statement.

Views: This statement may be used in any view.

See Also: savevariables statement
loadglobalvariables statement
loadvariables statement
loadlocalvariables statement
loadfilevariables statement

Page 5489
LOCAL
LOCAL

Syntax: LOCAL variables

Description: The local statement creates one or more local variables. Local variables are temporary,
and vanish when the procedure is finished.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be created. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement creates one or more local variables. Local variables can be used to tempo-
rarily hold pieces of information (numbers or text). Each variable has a name.

Panorama keeps the local variables for each procedure completely separate. If procedure
A creates a local variable named myValue, that local variable cannot be used by proce-
dure B. In fact, procedure B can create its own variable called myValue, and the two will
be kept completely separate, with different values.

Examples: The example creates two local variables, Counter and Operating Ratio.

local Counter, «Operating Ratio»

You may change the value of a variable with an assignment, like this:

«Operating Ratio»=Revenues/Costs

Views: This statement may be used in any view.

See Also: global statement
fileglobal statement
globalize statement
windowglobal statement
permanent statement
undefine statement

Page 5490
LOCKORSTOP
LOCKORSTOP

Syntax: LOCKORSTOP

Description: The lockorstop statement attempts to lock the currently active record. This statement
only applies to Partner/Server databases. It is ignored when used with a standard Pan-
orama database.

Parameters: This statement has no parameters.

Action: This statement attempts to lock the current record. If the current record is not already
locked by another user on the network, the record is locked and the procedure continues
normally. If the current record is already locked by another user on the network, the pro-
cedure will display a message and stop immediately. Unlike the lockrecord statement,
this statement does not pause to wait for the record to become available—it gives up
right away. If you don’t want the procedure to stop at this point you should use the if
error statement to trap the error. (Note: Panorama automatically locks the current record
when a procedure modifies any field in the record. However when using automatic lock-
ing the programmer cannot control the response if the record is already locked.)

Examples: This example makes 10 attempts to lock a record. If it does not succeed after ten tries, it
gives up.

local tryCount
tryCount=1
loop

lockorstop
if error

tryCount=tryCount+1
if tryCount>10

rtn /* stop trying */
endif

else
stoploopif 0=0 /* sweet success! */

endif
while forever
Qty=Qty-SalesQty
unlockrecord

Views: This statement may be used in the Data Sheet and Form views.

See Also: lockrecord statement
unlockrecord statement
info("serverstatus") function
info("servertimeout") function

Page 5491
LOCKRECORD
LOCKRECORD

Syntax: LOCKRECORD

Description: The lockrecord statement attempts to lock the currently active record. This statement
only applies to Partner/Server databases. It is ignored when used with a standard Pan-
orama database.

Parameters: This statement has no parameters.

Action: This statement attempts to lock the current record. If the current record is not already
locked by another user on the network, the record is locked and the procedure continues
normally. If the current record is already locked by another user on the network, the pro-
cedure will pause and wait until the record becomes available. (This is the difference
between LockRecord and the lockorstop statement, which simply stops immediately
without pausing.) While it is waiting, the procedure will display a dialog explaining the
situation. If the user does not want to wait, they can press Command-Period to stop
waiting and abort the procedure. If you don’t want the procedure to stop at this point
you should use the if error statement to trap the error. (Note: Panorama automatically
locks the current record when a procedure modifies any field in the record. However
when using automatic locking the programmer cannot control the response if the record
is already locked.)

Examples: This example attempts to lock a record in an invoice database. If the invoice is not
already being edited by another user, the procedure opens a form to allow the user to
edit the record.

lockrecord
if error

message "Sorry, someone else is using this invoice now!"
stop

else
openform "Invoice"

endif

Views: This statement may be used in the Data Sheet and Form views.

See Also: lockorstop statement
unlockrecord statement
info("serverstatus") function
info("servertimeout") function

Page 5492
LOG(...)
LOG(

Syntax: LOG(value)

Description: The log(function computes the natural logarithm (base e) of a value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: E is a mathematical constant that is approximately 2.71828. This function calculates a
logarithm using e as the base. Mathematicians call this a natural logarithm. The graph
below shows the result of the natural logarithm function given input values from -10 to
+10.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example log("23") . If you have a numeric
value in a text item you must convert the text to the number data type before calculating
a natural logarithm, for example log(val("34")) .

Floating point error. The natural logarithm of values 0 or less (negative numbers) is
undefined. If you attempt to calculate the natural logarithm of such a number, a floating
point error will occur.

See Also: exp(function
val(function

Page 5493
LOG10(...)
LOG10(

Syntax: LOG10(value)

Description: The log10(function computes the common logarithm (base10) of a value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: This function calculates a logarithm using 10 as the base. Mathematicians call this a com-
mon logarithm. The graph below shows the result of the common logarithm function
given input values from -10 to +10.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example log10("23"). If you have a numeric
value in a text item you must convert the text to the number data type before calculating
a natural logarithm, for example log10(val("34")).

Floating point error. The common logarithm of values 0 or less (negative numbers) is
undefined. If you attempt to calculate the common logarithm of such a number, a float-
ing point error will occur.

See Also: log(function
val(function

Page 5494
LOGMESSAGE
LOGMESSAGE

Syntax: LOGMESSAGE message

Description: The logmessage statement writes a message to the current debug log file (if any).

Parameters: This statement has one parameter message.

message is the text that is to be written to the log file. You may use any formula to create
the text.

Action: Use the logmessage statement to include custom information in the log file. To open a
log file use the Debug Log Wizard.

Examples: This example uses the logmessage statement to record the progress of a loop.

local theWord,n,words,sentences
n=1 words=0 sentences=0
loop

theWord= array(replace(replace(Joke,¶," ")," "," "),n," ")
stoploopif theWord=""
theWord= strip(theWord)
words=words+1
logmessage "("+ str(words)+") "+theWord
if theWord contains "." or theWord contains "?" or theWord contains "!"

sentences=sentences+1
logmessage " ("+ str(sentences)+")"

endif
n=n+1

while forever
logmessage "Complete ****"

Here is an example of the log created by this procedure.

(1) Please
(2) distribute
(3) this
(4) to
(5) everyone
(6) you
(7) know
(8) on
(9) earth.
 (1)
(10) When
(11) John
(12) Glenn
(13) returns
(14) from
(15) space,
(16) everybody
(17) dress
(18) in
(19) Ape
(20) Suits.
 (2)
(21) We
(22) have
(23) 6
(24) days
(25) in

Page 5495
(26) which
(27) to
(28) bury
(29) the
(30) Statue
(31) of
(32) Liberty
(33) up
(34) to
(35) her
(36) head.
 (3)
(37) EVERYBODY
(38) HURRY
(39) !
 (4)
(40) !
 (5)
(41) !
 (6)
Complete ****

Views: This statement may be used in any view.

See Also: debug statement
message statement
statusmessage statement

Page 5496
LOGNORMAL
LOGNORMAL

Syntax: LOGNORMAL

Description: The lognormal statement changes the current security level back to the user’s security
level after it has been bumped up by the logprogrammer statement.

Parameters: This statement has no parameters.

Action: If a database uses Panorama’s security system, each user has a security level from 0 (low)
to 255 (high). A procedure normally cannot perform any action that the user running the
procedure is not allowed to perform. If the procedure programmer has a higher security
level than the final end user, he or she can temporarily give that higher level to the proce-
dure with the logprogrammer statement. To set the security level back to the user’s real
level use the lognormal statement. (Panorama will automatically set the security level
back to the user’s real level at the end of the procedure, even if you forget.)

Examples: Suppose the user doesn’t have the authority to change the Salary field, but the person
writing the procedure does have a high enough level. The example below shows how
the procedure can be written to change the salary.

logprogrammer
Salary=Salary*1.1
lognormal

Views: This statement may be used in any view

See Also: logprogrammerr statement
logon statement
info("userlevel") function

Page 5497
LOGON
LOGON

Syntax: LOGON

Description: The logon statement opens the dialog allowing the user to log on or re-log into Pan-
orama’s security system. This statement is usually unnecessary because Panorama auto-
matically opens the logon dialog when you open a database that requires security

Parameters: This statement has no parameters.

Examples: This procedure asks a user to re-log on if their security level is less than 100.

if info("userlevel")<100
logon

endif

Views: This statement may be used in any view.

See Also: logprogrammer statement
lognormal statement
info("userlevel") function

Page 5498
LOGPROGRAMMER
LOGPROGRAMMER

Syntax: LOGPROGRAMMER

Description: The logprogrammer statement changes the current security level to the level of the last
person who modified the procedure. If the person who programmed the procedure has a
high security level and the person running the procedure has a low security level, this
statement allows the procedure to temporarily “bump up” to the higher level under pro-
gram control. Panorama will automatically return to the lower security level when the
lognormal statement is used, or when the procedure ends.

Parameters: This statement has no parameters.

Action: If a database uses Panorama’s security system, each user has a security level from 0 (low)
to 255 (high). A procedure normally cannot perform any action that the user running the
procedure is not allowed to perform. If the procedure programmer has a higher security
level than the final end user, he or she can temporarily give that higher level to the proce-
dure with the logprogrammer statement. To set the security level back to the user’s real
level use the lognormal statement. (Panorama will automatically set the security level
back to the user’s real level at the end of the procedure, even if you forget.)

Examples: Suppose the user doesn’t have the authority to change the Salary field, but the person
writing the procedure does have a high enough level. The example below shows how
the procedure can be written to change the salary.

logprogrammer
Salary=Salary*1.1
lognormal

Views: This statement may be used in any view.

See Also: lognormalstatement
logon statement
info("userlevel") function

Page 5499
LONGWORD(...)
LONGWORD(

Syntax: LONGWORD(number)

Description: The longword(function converts a number into a single longword (4 bytes) of binary
data (see binary data).

Parameters: This function has one parameter: number.

number is the value that you want to convert into a binary number. This value must be
an integer.

Result: This function converts the number into a single word of binary data (32 bits). This binary
data should be handled as text data.

Examples: This example converts the number 285486 into a binary longword, then copies that
binary data into the variable X.

local X
X=longword(285486)

If you check the size of X with the sizeof(function, you’ll find that it is 4 bytes long.

See c/pascal structures for additional examples of the longword(function.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the number parameter.

Illegal number. This error occurs if you attempt to convert a value less than 0 or greater
than 65,535.

See Also: byte(function
word(function
radix(function
radixstr(function

Page 5500
LOOKUP(...)
LOOKUP(

Syntax: LOOKUPfile,keyField,keyValue,dataField,default,level)

Description: The lookup(function searches a database for a value, then returns other information
from the same record. For example, the lookup(function can look up a phone number
given a customer name, or look up a price given a part number.

Parameters: This function has six parameters: file, keyField, keyValue, dataField, default and level.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up a customer by name, this should be the field that contains customer names. The
field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up a customer by name, this should be the actual name of the customer. This parameter
is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve a phone number, this should be the name of the field that contains
phone numbers. This must be a field in the database specified by the first parameter.

default is the value you want this function to return if it is unable to find the information
specified by the keyField and keyData parameters. The data type of the default value
should match the data type of the dataField. If the dataField is numeric, the default
should usually be zero. If the dataField is text, the default should usually be "".

level is the minimum summary level to be searched. Usually this parameter is zero so
that the entire database will be searched. If the level is set to 1 through 7, only summary
records will be searched.

Result: If the function is able to locate the information specified by the keyField and keyData
parameters it returns the contents of the specified field in the specified database. (If there
is more than one match, only the first will be returned.) If it cannot locate the information
it returns the default value.

Examples: Suppose you have two databases: Invoices and Customers. These two databases have 5
identical fields: Company, Address, City, State and Zip . When the user enters
the company name, we want to write a procedure that will automatically move the
address, city, state and zip from the customer file into the new invoice.

gettext "What company name?",Company
Address=lookup("Customers",Company,Company,Address,"",0)
City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,Zip,"",0)

Since each lookup(statement can only transfer one value, four lookups are required.
However, Panorama doesn’t actually scan the Customer file four times. When a proce-
dure performs multiple lookups with the same target database, key field, and key value
Panorama realizes that it doesn’t have to re-scan the database—it already knows where

Page 5501
the data is, and it just goes and gets it. (If your database is set up for it, you can use the
speedcopy statement to move this data even faster.) This example looks up a price from a
Price List database. The ItemΩ line item field in the invoice database contains the catalog
item number, which should match a value in the Catalog# field in the Price List.

Price Ω=lookup("Price List",«Catalog#»,Item Ω,Price,0,0)

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookuplast(function
lookupselected(function
lookuplastselected(function
table(function
grabdata(function
lookupall(function
serverlookup statement
formserverlookup statement

Page 5502
LOOKUPALL(...)
LOOKUPALL(

Syntax: LOOKUPALL(file,keyField,keyValue,dataField,separator)

Description: The lookupall(function builds a text array containing one item for every record in the
target database where the data in the keyField matches the keyValue. Each item in the
text array contains the value extracted from the dataField for that record. If the data field
is a numeric or date field, it is converted to text using the default patterns for that field.

Parameters: This function has five parameters: file, keyField, keyValue, dataField and separator.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up all checks written to a certain vendor, this should be the field that contains ven-
dor names. The field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up all checks written to a certain vendor, this should be the actual vendor name. This
parameter is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve check numbers, this should be the name of the field that contains check
numbers. This must be a field in the database specified by the first parameter.

separator is the separator character for the text array you are building (see text arrays).

Result: The function returns a text array from all the records where the keyField and keyData
match.

Examples: This example looks up all the checks written to a certain person or company. The checks
are displayed with a comma in between each check number.

local CheckTo
CheckTo=""
gettext "List checks written to:",CheckTo
Checks=lookupall("Checkbook",Payee,CheckTo,«Check#»,",")
if Checks=""

message "No checks written to "+CheckTo
else

message "Checks written to "+CheckTo+":"+Checks
endif

 The lookupall(function will often return a lot of duplicate data. Since the result is an
array, you can use the arraydeduplicate statement to sort and eliminate the duplicates.
This example produces a sorted list of customers in Arizona.

global theCustomers
theCustomers=lookupall("Invoices",State,"AZ",Company,¶)
arraydeduplicate theCustomers,theCustomers,¶

The lookupall(function is especially useful for displaying or printing lists of items, and
for other user interface elements like lists or pop-up menus. The lookupall(function can
be used directly in auto-wrap text or a Text Display SuperObject to display a list.

Page 5503
Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function
lookuplast(function
lookupselected(function
table(function
grabdata(function
lookupcalendar(function
lookuprtime(function
ascii

Page 5504
LOOKUPCALENDAR(...)
LOOKUPCALENDAR(

Syntax: LOOKUPCALENDAR(file,reminderField,date,dataField,separator)

Description: The lookupcalendar(function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the date. Each item in
the text array contains the value extracted from the dataField for that record.

Parameters: This function has five parameters: file, reminderField, date, dataField and separator.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

reminderField is the name of the field that you want to search in. This field must contain
valid reminders (see reminder data). The field must be in the database specified by the
first parameter.

date is the actual date that you want to match. For example if you want to look up all
appointments on july 23rd, this should be date("July 23"). This parameter is often a field
in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve appointment information, this should be the name of the field that con-
tains that information. This must be a field in the database specified by the first parame-
ter.

separator is the separator character for the text array you are building (see text arrays).

Result: The function returns a text array from all the records where the reminderField and date
match.

Examples: This example builds a list of today’s reminders.

todayMessages=lookupcalendar("Reminders",When, today(),Message,¶)

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookupall(function
lookuprtime(function
lookuprtypes(function
reminder data
reminder(function
reminderdate(function
remindercompare(function

Page 5505
LOOKUPLAST(...)
LOOKUPLAST(

Syntax: LOOKUPLAST(file,keyField,keyValue,dataField,default,level)

Description: The lookuplast(function searches a database for a value, then returns other information
from the same record. For example, the lookuplast(function can look up a phone num-
ber given a customer name, or look up a price given a part number. Unlike the lookup(
function which searches from the top of the database, the lookuplast(function searches
backwards from the bottom.

Parameters: This function has six parameters: file, keyField, keyValue, dataField, default and level.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up a customer by name, this should be the field that contains customer names. The
field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up a customer by name, this should be the actual name of the customer. This parameter
is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve a phone number, this should be the name of the field that contains
phone numbers. This must be a field in the database specified by the first parameter.

default is the value you want this function to return if it is unable to find the information
specified by the keyField and keyData parameters. The data type of the default value
should match the data type of the dataField. If the dataField is numeric, the default
should usually be zero. If the dataField is text, the default should usually be "".

level is the minimum summary level to be searched. Usually this parameter is zero so
that the entire database will be searched. If the level is set to 1 through 7, only summary
records will be searched.

Result: If the function is able to locate the information specified by the keyField and keyData
parameters it returns the contents of the specified field in the specified database. (If there
is more than one match, only the last one will be returned. However, if you are searching
through the current database, the lookuplast(function will skip the current record, even
if it is the last matching record in the database.) If it cannot locate the information it
returns the default value.

Examples: This lookuplast(example finds the most recent order for a given customer, and the
amount of that order.

local theCustomer,lastOrderDate,lastOrderAmount
theCustomer=""
gettext "Customer name:",theCustomer
lastOrderDate=
lookuplast("Invoice",Company,theCustomer,Date,0,0)
if lastOrderDate=0

message "No previous invoices for this customer."
stop

endif
lastOrderAmount=

Page 5506
lookuplast("Invoice",Company,theCustomer,Total,0,0)
message theCompany+"’s most recent order was for "+
pattern(lastOrderAmount,"$#,.##")+" on "+
datepattern(lastOrderDate,"Month ddnth, yyyy")+"."

Here’s another example that combines lookup(and lookuplast(. This example first tries
to look up a customer in the Customers database. If they are not found there, it checks to
see if there is a previous invoice for this customer.

Address=
lookup("Customers",Company,Company,Address,"",0)
if Address ≠""

City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,Zip,"",0) else
Address=lookuplast(info("databasename"),Company,Company,Address,"",0)
City=lookuplast(info("databasename"),Company,Company,City,"",0
State=lookuplast(info("databasename"),Company,Company,State,"",0)
Zip=lookuplast(info("databasename"),Company,Company,Zip,"",0)

endif

Remember, the lookuplast(function locates the matching information that is physically
closest to the bottom of the database. What this proximity to the bottom means depends
on how the database is sorted.

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function
lookupselected(function
lookuplastselected(function
table(function
grabdata(function
lookupall(function

Page 5507
LOOKUPLASTSELECTED(...)
LOOKUPLASTSELECTED(

Syntax: LOOKUPLASTSELECTED(file,keyField,keyValue,dataField,default,level)

Description: The lookuplastselected(function searches a database for a value, then returns other
information from the same record. For example, the lookuplast(function can look up a
phone number given a customer name, or look up a price given a part number. Unlike
the lookup(function which searches from the top of the database, the lookuplastse-
lected(function searches backwards from the bottom. The lookuplastselected(function
only searches selected records, it ignores unselected records.

Parameters: This function has six parameters: file, keyField, keyValue, dataField, default and level.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up a customer by name, this should be the field that contains customer names. The
field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up a customer by name, this should be the actual name of the customer. This parameter
is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve a phone number, this should be the name of the field that contains
phone numbers. This must be a field in the database specified by the first parameter.

default is the value you want this function to return if it is unable to find the information
specified by the keyField and keyData parameters. The data type of the default value
should match the data type of the dataField. If the dataField is numeric, the default
should usually be zero. If the dataField is text, the default should usually be "".

level is the minimum summary level to be searched. Usually this parameter is zero so
that the entire database will be searched. If the level is set to 1 through 7, only summary
records will be searched.

Result: If the function is able to locate the information specified by the keyField and keyData
parameters it returns the contents of the specified field in the specified database. (If there
is more than one match, only the last one will be returned. However, if you are searching
through the current database, the lookuplastselected(function will skip the current
record, even if it is the last matching record in the database.) If it cannot locate the infor-
mation it returns the default value.

Examples: This lookuplastselected(example finds the most recent paid order for a given customer,
and the amount of that order.

local theCustomer,lastOrderDate,lastOrderAmount
local wasWindow
wasWindow=info("windowname")
openfile "Invoice"
select Paid="Yes"
window wasWindow
theCustomer=""
gettext "Customer name:",theCustomer
lastOrderDate=

Page 5508
lookuplast("Invoice",Company,theCustomer,Date,0,0)
if lastOrderDate=0

message "No previous invoices for this customer."
stop

endif
lastOrderAmount=
lookuplastselected(

"Invoice",
Company,
theCustomer,
Total,0,0)

message theCompany+"’s most recent order was for "+
pattern(lastOrderAmount,"$#,.##")+" on "+
datepattern(lastOrderDate,"Month ddnth, yyyy")+"."

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function
lookuplast(function
lookupselected(function
table(function
grabdata(function
lookupall(function

Page 5509
LOOKUPRTIME(...)
LOOKUPRTIME(

Syntax: LOOKUPRTIME(file,reminderField,date,pattern,separator)

Description: The lookuprtime(function builds a text array containing one item for every record in the
target database where the date in the reminderField matches the date. Each item in the
text array contains the time of the corresponding reminder.

Parameters: This function has five parameters: file, reminderField, date, pattern and separator.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

reminderField is the name of the field that you want to search in. This field must contain
valid reminders (see reminder data). The field must be in the database specified by the
first parameter.

date is the actual date that you want to match. For example if you want to look up the
times for all appointments on july 23rd, this should be date("July 23"). This parameter is
often a field in the current database.

pattern is the pattern you want to use to format the time. See the timepattern(function.

separator is the separator character for the text array you are building (see text arrays).

Result: The function returns a text array from all the records where the reminderField and date
match. The text array contains the times for the reminders that match.

Examples: The example below will fill the global variable Agenda with the items on today’s sched-
ule.

global Agenda
local todayTimes,todayMessages
todayTimes=
lookuprtime("Reminders",When, today(),"hh:mm am/pm",¶)
todayMessages=
lookupcalendar("Reminders",When, today(),Message,¶)
arrayfilter Agenda,todayTimes,¶,
import()+" - "+ array(todayMessages, seq()-1,¶)

 The list of items in Agenda will be formatted something like this:

7:00 am - Breakfast meeting with Bob
9:25 am - Make sure Williams got our quote
1:30 pm - Late lunch with Jennings group
3:45 pm - get prepped for staff meeting
4:00 pm - Weekly staff meeting
5:30 pm - Don’t forget flowers for Pat

This list can easily be displayed with an auto-wrap text object, a Text Display SuperOb-
ject, or a List SuperObject.

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Page 5510
Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookupall(function
lookupcalendar(function
lookuprtypes(function
reminder data
reminder(function
reminderdate(function
remindercompare(function

Page 5511
LOOKUPRTYPES(...)
LOOKUPRTYPES(

Syntax: LOOKUPRTYPES(file,reminderField,date,pattern,separator)

Description: The lookuprtypes(function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the date. Each item in
the text array contains the type of the corresponding reminder, either "a" (appointment)
or "t" (to-do).

Parameters: This function has five parameters: file, reminderField, date, pattern and separator.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

reminderField is the name of the field that you want to search in. This field must contain
valid reminders (see reminder data). The field must be in the database specified by the
first parameter.

date is the actual date that you want to match. For example if you want to look up the
times for all appointments on july 23rd, this should be date("July 23"). This parameter is
often a field in the current database.

pattern is the pattern you want to use to format the time. This parameter is not used, and
should be "".

separator is the separator character for the text array you are building (see text arrays). If
this parameter is "" there is no separator, and the result of this function will be something
like "aaatatta".

Result: The function returns a text array from all the records where the reminderField and date
match. Each element of the text array contains either "a" or "t" for the reminders that
match.

Examples: The example below will fill the global variable Agenda with the items on today’s sched-
ule.

global Agenda
local todayTimes,todayMessages,todayTypes
todayTimes=
lookuprtime("Reminders",When, today(),"hh:mm am/pm",¶)
todayTypes=
lookuprtypes("Reminders",When, today(),"",¶)
todayMessages=
lookupcalendar("Reminders",When, today(),Message,¶)
arrayfilter todayTypes,todayTypes,¶
replace(replace(import(),"t","Todo:"),"a","Appt:")
arrayfilter Agenda,todayTimes,¶,
array(todayTypes, seq()-1,¶)+
import()+" - "+ array(todayMessages, seq()-1,¶)

 The list of items in Agenda will be formatted something like this:

Page 5512
Appt: 7:00 am - Breakfast meeting with Bob
Todo: 9:25 am - Make sure Williams got our quote
Appt: 1:30 pm - Late lunch with Jennings group
Appt: 3:45 pm - get prepped for staff meeting
Appt: 4:00 pm - Weekly staff meeting
Todo: 5:30 pm - Don’t forget flowers for Pat

This list can easily be displayed with an auto-wrap text object, a Text Display SuperOb-
ject, or a List SuperObject.

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookupall(function
lookupcalendar(function
lookuprtime(function
reminder data
reminder(function
reminderdate(function
remindercompare(function

Page 5513
LOOKUPSELECTED(...)
LOOKUPSELECTED(

Syntax: LOOKUPSELECTED(file,keyField,keyValue,dataField,default,level)

Description: The lookupselected(function searches a database for a value, then returns other infor-
mation from the same record. For example, the lookupselected(function can look up a
phone number given a customer name, or look up a price given a part number. Unlike
the lookup(function which searches all records in the database, the lookupselected(
function only searches through selected records.

Parameters: This function has six parameters: file, keyField, keyValue, dataField, default and level.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up a customer by name, this should be the field that contains customer names. The
field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up a customer by name, this should be the actual name of the customer. This parameter
is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve a phone number, this should be the name of the field that contains
phone numbers. This must be a field in the database specified by the first parameter.

default is the value you want this function to return if it is unable to find the information
specified by the keyField and keyData parameters. The data type of the default value
should match the data type of the dataField. If the dataField is numeric, the default
should usually be zero. If the dataField is text, the default should usually be "".

level is the minimum summary level to be searched. Usually this parameter is zero so
that the entire database will be searched. If the level is set to 1 through 7, only summary
records will be searched.

Result: If the function is able to locate the information specified by the keyField and keyData
parameters in a selected record it returns the contents of the specified field in the speci-
fied database. (If there is more than one match, only the last one will be returned.) If it
cannot locate the information it returns the default value.

Examples: This example looks up a price from a Price List database. This price list database has
multiple discount levels. The procedure first selects distributor pricing, then looks up the
price. The ItemΩ line item field in the invoice database contains the catalog item number,
which should match a value in the Catalog# field in the Price List.

window "Price List"
select «Discount Level»="Distributor"
window "Invoice"
Price Ω=
lookupselected("Price List",«Catalog#»,Item Ω,Price,0,0)

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Page 5514
Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function
lookuplast(function
lookuplastselected(function
table(function
grabdata(function
lookupall(function

Page 5515
LOOP
LOOP

Syntax: LOOP

Description: The loop statement is used at the beginning of a loop. A loop is a sequence of statements
that are executed over and over again. The end of the loop is always an until or while
statement.

Parameters: This statement has no parameters.

Action: Loops are one of the fundamental building blocks of programming. In Panorama all
loops begin with a loop statement and end with either an until or while statement. The
statements in between the top and bottom of the loop are said to be “inside the loop.”
These are the statements that will be repeated over and over again. Although it is not
required, your procedures will usually be easier to read and understand if the statements
inside the loop are indented. It is possible to put one loop inside of another. This is called
a “nested loop.”

Examples: This simple example adds 10 new records to the current database.

loop
addrecord

until 10

This example prints all unprinted records using the appropriate form. In this case the
loop can only stop at the top (because of the stoploopif), because this while is forever!

find PrintedStatus=""
loop

stoploopif (not info("found"))
openform PrintForm
print ""
PrintedStatus="Complete"
closewindow
next

while forever

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: while statement
until statement
stoploopif statement
repeatloopif statement

Page 5516
LOWER(...)
LOWER(

Syntax: LOWER(text)

Description: The lower(function converts text to all lower case (no capitalized letters).

Parameters: This function has one parameter: text.

text is the item of text that you want to force to all lower case.

Result: The result of this function is always a text item.

Examples: This function can be used to modify fields or variables, or to display data. This example
makes sure that every payment method was lower case, i.e. visa not VISA or Visa.

field «Payment Method»
formulafill lower(«Payment Method»)

For example, you might use this procedure after you imported data that was not prop-
erly capitalized.

Another handy use for this function is to make comparisons when you don’t know how
the data is capitalized. The procedure below will select all data where the terms are NET
30, Net 30, or net 30.

select lower(Terms)="net 30"

The table below shows how the lower(function affects various items of text:

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example lower(34) . If you
have a number you must convert the number to text before using it with this function,
for example lower(str(34)) . Of course this function really doesn’t make much sense
when applied to a number, even if it is converted to text first.

See Also: upper(function
upperword(function

Formula Result

lower("John Smith") john smith

lower("NET 30") net 30

lower("NEW York") new york

Page 5517
M

MAGICFORMWINDOW
MAGICFORMWINDOW

Syntax: MAGICFORMWINDOW database,form

Description: The magicformwindow statement designates an open window as the temporary active
window for the purposes of info(functions and graphic statements. It does not change
the actual active (frontmost) window, and does not affect database operations like data
entry, sorting and searching.

Parameters: This statement has two parameters: database and form.

database is the database that contains the window you want to designate as the "magic
window." This database must be open (in memory).

form is the form corresponding to the window you want to designate as the "magic win-
dow." This statement allows the window name to be different than the form name (for
example if you have used the windowname statement.

Action: This statement designates a window as the temporary active window.

Examples: This procedure re-fills the People List list in the List form in the Contacts database. The
form must be open (this is checked by the info("magicwindow") function).

magicformwindow "Contacts","List"
if info("magicwindow") <>""

superobject "People List","Fill List"
magicwindow ""

endif

This example finds out the current dimensions (location and size) of the Plain form in the
Checkbook database. This example assumes that the form is already open.

magicformwindow "Checkbook","Plain"
windowDimensions= info("windowrectangle")
magicwindow ""

Views: This statement may be used in a procedure run from any view.

See Also: magicwindow statement
info("magicwindow") function

Page 5518
MAGICWINDOW
MAGICWINDOW

Syntax: MAGICWINDOW window

Description: The magicwindow statement designates an open window as the temporary active win-
dow for the purposes of info(functions and graphic statements. It does not change the
actual active (frontmost) window, and does not affect database operations like data
entry, sorting and searching.

Parameters: This statement has one parameter: window.

window is the window that you want to designate as the "magic" active window. This
must be a window that is currently open. If window is "" then the "magic" window des-
ignation is cancelled.

Action: This statement designates a window as the temporary active window.

Examples: This procedure re-fills the People List list in the List form in the Contacts database. The
form must be open (this is checked by the info("magicwindow") function).

magicwindow "Contacts:List"
if info("magicwindow") <>""

superobject "People List","Fill List"
magicwindow ""

endif

This example finds out the current dimensions (location and size) of the Plain form in the
Checkbook database. This example assumes that the form is already open.

magicwindow "Checkbook:Plain"
windowDimensions= info("windowrectangle")
magicwindow ""

Views: This statement may be used in a procedure run from any view.

See Also: magicformwindow statement
info("magicwindow") function

Page 5519
MAGNIFICATION
MAGNIFICATION

Syntax: MAGNIFICATION scale

Description: The magnification statement changes the magnification of the current form, zooming in
or out.

Parameters: This statement has one parameter: scale

scale is a text item that tells the magnification statement what enlargement factor to use
for the form. The options are:

25%
50%
100%
2X
4X
8X

 (Note: The X in the last three options must be upper case.)

Action: This statement allows a procedure to zoom in and out in a form. For example, a proce-
dure can get a crude preview by zooming out to 25%. To scroll the form to different loca-
tions use the formxy statement.

Examples: This example opens the Letter form and previews it at 25%. The preview may not be
exact because text objects often do not scale completely accurately.

openform "Letter"
magnification "25%"

Views: This statement may be used in the Form view.

See Also: formxy statement

Page 5520
MAKEFOLDER
MAKEFOLDER

Syntax: MAKEFOLDER folderpath

Description: The makefolder statement creates a new folder.

Parameters: This statement has one parameter: folderpath

folderpath is the complete path of the folder you want to create. For example, suppose
your hard disk is called Disk, and you want to create a new folder named Obsolete in the
System folder. In that case, the folderpath would be Disk:System:Obsolete.

Action: Use the makefolder statement when you need to create a new folder. Important note:
The makefolder statement can only create one folder at a time. In other words, if you ask
it to create the Disk:Plans:ProjectX folder, the Plans folder must already exist.

Examples: This example is a general purpose subroutine that can be used to create new folders. This
subroutine will create any folders needed. If you gave this procedure the name .Make-
Folder you could call it like this

call .MakeFolder,"Disk:Plans:1999:ProjectZ"

If the Plans or 1999 folders don't exist, the subroutine will create them, along with the
ProjectZ folder. Here is the full source of this useful subroutine.

/*
* make a folder, and all nested folders
*
*parameter(1)=folderpath
*for example "Alaska:Alpha Folder:Gamma Folder:Zed Quadrant:Foo"
*if error set parameter(1) to ""
*/
local newfolder,targetfolder,tempfolder,tempfile,tftype,depth,vSep
if folderpath(info("panoramafolder")) [2,3]=":\"
 vSep="\"
else
 vSep=":"
endif
newfolder= parameter(1)
targetfolder=newfolder
shortcall testtarget
if tftype contains "folder" rtn endif /* folder already exists */
if tftype contains "file"

setparameter 1,"" /* can't create folder with same name as a file */
rtn

endif

depth=1
loop

targetfolder= arrayrange(newfolder,1,depth+1,vSep)
shortcall testtarget
if tftype=""

makefolder targetfolder
endif
depth=depth+1

while newfolder ≠targetfolder
rtn

testtarget:
tempfolder=

Page 5521
arrayrange(targetfolder,1,-1+ arraysize(targetfolder,vSep),vSep)
tempfile= array(targetfolder, arraysize(targetfolder,vSep),vSep)
tftype= array(fileinfo(folder(tempfolder),tempfile),1,¶)
if tftype contains "file"

setparameter 1,""
 rtn

endif
rtn

Views: This statement may be used in any view.

See Also: folder(function
folderpath(function

Page 5522
MAKESECRET
MAKESECRET

Syntax: MAKESECRET

Description: The makesecret statement makes the current database disappear. All of the windows for
this database will be closed. However, the database is still in memory, so the database
can still be used for lookups, etc.

Parameters: This statement has no parameters.

Examples: This procedure makes the price list database invisible. (You can also make a database
invisible by checking the No Windows option in the Save As dialog.)

window "Price List"
makesecret

Even though the price list database is invisible, you can still access information in the
file.

myPrice=lookup("Price List",Description,Item,Price,0,0)

To modify information in a hidden database you must temporarily create a secret win-
dow. This can be done with the window statement. This example adjusts the quantity of
an item in an invisible inventory file.

local wasWindow
wasWindow=info("windowname")
window "Inventory:Secret"
find Description= grabdata("Invoice",InvoiceItem)
OnHandQty=OnHandQty- grabdata("Invoice",InvoiceQt
window wasWindow

 To make the Price list database visible again use this procedure. (This assumes that the
No Windows option is not checked in the Save As dialog.)

openfile "Price List"

To open a specific window in an invisible database you must first create a temporary
secret window, then open the window you really want.

window "Price List:Secret"
setwindowrectangle rectanglesize(20,20,300,180)
openform "Distributor"

Views: This statement may be used in any view.

See Also: window statement
opensecret statement
info("files") function

Page 5523
MAX(...)
MAX(

Syntax: MAX(value1,value2)

Description: The max(function compares two values and returns the larger value.

Parameters: This function has two parameters: value1 and value2.

value1 is the first value you want to compare. This must be a number, not text.

value2 is the second value you want to compare. This must be a number, not text.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This example calculates the hottest city, LA or NY.

max(LAtemp,NYtemp)

If you need to calculate the maximum of three or more values you can nest multiple
max(functions together like this.

max(LAtemp,max(ChicagoTemp,NYtemp))

Temperature must contain a numeric value. The table below shows how the max(func-
tion works with some typical values. The first column shows the result.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example max("Sue","Bob") . If
you have a number in a text item you must convert the text to a numeric value before
taking the absolute value, for example max(val("34"), val("876")) .

See Also: val(function

max(value 1 value 2

98 98 37

604 154 604

-3 -3 -4

1 1 -2264

Page 5524
MAXIMUM
MAXIMUM

Syntax: MAXIMUM

Description: The maximum statement calculates the maximum and submaximums for the current
field.

Parameters: This statement has no parameters.

Action: This statement calculates the maximum for the current field. The current field may be
numeric, text, or a date field. If the database contains summary records, this statement
will calculate submaximum for each summary record, along with an overall maximum
for the whole database. If there are not any summary records in the database, one will be
added at the end of the database and the overall maximum calculated and placed into
the summary record. This statement has the same effect as choosing the Maximum com-
mand in the Math menu.

Examples: This simple example calculates the largest check in the database.

field Debit
maximum

 This example calculates the largest sale for each state, along with the overall largest sale.

field State
group
field Sales
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: total statement
sum(function
count statement
average statement
minimum statement
group statement
outlinelevel statement

Page 5525
MENUBUILD
MENUBUILD

Syntax: MENUBUILD menu,list

Description: The menubuild statement rebuilds a custom menu on the fly. The menu must already
exist in a an open resource file, because this command cannot create a menu completely
from scratch.

Parameters: This statement has two parameters: menu and list.

menu is the name or ID number of the menu that is to be rebuilt. The menu ID is
assigned in ResEdit.

list is a text array that contains a semicolon separated list of the menu items. For exam-
ple, the list below will build a menu of car rental companies:

"Alamo;Avis;Budget;Dollar;Hertz;National"

Menu items are normally displayed in plain Chicago 12 point text. By adding a special
suffix to menu item names in the menu item list you can change menu items to different
styles: bold, italic, etc. The table below lists the different styles and corresponding suf-
fixes.

It is also possible to assign a command key equivalent by adding a suffix. The suffix con-
sists of a / character followed by the character you want to assign as a command key
equivalent. The list below defines five menu items with command key equivalents from
1 thru 5.

"UPS/1;US Mail/2;FedEx/3;DHL/4;Airborne/5"

You can build separator lines in the custom menu by defining a menu item as (-. The list
below would build a menu with two separator lines, one between White and Red, and
another between Blue and Orange.

"Black;White;(-;Red;Green;Blue;(-;Orange;Yellow;Brown"

Action: This statement allows a procedure to completely change the contents of an entire menu.
The old menu is completely replaced by the new menu items you define.

Examples: This example builds a custom menu named Customer. (Remember, this custom menu
must be already created in the resource file.) The procedure builds the menu with a list of
all the customers in the database.

Style Suffix Example

Bold <B Monthly Report<B

Italic <I New Invoice<I

Underline <U Initialize Payroll<U

Outline <O Back Order<O

Shadow <S Erase All Statements<S

Page 5526
local customerArray
arraybuild customerArray,";","",Customer
arraydeduplicate Customer,Customer,";"
menubuild "Customer",customerArray

Views: This statement may be used in any view that has custom menus installed.

See Also: menudisable statement
menuenable statement
getmenumark statement
setmenumark statement
clearmenumarks statement
getmenutext statement
setmenutext statement
getmenus statement
setmenus statement

Page 5527
MENUDISABLE
MENUDISABLE

Syntax: MENUDISABLE menu,item

Description: The menudisable statement disables a custom menu item. The menu item will turn gray
and can no longer be selected.

Parameters: This statement has two parameters: menu and item.

menu is the name or ID number of the menu that contains the item to be disabled. The
menu ID is assigned in ResEdit.

item is the name of the menu item, or the number of the menu item within the menu
(starting with 1 at the top). For example, suppose the third item in the Books menu is
Cleared. This menu item may be specified as either "Cleared" or 3.

Action: A menu item may be disabled when it is not appropriate. For example, in an accounting
database the Void Transaction menu item might be disabled after an invoice is posted.
To show that the item is disabled, the text of the item turns gray, for example Void Trans-
action. The menudisable statement disables a menu item. The menuenable statement
turns the menu item on again. (Note: Only custom menus can be enabled and disabled.
A procedure cannot enable or disable one of Panorama’s standard menus or an item in
the Action menu.)

Examples: Suppose a database has a Rush menu item in the Order custom menu. This menu item is
not valid if the shipping method is US Mail. The example below could be part of the
.CurrentRecord procedure, and handles enabling/disabling the Rush menu item
(Rush/Rush).

if ShipMethod="US Mail"
menudisable "Order","Rush"

else
menuenable "Order","Rush"

endif

Views: This statement may be used in any view that has custom menus installed.

See Also: menuenable statement
getmenumark statement
setmenumark statement
clearmenumarks statement
getmenutext statement
setmenutext statement
menubuild statement
getmenus statement
setmenus statement

Page 5528
MENUENABLE
MENUENABLE

Syntax: MENUENABLE menu,item

Description: The menuenable statement enables a custom menu item. The menu item will turn black
and can be selected. (See also menudisable.)

Parameters: This statement has two parameters: menu and item.

menu is the name or ID number of the menu that contains the item to be enabled. The
menu ID is assigned in ResEdit.

item is the name of the menu item, or the number of the menu item within the menu
(starting with 1 at the top). For example, suppose the third item in the Books menu is
Cleared. This menu item may be specified as either "Cleared" or 3.

Action: A menu item may be disabled when it is not appropriate. For example, in an accounting
database the Void Transaction menu item might be disabled after an invoice is posted.
To show that the item is disabled, the text of the item turns gray, for example Void Trans-
action

The menudisable statement disables a menu item. The menuenable statement turns the
menu item on again. (Note: Only custom menus can be enabled and disabled. A proce-
dure cannot enable or disable one of Panorama’s standard menus or an item in the
Action menu.)

Examples: Suppose a database has a Rush menu item in the Order custom menu. This menu item is
not valid if the shipping method is US Mail. The example below could be part of the
.CurrentRecord procedure, and handles enabling/disabling the Rush menu item (Rush/
Rush).

if ShipMethod="US Mail"
menudisable "Order","Rush"

else
menuenable "Order","Rush"

endif

Views: This statement may be used in any view that has custom menus installed.

See Also: menudisable statement
getmenumark statement
setmenumark statement
clearmenumarks statement
getmenutext statement
setmenutext statement
menubuild statement
getmenus statement
setmenus statement

Page 5529
MESSAGE
MESSAGE

Syntax: MESSAGE message

Description: The message statement displays a message. The message is displayed in an alert with
one button: Ok. The message stays on the screen until the user presses the Ok button,
then the procedure continues with the next statement.

Parameters: This statement has one parameter message.

message is the text that is to be displayed. You may use any formula to create the text,
but the text may not be more than 255 characters long. (The standard message alert,
however, is only big enough to show about 160 characters. You can enlarge the alert with
the customalert statement.)

Action: Use the message statement when you need to temporarily display an important mes-
sage. Don’t overdo it, because the message alert can be very annoying if used too often.
The message statement doesn't give the user any choices. If you need to display a mes-
sage and give the user a choice use the alert, okcancel, cancelok, yesno or noyes state-
ments.

Examples: This example uses the message statement to inform the user that the requested operation
cannot be performed.

if Transaction="Deposit"
message "Sorry, deposts cannot be deleted."

else
deleterecord

endif

This example uses a formula to build a complex message. The message will be some-
thing like The database contains 12 deposits for a total of $3,932.67 dollars.

local quickTotal,quickCount
formulasum quickCount,?(Transaction="Deposit",1,0)
formulasum quickTotal,?(Transaction="Deposit",Amount,0)
message "The database contains "+

pattern(quickCount,"# deposit~")+
" for a total of "+pattern(quickTotal,"$#,.## dollar~")

Views: This statement may be used in any view.

See Also: customalert statement
yesno statement
noyes statement
okcancel statement
cancelok statement
gettext statement
getscrap statement
getscrapok statement
alertmode statement

Page 5530
MIN(...)
MIN(

Syntax: MIN(value1,value2)

Description: The min(function compares two values and returns the smaller value.

Parameters: This function has two parameters: value1 and value2.

value1 is the first value you want to compare. This must be a number, not text.

value2 is the second value you want to compare. This must be a number, not text.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This example calculates the coldest city, LA or NY.

min(LAtemp,NYtemp)

If you need to calculate the minimum of three or more values you can nest multiple min(
functions together like this.

min(LAtemp,min(ChicagoTemp,NYtemp))

Temperature must contain a numeric value. The table below shows how the min(func-
tion works with some typical values. The first column shows the result.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text values with this function, for example min("Bob","Sue"). If you have a
number in a text item you must convert the text to a numeric value before taking the
minimum value, for example min(val("34"),val("576") .

See Also: max(function

min(value 1 value 2

37 98 37

154 604 154

-4 -3 -4

-2264 1 -2264

Page 5531
MINIMUM
MINIMUM

Syntax: MINIMUM

Description: The minimum statement calculates the minimum and subminimums for the current
field.

Parameters: This statement has no parameters.

Action: This statement calculates the minimum for the current field. The current field may be
numeric, text, or a date field. If the database contains summary records, this statement
will calculate subminimum for each summary record, along with an overall minimum
for the whole database. If there are not any summary records in the database, one will be
added at the end of the database and the overall minimum calculated and placed into
the summary record. This statement has the same effect as choosing the Minimum com-
mand in the Math menu.

This statement ignores empty cells. For example if a numeric cell is empty, it cannot be
the minimum value. However, if the cell contains zero, it can be the minimum value
(unless there are negative values).

Examples: This simple example calculates the smallest check in the database.

field Debit
minimum

 This example fills the summary record with the name of the first company in each state.

field State
group
field Company
minimum

Views: This statement may be used in the Data Sheet and Form views.

See Also: total statement
sum(function
count statement
average statement
maximum statement
group statement
outlinelevel statement

Page 5532
MONTH1ST(...)
MONTH1ST(

Syntax: MONTH1ST(date)

Description: The month1st(function computes the first day of a month.

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: This function calculates the first day of the month. For example, if the date passed to this
function is October 18, 1997, this function will return the date October 1, 1997. The date
is returned as a number.

Examples: The example below selects the orders placed this month, then displays the count.

select
OrderDate ≥month1st(today()) and
OrderDate<month1st(today())+ monthlength(today())
message str(info("records"))+" orders this month"

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: monthlength(function
monthmath(function
week1st(function
year1st(function
date(function
datepattern(function

Page 5533
MONTHLENGTH(...)
MONTHLENGTH(

Syntax: MONTHLENGTH(date)

Description: The monthlength(function computes the length (number of days) of a month

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: The dayofweek(function calculates the number of days in any month. For example, if the
date passed to this function is October 18, 1997, this function will return the 31, the num-
ber of days in October. This function knows about leap years and adjusts the length of
February accordingly.

Examples: The example below selects the orders placed this month, then displays the count.

select
OrderDate ≥month1st(today()) and
OrderDate< month1st(today())+monthlength(today())
message str(info("records"))+" orders this month"

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: month1st(function
monthmath(function
week1st(function
year1st(function
date(function
datepattern(function

Page 5534
MONTHMATH(...)
MONTHMATH(

Syntax: MONTHMATH(date,offset)

Description: The monthmath(function takes a date and computes another date that is one or more
months before or after the original date.

Parameters: This function has two parameters: date and offset.

date is a number representing the original date.

offset is the number of months that you want to add or subtract to the original date.

Result: The monthmath(function offsets a date by a number of months. For example, if you off-
set the date May 12, 1997 by two months the result is July 12, 1997. If you offset the same
original date by minus two months the result is March 12, 1997.

If the new date does not exist because a month does not have enough days in it, the
monthmath(function will pick the last day of the month. For example, if you offset
March 31 by 1 month the result is April 30. If the new month lands in February the func-
tion knows about leap years and adjusts accordingly.

Examples: This example calculates a renewal date exactly one year from today.

RenewalDate=monthmath(today(),12)

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date or offset parameters.

See Also: month1st(function
monthlength(function
week1st(function
year1st(function
date(function
datepattern(function

Page 5535
N

NEWDATABASE
NEWDATABASE

Syntax: NEWDATABASE

Description: The newdatabase statement creates a new empty database. The new database is called
“Untitled”, and contains one field, which is also called “Untitled.”

Parameters: This statement has no parameters.

Examples: This procedure makes a new empty database with five fields: Name, Address, City, State
and Zip

newdatabase
fieldname "Name"
addfield "Address"
addfield "City"
addfield "State"
addfield "Zip"

Views: This statement may be used in any view.

See Also: openfile statement
fieldname statement
addfield statement
deletefield statement
fieldtype statement

Page 5536
NEWFORM
NEWFORM

Syntax: NEWFORM

Description: The newform statement creates a new form. The statement displays the standard new
form dialog, which allows the user to type in the name for the new form. This statement
is the same as choosing New Form from the View menu (the pop-up menu in the win-
dow title).

Parameters: This statement has no parameters.

Examples: This example creates a New Form command in your own custom Form menu. Here are
the statements to use in your .CustomMenu procedure.

if info("trigger") beginswith "Menu.Form.New Form"
newform
stop

endif

Views: This statement may be used in a Form view.

See Also: openform statement
goform statement
dbinfo("forms",…) function

Page 5537
NEWGENERATION
NEWGENERATION

Syntax: NEWGENERATION

Description: The newgeneration statement updates the database configuration to match the design
sheet. This statement is the same as choosing New Generation from the tool palette.

Parameters: This statement has no parameters

Examples: This example adds five new fields to the database.

opendesignsheet
addrecord
«Field Name»="Address"
addrecord
«Field Name»="City"
addrecord
«Field Name»="State"
addrecord
«Field Name»="Zip"
newgeneration
closewindow

Views: This statement may be used in the Design Sheet view.

See Also: opendesignsheet statement
godesignsheet statement

Page 5538
NEXT
NEXT

Syntax: NEXT

Description: The NEXT statement locates the next visible record, if any, which matches the most
recent find statement.

Parameters: This statement has no parameters.

Action: This statement is used to locate and make active the next record, starting from the cur-
rently active record, that complies with the last find statement. If a subset of records are
selected from the database next will only examine that sub-set for a match. You do not
need to have the cursor on the field you are performing the next on prior to executing the
next.

If no records meet the find criteria Panorama will leave the cursor where it was before
the next statement executed.

This statement has the same effect as selecting the Find Next option from the Search
menu.

Examples: This example finds the first record for John Smith and then makes the next visible record,
if any, for John Smith the active record.

find Customer = "John Smith"
next

 This example uses a formula to test multiple text fields to find the record where the vari-
able's contents matches any one of the fields. It then asks if you wish to keep looking for
additional records, one at a time, and makes each the active record if it exist.

local TheText
gettext "Enter text to find:",TheText
find " "+Customer+" "+Company+" "+Address+" "+

Comments contains TheText
if (not info("found"))

beep
message "No matching records found."
stop

endif
loop

yesno "Keep Looking?"
if clipboard() contains "yes"

next
endif

until clipboard() contains "no"

Views: This statement may be used in any view.

See Also: find statement
formselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function

Page 5539
select statement
selectadditional statement
selectall statement
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5540
NODEFAULTEXTENSION
NODEFAULTEXTENSION

Syntax: NODEFAULTEXTENSION

Description: The nodefaultextension statement works with the openfile statement. On Macintosh
systems the behavior of the openfile statement changes slightly if the current database
name ends with .pan. In that case the openfile statement will automatically add .pan to
any file name that doesn’t already have an extension. This makes it easier to set up a set
of database files that can work on both the Macintosh and the PC. However, this also
means that you will not be able to open a database that doesn’t have any extension at all
with this statement (of course you can always open such a file manually using the Open
File dialog in the File menu). By placing the nodefaultextension statement just before
the openfile statement you can cancel this automatic action and allow any file to be
opened. (This statement is ignored on Windows PC system, where database file always
must end with .pan).

Parameters: This statement has no parameters.

Examples: This example opens the database Contacts, even if the current file name ends with .pan.
Without the nodefaultextension statement the openfile would try to open Contacts.pan if
the current file name ended with .pan.

nodefaultextension
openfile "Contacts"

Views: This statement may be used in any view.

See Also: openfile statement

Page 5541
NOEDITSCROLL
NOEDITSCROLL

Syntax: NOEDITSCROLL

Description: The noeditscroll statement disables the scroll bar in the pop-up editing window the next
time that window is opened. It can be used before the editcell or floatingedit statements.
(Note: This statement only works with standard data cells. It does not work with Super-
Objects™.)

Parameters: This statement has no parameters.

Examples: This example allows the user to edit the Address data cell. Even if the Address data cell
is more than 1" high, no scroll bar will appear.

field Address
noeditscroll
editcell

Views: This statement may be used in a Form view.

See Also: editcell statement
floatingedit statement

Page 5542
NOEVENT
NOEVENT

Syntax: NOEVENT

Description: The noevent statement disables Panorama’s event processing. It can be re-enabled with
the yesevent statement.

Parameters: This statement has no parameters.

Action: This statement turns off Panorama’s event processing. You should only use this state-
ment in one place—at the beginning of the .CustomMenu procedure as shown in the
example below. In this application the noevent statement allows AppleEvents to open a
database properly via your .CustomMenu procedure. This is important because the
Finder uses AppleEvents to open a file when you double click on its icon. Using noevent
in any other way will probably cause Panorama to crash! No kidding.

Examples: If your database uses a custom menu for the File menu your .CustomMenu procedure
should contain the following statements at the very beginning of the procedure. The
noevent statement must be the very first statement in the procedure. This will allow the
Finder to open files with AppleEvents.

noevent
if info("trigger") beginswith "Menu.File.Open"

openfile dialog
stop

endif
yesevent

Views: This statement may be used in any view.

See Also: yesevent statement
openfile statement

Page 5543
Non Decimal Numbers
NON DECIMAL NUMBERS

Background: For raw data, programmers use numbers that are base 2 (binary), base 8 (octal), or base
16 (hexadecimal or just “hex”). All these number systems are convenient for working
with raw data because they are powers of two. When using base 2, there are 2 digits (0
and 1) and each digit represents a power of 2. When using base 8, there are 8 digits (0, 1,
2, 3, 4, 5, 6, 7) and each digit represents a power of 8. When using base 16 there are 16
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) and each digit represents a power of 16.
Hex numbers are most programmers favorite because each digit corresponds to four
bits:

In hexadecimal, a byte is always 2 digits, a word is 4 digits, and a longword is 8 digits.

Radix: The number of digits a numeric system uses is called it’s radix. The radix of a number is
often displayed as a subscript at the end of the number. For example 1012 (binary) is the
same value as 510 (decimal). If you’ve never been exposed to non-decimal radix numbers
before, this whole concept probably seems quite strange. However, for raw binary infor-
mation non-decimal numbers (especially hex) are much easier to work with, and they
are universally used by programmers from the largest mainframe to the smallest micro-
computer.

Digit Bits Digit Bits

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Page 5544
Conversion: The table below shows the equivalent decimal, hex, octal and binary numbers from 0 to
32 (decimal).

Fortunately, Panorama has some built-in functions for converting numbers between dif-
ferent radix systems. The radixstr(function (short for radix to string) converts a number
(or some raw binary data) into binary, octal, or hexadecimal digits. The radix(function
converts text that spells out a number in binary, octal, or hex into a standard Panorama
number.

See Also: radix(function
radixstr(function
byte(function
word(function
longword(function
binaryvalue(function

Page 5545
NOP
NOP

Syntax: NOP

Description: The nop statement does nothing (no operation). A procedure can use the nop statement
as a placeholder or to delay for a short time.

Parameters: This statement has no parameters

Examples: This procedure will delay exactly 10 seconds.

local startTime
startTime= now()
loop

nop
until now()>startTime+10

 Another use for the nop statement is to fool Panorama into not displaying a warning
dialog. When used as the last statement in a procedure, or just before a stop statement,
statements like quit and closefile will ask the user if they want to save changes. By add-
ing a nop statement you can prevent this alert from appearing.

if info("trigger") contains "Close w/o Save"
closefile
nop
stop

endif

Views: This statement may be used in any view.

See Also: closefile statement
quit statement

Page 5546
NOSHOW
NOSHOW

Syntax: NOSHOW

Description: The noshow statement temporarily disables the output of text and graphics. You should
use this command in a procedure when you want to disable the display of intermediate
steps.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to suppress all output of text and graphics. Only output
that is directly generated by Panorama will be suppressed. For example, the output gen-
erated by the Sort or formulafill commands will suppressed. However, output that is
generated by the operating system will not be suppressed. Primarily this means that
when switching from one window to another the display will not be suppressed. Output
will be disabled until the procedure is finished, or until an endnoshow statement is
encountered.

Examples: Here is an example that performs several operations on the current database, but only
updates the display once.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage
endnoshow

Views: This statement should only be used when a form or data sheet is active.

See Also: endnoshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement
nowatchcursor statement
watchcursor statement

Page 5547
NOUNDO
NOUNDO

Syntax: NOUNDO

Description: The noundo statement disables the undo statement until the end of the procedure. Some
statements (particular statements from the Fill menu) run slightly faster when undo is
disabled.

Parameters: This statement has no parameters.

Examples: This example calculates the running bank balance in a checkbook. The procedure will
run slightly faster because of the noundo statement.

noundo
field Balance
formulafill Credit-Debit
runningtotal

Views: This statement may be used in any view.

See Also: change statement
fill statement
formulafill statement
group statement
groupbycolor statement
groupup statement
groupdown statement
hide statement
propagate statement
propagateup statement
runningdifference statement
runningtotal statement
select statement
selectadditional statement
selectall statement
selectwithin statement
undo statement
unpropagate statement
unpropagateup statement

Page 5548
NOW(...)
NOW(

Syntax: NOW()

Description: The now(function returns the current time (number of seconds since midnight).

Parameters: This function has no parameters.

Result: This function calculates the current time. The time is a number (the number of seconds
since midnight).

Examples: This example selects flights that will be arriving in the next 20 minutes.

select ArrivalTime> now() and ArrivalTime ≤now()+20*60

This formula could be used in an auto-wrap text object or Text Display SuperObject™ to
display the current time.

timepattern(today(),"HH:MM:SS AM/PM")

Errors: This function does not produce any errors.

See Also: seconds(function
time(function
timepattern(function
today(function
info("tickcount") function

Page 5549
NOWATCHCURSOR
NOWATCHCURSOR

Syntax: NOWATCHCURSOR

Description: The nowatchcursor statement temporarily disables the watch cursor.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to suppress the watch and pie cursors that Panorama
noramally uses when performing a potentially slow operation. Use this when you want
to leave the arrow cursor while the procedure runs.

The watch and pie cursors will be disabled until the procedure is finished, or until a
watchcursor hyperlink statement is encountered.

Examples: Here is an example that performs several operations on the current database, but only
updates the display once. While these operations are performed the cursor stays as an
arrow or cross instead of flipping into a watch.

noshow
nowatchcursor
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage
endnoshow

Views: This statement may be used in any view.

See Also: watchcursor statement
noshow statement
endnoshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5550
 NOWINDOWSAVE
NOWINDOWSAVE

Syntax: NOWINDOWSAVE

Description: The nowindowsave statement tells Panorama NOT to save the new window positions
the next time the database is saved. This statement is designed to be used just before the
save or saveall statements. This is useful for templates that have specific window posi-
tions that you don’t want to be disturbed. (Of course if your template runs in User or
Custom mode the NoWindowSave command isn’t really necessary, because window
positions aren’t saved anyway.)

Parameters: This statement has no parameters.

Examples: This example simulates the Save command in your own custom File menu. However,
unlike the regular Save command, this one does not save the window positions. unless
you hold down the OPTION key. Here are the statements to use in your .CustomMenu
procedure.

if info("trigger") beginswith "Menu.File.Save"
if info("trigger") notcontains "option"

nowindowsave
endif
save
stop

endif

Views: This statement may be used in any view

See Also: save statement
saveall statement

Page 5551
NOYES
NOYES

Syntax: NOYES text

Description: The noyes statement displays an alert with a message and two buttons: Yes and No. The
default is No.

Parameters: This statement has one parameter: text.

text is the message that will appear in the dialog when it is displayed. You may use any
formula to create this text, but usually a text constant is used (text surrounded by double
quote marks (Example: "Do you want to continue?").

Action: This statement allows the procedure to pause and asks a question requiring one of two
responses: Yes or No. The response will be written to the clipboard so that it can be
tested for later in the procedure.

Examples: This example asks the user if they want to remove old records. If they press the Yes but-
ton the procedure will remove all records that are more than 1 year old, otherwise the
procedure will do nothing.

noyes "Remove old records?"
if clipboard() contains "Yes"

select Date> today()-365
removeunselected

endif

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: yesno statement
alert statement
cancelok statement
customalert statement
customdialog statement
getscrap statement
gettext statement
message statement
okcancel statement
alertmode statement
clipboard() function
info("dialogtrigger") function

Page 5552
NUMERIC PATTERNS
NUMERIC PATTERNS

Background: Numeric patterns allow you to control how a number is displayed or converted to text.
All of the numbers listed below have the value 2654, but have been converted to text
using different patterns:

2654, 2,654, $2,654.00, 002654, 2.654e+3, 26-54

Basics: The basic building block of any numeric pattern is the # symbol. This symbol represents
one or more digits of the number being converted. By arranging one or more # symbols
with other characters and punctuation you can control the format of the number being
displayed. The example below shows a very basic format for converting numbers to text.
This format formats the number with two digits after the decimal point—no matter how
many digits actually exist in the original number.

Text= pattern(Amount,"#.##")

Rounding: If the original number has too many digits after the decimal point (as does the number
on the last line of the table above) the number will be rounded (not truncated) to fit into
the formatted text (as the example shows).

Leading
Zeros:

If the pattern has extra # symbols in front of the decimal point the pattern(function will
add leading zeros in front of the number.

Text= pattern(Amount,"#####.#")

As the last number shows, the pattern(function will never chop off digits in front of the
decimal point. Even though 8911272 has 7 digits and the pattern only has 5 # symbols in
front of the decimal point, all 7 digits are included in the converted value. The # symbols
in front of the decimal point define a lower limit on the number of digits in front of the
decimal point, not an upper limit. (If you want to establish an upper limit you could use
a text funnel to strip off the extra characters.)

Comma
Separators:

Fixed point numbers often have a comma every third digit to make the number easier to
read. Place a comma anywhere within or adjacent to the stream of # symbols if you want
the number to be formatted with a comma. This example shows numbers with a comma
and with no decimal point or digits after the decimal point.

Text= pattern(Amount,"#,")

Negative
Numbers:

Negative numbers are usually converted with a minus sign in front of the number. If you
want a minus sign at the end of the number put a minus sign after the last # in the pat-
tern.

Text= pattern(Amount,"#,.##-")

Negative numbers can also be displayed with parentheses around them. Simply put (
and) characters around the # symbols. In this case the pattern(function will put an extra
space after the number if the number is positive. The extra space helps make positive
numbers line up with negative numbers if they are displayed in a list.

Text= pattern(Amount,"(#,.##)")

Page 5553
Scientific
Notation:

To output a number using scientific notation add an E (or e) after the last # symbol.

Text= pattern(Amount,"#.####e")

Note: Scientific notation does not support more than one # in front of the decimal point,
and it does not support commas every three digits.)

Prefixes,
Suffixes:

The previous section described basic numeric patterns. You can embellish on these pat-
terns by adding a prefix and or suffix. You may add any characters you want in the prefix
or suffix, and they will be added “as-is” to the final converted number. The most com-
mon prefix is $ for monetary values.

Text= pattern(Amount,"$#,.##")

Here is another example that adds a suffix for percentages.

Text= pattern(Amount,"#.##%")

Plurals: If a suffix contains a measurement unit you may want to properly pluralize the units
depending on the value being displayed. The pattern can use the ~ symbol to include an
optional s in the suffix. The s is included if the value is not 1, for example 4 miles vs. 1
mile. Here is an example that converts text as kilograms.

Text= pattern(Amount,"#, kilogram~")

The ~ symbol can be used with any word that is plural with an s: mile~, ounce~, meter~,
dollar~, cent~, hour~, day~, month~, year~, ohm~, volt~ etc. It does not work with
words that change spelling when plural: foot (feet), inch (inches), etc.

Spelling
Numbers as
Words:

Numbers are normally converted to text as a sequence of digits. Through the use of a
special symbol (§), a number can be spelled out as words (for example one hundred
twenty three). There should only be one § symbol in the pattern. On the Macintosh, press
option-6 to create the § symbol. On Windows, press Alt-0167.

Only the integer part of the number is converted by the § symbol. If you are converting
money you’ll probably want to convert the fractional part (cents) also. You can convert
the fractional part with the ¢ symbol. Use one ¢ symbol for each digit you want to dis-
play (usually 2). On the Macintosh, press option-4 to create the ¢ symbol. On Windows,
press Alt-0162.

The formula below shows a typical pattern for spelling out dollar values:

Text= pattern(Amount,"§ dollar~ and ¢¢ cent~")

If you want to spell out the cents also you must use two pattern functions like this:

Text= pattern(Amount,"§ dollar~ and ")+
lower(pattern(Amount*100,"§ cent~"))

The § symbol normally converts the number with the first letter capitalized and the rest
lower case. To change this you can use the lower(, upper(, or upperword(functions.

Multiple
Component
Numbers:

Numbers are normally converted to text as a continuous sequence of digits. You can also
convert a number with the digits split up by punctuation or other characters. To do this,
create a pattern with # symbols broken up by other characters. For example, here is a
pattern that converts a number into standard social security number format (000-00-
0000).

Page 5554
Text= pattern(SSNumber,"###-##-####")

As the last example shows, only the integer part is converted when the pattern has mul-
tiple components. Here’s another example that converts a number into the standard for-
mat for a combination lock.

Text= pattern(Combination,"Right ## Left ## Right ##")

An integer can contain up to 9 digits. A floating point number can contain up to 15 dig-
its.

See Also: pattern(function
str(function
date patterns
datepattern(function

Page 5555
O

OBJECT
OBJECT

Syntax: OBJECT name

Description: The object statement will select one graphic object in the current form based on the
object’s name. (This is the same concept as going into graphics mode and clicking on the
object.) After the object is selected you can get information about it or change the
attributes of the object.

Parameters: This statement has one parameter: name.

name is the name of the graphic object you want to select. If a graphic object does not
have a name, you cannot select it with the object statement.

There are two ways to give a name to an object. Both start by selecting the object (in
Graphics Mode). Once the object is selected, you can use the Object Name command (in
the Edit menu) to assign the name. Or you can click on the object name portion of the
Graphic Control Strip along the bottom of the window. (If the object name is not visible,
click the triangle on the right side of the strip until you see the object name.

It is possible to have two or more graphic objects on a form with the same name, but this
is usually not a good idea. If the object statement finds more than one object with the
same name it only select the first one it finds.

Action: This statement allows a procedure to select a graphic object within a form. Once an
objects is selected it can be examined or changed. This gives Panorama a limited capabil-
ity to actually change forms on the fly.

Examples: This example will check to see if the mouse click was in an object called Blue Square.
(This doesn’t have to be a rectangle object, it could be any object with the name Blue
Square.) If the click was in Blue Square the procedure displays the message Hit the
Bullseye!

local blueRectangle
object "Blue Square"
blueRectangle= objectinfo("rectangle")
blueRectangle= xytoxy(blueRectangle,"form","screen")
if inrectangle(info("click") ,blueRectangle)

message "Hit the Bullseye!"
endif

Views: This statement may be used in Form views.

See Also: selectobjects statement
selectallobjects statement
selectnoobjects statement
objectid statement
objectnumber statement
changeobjects statement
objectinfo(function

Page 5556
OBJECTID
OBJECTID

Syntax: OBJECTID number

Description: The objectid statement will select one graphic object in the current form based on an ID
number.

Parameters: This statement has one parameter: number.

number is a special ID number that identifies a graphic object. Each graphic object in a
form has a unique ID number. You can use the objectinfo("id") function to find out the ID
number for an object. Warning: Editing the form in graphics mode may change all the ID
value for objects in the form.)

Action: This statement allows a procedure to select a graphic object within a form based on an
earlier selection. A procedure usually starts by getting the ID number of an object using
the objectinfo("id") function. The ID number is stored in a variable. Later, the ID number
is recalled and used to select the graphic object.

Examples: This example will find and store the ID of the object the user clicks on. (Note: This proce-
dure is assumed to be triggered by a button which overlays several other graphic
objects.)

global hitObject
local hitPt
hitPt= xytoxy(info("click") ,"Screen","Form")
selectobjects inrectangle((hitPt, objectinfo("rectangle"))

and objectinfo("type") ≠"Button"
objectnumber objectinfo("count")
hitObject= objectinfo("ID")

 Later another procedure can re-select this object easily.

global hitObject
objectid hitObject

Views: This statement may be used in Form views.

See Also: selectobjects statement
selectallobjects statement
selectnoobjects statement
object statement
objectnumber statement
changeobjects statement
objectinfo(function

Page 5557
OBJECTINFO(...)
OBJECTINFO(

Syntax: OBJECTINFO(OPTION)

Description: The objectinfo(function returns information about a graphic object: its location, size,
color, font, etc. This function must be used in combination with either the object, selecto-
bjects or changeobjects statement.

Parameters: This function has one parameter: option.

option is the type of information you want to retrieve about an object. You must pick the
option from the list below:

objectinfo("rectangle")
objectinfo("ID")
objectinfo("name")
objectinfo("fieldname")
objectinfo("type")
objectinfo("custom")
objectinfo("font")
objectinfo("textsize")
objectinfo("textstyle")
objectinfo("alignment")
objectinfo("color")
objectinfo("selected")
objectinfo("locked")
objectinfo("expandable")
objectinfo("expandshrink")
objectinfo("tile")
objectinfo("text")
objectinfo("fillpattern")
objectinfo("linepattern")
objectinfo("linewidth")
objectinfo("count")
objectinfo("boundary")

Result: The function returns different types of data depending on the option selected. See the
examples section for details.

Examples: There are about a dozen types of information the objectinfo(function can extract from an
object.

objectinfo("rectangle") - This option returns the dimensions (location and size) of the
object. The dimensions are returned using the rectangle data type (see the rectangle(
function) and in form relative co-ordinates (See “XYTOXY(” on page 5910).

The example below selects the data cell(s) the user clicked on. The procedure uses the
inrectangle(function to determine which object (if any) was clicked on. (Note: Presum-
ably this procedure would be triggered by a push button which covers the data cell
objects.)

local hitPt, hitField
hitPt= xytoxy(info("click") ,"Screen","Form")
selectobjects inrectangle(hitPt,objectinfo("rectangle"))

and objectinfo("type") beginswith "Data Cell:"
objectnumber 1
hitField=objectinfo("type")[":",-1][-2,-1]

Page 5558
if hitField="" stop endif
field hitField
editcell

If the user did click on a data cell, the procedure activates the cell.

objectinfo("name") - This option returns the name of the object. This is the name that is
assigned by the Object Name dialog (in the Edit menu, or Graphic Control Strip). The
two lines shown below are basically equivalent.

object "Swiss Cheese" selectobjects objectinfo("name")="Swiss Cheese"

These two statements are not completely equivalent. If there is more than one object
named Swiss Cheese the selectobjects statement will select all of them. The object state-
ment will select only the one closest to the back.

objectinfo("type") - This option returns the type of the object. The object types are:

Rectangle
Rounded Rectangle
Oval
Line
Picture
Auto-Wrap Text
Click Text
Data Cell:<field>
Button
Chart
Flash Art
Flash Sound
Balloon Help
SuperObject:<type of SuperObject>
Tile:<type of tile>
Group

objectinfo("font") - This option returns the font for this object. If the option does not
have a font (an oval, for example) this option will return empty text. This example con-
verts all Courier text to American Typewriter.

selectobjects objectinfo("font")="Courier"
changeobjects "font","American Typewriter"

objectinfo("textsize") - This option returns the size of text displayed by this object. If the
object does not have a text size (an oval, for example) this option will return zero.

objectinfo("textstyle") - This option returns the text style of text displayed by the object.
The text style is a number that is created by adding up the numbers for each individual
style from the table below. For example, for bold italic text the style will be 3.

 0 Plain
 1 Bold
 2 Italic
 4 Underline
 8 Outline
16 Shadow

The example below selects all italic objects and then changes the color of the selected
objects to blue.

selectobjects objectinfo("textstyle") and 2
changeobjects "color", rgb(0,0,65535)

Page 5559
objectinfo("alignment") - This option returns the alignment of text displayed by this
object, either "Left", "Center", or "Right". If the object does not have a text size (an oval,
for example) this option will return "". objectinfo("color") - This option returns the color
of the object. For example, this procedure selects all objects with brightness below 50%,
then changes it to a minimum brightness of 50%.

selectobjects brightness(objectinfo("color"))<32768
changeobjects "color",
hsb(

hue(objectinfo("color")),
saturation(objectinfo("color")),32768)

objectinfo("selected") - This option returns true or false depending on whether or not
the object is already selected (by a previous selectobjects statement).

objectinfo("locked") - This option returns true or false depending on whether or not the
object is locked. (A locked object cannot be modified when in graphic editing mode.) The
example below selects all rectangles that are not locked.

selectobjects objectinfo("type")="Rectangle"
and not objectinfo("locked")

objectinfo("expandable") - This option returns true or false depending on whether or
not the object is expandable depending on the amount of data to be printed.

objectinfo("expandshrink") - This option returns true or false depending on whether or
not the object can expand or shrink depending on the amount of data to be printed.

objectinfo("text") - This option returns the text in auto-wrap text objects or click text
objects. When used with any other type of object it returns empty text. This example
changes all text objects that contain the word Phone to italic.

selectobjects objectinfo("text") contains "Phone"
changeobjects "textstyle",objectinfo("textstyle") or 2

objectinfo("fillpattern") - This option returns the fill pattern of the object (if any). Patterns
are 8 bytes of raw data (see Binary Data). Here are some formulas for typical patterns.

This list shows only a few of the possible patterns—there are literally millions of patterns
that can be created.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black

radix(16,"00000000000000") white

"" none (transparent)

radix(16,"AA55AA55AA55AA55") 50% gray pattern

radix(16,"8822882288228822") light gray

radix(16,"DD77DD77DD77DD77") dark gray

radix(16,"8888888888888888") vertical lines

radix(16,"FF000000FF000000") horizontal lines

radix(16,"FF888888FF888888") cross hatch

Page 5560
objectinfo("linepattern") - This option returns the line pattern of the object (if any). Pat-
terns are 8 bytes of raw data (see binary data). See the table above for examples of typical
patterns.

objectinfo("linewidth") - This option returns the line width of the object (if any). The
line width is a number from 1 to 8, or zero if this object does not support a line width.

objectinfo("ID") - This option returns a unique number that can be used to identify this
object later. The number is valid as long as the form is not edited in graphics mode. The
objectid statement can use this unique ID number to re-locate this object later.

objectinfo("count") - This option applies not to a specific object, but to the entire form. It
counts the number of currently selected objects. For example, this example displays the
number of rectangles in the current form.

selectobjects objectinfo("type") contains "rectangle"
message "This form contains "+ str(objectinfo("count"))+" rectangles."

objectinfo("boundary") - This option applies not to a specific object, but to the entire
form. It calculates the minimum rectangle that encloses all of the selected objects.

Errors: Illegal info argument. This error occurs if the option is not one of the legal options listed
above.

See Also: object statement
selectobjects statement
changeobjects statement

Page 5561
OBJECTNUMBER
OBJECTNUMBER

Syntax: OBJECTNUMBER number

Description: The objectnumber statement identifies one graphic object from a set of selected graphic
objects in the current form.

Parameters: This statement has one parameter: number.

number identifies the graphic object within the set of selected graphic objects. The first
graphic object is 1, the second is 2, etc. If you specify a number that is larger than the
number of selected object info("found")will be false. (Note: Graphic objects are num-
bered in back to front order.)

Action: This statement locates the nth selected object so that you can retrieve information about
the object. The first selected object is 1, the second is 2, etc. After this statement you can
use the objectinfo(function to get information about the object. This statement allows
you to create a loop to accumulate information about multiple graphic objects within the
form.

Examples: The example procedure below builds a list of the names of all SuperObjects in the cur-
rent form.

local objectNames,X
X=1
selectobjects objectinfo("type") beginswith "SuperObject"
loop

objectnumber X
stoploopif (not info("found")
objectNames=
sandwich("",objectNames,¶)+ objectinfo("name")
X=X+1

while forever

 This statement can also be used to identify the object closest to the front or the back in
the selected set. To identify the object closest to the back, use 1.

selectobjects objectinfo("font")="Helvetica"
objectnumber 1

 To identify the object closest to the front, use objectinfo("count").

selectobjects objectinfo("font")="Helvetica"
objectnumber objectinfo("count")

Views: This statement may be used in Form views.

See Also: selectobjects statement
selectallobjects statement
selectnoobjects statement
object statement

Page 5562
objectid statement
changeobjects statement
objectinfo(function

Page 5563
OKCANCEL
OKCANCEL

Syntax: OKCANCEL text

Description: The okcancel statement pauses a procedure and displays a modal dialog showing the
text and two buttons Ok (the default button) and Cancel. The name of the button clicked
on will be written to the clipboard.

Parameters: This statement has one parameter: text.

text is the character string that will appear in a modal dialog displayed on screen. This
text string must be surrounded by quote marks (" "). The string limit is dependent on
the characters used and assumes the system font (Chicago, 12 point).

Action: This statement allows the procedure programmer to pause the procedure by presenting
the user with a modal dialog that asks a question requiring one of two responses Cancel
or Ok. Whichever response is selected will be written to the clipboard and it can be
tested for later in the procedure.

Examples: This simple example will have Panorama display a modal dialog asking you if you wish
to cancel or continue the procedure. If you click on the Cancel button the procedure will
stop.

okcancel "Do you wish to continue this procedure?"
if clipboard() = "Cancel"

stop
endif
...
...
...

 This example first tests to see if a select command failed to select any records and if it
fails asks you if you wish to cancel or try again.

local companyname
beginning:
gettext "Enter Company Name.",companyname
select «Company» contains companyname
if info("empty")

okcancel "Cancel to stop, Ok to try again."
if clipboard() contains "cancel"

stop
endif
if clipboard() contains "ok"

goto beginning
endif

endif

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

Page 5564
See Also: alert statement
cancelok statement
clipboard() function
customalert statement
customdialog statement
getscrap statement
gettext statement
info("dialogtrigger") function
message statement
noyes statement
openresource statement
yesno statement
alertmode statement

Page 5565
ONERROR
ONERROR

Syntax: ONERROR statements

Description: The onerror statement can be used to catch all errors that are not trapped by if error
statements. This has two benefits: It allows the programmer to easily eliminate all error
alert dialogs. This is very important for server applications because an alert dialog
requires human intervention to get the server going again.

It makes it easy to build a log of errors.

Parameters: This statement has one parameter: statements.

statements is a text string that contains one or more Panorama statements to be executed
when an error occurs. Notice that this is not the name of a procedure, but the actual
statements themselves (as a string of text). This is similar to the execute statement. Once
an error has occurred these statements will run. Within these statements you can use the
info("error") function to find out what the error was, if necessary.

Action: This statement allows you to specify what happens when Panorama encounters an error
as part of running a procedure. When Panorama encounters an error, it checks to see if
the next line is if error. If not, it usually stops and displays an error message. However, if
an OnError statement has been encountered, Panorama will not stop and will not dis-
play an error message. Instead, it will execute the statements specified as the parameter
to the OnError statement.

The effect of the OnError statement ends when the main procedure stops running. In
other words, OnError isn't a permanent error handler — you must specify it for each
procedure you wish to have error trapping. If you plan to use OnError, it is probably best
to put it in the first line of any procedure that needs error trapping. If you are going to
use the same statements with OnError in several different procedures, you may want to
set up the statements in a variable in your .Initialize procedure, then use that variable as
the parameter to OnError.

It's important to consider the possible environment that may exist when an error is cre-
ated. Depending on the flow of your main procedure, Panorama may not be in the same
window or even in the same database. Your OnError program should generally not
make any assumptions about what windows or databases will be active or available
when the error occurs.

Examples: Here is an example of how OnError could be used in a CGI (web server) application. In
this example if there is an error Panorama will return an error message to the web server
and also log the error along with the date and time.

global cgiResult,errorLog
errorLog=errorLog /* make sure errorLog exists */
if error

errorLog="" /* initialize errorLog */
endif
onerror {cgiResult="Panorama Error: "+ info("error") }+

{errorLog= sandwich("",errorLog,¶)+}+
{ datepattern(today(),"DD/MM/YYYY ")+}+
{ timepattern(now(),"hh:mm:ss")+}+
{ info("error") }

Page 5566
/* error logging is set up, now we can continue with our tasks */
...
... rest of this procedure

Views: This statement may be used in any view.

See Also: info("error") function
if statement
alertmode statement

Page 5567
OPENAS
OPENAS

Syntax: OPENAS name

Description: The openas statement works with the openfile statement or opensecret statement. After
the openas statement, he next file will be opened in memory with a different name from
its disk name. This allows you to open two databases with the same name at the same
time (they must be in different folders)

Parameters: This statement has one parameter: name.

name is the name that should be used for the next file instead of its disk name. The name
should be a text string that is up to 31 characters long, and should be different from the
name of any database that is already open.

Action: This statement allows two databases with the same name to be opened at the same time.
For example, you may want to open an old version of a database at the same time as a
newer version of the same database.

Examples: The example loads a new phone book file with the new data from another persons phone
book file. Both files are named Phone Book, so normally they cannot both be open at the
same time. Using the openas statement this procedure opens one of the databases as
Other Phone Book, allowing both to be open in memory simultaneously.

openfile "Phone Book"
openas "Other Phone Book"
openfile "Scott’s Disk:Phone Book"
select Status="New"
window "Phone Book"
openfile "+Other Phone Book"
save
window "Other Phone Book"
closefile

Views: This statement may be used in any view.

See Also: openfile statement
opensecret statement

Page 5568
OPENCROSSTAB
OPENCROSSTAB

Syntax: OPENCROSSTAB crosstab

Description: The opencrosstab statement opens a crosstab from the current database in a new win-
dow.

Parameters: This statement has one parameter: crosstab.

crosstab is the name of the crosstab to open.

Action: This statement opens a crosstab in a new window. The effect is similar to selecting the
crosstab from the View menu (the pop-up menu in the window title) with the Control
key held down. If the crosstab is already open, it is simply brought to the front. By
default, the new window will take up most of the screen, covering all of the other win-
dows. To specify the size and location of the new window in advance, use the setwin-
dowrectangle, setwindow, or windowbox statements.

Examples: The procedure below opens the crosstab Budget in a 4 inch by 6 inch window centered
on the main screen.

local newWindowRect
newWindowRect= rectanglecenter(
info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))
setwindowrectangle newWindowRect,""
opencrosstab "Budget"

 This example opens the Budget crosstab from the Checkbook database. This procedure
will work from any database, even if the Checkbook database doesn’t have any windows
open.

window "Checkbook:Secret"
openform "Budget"

Views: This statement may be used in any view

See Also: opensheet statement
opendesignsheet statement
openprocedure statement
openform statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement
windowbox statement
info("windows") function
listwindows((function

Page 5569
OPENDESIGNSHEET
OPENDESIGNSHEET

Syntax: OPENDESIGNSHEET

Description: The opendesignsheet statement opens the design sheet window for the current database
in a new window.

Parameters: This statement has no parameters.

Action: This statement opens the design sheet. The effect is similar to selecting Design Sheet
from the View menu (the pop-up menu in the window title) with the Control key held
down. If the design sheet is already open, it is simply brought to the front. By default, the
new window will take up most of the screen, covering all of the other windows. To spec-
ify the size and location of the new window in advance, use the setwindowrectangle, set-
window, or windowbox statements.

Examples: The procedure below opens the design sheet in a 4 inch by 6 inch window centered on
the main screen.

local newWindowRect
newWindowRect= rectanglecenter(
info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))
setwindowrectangle newWindowRect,""
opendesignsheet

 This example opens the design sheet for the Price List database. This procedure will
work from any database, even if the Price List database doesn’t have any windows open.

window "Price List:Secret"
opendesignsheet

Views: This statement may be used in any view.

See Also: newgeneration statement
opensheet statement
openform statement
openprocedure statement
opencrosstab statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement
windowbox statement
info("windows") function
listwindows((function

Page 5570
OPENDIALOG
OPENDIALOG

Syntax: OPENDIALOG form

Description: The opendialog statement opens a form from the current database in a new window.
The new window will have no scroll bars, tool palette or drag bar, and will behave like a
modal dialog box.

Parameters: This statement has one parameter: form.

form is the name of the form to open.

Action: This statement opens a form in a modal dialog window. As long as this window is open,
all other Panorama windows are inactive. The only way to close this dialog window is
with the closewindow statement. While the dialog window is open you cannot click on
another Panorama window to bring it in front of the dialog window. (Exception: If you
hold down the COMMAND key you can click on other windows and bring them to the
top.) If you click outside the dialog window, the .OutOfBounds procedure (if any) will
be triggered. By default, the new window will take up most of the screen, covering all of
the other windows. To specify the size and location of the new window in advance, use
the setwindowrectangle, setwindow, or windowbox statements.

Examples: The procedure below opens the form Transaction Preferences in a 4 inch by 6 inch dialog
window centered on the main screen. The procedure then pauses so the user can fill in
the dialog (see pause and resume).

global prefState
local newWindowRect
newWindowRect= rectanglecenter(
info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))
setwindowrectangle newWindowRect,"noHorzScroll noVertScroll noPalette"
opendialog "Transaction Preferences"
pause prefState

Views: This statement may be used in any view.

See Also: pause statement
resume statement
closewindow statement
opensheet statement
openform statement
openprocedure statement
opencrosstab statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement

Page 5571
windowbox statement
info("windows") function
listwindows((function

Page 5572
OPENFILE
OPENFILE

Syntax: OPENFILE file

Description: The openfile statement opens a database file. It can also import data from a text file,
another database, or a variable into the current database. If the text contains one or more
html tables it will import the first table found.

Parameters: This statement has one parameter: file.

file identifies the file you want to open. If the file is not in the same folder as the current
database, you must specify the entire path name in addition to the file name, for exam-
ple: "Disk:Accounting:Invoice".

If file is the keyword dialog, Panorama will pause the procedure and present the user
with the standard Open... dialog. This allows the user to choose the file on the fly.

If file begins with a + symbol, Panorama will append the file to the current database,
with the first field appended to the first field, second field appended to second field, etc.
If file begins with ++, Panorama will match the field names between the two databases
as it appends the data. If a field name does not match, that field will not be appended.

If file begins with a & symbol, Panorama will replace the data in the current database
with the data in the file. The fields will be replaced in order, with the first field replacing
the first field, second field replacing the second field, etc. If file begins with &&, Pan-
orama will match the field names between the two databases as it replaces the data.

If file begins with a @ symbol, Panorama will import from a variable instead of from a
text file. For example, @mydata tells Panorama to import from the variable mydata. This
symbol may also be combined to append (+@) or replace (&@) the text from the variable.

Action: This statement can be used two ways: 1) It can open a database, 2) it can import into an
existing database. These operations are the same as the different options available when
using the Open command in the File menu. When used to open a database, the openfile
statement loads the database into memory, opens the windows for the database and
automatically calls the .Initialize procedure (if any). If you don’t want the windows to
open use the opensecret statement.

Examples: The example procedure below opens the price list and customer list databases.

openfile "Price List"
openfile "Customer List"

 The procedure allows the user to select a TEXT file, then appends that text file to the cur-
rent database.

local file,folder,type
openfiledialog folder,file,type,"TEXT"
if file=""

stop /* the user pressed the CANCEL button */
endif
openfile "+"+ folderpath(folder)+file

 The example procedure below replaces the contents of the file Telemetry Data with the
new data in Telemetry.TXT.

Page 5573
openfile "Telemetry Data"
openfile "&Telemetry.TXT"

If you are using the Windows operating system and you want to import a text file that
does not have the .txt extesnsion (or has a different extension, like .ini or .html) you must
use the opentextfile statement instead of the openfile statement.

The openfile statement may be used to simulate the Open command in your own cus-
tom File menu. Here are the statements to use in your .CustomMenu procedure.

if info("trigger") beginswith "Menu.File.Open"
openfile dialog
stop

endif

Views: This statement may be used in any view

See Also: opentextfile statement
closefile statement
openas statement
opensecret statement
importusing statement
newdatabase statement
openfiledialog statement
opentextfile statement
openresource statement
fileinfo(function
fileload(function
folder(function
folderpath(function
import(function
importcell(function
info("files") function
html tables

Page 5574
OPENFILEDIALOG
OPENFILEDIALOG

Syntax: OPENFILEDIALOG folder,filename,type,typelist

Description: The openfiledialog statement pauses a procedure and displays the standard “open file”
dialog. This is the same dialog that most applications use for opening or selecting a file.
The user can then select a file from the disk. Once the user has picked a file the procedure
resumes and can process the file with the openfile statement or fileload(function.

Parameters: This statement has four parameters: folder, filename, type and typelist.

folder should be a variable. When the statement is finished this variable will contain a 6
byte binary data item (a path id) that unambiguously describes the location of the folder
where the selected file is located. A path id is a binary data item that unambiguously
describes the location of a folder on the hard disk. The path id can be converted into a
text description of the path with the folderpath(function.

filename should be a variable. When the statement is finished the variable will contain
the name of the file that was selected by the user. If the filename parameter is empty the
user pressed the Cancel button.

type is a four character code that identifies the type of file the user selected. There are
hundreds of possible type codes. Here is a list some of the more common types you may
encounter:

typelist is the only parameter that you actually supply. This is a list of the types of files
that should be displayed in the dialog. If you want the dialog to display all files, the
typelist should be an empty string (""). If you wanted to display only text files, the
typelist should be "TEXT". If you want to display only picture, postscript and GIF files,
the typelist should be "PICTESPFGIFf". The typelist may be as long as you want, but it
should always be a multiple of four characters (4, 8, 12, 16, etc.).

Action: This statement causes the standard “open file” dialog to appear. This allows the user to
select a file from the disk

Type Code Description

TEXT Text File

PICT Picture File

ESPF Encapsulated Postscript

APPL Application (Program)

ZEPD Panorama Database

KSET Panorama File Set

GIFf GIF Image File

JPEG JPEG Image File

MooV QuickTime Movie

PDF Adobe Acrobat PDF Format

Page 5575
Examples: The procedure allows the user to select a TEXT file, then appends that text file to the cur-
rent database.

local file,folder,type
openfiledialog folder,file,type,"TEXT"
if file=""

stop /* the user pressed the CANCEL button */
endif
openfile "+"+ folderpath((folder)+file

Custom
Dialogs

If you are using Panorama 3.1 or later on a Macintosh, you can customize the open file
dialog by using the customdialog statement. The customization options available
include changing the layout of the dialog, adding extra text to the dialog and adding
extra push buttons to the dialog. (You cannot add other kinds of controls to the dialog,
for example checkboxes, radio buttons, or pop-up menus.)

Most of the work in setting up a custom dialog involves creating a resource template for
the dialog. To do this you will need a resource editing program like ResEdit or
Resourcerer. (See Appendix A of the Panorama Real World Programming Guide for
more information on these programs, or consult the documentation for the programs
themselves.) Once the resource template is set up, it can be used in any procedure by
inserting the customdialog statement just before the openfiledialog or savefiledalog
statements.

The resource for an open file dialog must contain at least the required items listed below.
Once the required items are set up in this order you can add additional items of your
own. The easiest way to do this correctly is to make a copy of DLOG 9000 in the File Dia-
logs.rsrc file, then adjust the layout and add your own items as necessary.

1) Open Button (you may rename this button)
2) Invisible Button
3) Cancel Button
4) Disk Name
5) Eject Button
6) Drive Button
7) Filename List
8) Scroll Bar
9) Dotted Line
10) Invisible text

To use your custom file dialog in a procedure you must place the customdialog state-
ment just before the openfiledialog statement, like this:

local folder,file
customdialog 9037
openfiledialog folder,file,"TEXT",""
case info("dialogtrigger") contains "Open"

…
case info("dialogtrigger") contains "Select Folder"

…
endcase

 As this example shows, the info("dialogtrigger") will contain the name of the push but-
ton that the user pressed. (Note: If the user clicks on a pushbutton without selecting a
file, the procedure can still find out what folder was selected, as shown in this example.)

Page 5576
Views: This statement may be used in any view

See Also: customdialog statement
savefiledialog statement
openfile statement
filesave statement
filerename statement
filetrash statement
folder(function
folderpath(function
fileload(function
filesize(function

Page 5577
OPENFORM
OPENFORM

Syntax: OPENFORM form

Description: The openform statement opens a form from the current database in a new window.

Parameters: This statement has one parameter. form

form is the name of the form to open.

Action: This statement opens a form in a new window. The effect is similar to selecting the form
from the View menu (the pop-up menu in the window title) with the Control key held
down. If the form is already open, it is simply brought to the front. By default, the new
window will take up most of the screen, covering all of the other windows. To specify
the size and location of the new window in advance, use the setwindowrectangle, set-
window, or windowbox statements. These statements can also make the new window
appear without scroll bars or a tool palette.

Examples: The procedure below opens the form Utilities in a 4 inch by 6 inch window centered on
the main screen. The new form window will not have any scroll bars or a tool palette.

local newWindowRect
newWindowRect= rectanglecenter(

info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))

setwindowrectangle newWindowRect,"noHorzScroll noVertScroll noPalette"
openform "Utilities"

 This example opens the Adjust form from the Price List database. This procedure will
work from any database, even if the Price List database doesn’t have any windows open.

window "Price List:Secret"
setwindowrectangle rectanglesize(40,50,200,250),""
openform "Adjust"

Views: This statement may be used in any view even.

See Also: opendialog statement
opensheet statement
opendesignsheet statement
openprocedure statement
opencrosstab statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement

Page 5578
windowbox statement
info("windows") function
listwindows(function

Page 5579
OPENPROCEDURE
OPENPROCEDURE

Syntax: OPENPROCEDURE procedure

Description: The openprocedure statement opens a procedure from the current database in a new
window.

Parameters: This statement has one parameter: procedure.

procedure is the name of the procedure to open.

Action: This statement opens a procedure in a new window. The effect is similar to selecting the
procedure from the View menu (the pop-up menu in the window title) with the Control
key held down. If the procedure is already open, it is simply brought to the front. (Note:
This statement may only be used if the database is in Author mode. If the database is in
User Mode or Custom Mode the openprocedure statement will not open the window,
and an error will occur (which may be trapped with if error). The procedure can find out
what mode the database is in with the dbinfo("level",…) function.)

By default, the new window will take up most of the screen, covering all of the other
windows. To specify the size and location of the new window in advance, use the set-
windowrectangle, setwindow, or windowbox statements.

Examples: The procedure below opens the procedure .CustomMenu in a 4 inch by 6 inch window
centered on the main screen.

local newWindowRect
newWindowRect= rectanglecenter(

info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))

setwindowrectangle newWindowRect,""
openprocedure ".CustomMenu"

Views: This statement may be used in any view

See Also: opensheet statement
opendesignsheet statement
opencrosstab statement
openform statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement
windowbox statement
info("windows") function
listwindows((function

Page 5580
OPENRESOURCE
OPENRESOURCE

Syntax: OPENRESOURCE file

Description: The openresource statement opens a resource file. Once the file is opened the resources
inside the file can be accessed and used.

Parameters: This statement has one parameter: file.

file identifies the resource file you want to open. If the resource file is not in the same
folder as the current database, you must specify the entire path name in addition to the
file name, for example: "Disk:Sounds:Star Trek". (On Windows, resource files always
have the extension .RSR. The openresource statement will add this extension for you.)

Action: The Macintosh has a special kind of file that allows many items to be stored inside a sin-
gle file. This is called a resource file. Each individual item within the file is called a
resource. Each resource may be anything from a single character to tens of thousands of
bytes of information, and may contain menus, text, pictures, sounds…virtually any kind
of data the Macintosh understands.

Panorama has functions and statements for accessing the items inside a resource file.
Before these statements can be used, the resource file must be opened with the openre-
source statement. This statement loads a directory of information in the resource file into
memory, where Panorama can access it. The resources remain available until the file is
closed with the closeresource statement. It is possible to open more than one resource at
once, however in this case you must be careful to make sure that the resource items
inside the file do not conflict with each other.

Resource files are created and modified with special resource editor programs like
ResEdit and Resourcerer™.

Examples: The example procedure below opens the resource file My Menus.

openresource "My Menus"

Views: This statement may be used in any view

See Also: openresourcerw statement
closeresource statement
getresource(function
getstring(function
getnstring(function
getstringmatch(function
resources(function
resourcetypes(function

Page 5581
OPENRESOURCERW
OPENRESOURCERW

Syntax: OPENRESOURCERW file

Description: The openresourcerw statement opens a resource file. Once the file is opened the
resources inside the file can be accessed and modified.

Parameters: This statement has one parameter: file.

file identifies the resource file you want to open. If the resource file is not in the same
folder as the current database, you must specify the entire path name in addition to the
file name, for example: "Disk:Sounds:Star Trek".

Action: The Macintosh has a special kind of file that allows many items to be stored inside a sin-
gle file. This is called a resource file. Each individual item within the file is called a
resource. Each resource may be anything from a single character to tens of thousands of
bytes of information, and may contain menus, text, pictures, sounds…virtually any kind
of data the Macintosh understands.

Panorama has functions and statements for accessing the items inside a resource file.
Before these statements can be used, the resource file must be opened with the openre-
source statement (read only) or openresourcerw statement (read and write). This state-
ment loads a directory of information in the resource file into memory, where Panorama
can access it. The resources remain available until the file is closed with the closeresource
statement. It is possible to open more than one resource at once, however in this case you
must be careful to make sure that the resource items inside the file do not conflict with
each other.

Resource files are created and modified with special resource editor programs like
ResEdit and Resourcerer™.

Examples: The example procedure below opens the resource file My Menus.

openresource "My Menus"

Views: This statement may be used in any view.

See Also: openresourcerw statement
closeresource statement
getresource(function
getstring(function
getnstring(function
getstringmatch(function
resources(function
resourcetypes(function

Page 5582
OPENSECRET
OPENSECRET

Syntax: OPENSECRET filename

Description: The opensecret statement is just like the openfile statement, but it does not open any
windows or launch the .Initialize procedure.

Parameters: This statement has one parameter: filename.

filename is the name of the file to be opened. If this file is not in the same folder as the
current database you must supply both the path and the file, for example

"My Disk:Manhattan Project:Isotopes"

If you have the path id for the folder you can convert it into a path with the folderpath(
function like this:

folderpath(ProjectFolder)+"Isotopes"

Action: This statement opens a database without opening any windows or launching the .Ini-
tialize procedure. Using this statement, a procedure can open any database without win-
dows, whether or not the "No Windows" option was set in the Save As dialog. If a file
has been opened with opensecret and you later open it normally (either with the open-
file statement or manually with the Open dialog) the windows will be opened at that
time.

Examples: The example opens a database called Shipping Rates, but does not open any of the win-
dows for that database. It then looks up a rate from the table.

opensecret "Shipping Rates"
Shipping= lookup("Shipping Rates",Zone,Zip[1,3],Rate,0,0)

Views: This statement may be used in any view.

See Also: openfile statement
openas statement
makesecret statement

Page 5583
OPENSHEET
OPENSHEET

Syntax: OPENSHEET

Description: The opensheet statement opens the data sheet window for the current database in a new
window.

Parameters: This statement has no parameters.

Action: This statement opens the data sheet. The effect is similar to selecting Data Sheet from the
View menu (the pop-up menu in the window title) with the Control key held down. If
the data sheet is already open, it is simply brought to the front.

By default, the new window will take up most of the screen, covering all of the other
windows. To specify the size and location of the new window in advance, use the set-
windowrectangle, setwindow, or windowbox statements.

Examples: The procedure below opens the data sheet in a 4 inch by 6 inch window centered on the
main screen.

local newWindowRect
newWindowRect= rectanglecenter(
info("screenrectangle") ,
rectanglesize(1,1,4*72,6*72))
setwindowrectangle newWindowRect,""
opensheet

 This example opens the data sheet for the Price List database. This procedure will work
from any database, even if the Price List database doesn’t have any windows open.

window "Price List:Secret"
opensheet

Views: This statement may be used in any view.

See Also: opendesignsheet statement
openform statement
openprocedure statement
opencrosstab statement
gosheet statement
godesignsheet statement
goform statement
goprocedure statement
gocrosstab statement
setwindow statement
setwindowrectangle statement
windowbox statement
info("windows") function
listwindows((function

Page 5584
OPENSOUND
OPENSOUND

Syntax: OPENSOUND file

Description: The opensound statement opens a resource file containing digitally recorded sounds.
Use this command when you want to play several sounds in a row with the playsound
statement. Sounds can be recorded using Sound control panel.

Parameters: This statement has one parameter. file

file is the name of the resource file that contains the sounds you want to play. If the
resource file is not in the same folder as the current database, you must specify the entire
path name in addition to the file name, for example: "Disk:Sounds:Star Trek" .

Action: This statement opens a resource file containing sounds. A sound resource file contains a
SND resource for each sound and each SND resource is given a name. Sound resources
may be created with a sound program like Farallon's MacRecorder or shareware pro-
grams like Sound->snd or SoundMover. System 7 users may even create sound resources
with the Sound control panel and a Macintosh which supports a microphone.

Examples: This example opens a sound resource called Bird Calls, plays the sound titled Robin and
then closes Bird Calls.

opensound "Bird Calls"
playsound "Robin"
closesound

 This example asks the user a question to answer, opens a sound resource called
Remarks, and depending on the answer plays the sound called Correct or Wrong. It then
closes Remarks.

local Answer,Reply
message "The Alamo is in:"+¶+"1. New Mexico"+

¶+"2. Texas"+¶+"3. California"
gettext "Is the answer 1, 2, or 3",Answer
opensound "Remarks"
case Answer = "1"

Reply = "Wrong"
case Answer = "2"

Reply = "Correct"
case Answer = "3"

Reply = "Wrong"
endcase
playsound Reply
closesound

Views: This statement may be used in any view even if there are no visible windows open.

See Also: playsound statement
closesound statement
sound statement

Page 5585
OPENTEXTFILE
OPENTEXTFILE

Syntax: OPENTEXTFILE file

Description: The opentextfile statement imports data from a text file, another database, or a variable
into the current database. If the text contains one or more html tables it will import the
first table found.

Parameters: This statement has one parameter: file.

file identifies the file you want to open. If the file is not in the same folder as the current
database, you must specify the entire path name in addition to the file name, for exam-
ple: "Disk:Accounting:Invoice".

If file begins with a + symbol, Panorama will append the file to the current database,
with the first field appended to the first field, second field appended to second field, etc.

If file begins with a & symbol, Panorama will replace the data in the current database
with the data in the file. The fields will be replaced in order, with the first field replacing
the first field, second field replacing the second field, etc.

Action: This statement imports into an existing database. Unlike the openfile statement, the
opentext statement treats all files as text files to be imported. This allows you to import
files with any extension on Windows PC systems.

Examples: The example procedure procedure below opens the Price List and Telemetry text files.

opentextfile "Price List.html"
opentextfile "Telemetry.ini"

Views: This statement may be used in any view

See Also: openfile statement
importusing statement
openfiledialog statement
fileinfo(function
fileload(function
folder(function
folderpath(function
import(function
importcell(function
info("files") function
html tables

Page 5586
OUTLINELEVEL
OUTLINELEVEL

Syntax: OUTLINELEVEL level

Description: The outlinelevel statement expands or collapses the entire database to show a specific
level of data or summary level. In other words, this statement lets you select if you want
to work with the forest or with the trees.

Parameters: This statement has one parameter: level.

level is a text item that specifies the minimum summary level to be displayed. This value
may be either "Data" or a summary level from "1" (lowest level) and "7" (highest level
summary).

If the level parameter is the word dialog (no quotes), the procedure will stop and display
the standard Outline Level dialog. The user may select a level using the buttons. The
procedure will then select the level and continue.

Action: This statement performs the same action as the Outline Level command in the Sort
menu.

Examples: This example calculates summaries for cities and states, then displays the summary
information. The original data is hidden.

field State
group
field City
group
field Amount
total
outlinelevel "1"

 To see the original data and the summaries, use this example.

outlinelevel "data"

Views: This statement may be used in any view.

See Also: group statement
removesummaries statement
removedetail statement
summarylevel statement
info("summary") function

Page 5587
OVERFLOW(...)
OVERFLOW(

Syntax: OVERFLOW()

Description: The overflow(function is used with auto-wrap text objects and an overflow report tile to
print text that won’t fit on a single page. For example, you can use this function to help
print multiple page letters.

Parameters: This function has no parameters.

Result: The overflow(function returns a text type data item.

Examples: The most common application for the overflow(function is to print multiple page letters.
To set up a multiple page letter you’ll need two report tiles: a data tile and an overflow
tile. The overflow tile is labeled (…) in the Specialized Tile dialog. Both of these tiles
should be large enough that only on record will print per page (usually somewhere near
8.5" by 11", perhaps 8" by 10"). Each of these two tiles can have various graphic objects on
them, but each should have a single large auto-wrap text object that holds all of the text
that is designed to overflow from page to page. (Important note: the overflow feature
only works if the auto-wrap text objects are filled with NONE. If the text objects are filled
with white or any other pattern the text will not overflow properly.) The auto-wrap text
object on the data tile should have data cells and/or formulas merged into it.

When the form is printed Panorama will print as much of this text as it can fit on the first
page (within the boundaries of the auto-wrap text object on the data tile). The rest of the
text is set aside so that it can be printed on the overflow tile. (If there is no leftover text
then Panorama is done and the overflow tile is not used. The auto-wrap text object on
the overflow tile should have only one formula in it: overflow(). The overflow(function
picks up the text that was leftover from the previous page. If the rest of the text doesn’t
fit on the overflow page the whole process will be repeated over and over again (using
the same overflow tile) until all the text is printed.

Errors: This function does not produce any errors.

See Also: extrapages(function

Page 5588
P

PAGESETUP
PAGESETUP

Syntax: PAGESETUP

Description: The pagesetup statement displays the page setup dialog, allowing the page setup
options to be changed for the current window. This is the same as choosing Page Setup
from the File menu.

Parameters: This statement has no parameters.

Examples: The most common reason to use the pagesetup statement in a procedure is to simulate
the Page Setup command in your own custom File menu. Here are the statements to use
in your .CustomMenu procedure. (You could also trigger page setup with a button.)

if info("trigger") beginswith "Menu.File.Page Setup"
pagesetup
stop

endif

Views: This statement may be used in any view.

See Also: print statement
printpreview statement
printonerecord statement
printonemultiple statement

Page 5589
PANORAMA CGI
PANORAMA CGI

Background: Panorama 3.1 includes a CGI (Common Gateway Interface) that interfaces between Pan-
orama and WebSTAR (or any WebSTAR compatible server). Using this CGI you can
write procedures to make your Panorama databases accessible from any web browser
anywhere on the web (NetScape Navigator/Communicator, Microsoft Internet Explorer,
etc.).

Installation: To install the Panorama CGI you must copy at least three files into the WebSTAR folder
on your hard disk:

1) Panorama CGI (a Panorama database)
2) Panorama.cgi (an application)
3) The Panorama database(s) you want to interface to the web

If you don’t want to copy the actual Panorama database itself, you can create an alias
and copy the alias into the WebSTAR folder.

Before you can access any databases from the web you must make sure that the Pan-
orama.cgi application and the Panorama CGI database are both open. To ensure that
these items are automatically opened simply create aliases to them and place the aliases
in the Startup folder inside the System folder. You may also want to place aliases to your
Panorama databases in the Startup folder.

An alternative method for opening your databases and the Panorama CGI database is to
create an .AutoLoad file set (see documentation for this feature elsewhere in this docu-
ment). This file set will be in the WebSTAR folder, so you will need to create an alias to
the file set in the Panorama folder. This will cause Panorama and all necessary databases
to run whenever the Panorama.cgi is accessed. (You must still place an alias to the Pan-
orama.cgi application in the Startup folder, and may wish to place an alias to Panorama
in the Startup folder as well.

URL's: To use the Panorama CGI from a web browser you must use a URL something using this
pattern.

http://$Panorama.cgi~<database>~<procedure>

For example, suppose your URL is www.acme.com and you have created a database
called Registration that you want to interface to the web. This database contains a proce-
dure called Recent that generates HTML.

http://www.acme.com$Panorama.cgi~Registration~Recent

You can enter this URL manually in your browser (handy for debugging), but for most
applications you will code the URL into a web page using the tag.

Generating The procedure specified by your URL must create a page of HTML and place the page
into a pre-defined global variable called cgiHTML. This very simple example creates an
HTML page that simply displays the database name and the number of records in the
database.

cgiHTML=
{<HTML>
<HEAD>
<TITLE>Record Count</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">

Page 5590
The }+
info("databasename") +

{ database contains }+
pattern(info("records") ,"# record~.")+
{</BODY>

</HTML>
}

 The arraybuild statements are very useful for taking the content of a database and turn-
ing it into HTML format. This example generates a list of names and phone numbers in
list element format.

local phoneList
arrayselectedbuild phoneList,¶,"",

""+Last+", "+First+" "+Phone+¶
cgiHTML=

{<HTML><HEAD><TITLE>Phone List</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1>Departmental Phone Directory</H1>

}+phoneList+
{
</BODY></HTML>}

 Here is a similar example that builds an HTML table from a price list database.

local priceList
arrayselectedbuild priceList,¶,"",

"<TR><TD>"+
OrderNum+"</TD><TD>"+
Description+"</TD><TD>"+
Price+"</TD></TR>"+¶

cgiHTML={<HTML><HEAD><TITLE>Price List</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1>Price List</H1>
<table>
<tr><td>Order#</td><td>Description</td><td>Price</td><tr>

}+priceList+
{</table>
</BODY></HTML>}

Processing The Panorama CGI pre-processes input from an HTML form, making that input easily
accessible to your procedure. To review HTML forms, each input item (text, button, pop-
up menu, etc.) has both a name and a value. The Panorama CGI has a procedure for
retrieving the form data values: the .cgiParameter procedure. This procedure itself has
two parameters:

farcall "Panorama CGI",.cgiParameter,<input item name>,<input value>

You must supply the input item name. The procedure will take this name and retrieve
the input value. This value will be placed in the field or variable specified by the second
parameter. Here is an example of a procedure that uses an HTML form to add new data
to a Guest Book database.

Page 5591
addrecord
farcall "Panorama CGI",.cgiParameter,"Name",Name
farcall "Panorama CGI",.cgiParameter,"Address",Address
farcall "Panorama CGI",.cgiParameter,"City",City
farcall "Panorama CGI",.cgiParameter,"State",State
farcall "Panorama CGI",.cgiParameter,"Zip",Zip
farcall "Panorama CGI",.cgiParameter,"Comments",Comments
save
cgiHTML={<HTML><HEAD><TITLE>Thanks</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
 Thanks for signing into our guest book!
</BODY></HTML>}

Notice that the procedure saves the database immediately after making the changes.
This is a good idea because you never know when this database will be accessed again.
Also notice that the procedure generates an HTML page, in this case thanking the user
for their input. Your procedure must always generate an HTML page.

Processing The Panorama CGI is capable of keeping a log of its activity. To keep a log of all activity,
open the PanoramaCGI Log. When this database is open, Panorama will keep a log of
every request made to the CGI.

To see more detail on a particular log item, simply double click on the item. The window
displays the exact time and date, URL and form parameters (if any).

To keep a log of CGI errors, open the PanoramaCGI Error Log. This database looks very
similar to the PanoramaCGI Log file, but also has a column for the error message. When
this database is open Panorama keeps a log of any errors that occur in CGI procedures
(type mismatch, etc.). This log can help you track down any problems in the HTML gen-
eration procedures you create. As with the PanoramaCGI Log file, simply double click
on any line to see the full detail for that item, including the exact time and date, URL,
error message, and form parameters (if any).

See Also: arraybuild statement
arrayselectedbuild statement
htmlencode(function
exportcell(function
onerror statement

Page 5592
PARAMETER(...)
PARAMETER(

Syntax: PARAMETER(parameter#)

Description: The parameter(function is used to transfer data between a main procedure and a sub-
routine. The main procedure can set up one or more data item parameters as part of the
call statement. The subroutine can retrieve and use these data items using the parameter(
function.

Parameters: This function has one parameter: parameter#.

parameter# is a number specifying what parameter you want to retrieve. All parameters
are numbered, starting with 1 (1, 2,3, 4, etc.).

Result: This function returns a data item. This data item may be text or numeric, depending on
what kind of data is passed to the subroutine.

Examples: Here is a main procedure that calls the subroutine .GetNumber with two parameters.
The two parameters are highlighted in orange below:

local addCount
addCount=1
call .GetNumber, "Add how many records?" , addCount
loop
stoploopif addCount=0
addrecord
addCount=addCount-1
while forever

 Now let’s look at the .GetNumber subroutine, which retrieves these two parameters
with the parameter(function.

local temptext
temptext= str(parameter(2))
gettext parameter(1),temptext
setparameter 2, val(temptext)

Errors: Parameter does not exist. This error occurs if there is no parameter with the specified
number.

See Also: call statement
farcall statement
setparameter statement

Page 5593
PASTE
PASTE

Syntax: PASTE

Description: The paste statement pastes the contents of the clipboard into the database, usually into
the current cell. The old contents of the current cell are lost. If the current cell has one or
more automatic formulas associated with it, these formulas will be calculated.

Parameters: This statement has no parameters.

Action: This statement has the same effect as choosing the Paste command from the Edit menu.

Examples: This example copies the contents of the clipboard into the Qty field in the current data-
base.

field Qty
paste

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
pastecell statement
pasterecord statement
clipboard(function

Page 5594
PASTECELL
PASTECELL

Syntax: PASTECELL

Description: The pastecell statement pastes the contents of the clipboard into the current cell. The old
contents of the current cell are lost. If the current cell has one or more automatic formulas
associated with it, these formulas will be calculated.

Parameters: This statement has no parameters.

Action: This statement has the same effect as choosing the Paste command from the Edit menu.
The pastecell statement does the same job as the paste statement, but will work correctly
in all views.

Examples: This example copies the contents of the clipboard into the Qty field in the current data-
base.

field Qty
pastecell

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pasterecord statement
clipboard(function

Page 5595
PASTEFORM
PASTEFORM

Syntax: PASTEFORM

Description: The pasteform statement creates a new form. The new form is not empty, but is copied
from the clipboard.

Parameters: This statement has no parameters.

Action: This statement creates a new form from the contents of the clipboard. The clipboard
must be set up in advance with the copyform statement. Using the copyform and paste-
form statements creates an exact duplicate of a form, including the graphic objects on the
form, the page setup, the custom menu setup, and form and report preferences.

This statement has the same effect as choosing the Paste Form command from the Edit
menu (graphics mode).

Examples: This example will make a copy of the form Report Template. The pasteform statement
will stop and ask the user what to call the new form.

openform "Report Template"
copyform
pasteform

Views: This statement may be used in a Form view.

See Also: copyform statement
openform statement
copy statement
cut statement
paste statement

Page 5596
PASTERECORD
PASTERECORD

Syntax: PASTERECORD

Description: The pasterecord statement inserts a new record into the database. The new record will
contain the contents of the clipboard. The clipboard must contain tab delimited text (see
copyrecord).

Parameters: This statement has no parameters.

Action: This statement has the same effect as clicking on the Paste Record tool on a tool palette
(when available).

Examples: This example copies the current record from the Current Records database, goes to the
Old Records database, pastes the copy into that file, and returns to Current Records.

copyrecord
window "Old Records"
pasterecord
window "Current Records"

Views: This statement may be used in any view.

See Also: clear statement
clearcell statement
clearrecord statement
copy statement
copycell statement
copyrecord statement
cut statement
cutcell statement
cutrecord statement
deleteabove statement
deleteall statement
deleterecord statement
paste statement
pastecell statement

Page 5597
PATHID(...)
PATHID(

Syntax: PATHID(folder)

Description: The pathid(function creates a binary data item that unambiguously describes the loca-
tion of a folder on the hard disk. This pathid can be used in other functions and state-
ments. Note: This function is identical to the folder(function.

Parameters: This function has one parameter: folder.

folder is a complete description of the path to this folder, for example HD:System
Folder:Extensions: .

Result: This function returns a 6 byte binary data item that unambiguously describes the loca-
tion of the folder. However, if the folder does not exist the function returns an empty
binary data item ("").

Examples: This example checks to see if a folder exists.

if ""=pathid("HD:Panorama Accounting:Order Entry:")
message "You do not have the Order Entry option."
stop

endif

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder parameter.

See Also: pathstr(function
listfiles(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function
openfiledialog statement
savefiledialog statement

Page 5598
PATHSTR(...)
PATHSTR(

Syntax: PATHSTR(folder)

Description: The pathstr(function takes a path id and converts it to a description of the path to that
folder. A path id is a binary data item that unambiguously describes the location of a
folder on the hard disk. Path id’s are created by the folder(, dbinfo(and some info(
functions, and the openfiledialog and savefiledialog statements. Note: This function is
identical to the folderpath(function.

Parameters: This function has one parameter: folder.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder.

Result: This function returns complete description of the path to this folder, for example
HD:System Folder:Extensions:

Examples: This example displays the folder the currently running copy of Panorama is located in.

message "This database is in the "+
pathstr(info("panoramafolder"))+" folder."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the folder parameter. This error can also occur if the
folder parameter is more or less than 6 bytes long.

See Also: pathid(function
listfiles(function
dbinfo(function
info("panoramafolder") function
info("systemfolder") function
openfiledialog statement
savefiledialog statement

Page 5599
PATTERN(...)
PATTERN(

Syntax: PATTERN(number,pattern)

Description: The pattern(function converts a number into text using a pattern (see numeric patterns).

Parameters: This function has two parameters: number and pattern.

number is the number that you want to convert to text.

pattern is text that contains a pattern for formatting the number (see numeric patterns).

Result: This function returns an item of text containing the formatted number.

Examples: The pattern(function is very useful when used in a formula in an auto-wrap text object
or Text Display SuperObject™. Here is a pattern that will output prices with a dollar sign
and with a comma every three digits (for example $4,285.25)

pattern(Price,"$#,.##")

For more information on the variety of patterns that are possible, see numeric patterns.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the pattern parameter.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the number parameter.

See Also: numeric patterns
str(function

Page 5600
PAUSE
PAUSE

Syntax: PAUSE state

Description: The pause statement temporarily pauses a procedure. The procedure can be restarted
from this point with the resume statement.

Parameters: This statement has one parameter: state.

state is a global variable. This global variable is used to store information about where
and how the procedure was paused. Later, the resume statement (which is usually used
as part of another procedure) uses the same variable to know how and where to re-start
the original procedure.

Action: This statement temporarily pauses a procedure. Later the procedure can be started up
again from this point. For example you might want to pause a procedure while the user
fills in a dialog, then continue when the user presses the Ok button.

Examples: The example opens a form called Sound & Video. To the user, this form will appear to be
a standard dialog box. Once the dialog box is open the procedure will pause, allowing
the user to type values into the box, select checkboxes, etc.

global dialogPause
setwindow 100,100,300,400,""
opendialog "Sound & Video"
pause dialogPause
/* pause here for user to fill in dialog */
closewindow
if info("trigger") contains "Ok" or

info("trigger") ="Key.Enter"
playsound dialogSound

endif

 If you want a button in the Sound & Video dialog to close the dialog, that button should
be linked to a procedure that contains the following statement:

resume dialogPause

The resume statement causes the original procedure to continue, starting from right after
the pause statement. In this case the procedure closes the dialog and plays a sound if the
user pressed Ok. The advantage of using the pause and resume statements is that a sin-
gle dialog may be used with many procedures. The buttons in the dialog aren’t actually
linked to any specific procedure, they simply let whatever procedure opened the dialog
in the first place continue. In Panorama 3.0, the resume statement had to reference the
same global variable as the pause statement. In Panorama 3.1 and later, this is no longer
required. In fact, Panorama ignores the variable name you supply (although you must
supply a valid variable name).

ENTER key: Many dialogs allow the user to press the ENTER or RETURN key instead of pressing
the Ok button. Starting with Panorama 3.1, this is possible using the pause and resume
statements. In fact, Panorama will do this automatically if you create your dialog using
Text Editor SuperObjects and use the pause and resume statements. When the user
presses the ENTER key (or the RETURN key if the Text Editor SuperObject is one line
high and is set to terminate editing when RETURN is pressed) Panorama will automati-
cally resume, even though your resume procedure has not been triggered. When the pro-

Page 5601
cedure starts up after the pause statement, the info("trigger") function will return
Key.Enter as shown in the example above. (This is the reason why the variable after the
resume statement is now ignored. Panorama must keep track of the variable itself so that
it can resume properly when the ENTER or RETURN key is pressed.)

Nested It is possible to nest dialogs (i.e. one dialog is activated within another dialog) when
using pause and resume. If you do this, you must be careful to use a separate variable in
the pause statement of the nested dialog. (The variable used in the resume statement
does not matter, because Panorama ignores it.)

Views: This statement may be used in any view, but it usually only make sense in the form view.

See Also: resume statement
opendialog statement
info("trigger") function

Page 5602
PERMANENT
PERMANENT

Syntax: PERMANENT variables

Description: The permanent statement creates one or more permanent variables. Unlike other vari-
ables which disappear when Panorama is closed, permanent variables are saved as part
of the database they were created in. Note: Starting with Panorama 3.1, permanent vari-
ables act like fileglobal variables. In other words, they can only be accessed from within
the database in which they were created (except with the grabfilevariable(function).

Parameters: This statement has one parameter: variables.

variables is a list of variables to be created. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement creates one or more permanent variables. The variables will be perma-
nently attached to the current database. Whenever that database is saved the variables
are saved along with it. When the database is opened these variables will be automati-
cally re-created and filled with the previous data. Permanent variables are very useful
for preferences, passwords, etc. Note: The dbinfo(function can create a list of the perma-
nent variables associated with a database.

Examples: A permanent variable is forever, unless you destroy it with the unpermanent statement.
The example creates two permanent variables, Sales Tax Rate and EarlyDiscount.

permanent «Sales Tax Rate», EarlyDiscount

Permanent variables may be used just like any other variable. You may change the value
of the variable with an assignment, like this:

«Sales Tax Rate»=.075

When the database is saved, the Sales Tax Rate will also be saved. Note: If you close the
file without saving, the new Sales Tax Rate will not be saved!

Views: This statement may be used in any view.

See Also: unpermanent statement
global statement
fileglobal statement
local statement
globalize statement
dbinfo(function
grabfilevariable(function
undefine statement

Page 5603
PLAYSOUND
PLAYSOUND

Syntax: PLAYSOUND sound

Description: The playsound statement plays a digitally recorded sound in a resource file. The
resource file must be opened with the opensound statement before the sound can be
played. On Macintosh systems sounds can be recorded using the Sound control panel.

Parameters: This statement has one parameter. sound

sound is the name of the resource that contains the sound.

Action: This statement plays a sound from the resource file currently opened by an opensound
statement. A sound resource contains one or more SND resource for each sound and
each SND resource is given a name. Sound resources may be created with a sound pro-
gram like Farallon's MacRecorder or shareware programs like Sound->snd or Sound-
Mover. System 7 users may even create sound resources with the Sound control panel
and a Macintosh which supports a microphone.

Examples: This example opens a sound resource called Bird Calls, plays the sound titled Robin and
then closes Bird Calls.

opensound "Bird Calls"
playsound "Robin"
closesound

This example asks the user a question to answer, opens a sound resource called Remarks,
and depending on the answer plays the sound called Correct or Wrong. It then closes
Remarks.

local Answer,Reply
message "The Alamo is in:"+¶+"1. New Mexico"+

¶+"2. Texas"+¶+"3. California"
gettext "Is the answer 1, 2, or 3",Answer
opensound "Remarks"
case Answer = "1"

Reply = "Wrong"
case Answer = "2"

Reply = "Correct"
case Answer = "3"

Reply = "Wrong"
endcase
playsound Reply
closesound

Views: This statement may be used in any view even if there are no visible windows open.

See Also: opensound statement
closesound statement
sound statement

Page 5604
PMT(...)
PMT(

Syntax: PMT(rate,payments,amount,fv,begin)

Description: The pmt(function (short for payment) calculates the periodic payment required to pay
off a loan.

Parameters: This function has five parameters: rate, payments, amount, fv and begin.

rate is the interest rate of the loan (per period). For example, if there is one payment per
year, this is the annual percentage rate. If there is one payment per month, then this is the
monthly percentage rate.

payments is the number of payments required to pay off the loan. For example, if this is
a 36 month loan with one payment per month, this value is 36. If this is a 30 year loan
with one payment per month this value is 1080.

amount is the amount being borrowed, the original amount of the loan. For example, if
you borrow $22,000 to purchase a car, the loan amount is 22000.

fv (future value) is the value of the loan at the end of the period. This is almost always
zero.

begin specifies whether payments are made at the beginning (1) or end of each period
(0). Most loans are paid at the end of each period (the first payment is made at the end of
the first month, etc.) so this value should be zero

Result: The result of this function is always a numeric floating point value.

Examples: If the payment period is annually the calculation is simple. Suppose you take out a
$50,000 loan at 12% for 10 years, with one payment per year. This formula will calculate
the payments.

pmt(.12,10,50000,0,0)

Most loans are paid more frequently than once a year…usually once a month. To calcu-
late the payments for such a loan you must convert the annual percentage rate into a
monthly percentage rate by dividing by 12. Suppose you are taking out a 36 month loan
of $20,000 to purchase a car. If the annual interest rate is 13.5%, here is the formula for
calculating the monthly payments:

pmt(0.135/12,36,20000,0,0)

Our final example is for a $180,000 real estate loan for 30 years at a fixed rate of 9%. In
this case the number of years is multiplied by 12 to get the number of monthly pay-
ments, and the annual interest rate is divided by 12 to calculate the monthly interest rate.

pmt(.09/12,30*12,180000,0,0)

Of course the pmt(function only works with fixed interest rates.

Page 5605
Notes: Here is the formula that Panorama uses to calculate payments.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example pmt("12%",) . If you
have a number in a text item you must convert the text to a numeric value before calcu-
lating the payments, for example pmt(val("12%"[1,-2]),) .

See Also: fv(function
pv(function

Page 5606
POINT(...)
POINT(

Syntax: POINT(v,h)

Description: The point(function combines vertical and horizontal co-ordinates into a single number
that describes the position of a point (see graphic coordinates).

Parameters: This function has two parameters: v and h.

v is the vertical position of the point. This must be a number between -32,768 and
+32,767. (Unlike standard cartesian co-ordinates, positive is down and negative is up.)
All dimensions are in pixels (1 pixel=1/72 inch).

h is the horizontal position of the point. This must be a number between -32,768 and
+32,767. (Like standard cartesian co-ordinates, positive is right and negative is left.) All
dimensions are in pixels (1 pixel=1/72 inch).

Result: This function returns a number (an integer) that describes the location of the point. You
can use this number in any function or statement that accepts a point as a parameter.

Examples: The greatly magnified illustration below shows several sample points and the functions
used to create them. Note that the actual point “hangs” down and to the right of the co-
ordinate grid lines.

The procedure below displays a message if you manage to click on a spot exactly 50 pix-
els from the top of the screen and 100 pixels from the left edge of the screen.

if info("click") = point(50,100)
message "You hit the secret spot!"

else
beep

endif

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the v or h parameters.

Page 5607
See Also: xytoxy(function
v(function
h(function
info("click") function
info("mouse") function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5608
POPUP
POPUP

Syntax: POPUP menu,v,h,initial,result

Description: The popup statement makes a pop-up menu appear anywhere on the screen, without a
Pop Up Menu SuperObject. The popup statement is usually used with a standard trans-
parent button with the click/release option turned off.

Parameters: This statement has five parameters: menu, v, h initial and result.

menu is either a list of items to be included in the menu or a menu number.

If the menu parameter is a list, that list must contain the actual text of the menu, with
each menu item separated by a carriage return (a text array). To create a dividing line in
the menu use "(-" as a menu item.

If the menu parameter is a number, that number must correspond to a menu in a
resource file. The resource file must be open (see openresource). This option allows you
to pre-build menus with a resource editor like ResEdit.

v is the vertical position of the pop-up menu. The position is measured in pixels from the
top of the form. These are form relative co-ordinates, 72 pixels per inch (see xytoxy(,
info("click"), and getlocalbutton).

h is the horizontal position of the pop-up menu. The position is measured in pixels from
the left edge of the form. These are form relative co-ordinates, 72 pixels per inch (see
xytoxy(, info("click"), and getlocalbutton).

initial is the initial value of the menu. This value should be one of the items in the menu.
The menu will pop up with the arrow over this item. For example, suppose the pop-up
menu contains the items Red, Blue and Green and the current value is Blue. "Blue"
should be the initial value.

result is a variable where the user’s choice from the pop-up menu will be stored. If the
user releases the mouse without making a choice, the result will be left untouched.

Action: This statement is designed to be used in conjunction with a transparent button that has
the click/release option turned off. In other words, as soon as someone clicks on the but-
ton, the procedure triggers and the pop-up menu pops up. (Note: It is usually easier to
use a Pop-Up Menu SuperObject instead of using the popup statement. However, you
must use the popup statement if the menu items cannot be calculated with a formula,
but require one or more procedure statements to compute.)

Examples: This example allows the user to choose a color.

local btop,bleft,bheight,bwidth,NewColor
getlocalbutton btop,bleft,bheight,bwidth
NewColor=""
popup "Red"+¶+"Green"+¶+"Blue"+¶+"(-"+¶+"Black",

btop,bleft,"Blue",NewColor

Page 5609
 The pop-up menu from this statement will look like this:

Views: This statement may be used in a Form view.

See Also: popupbynumber statement
openresource statement
text arrays

Page 5610
POPUPBYNUMBER
POPUPBYNUMBER

Syntax: POPUPBYNUMBER menu,v,h,initial,result

Description: The popupbynumber statement makes a pop-up menu appear anywhere on the screen,
without a Pop Up Menu SuperObject. The popupbynumber statement is usually used
with a standard transparent button with the click/release option turned off.

Parameters: This statement has five parameters: menu, v, h initial and result.

menu is either a list of items to be included in the menu or a menu number.

If the menu parameter is a list, that list must contain the actual text of the menu, with
each menu item separated by a carriage return (a text array). To create a dividing line in
the menu use "(-" as a menu item.

If the menu parameter is a number, that number must correspond to a menu in a
resource file. The resource file must be open (see openresource). This option allows you
to pre-build menus with a resource editor like ResEdit.

v is the vertical position of the pop-up menu. The position is measured in pixels from the
top of the form. These are form relative co-ordinates, 72 pixels per inch (see xytoxy(,
info("click"), and getlocalbutton).

h is the horizontal position of the pop-up menu. The position is measured in pixels from
the left edge of the form. These are form relative co-ordinates, 72 pixels per inch (see
xytoxy(, info("click"), and getlocalbutton).

initial is the initial value of the menu. This value should be a number from one to the
number of items in the menu. The menu will pop up with the arrow over this item. For
example, if the initial value is 3 the menu will pop-up over the third item.

result is a variable where the user’s choice from the pop-up menu will be stored. The
result is returned as a number: 1 for the first menu item, 2 for the second menu item, etc.
If the user releases the mouse without making a choice, the result will be left untouched.

Action: This statement is designed to be used in conjunction with a transparent button that has
the click/release option turned off. In other words, as soon as someone clicks on the but-
ton, the procedure triggers and the pop-up menu pops up. (Note: It is usually easier to
use a Pop-Up Menu SuperObject instead of using the popup statement. However, you
must use the popup statement if the menu items cannot be calculated with a formula,
but require one or more procedure statements to compute.)

Examples: This example allows the user to choose a color.

local btop,bleft,bheight,bwidth,NewColor
getlocalbutton btop,bleft,bheight,bwidth
NewColor=0
popupbynumber "Red"+¶+"Green"+¶+"Blue"+¶+"(-"+¶+"Black",

btop,bleft,3,NewColor

Page 5611
 The pop-up menu from this statement will look like this:

Views: This statement may be used in a Form view.

See Also: popup statement
openresource statement
text arrays

Page 5612
POPUPSTYLE
POPUPSTYLE

Syntax: POPUPSTYLE font,size,forecolor,backcolor

Description: The popupstyle statement allows a procedure to control the font, text size, and color of
pop-up menus created with the popup and popupbynumberr statements.

Parameters: This statement has four parameters: font, size, forecolor and backcolor.

font is the name of the font to use in the menu, "Chicago", "Geneva", "Helvetica", etc.

size is the size of the text in the menu, in points. Standard menus are 12 pt. The smallest
practical size for most fonts is 9 pt.

forecolor is the color of the text in the menu. You can generate a color with the rgb(or
hsb(functions. If you supply empty text ("") for the foreground color it will default to
black.

background is the color of the background of the menu. You can generate a color with
the rgb(or hsb(functions. If you supply empty text ("") for the background color it will
default to white.

Action: This statement controls the appearance of pop-up menus created with the popup and
popupbynumber statements. It does not affect SuperObject pop-up menus. The proce-
dure can control the font and size of the text in the menu, as well as the color. The popu-
pstyle statement should be placed immediately before the popup or popupbynumber
statements.

Examples: The procedure will display a pop-up menu with 9pt Geneva red text on a gray back-
gound. (Note: This procedure is designed to be attached to a transparent button with the
click/release option turned off. See the popup statement for more information.)

local btop,bleft,bheight,bwidth,ShipBy
getlocalbutton btop,bleft,bheight,bwidth
NewColor=""
PopUpStyle "Geneva",9,
rgb(65535,0,0), rgb(50000,50000,50000)
popup "Air"+¶+"Rail"+¶+"Sea"+¶+"Ground",btop,bleft,"Air",ShipBy

Views: This statement may be used in a Form view

See Also: popup statement
popupbynumber statement
colors
rgb(function
hsb(function

Page 5613
PRINT
PRINT

Syntax: PRINT options

Description: The print statement prints the all selected records to the current printer. (Use the
Chooser to select a different printer.)

Parameters: This statement has one parameter: options

options is a item that specifies the printing options. However, the Apple ROM’s do not
allow Panorama to control printing options, so there are only two valid options: empty
text ("") or the keyword dialog.

When options is the word dialog Panorama will pause the procedure and present the
user with the standard Print... dialog. This allows the user to select the number of copies,
print quality, and any other options that may be available for the currently selected
printer.

When options is empty text ("") Panorama simply use whatever print options were used
the last time this window was printed. (Note: Depending on the printer driver software
your printer uses, some options may not be saved from print to print. These options will
use default settings.)

Action: This statement is the same as choosing the Print tool from the File menu.

Examples: This example prints a report.

openform "90 Day Report"
select Date> today()-90
print dialog
selectall
closewindow

Views: This statement may be used in any view.

See Also: printonerecord statement
pagesetup statement
printonemultiple statement
printpreview statement

Page 5614
PRINTONEMULTIPLE
PRINTONEMULTIPLE

Syntax: PRINTONEMULTIPLE variable,start,end,bump,copies

Description: The printonemultiple statement prints a form over and over again without advancing
from record to record. Instead of advancing from record to record, a variable is incre-
mented each time the form is printed. This statement is designed for printing calendars
or thumbnails.

Parameters: This statement has five required parameters: variable, start, end, bump, and copies.

variable is the name of the variable you wish to increment each time the form is printed.

start is the beginning sequence number or date value. start can be an integer number, a
variable containing a numeric integer or date value, or a formula or function which
results in a numeric integer or date value. start must be less than and not equal to end

end is the ending sequence number or date value. end can be an integer number, a vari-
able containing a numeric integer or date value, or a formula or function which results in
a numeric integer or date value. end must be greater than and not equal to start.

bump is the increment value for your sequence. bump may be a number, a numeric vari-
able, or a formula which results in a positive numeric integer. The bump value must be a
positive integer for a numeric field. For a date field bump may also be one of the follow-
ing:

"M" - for month (the M must be in quotes)
"Y" - for year (the Y must be in quotes)
 1 - for day
 7 - for week

copies is the number of times the form is printed for each sequence number. copies may
be a number, a numeric variable, or a formula which results in a positive numeric integer
(in most cases this value will be 1).

Action: This statement will print a form a predetermined number of times. Each printing of the
form may be sequenced with incrementing integer or date values in a specified variable.
Note: the printonemultiple statement does not actually print, but must be followed by a
printonerecord statement

Examples: This example prints the next 3 months of a monthly calendar. The example assumes that
the form Monthly Calendar will display the month specified by the variable Calendar-
Date.

global CalendarDate
openform "Monthly Calendar"
printonemultiple CalendarDate, today(), today()+90,"m",1
printonerecord dialog
closewindow

This example prints all the picture files in the current folder. The example assumes that
the form Picture Matrix will display 20 pictures per page, probably using a SuperMatrix
object. The picture in the top left corner of each is controlled by the global variable Pic-
Number.

Page 5615
global PicNumber,PicMax
PicMax= arraysize(listfiles("","PICT"),¶)
openform "Picture Matrix"
printonemultiple PicNumber,1,PicMax,20,1
printonerecord dialog
closewindow

Views: This statement may be used in a Form view.

See Also: printonerecord statement
print statement
pagesetup statement
printpreview statement
addlines statement

Page 5616
PRINTONERECORD
PRINTONERECORD

Syntax: PRINTONERECORD options

Description: The printonerecord statement prints the currently active record to the current printer.
(Use the Chooser to select a different printer.) This statement may only be used with a
form window.

Parameters: This statement has one parameter: options

options is a item that specifies the printing options. However, the Apple ROM’s do not
allow Panorama to control printing options, so there are only two valid options: empty
text ("") or the keyword dialog.

When options is the word dialog Panorama will pause the procedure and present the
user with the standard Print... dialog. This allows the user to select the number of copies,
print quality, and any other options that may be available for the currently selected
printer.

When options is empty text ("") Panorama simply use whatever print options were used
the last time this window was printed. (Note: Depending on the printer driver software
your printer uses, some options may not be saved from print to print. These options will
use default settings.)

Action: This statement is the same as choosing the Print This Record tool from the tool palette.

Examples: This example prints the current invoice.

openform "PaperInvoice"
printonerecord dialog
closewindow

Views: This statement may be used in the Form view.

See Also: print statement
pagesetup statement
printonerecord statement
printpreview statement

Page 5617
PRINTPREVIEW
PRINTPREVIEW

Syntax: PRINTPREVIEW

Description: The printpreview statement opens a special preview window. This window displays a
preview of the printed results for the current view. This is the same as choosing Preview
from the File menu. The user can flip forward to see additional pages of the previewed
report. When the user closes the preview window, the procedure continues with the
statement after the printpreview statement.

Parameters: This statement has no parameters.

Examples: The most common reason to use the printpreview statement in a procedure is to simulate
the Print Preview command in your own custom File menu. Here are the statements to
use in your .CustomMenu procedure. (You could also trigger print preview with a but-
ton.)

if info("trigger") beginswith "Menu.File.Print Preview"
printpreview
stop

endif

Views: This statement may be used in any view.

See Also: print statement
pagesetup statement
printonerecord statement
printonemultiple statement

Page 5618
PRINTUSINGFORM
PRINTUSINGFORM

Syntax: PRINTUSINGFORM file,form

Description: The printusingform statement allows the current database to be printed using a differ-
ent form than the one currently being displayed. It is designed to be used in combination
with the print, printonerecord, or printpreview statements.

Parameters: This statement has two required parameters: file and form.

file is the name of the database file that contains the form to be printed. The database file
must be open. Usually the form will be in the current database, and in that case you can
simply use an empty string ("") for the file name.

form is the name of the form to be printed.

Action: The print command normally prints whatever window is currently active. If you want to
print a different window, you must first open that window and then print. The printus-
ingform statement is another way to print an alternate form. Note: The printusingform
statement may only be used when a form window is currently on top.

Examples: The procedure below will print My Report, even if another form is currently visible.

printusingform "","My Report" print dialog

 The procedure below will print Standard Report #4 from the Reports database.
Although the form is from the Reports database, the data will be from the current data-
base. This usually only makes sense if the two databases have the same fields.

printusingform "Reports","Standard Report #4"
print dialog

Views: This statement may be used in a Form view.

See Also: print statement
printonerecord statement
printpreview statement

Page 5619
PROPAGATE
PROPAGATE

Syntax: PROPAGATE

Description: The propagate statement fills all the empty cells in the current field. Each empty cell is
filled with the value of the first non-empty cell above it.

Parameters: This statement has no parameters.

Examples: This example computes the outstanding balance for each company in an invoice data-
base. It uses the propagate statement to copy the address information from the data
records into the newly created summary records.

field Company
groupup
field Balance
total
field Address
propagate
field City
propagate
field State
propagate
field Zip
propagate

Views: This statement may be used in the Data Sheet and Form views.

See Also: propagateup statement
unpropagate statement
unpropagateup statement

Page 5620
PROPAGATEUP
PROPAGATEUP

Syntax: PROPAGATEUP

Description: The propagateup statement fills all the empty cells in the current field. Each empty cell is
filled with the value of the first non-empty cell below it.

Parameters: This statement has no parameters.

Examples: This example fills any empty dates with the date from the next record.

field Date
propagateup

Views: This statement may be used in the Data Sheet and Form views.

See Also: propagate statement
unpropagate statement
unpropagateup statement

Page 5621
PV(...)
PV(

Syntax: PV(rate,periods,payment,balloon,begin

Description: The pv(function (short for present value) calculates the present value of an income or
debit stream of payments. Present value is an economic calculation that is the equivalent
of a bird in the hand is worth two in the bush, or is that a bird in the hand is worth 1.67 in
the bush? It’s better to receive $1000 right now than $1000 next year, but how much bet-
ter? The pv(function will tell you.

Parameters: This function has five parameters: rate, periods, payment, balloon and begin.

rate is the interest rate of the investment (per period). For example, if there is one pay-
ment per year, this is the annual percentage rate. If there is one payment per month, then
this is the monthly percentage rate.

periods is the number of payments that will be made during the life of the investment.
For example, if this is a 36 month investment with one payment per month, this value is
36. If this is a 30 year investment with one payment per month this value is 1080.

payment is the amount being invested each period. If this is money that is coming to you
this value should actually be negative. For example, if you are receiving $500 per month,
the payment amount should be -500.

balloon (future value) is any lump sum payment at the end of the investment (actually
the negative of the balloon payment). For example if you are receiving $25,000 at the end
of ten years, this value should be -25000.

begin specifies whether payments are made at the beginning (1) or end of each period
(0).

Result: The result of this function is always a numeric floating point value.

Examples: If the payment period is annually the calculation is simple. Suppose someone offers to
pay you either $2,500 right now, or $1000 per year for the next three years. Which should
you take? The answer depends on the interest rate you can get for your money (and, of
course, how much you need cash now, but that’s another question). If you can invest
your money at 7% then the three payments are worth $2624 now (see below), but if you
can get 10% then three payments later are only worth $2486 now.

pv(.07,3,-1000,0,0)

Most investments are paid more frequently than once a year…usually once a month. To
calculate the present value for such an investment you must convert the annual percent-
age rate into a monthly percentage rate by dividing by 12. Suppose someone offers you
$200 a month at the beginning of each month for 5 years, and you know that you can put
your money into an investment that returns 13.5% annual interest. What is the cash pay-
ment that would be equivalent to that income stream?

pv(0.135/12,5*12,-200,0,1)

You can also use this function to calculate the current value of a single balloon payment,
with no payments. Suppose someone offers to pay you $50,000 5 years from now. You
know that you can invest your money at 14% annual interest. This formula will calculate
the value of the equivalent cash value of this $50,000 future payment ($25,968) :

Page 5622
pv(0.14,5,0,-50000,0)

Of course the pv(function only works with fixed interest rates.

Notes: Here is the formula that Panorama uses to calculate present value.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value with this function, for example fv("12%",) . If you
have a number in a text item you must convert the text to a numeric value before calcu-
lating the future value, for example fv(val("12%"[1,-2]),) .

See Also: pmt(function
fv(function

Page 5623
Q

QUARTER1ST(...)
QUARTER1ST(

Syntax: QUARTER1ST(date)

Description: The quarter1st(function computes the first day of a quarter.

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: This function calculates the first day of the quarter. For example, if the date passed to this
function is August 18, 1997, this function will return the date July 1, 1997. The date is
returned as a number.

Examples: The example below selects the orders placed this quarter, then displays the count.

select
OrderDate ≥quarter1st(today()) and
OrderDate< today()

message str(info("records"))+" orders this quarter"

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: monthlength(function
monthmath(function
week1st(function
month1st(function
year1st(function
date(function
datepattern(function

Page 5624
QUIT
QUIT

Syntax: QUIT

Description: The quit statement stops Panorama and returns to the Finder. As a side effect, it also
stops the procedure! This command has the same effect as choosing the Quit command
from the File menu.

The quit statement will not normally ask the user if they want to save changes in any
open databases before stopping Panorama. However, if the quit statement is the last
statement in the procedure, or is followed by a stop statement, it will ask the user, and if
they say yes, save the files for them.

Parameters: This statement has no parameters.

Examples: Usually the only reason to use the quit statement in a procedure is to simulate the Quit
command in your own custom File menu. Here are the statements to use in your .Cus-
tomMenu procedure. Since the quit statement is followed by a stop statement, it will ask
the user to confirm the operation, just like the real Quit command.

if info("trigger") beginswith "Menu.File.Quit"
quit
stop

endif

Views: This statement may be used in any view.

See Also: save statement
saveall statement
stop statement
rtn statement
info("changes") function

Page 5625
R

RADIAN
RADIAN

Syntax: RADIAN

Description: The radian statement tells Panorama that all values in trigonometric functions should be
treated as radian's rather than degree's. (Radian is the program's default).

Parameters: This statement has no parameters.

Action: This statement doesn’t perform any visible action on its own. However, this is the only
way to turn off the degree statement and have all attributes for any trig functions in the
procedure treated as radian values. Panorama will revert back to radian after the proce-
dure is finished; radian is the default setting.

Examples: This example tells Panorama to calculate the tan of 30 degrees and put the answer in
Height and later on convert to radian's to calculate the tan of π/2 radian's and put the
answer in Rheight.

degree
Height = tan(30)
...
...
radian
Rheight = tan(π/2)

Views: This statement may be used in any view.

See Also: arccos() function
arccosh() function
arcsin() function
arcsinh() function
arctan() function
arctanh() function
cos() function
cosh() function
sin() function
sinh() function
tan() function
tanh() function

Page 5626
RADIX(...)
RADIX(

Syntax: RADIX(radix,text)

Description: The radix(function converts a text item containing a hex, octal, or binary number into a
standard Panorama number (decimal). See non decimal numbers for background infor-
mation on hex, octal and binary numbers.

Parameters: This function has two parameters: radix and text.

radix is the base for the numbering system you are converting from. Legal radix values
are 2, 4, 8, 16 or 32. Or you can specify the radix as "binary" (same as 2), "octal" (same as
8) or "hex" (short for hexadecimal, same as 16).

text is a text item that contains the non-decimal number you want to convert.

Result: This function normally returns an integer that contains the decimal (base 10) number
corresponding to the hex, octal, or binary number input to the function. If the radix is
hex and there are more than 8 digits in the input text, or if the radix is binary and there
are more than 32 digits, this function will return a raw binary value instead of a number.
This binary value may be of unlimited length. Like all binary values, it cannot be calcu-
lated with, but should be handled as a text item.

Examples: The example below allows the user to enter two hex values. It then converts the two val-
ues to decimal, adds them, and then converts them back to hexadecimal and displays
them.

local someText,hexNum1,hexNum2,Sum
someText=""
gettext "Enter A+B",someText
hexNum1=radix(16, array(someText,0,"+"))
hexNum2=radix(16, array(someText,1,"+"))
Sum=hexNum1+hexNum2
message someText+"="+ radixstr(16,Sum)

If the user enters 1E+4 the procedure will display 1E+4=22.

If the result would be bigger than a longword (4 bytes), the radix(function will produce
a text value that contains the raw binary information. The following three statements are
all exactly identical.

rawStuff= byte(65)+ byte(97)+ byte(167)+
byte(45)+ byte(109)+ byte(159)
rawStuff=radix("hex","4161A72D6D9F")
rawStuff="Aaß-mü"

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the text parameter.

Illegal number. This error occurs if the input value contains a character that is not a legal
digit for the radix. For example, the character X is not a legal digit in any radix. The char-
acter 9 is not a legal digit in binary or octal.

Page 5627
See Also: Illegal radix. This error occurs if you attempt to use a radix other than 2, 8, 16, 32,
"binary", "octal", or "hex".

radixstr(function
byte(function
word(function
longword(function
binary data
c/pascal structures

Page 5628
RADIXSTR(...)
RADIXSTR(

Syntax: RADIXSTR(radix,number)

Description: The radixstr(function converts a number into a text item containing the equivalent hex,
octal, or binary number. See non decimal numbers for background information on hex,
octal and binary numbers.

Parameters: This function has two parameters: radix and number.

radix is the base for the numbering system you are converting from. Legal radix values
are 2, 4, 8, 16 or 32. Or you can specify the radix as "binary" (same as 2), "octal" (same as
8) or "hex" (short for hexadecimal, same as 16).

number is the number you want to convert to hex, octal, or binary. If the radix is 2, 16,
"binary", or "hex" the number can be a raw binary data (text) value.

Result: This function returns a text item that contains the hex, octal, or binary number equiva-
lent to the number (or binary data) passed to the function.

Examples: The first example converts the decimal value 256 to hexadecimal.

radixstr(16,256)

 This function will calculate that 25610 is 100 hex.

The second example convers a decimal value to binary.

radixstr("binary",5)

 This will calculate that 510 is

00000000000000000000000000000101 binary.

This function will convert the binary value "abcdef" into hex.

radixstr("hex","abcdef")

The result will be 616263646566 hex .

The example below allows the user to enter two hex values. It then converts the two val-
ues to decimal, adds them, and then converts them back to hexadecimal and displays
them.

local someText,hexNum1,hexNum2,Sum
someText=""
gettext "Enter A+B",someText
hexNum1=radix(16, array(someText,0,"+"))
hexNum2=radix(16, array(someText,1,"+"))
Sum=hexNum1+hexNum2
message someText+"="+radixstr(16,Sum)

If the user enters 1E+4 the procedure will display 1E+4=22 .

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text for the number parameter (unless the radix is hex or binary, in
which case text is Ok).

Page 5629
Illegal radix. This error occurs if you attempt to use a radix other than 2, 8, 16, 32,
"binary", "octal", or "hex".

See Also: radix(function
byte(function
word(function
longword(function
binary data
c/pascal structures

Page 5630
RBOTTOM(...)
RBOTTOM(

Syntax: RBOTTOM(rectangle)

Description: The rbottom(function extracts the position of the bottom edge of a rectangle (see rectan-
gle(, graphic coordinatess).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between -32,768 and 32768. This is the position of the
bottom edge of the rectangle (in pixels).

Examples: The procedure below zooms the window to full size if the bottom of the window is more
than 100 pixels from the bottom edge of the screen.

if rbottom(info("windowrectangle"))+100
< rbottom(info("screenrectangle"))

zoomwindow rtop(info("screenrectangle")),
rleft(info("screenrectangle")),
rheight(info("screenrectangle")),
rwidth(info("screenrectangle") ,"")

endif

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rleft(function
rtop(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5631
RECTANGLE(...)
RECTANGLE(

Syntax: RECTANGLE(top,left,bottom,right)

Description: The rectangle(function defines a rectangle from four dimensions. A rectangle is 8 bytes
or raw binary data (see binary data, graphic coordinates). Panorama has many functions
and statements that use rectangles for working with graphic elements.

Parameters: This function has four parameters: top, left, bottom and right. These parameters may be
in screen, window, or form relative co-ordinates as long as you make sure all four use the
same co-ordinate system. All measurements are in pixels (1 pixel = 1/72 inch).

top is the position of the top edge of the rectangle. This must be a number between -
32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down and nega-
tive is up.)

left is the position of the left edge of the rectangle. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right and negative
is left.)

bottom is the position of the bottom edge of the rectangle. This must be a number
between -32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down
and negative is up.)

right is the position of the right edge of the rectangle. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right and negative
is left.)

Result: This function returns a rectangle. A rectangle is an 8 byte binary data item. Like all other
binary data items, rectangles are actually stored as text (see binary data)

Examples: The procedure below creates a rectangle that is 4 pixels high and 6 pixels wide.

MyRectangle=rectangle(7,6,11,12)

Here is a magnified view of what this rectangle would look like if it was displayed on the
screen:

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for any of the four parameters.

Page 5632
See Also: point(function
rectanglesize(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
rectangleadjust(function
rectanglecenter(function
adjustxy(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5633
RECTANGLEADJUST(...)
RECTANGLEADJUST(

Syntax: RECTANGLEADJUST(rect,d_top,d_left,d_bottom,d_right)

Description: The rectangleadjust(function adjusts all four edges of a rectangle independently.

Parameters: This function has five parameters: rect, d_top, d_left, d_bottom, and d_right. These
parameters may be in screen, window, or form relative co-ordinates as long as you make
sure all four use the same co-ordinate system. All measurements are in pixels (1 pixel =
1/72 inch).

rect is the original rectangle.

is the distance the top edge of the rectangle should be moved. This must be a number
between -32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down
and negative is up.)

d_left is the distance the left edge of the rectangle should be moved. This must be a num-
ber between -32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right
and negative is left.)

d_bottom is the distance the bottom edge of the rectangle should be moved. This must
be a number between -32,768 and +32,767. (Unlike standard cartesian co-ordinates, posi-
tive is down and negative is up.)

d_right is the distance the right edge of the rectangle should be adjusted. This must be a
number between -32,768 and +32,767. (Like standard cartesian co-ordinates, positive is
right and negative is left.)

Result: This function returns a rectangle. A rectangle is an 8 byte binary data item. Like all other
binary data items, rectangles are actually stored as text (see binary data)

Examples: The procedure below creates a rectangle that is inset 20 pixels from all four edges of the
screen.

MyRectangle=rectangleadjust(
info("screenrectangle") ,20,20,-20,-20)

The procedure below creates a rectangle that is the same size as the button rectangle but
shifted 1 inch (72 pixels) to the right.

MyRectangle=rectangleadjust(
info("buttonrectangle") ,0,72,0,72)

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for any of the four d_ (delta) parameters.

Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the rectangle parameter.

See Also: rectangle(function
rectanglesize(function
rectanglecenter(function
adjustxy(function
rtop(function
rbottom(function
rleft(function

Page 5634
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
rectanglecenter(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5635
RECTANGLECENTER(...)
RECTANGLECENTER(

Syntax: RECTANGLECENTER(largerect,smallrect)

Description: The rectanglecenter(function adjusts a small rectangle so that it is centered inside of a
larger rectangle.

Parameters: This function has two parameters: largerect and smallrect.

largerect is a large rectangle. How large is large? Well, it should at least be larger than the
smallrect rectangle.

smallrect is a small rectangle. How small is small? Well, it should at least be small
enough to fit inside the largerect rectangle, although the function will do its best to cen-
ter it even if it does not fit.

Result: This function returns a rectangle. A rectangle is an 8 byte binary data item. Like all other
binary data items, rectangles are actually stored as text (see binary data)

Examples: The procedure below creates a 1 inch square rectangle that is centered within the current
screen dimensions.

MyRectangle=rectanglecenter(
info("screenrectangle") , rectanglesize(0,0,72,72))

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for either of the rectangle parameters.

See Also: rectangle(function
rectanglesize(function
adjustxy(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
rectanglecenter(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5636
RECTANGLESIZE(...)
RECTANGLESIZE(

Syntax: RECTANGLESIZE(top,left,height,width)

Description: The rectanglesize(function defines a rectangle from four dimensions. A rectangle is 8
bytes or raw binary data (see binary data, graphic coordinates). Panorama has many
functions and statements that use rectangles for working with graphic elements.

Parameters: This function has four parameters: top, left, height and width. The top and left parame-
ters may be in screen, window, or form relative co-ordinates as long as you make sure
both use the same co-ordinate system. All measurements are in pixels (1 pixel = 1/72
inch)

top is the position of the top edge of the rectangle. This must be a number between -
32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down and nega-
tive is up.)

left is the position of the left edge of the rectangle. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right and negative
is left.)

height is the height of the rectangle. This must be a number between 0 and +32,767.

width is the width of the rectangle. This must be a number between 0 and +32,767.

Result: This function returns a rectangle. A rectangle is an 8 byte binary data item. Like all other
binary data items, rectangles are actually stored as text (see binary data)

Examples: The procedure below creates a rectangle that is 4 pixels high and 6 pixels wide.

MyRectangle=rectanglesize(7,6,4,6)

Here is a magnified view of what this rectangle would look like if it was displayed on the
screen:

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for any of the four parameters.

Page 5637
See Also: point(function
rectangle(function
rectangleadjust(function
rectanglecenter(function
adjustxy(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
rectanglecenter(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5638
RED(...)
RED(

Syntax: RED(color)

Description: The red(function extracts the red intensity from a color.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the intensity of the red component of this color. This intensity is a
number between 0 (black) and 65535 (full intensity).

Examples: The example below calculates the red intensity of the color (in percent, from 0 to 100%).

Intensity=red(HighlightColor)*100/65535

Errors: For more examples of color, see colors.

Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
green(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5639
REGISTRYDELETE
REGISTRYDELETE

Syntax: REGISTRYDELETE path

Description: The registrydelete statement deletes a registry key or registry value (Windows only).

Parameters: This statement has one parameter: path.

path is the path to an item in the registry. The path consists of one or more items sepa-
rated by backslashes (\). The first item must be one of these six classes in the table below
(or the abbreviations shown on the right).

Action: This statement will delete a registry key or registy value. The item is deleted immedi-
ately, there is no undo.

Examples: This example deletes a registry value:

registrydelete "HKLM\Software\Acme\SuperWidget:WindowLocation"

This example deletes a registry key, along with any values associated with it:

registrydelete "HKLM\Software\Acme\SuperWidget"

Views: This statement may be used in any view.

See Also: registryinfo(function
registrywrite statement

Root Abbreviation

HKEY_CLASSES_ROOT HKCR

HKEY_CURRENT_USER HKCU

HKEY_LOCAL_MACHINE HKLM

HKEY_USERS HKUS

HKEY_CURRENT_CONFIG HKCC

HKEY_DYN_DATA HKDD

Page 5640
REGISTRYINFO(...)
REGISTRYINFO(

Syntax: REGISTRYINFO(path)

Description: The registryinfo(function returns information from the Windows registry. The function
may return a directory of subkeys, a directory of values within a registry key, or a spe-
cific value within a key. The function does not work on MacOS computers.

Parameters: This function has one parameter: path.

path is the path to an item in the registry. The path consists of one or more items sepa-
rated by backslashes (\). The first item must be one of these six classes in the table below
(or the abbreviations shown on the right).

Result: The result of this function depends on the path parameter. If the path specifies a registry
folder the function will return a list of subkeys in this folder. If the path specifies a spe-
cific key it the function will return a list of the subkeys in this key. If the path specifies a
specific subkey the function will return the value of the subkey.

Examples: The example below returns a list of control panels.

registryinfo("HKEY_CURRENT_USER\Control Panel")

The example below returns a list of of the subkeys within the Mouse key.

registryinfo("HKEY_CURRENT_USER\Control Panel\Mouse:")

The example below returns the value in the MouseSpeed subkey within the Mouse key.

registryinfo("HKCU\Control Panel\Mouse:MouseSpeed")

The example below returns the default value of the .aif key. If you have QuickTime
installed the result of this function will be QuickTime.

registryinfo("HKEY_CLASSES_ROOT*\.aif:<DEFAULT>")

Errors: Registry Error. This error occurs if the root of the registry path is not one of the six roots
listed above, or if you attempt to use this function on a non MacOS computer.

See Also: registrywrite statement
registrydelete statement

Root Abbreviation

HKEY_CLASSES_ROOT HKCR

HKEY_CURRENT_USER HKCU

HKEY_LOCAL_MACHINE HKLM

HKEY_USERS HKUS

HKEY_CURRENT_CONFIG HKCC

HKEY_DYN_DATA HKDD

Page 5641
REGISTRYWRITE
REGISTRYWRITE

Syntax: REGISTRYWRITE path,type,data

Description: The registrywrite statement allows you to create registry keys and registry values, or to
modify an existing registry value (Windows only).

Parameters: This statement has three parameter: path, type and data.

path is the path to an item in the registry. The path consists of one or more items sepa-
rated by backslashes (\). The first item must be one of these six classes in the table below
(or the abbreviations shown on the right).

type is the type of data being written. The possible choices are shown below. If you spec-
ify "" , Panorama will default to REG_SZ (text).

data is the actual data being written. No matter what data format you are writing, this
should be text. For other data types you can fill the text item with binary values (see
binary data).

Action: This statement modifies the value of a registry key. If the key does not exist it will be cre-
ated.

Root Abbreviation

HKEY_CLASSES_ROOT HKCR

HKEY_CURRENT_USER HKCU

HKEY_LOCAL_MACHINE HKLM

HKEY_USERS HKUS

HKEY_CURRENT_CONFIG HKCC

HKEY_DYN_DATA HKDD

0 REG_NONE

1 REG_SZ

2 REG_EXPAND_SZ

3 REG_BINARY

4 REG_DWORD

5 REG_DWORD_BIG_ENDIAN

6 REG_LINK

7 REG_MULTI_SZ

8 REG_RESOURCE_LIST

9 REG_RESOURCE_LIST

10 REG_RESOURCE_REQUIREMENTS_LIST

Page 5642
Examples: This example changes the mouse speed. Notice that this statement supports the same
abbreviations allowed by the registryinfo(function (see “Getting Information
About Registry Items” on page 1696).

registrywrite "HKCU\Control Panel\Mouse:MouseSpeed","","2"

You can also change the default value associated with a registry key.

registrywrite "HKCR*\.aif:<DEFAULT>","","Quick Time Movie"

This example creates a registry entry named Acme, but does not create or modify any
values associated with that key.

registrywrite "HKLM\Software\Acme","",""

Views: This statement may be used in any view.

See Also: registryinfo(function
registrydelete statement

Page 5643
REGULARDATE(...)
REGULARDATE(

Syntax: REGULARDATE(superdate)

Description: The regulardate(function extracts a regular date (number of days from January 1, 4713
B.C.) from a superdate. SuperDates combine the date and time into a single number…the
number of seconds since January 1, 1904. SuperDates make it easy to calculate time inter-
vals across multiple days. However, SuperDates take up more storage than regular
dates, and are not as easy to work with. In addition, SuperDates are limited to dates
between 1904 and 2040.

Parameters: This function has one parameter: superdate.

superdate is a number that combines the date and time into a single value. See the super-
date(function.

Result: This function extracts the date from a superdate. You can convert this date to text with
the datepattern(function.

Examples: In its heyday, the Santa Fe Super Chief train would travel between Chicago and Los
Angeles in 39 and1/2 hours. This example uses SuperDates to calculate the arrival time
and day after the user enters the departure time.

local Arrival,Departure,xTime
xTime="7:30 pm"
gettext "Departure Time",xTime
Departure= superdate(today(), time(xTime))
Arrival=Departure+ superdate(0, time("39:30:00"))
message "Arrives "+

datepattern(regulardate(Arrival),"DayOfWeek")+" at "+
timepattern(regulartime(Arrival),"hh:mm am/pm")

 If the train leaves at 7:30 pm on Monday, the message will be Arrives Wednesday at
10:00 am. As you can see, SuperDate arithmetic is very easy, just add or subtract. There’s
no need to worry about crossing midnight, because that simply is the start of a new day.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the superdate parameters.

See Also: superdate(function
regulartime(function
date(function
time(function
today(function
now(function

Page 5644
REGULARTIME(...)
REGULARTIME(

Syntax: REGULARTIME(superdate)

Description: The regulartime(function extracts a regular Panorama time (seconds since midnight)
from a superdate. SuperDates combine the date and time into a single number…the
number of seconds since January 1, 1904. SuperDates make it easy to calculate time inter-
vals across multiple days. However, SuperDates take up more storage than regular
dates, and are not as easy to work with. In addition, SuperDates are limited to dates
between 1904 and 2040.

Parameters: This function has one parameter: superdate.

superdate is a number that combines the date and time into a single value. See the super-
date(function.

Result: This function extracts the time from a superdate. You can convert this time to text with
the timepattern(function.

Examples: In its heyday, the Santa Fe Super Chief train would travel between Chicago and Los
Angeles in 39 and1/2 hours. This example uses SuperDates to calculate the arrival time
and day after the user enters the departure time.

local Arrival,Departure,xTime
xTime="7:30 pm"
gettext "Departure Time",xTime
Departure= superdate(today(), time(xTime))
Arrival=Departure+ superdate(0, time("39:30:00"))
message "Arrives "+

datepattern(regulardate(Arrival),"DayOfWeek")+" at "+
timepattern(regulartime(Arrival),"hh:mm am/pm")

If the train leaves at 7:30 pm on Monday, the message will be Arrives Wednesday at 10:00
am. As you can see, SuperDate arithmetic is very easy, just add or subtract. There’s no
need to worry about crossing midnight, because that simply is the start of a new day.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the superdate parameters.

See Also: superdate(function
regulardate(function
timepattern(function
date(function
time(function
today(function
now(function

Page 5645
REMINDER
REMINDER

Syntax: REMINDER reminder,message

Description: The reminder statement allows the user to edit a reminder with a dialog (see reminder
data).

Parameters: This statement has two parameters: reminder and message.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. See
reminder data for detailed information about reminders. In this case you are not specify-
ing the reminder itself, but the field containing the reminder data.

message is the message that goes with the alarm, for example Sue’s flight arrives or Pick
up kids. In this case you are not specifying the message itself, but the field containing the
messages.

Action: This statement displays the dialog for editing a reminder. This dialog allows the user to
change the date, time, message and attributes of the reminder. When the user presses the
Ok button the statement will update the database and it will also tell the Team Alarm
extension (if installed) to modify its copy of the reminder.

Examples: This example creates a new reminder for tomorrow at 9am. It then allows the user to
modify the reminder with a dialog.

buildreminder today()+1, time("9am"),0,Reminder
Message= grabdata("Contacts","Name")
reminder Reminders,Message

Views: This statement may be used in a Data Sheet or Form view.

See Also: reminder(function
reminderdate(function
remindertime(function
remindertype(function
buildreminder statement
alarmedit statement
reminder data

Page 5646
REMINDER DATA
REMINDER DATA

Background: A reminder is a special data type that holds scheduling information. Reminders are usu-
ally used in calendar database applications. A reminder is a raw binary data item 30
bytes long (stored in a text field or variable), and contains the following information:

• The reminder type (either appointment or to-do)

• The reminder date, or recurring date information (july 12, every tuesday, etc.)

• The reminder time (3:30pm, 7:20am, etc.)

• Alarm status

• Completion status (to-do only)

• Priority (to-do only)

Notice that the reminder only contains scheduling information. It does not contain any
message or other information about the event. If there is a message associated with a
reminder (for example, Lunch with Bob) it should be stored in a separate field or vari-
able.

Although reminders can be kept in a variable, they are usually kept in a database field.

Appointments There are two different types of reminders: Appointments and To-do’s. Appointment
reminders are used for anything that has a definite, fixed, time: appointments, birthdays,
meetings, etc. Once the time has passed the appointment is no longer relevant. For exam-
ple, it won’t do much good to be reminded that your spouse‘s birthday was yesterday!

To-do reminders have a completion status as well as a time and date. For example, sup-
pose you set up a to-do reminder to order parts on Monday. If you don’t get around to it,
you’ll still want it your to-do list on Tuesday, and again on Wednesday etc. until you
actually do order the parts. To-do reminders remain active until the task is completed (or
at least it is marked as completed!)

Alarms: If you have the optional Team Alarm extension installed, you can be notified of your
reminders even when Panorama is not currently running. To do this, the Team Alarm
extension keeps a separate private list of pending alarms. This list is in a special format
that cannot be accessed by Panorama. However, this extra alarms database is updated
automatically when a reminder is updated with the reminder statement. However, if
you modify a reminder yourself without using the reminder statement, you’ll need to
make sure the Team Alarm list is also updated. There are three statements for doing this:
alarmedit, alarmdelete, and alarmreset.

See Also: reminder(function
remindercaption(function
reminderdate(function
remindertime(function
remindertype(function
remindertodo(function
remindercompare(function
reminderpriority(function
lookupcalendar(function
lookuprtime(function
buildreminder statement
reminder statement

Page 5647
todopriority statement
todo statement
alarmedit statement
alarmdelete statement
alarmreset statement

Page 5648
REMINDER(...)
REMINDER(

Syntax: REMINDER(date,time,type)

Description: The reminder(function builds a new reminder (see reminder data).

Parameters: This function has three parameters: date, time and type.

date is the date for the new reminder (the reminder(function cannot create recurring
reminders). However, you should not use a number here as you do with most date func-
tions. You should use text that describes the date, for example "5/25/03" or "next tues-
day".

time is the time for the new reminder. However, you should not use a number here as
you do with most time functions. You should use text that describes the time, for exam-
ple "5:22 pm".

type is the type of the new reminder: "a" for appointments or "t" for to-dos (see reminder
data).

Result: This function returns a reminder, which can be stored in a text field.

Examples: This example adds a new reminder next tuesday at 2pm. The procedure stores this
reminder in a field called Schedule:

addrecord
Schedule=reminder("next tue","2:00 pm","a")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for any parameter.

See Also: reminderdate(function
remindertime(function
remindertype(function
buildreminder statement
reminder statement
reminder data

Page 5649
REMINDERCAPTION(...)
REMINDERCAPTION(

Syntax: REMINDERCAPTION(reminder)

Description: The remindercaption(function extracts the date from a reminder as formatted text that
describes when the reminder will occur (see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns text describing when the reminder will occur. The table below
shows typical examples of how different reminder frequencies will be formatted by this
function:

Examples: The formula below displays the reminder date in a field called Schedule. This formula
could be used in an auto-wrap text object or a Text Display SuperObject™.

remindercaption(Schedule)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminderdate(function
remindertime(function
remindertype(function
buildreminder statement
reminder statement
reminder data

Frequency Typical Examples

Once only Tuesday, May 16th, 1995

Annual August 8th of each year

Quarterly First day of each quarter

Monthly
5th day of each month
Last day of each month
2nd Wed of each month

Weekly Tue of each week

Daily Every day

Page 5650
REMINDERCOMPARE(...)
REMINDERCOMPARE(

Syntax: REMINDERCOMPARE(reminder,date)

Description: The remindercompare(function checks to see if a reminder occurs on a specified date
(see reminder data).

Parameters: This function has two parameter: reminder and date.

reminder is the reminder you want to compare.

date is the date you want to compare with the reminder

Result: This function returns either true or false. It will return true if the reminder will occurs on
the specified date, including a repeating reminder that falls on that date.

Examples: The example below selects all reminders that will occur on next tuesday.

select remindercompare(Schedule, date("next tuesday"))

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the date parameter.

See Also: reminder(function
reminderdate(function
remindertime(function
?(function
buildreminder statement
reminder statement
if statement
reminder data

Page 5651
REMINDERDATE(...)
REMINDERDATE(

Syntax: REMINDERDATE(reminder)

Description: The reminderdate(function extracts the date from a reminder (see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns a number corresponding to the date for this reminder. This number
can be used with functions like datepattern(. If a reminder repeats, the function will try
to come up with the most appropriate single date. The table below shows how different
reminder frequencies will be handled by this function:

Examples: The example below uses the reminderdate(function to help sort the database by date.
The procedure copies the dates to a temporary field called ReminderDate. (The actual
reminder data is in a field called Schedule.)

field ReminderDate
formulafill reminderdate(Schedule)
sortup

This procedure will sort the quarterly, monthly, weekly and daily reminders to the top of
the database. The other reminders will be sorted by date.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminder(function
remindertime(function
remindertype(function
buildreminder statement
reminder statement
reminder data

Type of
Reminder Result

Once only Actual Date

Annual
Next occur-
rence of this

reminder

Quarterly 0

Monthly 0

Weekly 0

Daily 0

Page 5652
REMINDERPRIORITY(...)
REMINDERPRIORITY(

Syntax: REMINDERPRIORITY(reminder)

Description: The reminderpriority(function extracts the priority of a to-do reminder (completed/not
completed) from a reminder (see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns a number from 0 to 3: 0 for the lowest priority to 3 for the highest
priority.

Examples: The example below uses the reminderpriority(function to select high priority to-do
items.

select reminderpriority(Schedule)=3 and
remindertype(Schedule)=1

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminder(function
reminderdate(function
remindertime(function
remindertodo(function
buildreminder statement
reminder statement
todo statement
todopriority statement
reminder data

Page 5653
REMINDERTIME(...)
REMINDERTIME(

Syntax: REMINDERTIME(reminder)

Description: The remindertime(function extracts the time from a reminder (see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns a number corresponding to the time for this reminder (the number
of seconds since midnight). This number can be used with functions like timepattern(.

Examples: The example below uses the remindertime(function to select only those reminders that
occur during work hours.

select remindertime(Schedule)> time("8am") and
remindertime(Schedule) <= time("5pm")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminder(function
reminderdate(function
remindertype(function
buildreminder statement
reminder statement
reminder data

Page 5654
REMINDERTODO(...)
REMINDERTODO(

Syntax: REMINDERTODO(reminder)

Description: The remindertodo(function extracts the status of a to-do reminder (completed/not com-
pleted) from a reminder (see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns a number: 0 if the to-do has not been completed (or the reminder is
an appointment type), or 1 if the to-do has been completed

Examples: The example below uses the remindertodo(function to select all uncompleted to-do
items.

select remindertodo(Schedule)=0 and
remindertype(Schedule)=1

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminder function
reminderdate(function
remindertime(function
buildreminder statement
reminder statement
todo statement
todopriority statement
reminder data

Page 5655
REMINDERTYPE(...)
REMINDERTYPE(

Syntax: REMINDERTYPE(reminder)

Description: The remindertype(function extracts the type (to-do or appointment) from a reminder
(see reminder data).

Parameters: This function has one parameter: reminder.

reminder is the reminder you want to extract information from.

Result: This function returns a number: 0 if the reminder is an appointment type, or 1 if it is a to-
do.

Examples: The example below uses the remindertype(function to select today’s to-do list.

select remindertype(Schedule)=1 and
remindercompare(Schedule, today()

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the reminder parameter.

See Also: reminder function
reminderdate(function
remindertime(function
buildreminder statement
reminder statement
todo statement
todopriority statement
reminder data

Page 5656
REMOVEDETAIL
REMOVEDETAIL

Syntax: REMOVEDETAIL level

Description: The removedetail statement removes data records from the current database, leaving
only summary records. It can also delete low level summary records, leaving only higher
levels.

Parameters: This statement has one parameter: level.

level is a number that specifies the minimum summary level that will not be removed. In
other words, if you want to remove only data records this value should be zero. If you
want to remove data records and the first level of summary this value should be 1, etc.
This value may be between 0 (data records) and 7 (highest level summary). To make sure
that all summary records are removed, use 7.

If the level parameter is the word dialog (no quotes), the procedure will stop and display
the standard Remove Detail dialog. The user may select a level using the buttons. The
procedure will then remove the data and summary records and continue.

Action: This statement performs the same action as the Remove Detail command in the Sort
menu.

Examples: This example calculates summaries for each company, then saves those summaries in a
separate database. The Company Totals database will not have any of the original data,
only the summary information (which will have been converted into data records for
possible further processing.)

field Company
group
field Amount
total
removedetail 0
saveas "Company Totals"

Views: This statement may be used in any view.

See Also: group statement
removesummaries statement
outlinelevel statement
summarylevel statement
info("summary") function

Page 5657
REMOVESUMMARIES
REMOVESUMMARIES

Syntax: REMOVESUMMARIES level

Description: The removesummaries statement removes summary records from the current database.

Parameters: This statement has one parameter: level.

level is a number that specifies the minimum summary level that will not be removed. In
other words, if you want to remove only the first level of summary this value should be
1. This value may be between 1 (lowest summary) and 7 (highest level summary). To
make sure that all summary records are removed, use 7.

If the level parameter is the word dialog (no quotes), the procedure will stop and display
the standard Remove Summaries dialog. The user may select a level using the buttons.
The procedure will then remove the summaries and continue.

Action: This statement performs the same action as the Remove Summaries command in the
Sort menu.

Examples: This example calculates summaries, prints a report, then restores the database to its orig-
inal condition.

field Date
group by year
group by month
openform "Annual Report"
print dialog
closewindow
removesummaries 7

Views: This statement may be used in any view.

See Also: group statement
removedetail statement
outlinelevel statement
summarylevel statement
info("summary") function

Page 5658
REMOVEUNSELECTED
REMOVEUNSELECTED

Syntax: REMOVEUNSELECTED

Description: The removeunselected statement deletes all unselected records from the database.
(Unselected records are invisible, but they are still part of the database and take up
space.) Once they are removed, the records cannot be recovered unless you have previ-
ously saved them on the disk. The removeunselected statement will not ask the user to
confirm before deleting the records; it assumes that the procedure writer knows what he
or she is doing.

Parameters: This statement has no parameters.

Examples: This example deletes all records from previous years.

select date(year1st(today())
removeunselected

Views: This statement may be used in any view

See Also: info("records") function
info("selected") function
select statement
selectadditional statement
selectall statement
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5659
RENAMERESOURCE
RENAMERESOURCE

Syntax: RENAMERESOURCE type,id,number,name

Description: The renameresource statement changes the number and/or the name of a resource item.
The resource file must be opened with the openresourcerw statement.

Parameters: This statement has four parameter: type, id, number and name.

type is the resource type. This must be a four letter text item. Standard resource types
include "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dia-
log items), "MENU" (menu).

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

number is the new id number for the resource.

name is the new name for the resource. If this parameter is "" the name will be left alone.
If this parameter is ¶ the name will be erased.

Action: This statement renumbers and/or renames a resource item. It is mostly useful for build-
ing your own resource editor program (like the Custom Menu Editor Wizard that comes
with Panorama).

Examples: The procedure below changes resource MENU 498 into MENU 1917, and gives the
resource the name Option Menu.

renameresource "MENU",498,1917,"Option Menu"

The procedure below changes resource MENU 498 into MENU 8367 while leaving the
name alone.

renameresource "MENU",1917,8367,""

The procedure below erases the name from MENU 8367.

renameresource "MENU",8367,8367,¶

Views: This statement may be used in any view.

See Also: openresource statement
openresourcerw statement
closeresource statement
writeresource statement
deleteresource statement
activeresource statement

Page 5660
RENAMEWINDOW
RENAMEWINDOW

Syntax: RENAMEWINDOW

Description: The renamewindow statement allows you to rename the active form.

Parameters: This statement has no parameters.

Action: This statement pauses the procedure and allows you to rename the active form; the
form's name appears in the drag bar after the database's name and a colon (:).

The statement will first present you with a dialog box which highlights the current
form's name allowing you to type in a new name. You may then either press OK or Can-
cel. If you press OK the form will be renamed, if you press Cancel the statement will be
dismissed and the procedure will continue on. If you choose a name already in use Pan-
orama will warn you against using duplicate names and allows you to try again.

Note: if the active window is not a form window this statement will generate an alert
message dialog telling you that "You can't do that in this window."

Examples: This example will rename the active window provided it is a form window and that you
respond by hitting the OK button.

renamewindow

 This example allows you to choose the form you wish to rename, provided it exists.

getscrap "Enter form name."
openform clipboard()
if error

message "Form: "+ clipboard()+" not found."
stop

endif
renamewindow

 This example allows you to select a form from the list provided by the formselect state-
ment and, if the Rename button is selected, will open the form window, rename the
form, and then closes the form window.

local B,F
formselect 2086,0,B,F
if B contains "rename" and F ≠ ""

windowbox "99 77 244 435"
openform F
renamewindow
closewindow

endif
...
...
...

Views: This statement may be used in a Form view only.

Page 5661
See Also: deletewindow statement
goform statement
graphicsmode statement
openform statement
window statement

Page 5662
REP(...)
REP(

Syntax: REP(root,count)

Description: The rep(function (short for repeat) assembles a text item by repeating a smaller text item
over and over again.

Parameters: This function has two parameters: root. and count.

root is the main character, word or phrase that you want to repeat over and over again.
This must be a text item.

count is the number of times you want the root to be repeated.

Result: The result of this function is always a text item.

Examples: The example below creates a text item with 20 asterisks in a row.

rep("*",20)

The previous example is exactly the same as this formula below:

"********************"

The rep(function however, is less prone to error and the count can be changed easily or
even vary dynamically. Here is a formula which adds leading asterisks to a number so
that there are always 15 characters:

rep("*",15-length(pattern(Amount,"$#,.##")))+
pattern(Amount,"$#,.##")

The output from this formula will look like this:

***** $4,983.45
**** $22,456.74
******* $482.51
*** $467,380.12

 The root does not have to be a single character. It can be a complete word or phrase.

rep("Love ",5)

This formula repeats the word over and over again:

Love Love Love Love Love

The rep(function can be used to display a crude bar graph.

rep("*",Rating)

If Rating is a numeric field with a value between 1 and 4 this formula will display a
visual representation. For example, you might use a formula like this to display ratings
of movies (1 star, 2 stars, etc.)

Page 5663
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the root, for example rep(4567,12) . If you
have a number you must convert the number to text before using it with this function,
for example rep(str(4567),12) .

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the number of repetitions, for example rep("$","25") .
If you have a number you must convert the number to text before using it with this func-
tion, for example rep("$",val("25")) .

Page 5664
REPEATLOOPIF
REPEATLOOPIF

Syntax: REPEATLOOPIF true-false test

Description: The repeatloopif statement decides whether to continue with a loop or to start over
again from the top.

Parameters: This statement has one parameter: true-false test.

true-false test is a formula that should result in a true (-1) or false (0) answer. Usually the
formula is created with a combination of comparison operators (=, ≠, , etc.) and boolean
combinations (and, or, etc.) For example the formula Name="Smith" will be true if the
field or variables Name contains the value Smith, and false if it contains any other value.

Action: This statement decides whether to continue with a loop or to start over again from the
top. If the test is true, the loop will start over again. If the test is false, the loop will con-
tinue normally

Examples: The example builds a list of the alphabetic letters used in the field Notes. The
repeatloopif statement is used to check whether or not a character is alphabetic. If it
is not alphabetic, the loop starts over again from the top.

local X,aLetter,LetterList
X=1
LetterList=""
loop

aLetter= upper(array(Notes,X,¶))
stoploopif aLetter=""
X=X+1
repeatloopif aLetter ≠striptoalpha(aLetter)
if LetterList notcontains aLetter

LetterList=LetterList+aLetter
endif

while forever

Views: This statement may be used in any view.

See Also: loop statement
until statement
while statement
stoploopif statement
if statement
else statement
endif statement

Page 5665
REPLACE(...)
REPLACE(

Syntax: REPLACE(text,old,new)

Description: The replace(function partially replaces text with new text. It searches through an item of
text looking for a character, word or phrase. If the function finds an exact match (includ-
ing upper/lower case) the function replaces the old character, word or phrase with a
new character, word or phrase.

Parameters: This function has three parameters: text, old. and new.

text is the item of text that you want to search through and possibly replace part of.

old is the character, word or phrase that you want to search for and replace. This must be
the exact character, word, or phrase, including upper or lower case. The replace(function
will not match Dr with DR or dr.

new is the new character, word or phrase that you want to substitute for the old charac-
ter word or phrase.

Result: The result of this function is always a text item where the new character, word or phrase
has been substituted in every spot where the old character, word or phrase was located.

Examples: This simple procedure uses the replace(function to change 50 watt light bulbs into 75
watt light bulbs.

field Item
formulafill replace(Item,"50 watt","75 watt")

The replace(function will replace every occurrence of the old character, word or
phrase—even if it occurs many times. The procedure below will convert regular quotes
into smart quotes.

field Description
formulafill replace(

replace(" "+Description+" ",{ "},{ “}),
{" },{“ })[2,-2]

 The replace(function can also be used to eliminate a character, word or phrase—simply
by replacing it with nothing! Here’s a formula that removes all the trademark symbols
from the Description field.

field Description
formulafill replace(Description,"™","")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example
replace(Notes,10,20) . If you have a number you must convert the number to text
before using it with this function, for example replace(Notes,str(10),str(20)) .

Page 5666
See Also: replacemultiple(function
search(function
change statement

Page 5667
REPLACEMULTIPLE(...)
REPLACEMULTIPLE(

Syntax: REPLACEMULTIPLE(text,old,new,separator)

Description: The replacemultiple(function is similar to the replace(function. However, instead of
simply replacing one word or phrase with another, the replacemultiple(function takes
an entire list of words or phrases and replaces them with the corresponding words and
phrases in a second list.

Parameters: This function has four parameters: text, old., new and separator.

text is the item of text that you want to search through and possibly replace part of.

old is an array of characters, words or phrases that you want to search for and replace.
Each entry is separated from the next by the separator character.

new is an array of new characters, words or phrases that you want to substitute for the
old characters, words or phrases. This array must have the same number of items as the
old parameter. The replacemultiple(function will scan through the text parameter. When
it finds an item in the old parameter, it will replace that item with the corresponding item
in the new parameter.

separator is the separator for the old and new arrays. See text arrays for more informa-
tion about separators.

Result: The result of this function is always a text item where the new characters, words or
phrases have been substituted in every spot where the old characters, words or phrases
were located.

Examples: This example uses the replacemultiple(function to replace state abbreviations with the
fully spelled out state names.

local shortStates,longStates
shortStates="AK;AZ;CA;NV;OR;WA"
longStates="Alaska;Arizona;California;Nevada;Oregon;Washington"
Letter=replacemultiple(Letter,shortStates,longStates,";")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example replace(Notes,10,20).
If you have a number you must convert the number to text before using it with this func-
tion, for example replace(Notes,str(10),str(20)).

See Also: replace(function
search(function
change statement

Page 5668
RESOURCEFORK
RESOURCEFORK

Syntax: RESOURCEFORK

Description: The resourcefork statement allows you to access the resource fork of a Macintosh file as
if it was a data fork. This statement tells Panorama that the fileload(and filesize(func-
tions and filesave and fileappend statements should access the resource fork instead of
the data fork. To tell Panorama to go back to accessing the data fork, use the datafork
statement. (On Windows systems, this statement is ignored.)

Parameters: This statement has no parameters.

Action: This statement has no direct action of it's own. However, this statement modifies any file
access functions that are used later in the procedure. Instead of accessing the data fork,
Panorama will access the resource fork.

Examples: This simple example will make a copy of the resource fork of the file named MyRe-
sources.

local rezdata
resourcefork
rezdata= fileload("","MyResources")
filesave "","My Resources Copy","",rezdata
datafork

 This example copies the resource fork of MyResources into the data fork of MyRe-
sources.RSR. This .RSR file can be transferred to a PC for use with the PC version of Pan-
orama.

local rezdata
resourcefork
rezdata= fileload("","MyResources")
datafork
filesave "","My Resources.RSR","",rezdata

Views: This statement may be used in any view.

See Also: datafork statement
filesave statement
fileappend statement
fileload(function
filesize(function
openresource statement
openresourcerw statement
resources(function
resourcetypes(function
getresource(function
getstring(function
getnstring(function

Page 5669
RESOURCES(...)
RESOURCES(

Syntax: RESOURCES(type)

Description: The resources(function creates a text array containing a list of resources of a particular
type.

Parameters: This function has one parameter: type.

type is the resource type. This must be a four letter text item. Standard resource types
include "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dia-
log items), "MENU" (menu).

Result: This function returns a text array containing a carriage return delimited list of all the
resources of the specified type. Each element of this list is itself a tab delimited array. The
first item is the resource item number. The second item is the resource name (if any).

Examples: This example builds a list of the TEXT resources in the currently open resource files. (The
currently open resource files include Panorama itself and the Macintosh system file, as
well as any resource files you have opened with the openresource statement.)

local rezStrings
rezStrings=resources("TEXT")

 This will fill rezStrings with an array like this.

2001 Error Messages
2002 Command List
2003 Conversion Options

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the type parameter. The type must be a four letter text
item.

See Also: openresource statement
openresourcerw statement
closeresource statement
getresource(function
getstring(function
getnstring(function
getstringmatch(function
resourcetypes(function

Page 5670
RESOURCETYPES(...)
RESOURCETYPES(

Syntax: RESOURCETYPES()

Description: The resourcetypes(function creates a text array containing a list of the resource types in
the currently open resource files.

Parameters: This function has no parameters.

Result: This function returns a carriage return delimited text array. Each element in the array
contains a resource type. Each resource type is a four letter text item, for example "STR "
(Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dialog items),
"MENU" (menu).

Examples: You can use this function to check if a particular resource type exists, or you can use the
function with a pop-up menu or List SuperObject™ to allow the user to select a type of
resource for any reason. The formula below will create a text array with resource types.

local rezTypes
rezTypes=resourcetypes()

 The rezTypes variable will be filled with a list of resource types, like this:

CNTL
CURS
FKEY
INIT
KCAP
KCHR
LDEF
MACA
PACK
PTCH
ROv#
TPLT
SIZE
LBAR
octb
DLGX
dctb
cocm
TEXT
STR#
PICT
PAT#
PAPR
MENU
MDEF

As you can see, the resource types are not listed in any particular order.

Errors: This function does not produce any error messages.

See Also: openresource statement
openresourcerw statement
closeresource statement
getresource(function

Page 5671
getstring(function
getnstring(function
getstringmatch(function
resources(function

Page 5672
RESUME
RESUME

Syntax: RESUME state

Description: The resume statement resumes a procedure that has been temporarily halted with the
pause statement. The procedure will be restarted from the point immediately after the
original pause statement.

Parameters: This statement has one parameter: state.

state is a global variable. This global variable is used to store information about where
and how the procedure was temporarily halted with the pause statement. (Note: Starting
with Panorama 3.1, the state variable is ignored. You still must supply a valid variable
name, but it does not need to match the variable used in the pause statement.

Action: This statement resumes a procedure that has been temporarily halted with the pause
statement. For example you might want to pause a procedure while the user fills in a dia-
log, then continue when the user presses the Ok button.

Examples: The example opens a form called Sound & Video. To the user, this form will appear to be
a standard dialog box. Once the dialog box is open the procedure will pause, allowing
the user to type values into the box, select checkboxes, etc.

global dialogPause
setwindow 100,100,300,400,""
opendialog "Sound & Video"
pause dialogPause
/* pause here for user to fill in dialog */
closewindow
if info("trigger") contains "Ok"

playsound dialogSound
endif

If you want a button in the Sound & Video dialog to close the dialog, that button should
be linked to a procedure that contains the following statement:

resume dialogPause

Notice that the resume statement must reference the same global variable as the pause
statement. (Actually, any valid variable name may be used if this is Panorama 3.1 or
later, but we still suggest that you use the correct name for clarity and for compatibility
with older versions.) The resume statement causes the original procedure to continue,
starting from right after the pause statement. In this case the procedure closes the dialog
and plays a sound if the user pressed Ok.

The advantage of using the pause and resume statements is that a single dialog may be
used with many procedures. The buttons in the dialog aren’t actually linked to any spe-
cific procedure, they simply let whatever procedure opened the dialog in the first place
continue.

Views: This statement may be used in any view.

Page 5673
See Also: pause statement
opendialog statement
info("trigger") function

Page 5674
RESYNCHRONIZE
RESYNCHRONIZE

Syntax: RESYNCHRONIZE

Description: The resynchronize statement synchronizes the local Panorama database with the SQL
server database (client/server databases only). This is the same as choosing Synchronize
from the File menu.

Parameters: This statement has no parameters.

Examples: This procedure synchronizes with the server to get the latest possible data, then prints a
report with monthly totals.

resynchronize
openform "My Report"
field "Date"
groupup by month
field "Amount"
total
outlinelevel 1
print dialog

Views: This statement may be used in any view.

See Also: subsetselect statement
subsetselectall statement

Page 5675
RETURNKEY
RETURNKEY

Syntax: RETURNKEY

Description: The returnkey statement adds a new record just below the current record.

Parameters: This statement has no parameters.

Action: This statement adds a new record just below the current record. It has the same effect as
pressing the RETURN key when you are in the data sheet.

Examples: This simple example adds twelve new records just below the current record.

loop
returnkey

until 12

Views: This statement may be used in the Data Sheet, Design Sheet, and Form views.

See Also: insertrecord statement
insertbelow statement
addrecord statement
deleterecord statement
info("records") function

Page 5676
REVERT
REVERT

Syntax: REVERT

Description: The revert statement reloads the current database from the disk. It has almost the same
effect as closing and then re-opening the database (the only difference is that the .Initial-
ize procedure is not triggered). Any changes that have been made since the last time this
database was saved will be lost. This command has the same effect as choosing the
Revert to Saved command from the File menu.

The revert statement will not normally ask the user to confirm before loading the data-
base from the disk. However, if the revert statement is the last statement in the proce-
dure, or is followed by a stop or nop statement, it will ask the user to confirm that they
want to revert to saved before proceeding.

Examples: Usually the only reason to use the revert statement in a procedure is to simulate the
Revert to Saved command in your own custom File menu. Here are the statements to
use in your .CustomMenu procedure. Since the revert statement is followed by a stop
statement, it will ask the user to confirm the operation, just like the real Revert to Saved
command.

if info("changes") beginswith "Menu.File.Revert"
revert
stop

endif

Views: This statement may be used in any view.

See Also: save statement
saveall statement
saveas statement
saveacopyas statement
filesave statement
info("changes") function

Page 5677
RGB(...)
RGB(

Syntax: RGB(red,green,blue)

Description: The rgb(function creates a color by combining red, green, and blue primary colors. See
colors.

Parameters: This function has three parameter: red, green and blue.

red is the intensity of the red component of this color. This must be a number from 0
(black) to 65535 (full intensity).

green is the intensity of the green component of this color. This must be a number from 0
(black) to 65535 (full intensity).

blue is the intensity of the blue component of this color. This must be a number from 0
(black) to 65535 (full intensity).

Result: This function returns 6 bytes of raw binary data (see binary data).

Examples: The example below changes the color of any object named Border to orange.

local Orange
Orange=rgb(65535,23356,2936)
selectobjects objectinfo("name") = "Border"
changeobjects "color",Orange

 For more examples of colors see colors.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the any parameter.

See Also: hsb(function
red(function
green(function
blue(function
hue(function
saturation(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5678
RHEIGHT(...)
RHEIGHT(

Syntax: RHEIGHT(rectangle)

Description: The rheight(function extracts the height of rectangle (see rectangle(, graphic coordi-
nates).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between 0 and 32767. This is the height of the rectangle
(in pixels).

Examples: The procedure displays the size of the computers screen, for example Your screen is 640
by 480 pixels.

message "Your screen is "+
str(rwidth(info("screenrectangle")))+" by "+
str(rheight(info("screenrectangle")))+" pixels."

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rleft(function
rtop(function
rright(function
rbottom(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5679
RIGHT
RIGHT

Syntax: RIGHT

Description: The right statement moves the cursor to the next field in the active window. To decide
what the next field is, Panorama uses the data sheet order of the fields. This is the oppo-
site of the left statement.

Parameters: This statement has no parameters.

Action: This statement moves the cursor to the next field in the active window. If the current
window is the data sheet the cursor will appear to move to the right one column. If the
cursor is already on the last visible column this statement will do nothing. You can use
this statement in conjunction with the info("fieldname") or info("stopped") functions to
test to see if you are on the last visible record in the window.

Examples: This example converts all text fields in the current database to all upper case. It starts
with the leftmost field and moves to the right column by column. (Note: The «» symbol,
as used in the upper(function, always refers to the current field.)

field (array(dbinfo("fields",""),1,¶))
loop

if info("datatype") =0
formulafill upper(«»)

endif
right

until info("stopped")

Here is a similar example that sets up the field names in a newly imported database.
Many programs export field names as the first line of a text file. This procedure takes
those field names and copies them into Panorama’s field names, then deletes the line
containing the field names.

field "A"
loop

fieldname «»
right

until info("stopped")
deleterecord

Views: This statement may be used in any view.

See Also: info("fieldname") function
info("stopped") function
dbinfo(function
field statement
left statement

Page 5680
RLEFT(...)
RLEFT(

Syntax: RLEFT(rectangle)

Description: The rleft(function extracts the position of the left edge of a rectangle (see rectangle(,
graphic coordinates).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between -32,768 and 32768. This is the position of the left
edge of the rectangle (in pixels).

Examples: The procedure below zooms the window to full size if the left of the window is more
than 100 pixels from the left edge of the screen.

if rleft(info("windowrectangle"))>100
zoomwindow rtop(info("screenrectangle")),

rleft(info("screenrectangle")),
rheight(info("screenrectangle")),
rwidth(info("screenrectangle")),""

endif

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rheight(function
rtop(function
rright(function
rbottom(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5681
RND(...)
RND(

Syntax: RND()

Description: The rnd(function generates a random number between 0 and 1.

Parameters: This function has no parameters

Result: The result of this function is always a floating point numeric value between 0 and 1. This
function will generate all sorts of strange values like 0.453321465099 and
0.9844334343219.

Examples: This example generates a random number between 0 and 1.

rnd()

This possibly more useful example generates a random integer between 1 and 10 (1, 2, 3,
4, 5, 6, 7, 8, 9, 10).

int(1+10*rnd())

This more general example generates a random integer between START and
START+COUNT. For example, if START is 500 and COUNT is 501 this formula will gen-
erate a random integer between 500 and 1000.

int(START+COUNT*rnd())

This example generates a random even integer between 2 and 50 (2, 4, 6, 8, … 46, 48, 50).

round(2+48*rnd(),2)

Errors: This function does not generate any errors.

See Also: int(function
round(function

Page 5682
ROUND(...)
ROUND(

Syntax: ROUND(value,step)

Description: The round(function rounds a number to the nearest step

Parameters: This function has two parameters: value and step.

value is the value you want to round. This must be a number, not text.

step is the increment value for the steps you want to round to. For example if the step is
1 the value will be rounded to an integer, if the step is 12 the value will be rounded to the
nearest dozen.

Result: The result of this function is always a numeric value. If the input value was an integer
the result will be an integer, if the input was floating point the result will be floating
point.

Examples: This example rounds the quantity to the nearest dozen.

round(Quantity,12)

The output of this formula will be 0, 12, 24, 36, etc. The formula above may round the
number down, for example 14 will round down to 12. Here is another formula that will
always round up to the next higher dozen (i.e. 13 will round up to 24):

round(Quantity+6,12)

Non-integer step values are Ok. This next formula rounds the temperature to the nearest
1/2 degree.

round(Temperature,0.5)

Temperature must contain a numeric value.

Since dates are really numbers, the formula below rounds the StartDate to the first day of
the week (Sunday).

round(StartDate,7)

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text values with this function, for example round("Bob","Sue") . If you have
a number in a text item you must convert the text to a numeric value before taking the
absolute value, for example round(val("34"), val("12")) .

See Also: int(function

Page 5683
RRIGHT(...)
RRIGHT(

Syntax: RRIGHT(rectangele)

Description: The rright(function extracts the position of the right edge of a rectangle (see rectangle(,
graphic coordinates).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between -32,768 and 32768. This is the position of the
right edge of the rectangle (in pixels).

Examples: The procedure below zooms the window to full size if the right of the window is more
than 100 pixels from the right edge of the screen.

if rright(info("windowrectangle"))+100
< rright(info("screenrectangle"))

zoomwindow rtop(info("screenrectangle")),
rleft(info("screenrectangle")),
rheight(info("screenrectangle")),
rwidth(info("screenrectangle")),""

endif

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rleft(function
rtop(function
rbottom(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5684
RTN
RTN

Syntax: RTN

Description: The rtn statement may be used to end a subroutine at any point. When this statement is
encountered Panorama stops the current procedure. If the current procedure was called
as a subroutine by another procedure, the calling procedure continues from the point
just after the call, farcall, or shortcall statement that started the procedure. If the current
procedure was not called as a subroutine, it simply stops (see the stop statement). (Note:
The statement rtn is an abbreviation for return, because this statement “returns” from
the current subroutine to the original procedure.)

Parameters: This statement has no parameters.

Examples: This following adjusts the inventory level if there is enough in stock to complete the
order. Otherwise the subroutine simply returns to the original procedure that called it.

if OnHand < parameter(1)
rtn

endif
OnHand=OnHand-parameter(1)

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: call statement
farcall statement
shortcall statement
stoploopif statement
debug statement
if statement
case statement

Page 5685
RTOP(...)
RTOP(

Syntax: RTOP(rectangle)

Description: The rtop(function extracts the position of the top edge of a rectangle (see rectangle(,
graphic coordinates).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between -32,768 and 32768. This is the position of the top
edge of the rectangle (in pixels).

Examples: The procedure below zooms the window to full size if the top of the window is more
than 100 pixels from the top of the screen.

if rtop(info("windowrectangle"))>100
zoomwindow rtop(info("screenrectangle")),

rleft(info("screenrectangle")),
rheight(info("screenrectangle")),
rwidth(info("screenrectangle")),""

endif

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5686
RUNNINGDIFFERENCE
RUNNINGDIFFERENCE

Syntax: RUNNINGDIFFERENCE

Description: The runningdifference statement calculates the running difference for the current field.
Every cell in the current field is filled with the difference between it and the previous
cell. Use this statement when you want to compute the interval or spread between con-
secutive values.

Parameters: This statement has no parameters.

Action: This statement starts at the top of the database and subtracts each cell from the cell above
it. As it scans the database it fills the field with the difference, destroying the original
data in the process. It has the same effect as using the Running Difference command
from the Math menu. Note: This statement may only be used if the current field is a
Numeric field. The runningdifference statement will not work with text, dates, or pic-
tures.

Examples: This example calculates the gas mileage after each fillup. Since the runningdifference
statement will destroy the field it is used on, the procedure copies the Odometer data
into a separate field called Miles. The runningdifference statement computes the num-
ber of miles driven on a tank of gas (the difference between the two odometer readings).

field Miles
formulafill Odometer
runningdifference
field Mileage
formulafill Miles/Gallons

Views: This statement may be used in any view.

See Also: fill statement sequence statement
runningtotal statement
emptyfill statement
formulafill statement
propagate statement
propagateup statement
unpropagate statement
unpropagateup statement

Page 5687
RUNNINGTOTAL
RUNNINGTOTAL

Syntax: RUNNINGTOTAL

Description: The runningtotal statement calculates the running total for the current field. Every cell
in the current field is filled with the accumulated total from the top of the database (or
from the previous summary record).

Parameters: This statement has no parameters.

Action: This statement starts at the top of the database and adds up the numbers in the current
field. As it scans the database it fills the field with the running total, destroying the origi-
nal data in the process. It has the same effect as using the Running Total command from
the Math menu. Note: This statement may only be used if the current field is a Numeric
field. The runningtotal statement will not work with text, dates, or pictures.

Examples: This example calculates the balance after each transaction in a checkbook database.

field Balance
formulafill Credit-Debit
runningtotal

Views: This statement may be used in any view.

See Also: fill statement
sequence statement
runningdifference statement
emptyfill statement
formulafill statement
propagate statement
propagateup statement
unpropagate statement
unpropagateup statement

Page 5688
RWIDTH(...)
RWIDTH(

Syntax: RWIDTH(rectangle)

Description: The rwidth(function extracts the width of rectangle (see rectangle(, graphic coordinates).

Parameters: This function has one parameter: rectangle.

rectangle is the rectangle you want to get information about.

Result: This function returns a number between 0 and 32767. This is the width of the rectangle
(in pixels).

Examples: The procedure displays the size of the computers screen, for example Your screen is 640
by 480 pixels.

message "Your screen is "+
str(rwidth(info("screenrectangle")))+" by "+
str(rheight(info("screenrectangle")))+" pixels."

Errors: Illegal function argument. This error occurs if you attempt to use a parameter that is not
a rectangle.

See Also: point(function
rectangle(function
rectanglesize(function
rleft(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
inrectangle(function
unionrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5689
S

SANDWICH(...)
SANDWICH(

Syntax: SANDWICH(prefix,root,suffix)

Description: The sandwich(function assembles a text item from three smaller text items. The prefix
and suffix are slapped on the ends of the root, just like a sandwich. However, if the root
is empty, the prefix and suffix are also left off (the result is an empty text item), just as
you wouldn’t make a sandwich without any meat.

Parameters: This function has three parameters: prefix, root. and suffix.

prefix is the item of text that the final text will start with.

root is the main character, word or phrase that you want to include in the final text. If the
root is empty, the entire assembled text will be empty.

suffix is the item of text that the final text will end with.

Result: Suppose you have a database with names and titles, and you want to display this infor-
mation in a report with the titles surrounded by parentheses. The formula below could
be used with an auto-wrap text object or text display SuperObject.

Name+" ("+Title+")"

The only problem with this formula is if some of the people don’t have a title. Then
you’ll get results like these:

Steve Johnson (Sales Mgr)
Bill Langly ()
Mary Wilson (VP Engineering)
Stan Franklin ()

 The sandwich(function can fix this problem. The prefix is (, the suffix is), and the root is
the title.

Name+sandwich(" (",Title,")")

 This new formula eliminates the superfluous (and) symbols:

Steve Johnson (Sales Mgr)
Bill Langly
Mary Wilson (VP Engineering)
Stan Franklin

 The sandwich(function is useful any time you have optional data items combined
together with punctuation in between. This example displays a name with optional mid-
dle name. If the middle name is missing there will be only one space between the first
and last names, not two.

First+" "+sandwich("",Middle," ")+Last

Page 5690
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example
sandwich("$",34,"") . If you have a number you must convert the number to text
before using it with this function, for example sandwich("$", str(34),"") .

See Also: ?(function

Page 5691
SATURATION(...)
SATURATION(

Syntax: SATURATION(color)

Description: The saturation(function extracts the saturation intensity from a color. Saturation speci-
fies how intense this color is. Is it a very intense deep color, or is it a soft pastel color, or
somewhere in between? When using the standard Apple color picker wheel, the Satura-
tion would specify the distance of the color from the center of the wheel. This is a num-
ber from 0 to 65535.

Parameters: This function has one parameter: color.

color is the color you want to extract information from. This must be a six byte binary
data value (see binary data).

Result: This function extracts the intensity of the saturation of this color. This intensity is a num-
ber between 0 and 65535.

Examples: The example below calculates the saturation intensity of the color (in percent, from 0 to
100%).

Intensity=saturation(HighlightColor)*100/65535

 For more examples of color, see colors.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the color parameter.

See Also: rgb(function
hsb(function
green(function
blue(function
red(function
hue(function
brightness(function
objectinfo(function
changeobjects function
colorwheel statement
colors

Page 5692
SAVE
SAVE

Syntax: SAVE

Description: The save statement saves the current database to the disk. This command has the same
effect as choosing the Save command from the File menu.

Parameters: This statement has no parameters.

Examples: The procedure removes all records more than one year old, then saves the database.
After the database is saved there is no way to get the old data back again (unless you
have a backup).

select Date> today()-365
removeunselected
save

Views: This statement may be used in any view.

See Also: saveall statement
saveas statement
saveacopyas statement
revert statement
filesave statement
info("changes") function

Page 5693
SAVEACOPYAS
SAVEACOPYAS

Syntax: SAVEACOPYAS file

Description: The saveacopyas statement saves a copy of the currently active file under a new name.
The original remains open in memory under its original name.

Parameters: This statement has one parameter: file.

file is the name of the new copy of the file you wish to save. The file name may be up to
31 characters long, and may not contain the : character.

If the new file should be saved in a different folder than the current database. The file
name must contain a complete path description. A path description is a list of the folders
the file is in, with each folder separated by a colon (for example Disk:Joe:January). You
can create a path from a folder id with the folderpath(function. The path and file name
may be up to 255 characters long.

If the file parameter is the word dialog (no quotes), the procedure will stop and display
the standard Save A Copy As dialog. The user may type in a name and select a folder.
The procedure will then save the database and continue.

Action: This statement performs the same action as the Save a Copy As command in the File
menu. The statement makes a copy of the current database on the disk, while leaving the
original untouched and ready for further work. (Note: The original database is not saved
to the disk, but it can be by simply using the save statement.)

Examples: This example saves a copy of the current file. If the original database is Sales, the copy
will be something like Copy of Sales 3/16.

saveas "Copy of "+ info("databasename") +
datepattern(today(),"mm/dd")

This example lets the user choose the new name and location for the database, just as if
they had chosen the Save A Copy As command in the File menu.

saveacopyas dialog

Views: This statement may be used in any view.

See Also: save statement
saveas statement

Page 5694
SAVEALL
SAVEALL

Syntax: SAVEALL

Description: The saveall statement saves every open database to the disk. (However, if a database has
not been modified it is not saved.) This command has the same effect as choosing the
Save ALL command from the File menu

Parameters: This statement has no parameters.

Examples: The procedure removes all records more than one year old from two databases, then
saves both databases. After the database is saved there is no way to get the old data back
again (unless you have a backup). Warning: The saveall statement will also save any
other databases that happen to be open in addition to the Inventory and Invoices data-
bases. Be careful with this statement, or you may save more than you intended.

window "Inventory"
select Date> today()-365
removeunselected
window "Invoices"
select Date> today()-365
removeunselected
saveall

Views: This statement may be used in any view.

See Also: save statement
saveas statement
saveacopyas statement
filesave statement

Page 5695
SAVEAS
SAVEAS

Syntax: SAVEAS file

Description: The saveas statement saves a copy of the currently active file under a new name. The
copy remains in memory.

Parameters: This statement has one parameter: file.

file is the name of the file you wish to save. The file name may be up to 31 characters
long, and may not contain the : character.

If the file should be saved in a different folder than the current database. The file name
must contain a complete path description. A path description is a list of the folders the
file is in, with each folder separated by a colon (for example Disk:Joe:January). You can
create a path from a folder id with the folderpath(function. The path and file name may
be up to 255 characters long.

If the file parameter is the word dialog (no quotes), the procedure will stop and display
the standard Save As dialog. The user may type in a name and select a folder. The proce-
dure will then save the database and continue.

Action: This statement performs the same action as the Save As command in the File menu. The
current database is changed to a new name, then saved. (Note: The original database is
not saved, so it will not have the most recent changes.)

Another way to export data is using the export statement. The export statement is often
easier to use because it does not rely on a special form.

Examples: This example assumes that the current database has a name like Sales 07/96. The proce-
dure will save the database on the disk. If this is a new month it will save the database
under a new name for the new month (for example Sales 08/96), leaving the old month
on the disk.

local fileroot,filemonth
fileroot= info("databasename") [1,-6]
filemonth= info("databasename") [-5,-1]
if filemonth= datepattern(today(),"MM/YY")

save
else

saveas fileroot+ datepattern(today(),"MM/YY")
endif

 This example lets the user choose the new name and location for the database, just as if
they had chosen the Save As command in the File menu.

saveas dialog

Views: This statement may be used in any view.

See Also: save statement
saveacopyas statement

Page 5696
SAVEASTEXT
SAVEASTEXT

Syntax: SAVEASTEXT file

Description: The saveastext statement exports the current database into a text file, using a special
form to control what data is exported. If the text file does not already exist it will be cre-
ated. If it does already exist its contents will be replaced!

Parameters: This statement has one parameter: file.

file is the name of the file you wish to save. The file name may be up to 31 characters
long, and may not contain the : character.

If the file should be saved in a different folder than the current database. The file name
must contain a complete path description. A path description is a list of the folders the
file is in, with each folder separated by a colon (for example Disk:Joe:January). You can
create a path from a folder id with the folderpath(function. The path and file name may
be up to 255 characters long.

Action: This statement exports data by scanning the current database and outputting each record
with a special form. The form may contain up to 3 report tiles—a data tile (required), a
summary tile (optional) and a group header tile (optional). Each tile must contain one
(and only one) auto-wrap text object. The exact positioning of the auto-wrap text object
on the tile is unimportant, as long as there is one text object per tile. The saveastext state-
ment will use the auto-wrap text object as a template to output the data from the file.

Another way to export data is using the export statement. The export statement is often
easier to use because it does not rely on a special form.

Examples: This example exports all fields from all selected records in the current database. The
form Customer Export Template is used as a template, and must be set up as described
in the previous section. The procedure asks the user to specify the name and folder for
the new file.

local file,folder
openform "Customer Export Template"
savefiledialog folder,file,"Export file name"
if file="" stop endif
saveastext folderpath(folder)+file

 The procedure below creates a text file named List.TXT in that contains data for every
record in Iowa.

select State="IA"
openform "Customer Export Template"
saveastext "List.TXT"

Views: This statement must be used in a Form view. The form must be specially prepared for
use with this statement (see Action, above).

Page 5697
See Also: export statement
filesave statement
filetrash statement
openfiledialog statement
savefiledialog statement
exportline(function
folder(function
folderpath(function
fileload(function
filesize(function

Page 5698
SAVEFILEDIALOG
SAVEFILEDIALOG

Syntax: SAVEFILEDIALOG folder,filename,prompt

Description: The savefiledialog statement pauses a procedure and displays the standard “save file”
dialog. This is the same dialog that most applications use for saving a file. The user can
then type in the name of a file and select a folder from the disk. Once the user is done the
procedure resumes and can process the file with the export or filesave statements.

Parameters: This statement has three parameters: folder, filename and prompt.

folder should be a variable. When the statement is finished this variable will contain a 6
byte binary data item (a path id) that unambiguously describes the location of the folder
where the file should be saved. A path id is a binary data item that unambiguously
describes the location of a folder on the hard disk. The path id can be converted into a
text description of the path with the folderpath(function.

filename should be a variable. The procedure should place a default file name in this
variable (or fill with empty text ("") if you want to force the user to type something in.
When the statement is finished the variable will contain the name of the file that was the
user typed in. If the filename parameter is empty the user pressed the Cancel button.

prompt is the only parameter that you actually supply. This is a short message that will
appear in the dialog, for example Export as:, or Save Picture.

Action: This statement causes the standard “save file” dialog to appear. This allows the user to
select a folder and type in a file name. The statement will check to see if this file already
exists, if it does, it will ask the user if he or she really wants to replace this file with a new
one.

Examples: The procedure exports this months invoice data into a text file. The user may select the
name and folder for the new text file.

local file,folder
select Date ≥month1st(today())
/* set up default filename, (Example: "Invoices Aug 92" */
file="Invoices "+ datepattern(today(),"Mon yy")
savefiledialog folder,file,"Export file name"
if file=""

stop /* pressed cancel, so stop */
endif
export folderpath(folder)+file, exportline()+¶

Custom
Dialogs

If you are using Panorama 3.1 or later, you can customize the open file dialog by using
the customdialog statement (Macintosh only). The customization options available
include changing the layout of the dialog, adding extra text to the dialog and adding
extra push buttons to the dialog. (You cannot add other kinds of controls to the dialog,
for example checkboxes, radio buttons, or pop-up menus.)

Most of the work in setting up a custom dialog involves creating a resource template for
the dialog. To do this you will need a resource editing program like ResEdit or Resor-
cerer. (See “Working with Resources” on page 1688 for more information on these pro-
grams, or consult the documentation for the programs themselves.) Once the resource
template is set up, it can be used in any procedure by inserting the customdialog state-
ment just before the openfiledialog or savefiledalog statements.

Page 5699
The resource for an save file dialog must contain at least the required items listed below.
Once the required items are set up in this order you can add additional items of your
own. The easiest way to do this correctly is to make a copy of DLOG 9001 in the File Dia-
logs.rsrc file, then adjust the layout and add your own items as necessary.

1) Save Button (you may rename this button)
2) Cancel Button
3) Prompt Text (This is overwritten by the 2nd parameter of the
savefiledialog statement)
4) Disk Name
5) Eject Button
6) Drive Button
7) File Name
8) Dotted Line

To use your custom file dialog in a procedure you must place the customdialog state-
ment just before the savefiledialog statement, like this:

local folder,file
customdialog 9038
savefiledialog folder,file,"Export File:"
case info("dialogtrigger") contains "Save Tab Delimited"
 …
case info("dialogtrigger") contains "Save Comma Delimited"
 …
endcase

As this example shows, the info("dialogtrigger") will contain the name of the push but-
ton that the user pressed.

Views: This statement may be used in any view.

See Also: customdialog statement
openfiledialog statement
openfile statement
filesave statement
filerename statement
filetrash statement
folder(function
folderpath(function
fileload(function
filesize(function

Page 5700
SAVEVARIABLES
SAVEVARIABLES

Syntax: SAVEVARIABLES variablelist,combinedarray,separator

Description: The savevariables statement takes a list of variables and combines the values of all the
variables into a single array. (Later you can unpack the array back onto variables with
the loadvariables statement.)

Parameters: This statement has three parameters: variablelist, combinedarray and separator.

variablelist is an array containing the names of the variables to be "saved" in the output
array. Each item in the array must be separated from the next by the separator character.

combinedarray is a field or variable name. The statement will build the final array of val-
ues in this field or variable, using the separator character to divide each item. Any num-
bers will be converted to text as the array is built.

separator is the character that will be used to separate the values in the combinedarray.
Common separators include carriage return (¶) and tab (¬). You should be careful to
make sure that the separator character is a character that will not appear in any of the
variables being saved. One way to make sure of this is to use a character that cannot nor-
mally be generated from the keyboard, for example chr(1) or chr(255). For more informa-
tion on separators see text arrays.

Action: This statement combines two or more variables into a single variable containing an array.
You could perform the same operation with a loop, but the savevariables statement is
much faster. One use for the savevariables statement is exporting a group of variables to
a field or file. Then later you can use loadvariables to recover the previous variable val-
ues.

Examples: The example below saves all of the fileglobal variables for the currently active database
into a disk file. The disk file will have the name of the database plus Variables, for exam-
ple Contact Variables or Invoice Variables. You can look at this file and see the variable
values using any text editor (SimpleText, BBEdit, etc.).

local fileExtraData
savevariables info("filevariables") ,fileExtraData,¶
filesave "", info("databasename") +" Variables","",fileExtraData

The following example is similar but it saves both the variable name and the data in the
format variable=value. The variables will be listed in alphabetical order.

local varNames,varData
varNames= info("filevariables")
arraysort varNames,varNames,¶
savevariables varNames,varData,¶
arrayfilter varData,varData,¶,
array(info("filevariables") , seq(),¶)+"="+i import()
filesave "", info("databasename") +" Variables","",varData

The resulting file will be named something like Contact Variables and will look some-
thing like this:

Page 5701
ActiveForm=Contacts
LocalAreaCode=714
SearchText=Chicago

For an example of how to load this file back into the individual variables, see the load-
variables statement.

Views: This statement may be used in any view.

See Also: loadvariables statement
loadglobalvariables statement
loadfilevariables statement
loadlocalvariables statement
loadwindowvariables statement

Page 5702
SCRAPCALC
SCRAPCALC

Syntax: SCRAPCALC formula

Description: The scrapcalc statement calculates a formula and stores the result in the clipboard.
(Note: The same effect can be achieved by putting the word clipboard on the left side of
an equation.)

Parameters: This statement has one parameter: formula.

formula calculates the value that will be placed into the clipboard.

Examples: Panorama normally copies data info fields or variables with an assignment, for example
City="Westside". However, early versions of Panorama did not have assignments.
Instead, they used the scrapcalc and paste statements. For example, this procedure will
put the value Westside into the City field.

field City
scrapcalc "Westside"
paste

 Assignments make this use of the scrapcalc statement obsolete. Sometimes, however,
you may want to use the clipboard to communicate with other programs. This example
copies the name and address onto the clipboard in mailing label format. The user could
then paste the address into a letter or other word processing document.

scrapcalc Name+¶+Address+¶+City+", "+State+" "+Zip

Here is the same procedure rewritten using an assignment instead of using the scrapcalc
statement.

clipboard=Name+¶+Address+¶+City+", "+State+" "+Zip

Views: This statement may be used in any view.

See Also: formulacalc statement
set statement
clipboard(function

Page 5703
SCRATCHMEMORY
SCRATCHMEMORY

Syntax: SCRATCHMEMORY memory

Description: The scratchmemory statement changes the amount of memory reserved as scratch mem-
ory.

Parameters: This statement has one parameter: memory.

memory is the amount of scratch memory you want Panorama to use (in bytes). The
minimum value is 200000 (200k).

Action: This statement changes the amount of memory reserved as scratch memory. Scratch
memory is used for fonts, displaying pictures, printing, and other system tasks. Increas-
ing scratch memory reduces the amount of memory available for databases. The mini-
mum scratch memory setting is 200000 (200K). If Panorama cannot change the scratch
memory size to the new value (not enough memory) an alert will appear (The alert may
be bypassed with the if error statement.) (Note: To increase the scratch memory alloca-
tion, you may need to increase Panorama’s overall memory allocation. To do this you
must select Panorama with the Finder, choose Get Info from the File menu, then increase
the Preferred memory size.)

Examples: The example attempts to set the scratch memory size to 400k. If there is not enough
memory to do this it tries smaller amounts in 25K increments (375k, 350k, 325k, etc.)
until it is successful.

local bigScratch
bigScratch=400000
loop

scratchmemory bigScratch
if error

bigScratch=bigScratch-25000
else

bigScratch=0
endif

while bigScratch>200000

Views: This statement may be used in any view.

See Also: info("scratchmemory") function
scratchmemorytemporary statement

Page 5704
SCRATCHMEMORYTEMPORARY
SCRATCHMEMORYTEMPORARY

Syntax: SCRATCHMEMORYTEMPORARY memory

Description: The scratchmemorytemporary statement temporarily changes the amount of memory
reserved as scratch memory. The temporary setting remains until you quit from Pan-
orama. The next time Panorama is launched the original scratch memory settings will
return.

Parameters: This statement has one parameter: memory.

memory is the amount of scratch memory you want Panorama to use (in bytes). The
minimum value is 200000 (200k).

Action: This statement changes the amount of memory reserved as scratch memory. Scratch
memory is used for fonts, displaying pictures, printing, and other system tasks. Increas-
ing scratch memory reduces the amount of memory available for databases. The mini-
mum scratch memory setting is 200000 (200K). If Panorama cannot change the scratch
memory size to the new value (not enough memory) an alert will appear (The alert may
be bypassed with the if error statement.) (Note: To increase the scratch memory alloca-
tion, you may need to increase Panorama’s overall memory allocation. To do this you
must select Panorama with the Finder, choose Get Info from the File menu, then increase
the Preferred memory size.)

Examples: The example attempts to set the scratch memory size to 400k. If there is not enough
memory to do this it tries smaller amounts in 25K increments (375k, 350k, 325k, etc.)
until it is successful.

local bigScratch
bigScratch=400000
loop

scratchmemorytemporary bigScratch
if error

bigScratch=bigScratch-25000
else

bigScratch=0
endif

while bigScratch>200000

Views: This statement may be used in any view.

See Also: info("scratchmemory") function
scratchmemory statement

Page 5705
Scroll Bar Programming
SCROLL BAR PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick "GetScrollMin",<Value>
"SetScrollMin",<Value>
"GetScrollMax",<Value>
"SetScrollMax",<Value>
"GetScrollPage",<Value>
"SetScrollPage",<Value>
"GetScrollValue",<Value>
"DisableScrollBar"
"EnableScrollBar"
"GetScrollEnable",<Value>

GetScrollMin ,<Value>

This command gets the minimum scroll bar value and places into the field or variable
specified by <Value>.

SetScrollMin ,<Value>

This command sets the minimum scroll bar value to any numeric value (must be integer)
between 1 and 65535. (This value is normally set by the Min: value in the Scroll Bar dia-
log.)

GetScrollMax ,<Value>

This command gets the maximum scroll bar value and places into the field or variable
specified by <Value>.

SetScrollMax ,<Value>

This command sets the maximum scroll bar value to any numeric value (must be inte-
ger) between 1 and 65535. (This value is normally set by the Max: value in the Scroll Bar
dialog.) Here is an example that sets the maximum value of the scroll bar named Slider
to the number of elements in the array People:

superobject "Slider","SetScrollMax",arraysize(People,¶)

GetScroll-
Page

,<Value>

This value is the amount the scroll bar value will increase or decrease if the user clicks on
the gray area above or below the thumb of the scroll bar.

SetScrollPage ,<Value>

This command sets the scroll bar page amount to any numeric value (must be integer)
between 1 and 65535. This value is the amount the scroll bar value will increase or
decrease if the user clicks on the gray area above or below the thumb of the scroll bar.
(This value is normally set by the Page Up/Down: value in the Scroll Bar dialog.)

Page 5706
GetScrollValue ,<Value>

This command gets the current position of the scroll bar. This command is redundant
because you can always get the position by examining the field or variable linked to the
scroll bar.

DisableScroll-
Bar

 This command disables the scroll bar. The scroll bar is still visible, but it turns white and
the thumb disappears.

EnableScroll-
Bar

 This command enables the scroll bar (see previous command).

GetScrollEna-
ble

,<Value>

This command checks to see if a scroll bar is enabled or disabled, and sets the field or
variable specified by <Value> with a true or false result accordingly.

Page 5707
SEARCH(...)
SEARCH(

Syntax: SEARCH(text,phrase)

Description: The search(function searches through an item of text looking for a character, word or
phrase. If it finds an exact match (including upper/lower case) with the character, word
or phrase it returns it’s position within the text item. If it does not find the character,
word or phrase it returns zero.

Parameters: This function has two parameters: text. and phrase.

text is the item of text that you want to search through.

phrase is the character, word or phrase that you want to search for. This must be the
exact character, word, or phrase, including upper or lower case. The search(function will
not match Dr with DR or dr.

Result: The result of this function is always a positive integer numeric value, for example 0, 1, 2,
3, etc.

Examples: This simple procedure uses the search(function to attempt to locate and display a fax
number in the Notes field. This procedure assumes that the fax number will look some-
thing like this: fax (999) 555-0123.

local X
X=search(lower(Notes),"fax (")
if X ≠0

message "Fax Number: "+Notes[X+4;14]
endif

 The example starts by searching for the phrase fax (. If it finds this phrase, it displays the
14 characters starting with the (symbol. (By using the lower(function the procedure
makes sure that search(will find a match even if the word fax is all or partially in upper
case.) By removing the text that has already been searched through a procedure can
locate multiple occurrences of a character, word or phrase. This procedure attempts to
locate every phone number and collect them all into a list.

local X,XNotes,XPhone,PhoneList
X=1 XNotes=Notes
PhoneList=""
loop

X=search(XNotes,"(")
stoploopif X=0
XPhone=XNotes[X;14]
if XPhone match "(???) ???-????"

PhoneList= sandwich("",PhoneList,",")+XPhone
X=X+14

endif
XNotes=XNotes[X+1,-1]

while forever
message "Phone Numbers: "+PhoneList

After each successful search the procedure lops off the section of the text that has already
been searched, and then starts over again. The process continues until there are no more
matches.

Page 5708
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example
search(Notes,34) . If you have a number you must convert the number to text before
using it with this function, for example length(Notes, str(34)) .

See Also: replace(function
replacemultiple(function
extract(function
array(function

Page 5709
SECONDS(...)
SECONDS(

Syntax: SECONDS(TEXT)

Description: The seconds(function converts text into a number representing a time. See also time(

Parameters: This function has one parameter: text.

text is the text that you want to convert to a number representing a time. The text must
contain a valid time. Here are some examples of valid times:

4:13 PM
11:00 AM
2:30
18:45

 The time(function also converts text into a number, but is more flexible about the time
formats it will accept.

Result: This function returns a number representing the time. The number is the number of sec-
onds since midnight. For example, if the time is 10:23 AM this function will return the
number 37,380.

Examples: The example below asks the user to enter a time, then selects all the flights departing
between one hour before and one hour after the specified (1 hour contains 3600 seconds).
The text entered by the user is converted to a number by the seconds(function before it
is compared with the DepartureTime field.

local xTime
xTime=""
gettext "Select flights around what time?",xTime
select DepartureTime ≥seconds(xTime)-3600 and
DepartureTime ≤seconds(xTime)+3600

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to convert a numeric value.

See Also: timepattern(function
now(function

Page 5710
SELECT
SELECT

Syntax: SELECT true-false test

Description: The Select statement makes visible only those records for the active database which
match the true-false test. This statement will work on all fields except Picture type fields.

Parameters: This statement has one parameter: true-false test.

true-false test may be one or more functions or equations which result in a true or a false
condition. Multiple true-false tests must be separated by an and or an or operator.
Grouping true-false tests inside parenthesis () will give those tests priority in the pro-
cessing order when Panorama evaluates them.

Action: This statement is used to make visible all records that match the true portion of the true-
false test. All records not matching the select criteria will be invisible. If a subset of
records are already selected from the database select will examine all records looking for
a match. You do not need to have the cursor on the field you are performing the select on
prior to executing the select.

Compound true-false tests connected by an or operator(s) requires only one of the tests
to be true to make the test true. Compound true-false tests connected by an and opera-
tor(s) requires all tests to evaluate true to make the test true.

The record count, in the horizontal scroll bar, will reflect any change in the visible record
count after the result of a successful select operation. The record count option can be
turned on or off by using the Show Record Count command under the Setup menu.

Note: If no records match a true test and the select statement is the last procedure
statement executed Panorama will display an alert dialog warning your that no records
were selected and reverts you back to the previous selection. If the select statement is
not the last procedure statement and the select fails the warning will be suppressed. You
may use the info("empty") function to test to see if a select fails (see examples below.)

Examples: This statement has the same effect as clicking on the Select button in the Find/Select dia-
log, Search menu. This example selects all records for John Smith.

select Customer = "John Smith"

This example selects all records for Votes over 12000.

select Votes > 12000

This example selects all records on or after January 1 1995.

select «Date Shipped» ≥ date("1/1/95")

This example shows how you can test to see if records were selected matching the input
Work Order No. using the info("empty") function. Work Order No. is a numeric field.

getscrap "Enter Find value."
select «Work Order No.» = val(clipboard())
if (not info("empty"))

field «Mark Record»
fill "X"

else
message "There are no records for Work Order: "+ clipboard()
stop

Page 5711
endif
...
...
...

In this example the info("empty") function is used to test to see if no records were
selected for the date entered.

local ADate
gettext "Enter date ex. 12/31/95",ADAte
select «Process Date» = date(ADate)
if info("empty")

beep
message "No records match this date: "+ADate
stop

endif
field «Sales Rep»
...
 ...
 ...

This example uses a compound true-false test that must match a name to either Cus-
tomer or Company and who has made a Purchase Price more than $500.

local Name
gettext "Enter name:",Name
select (Customer contains Name or Company contains Name)

and «Purchase Price» > 500
if info("empty")

beep
message "No records selected."

endif

This example uses a formula to test multiple text fields to select the records where the
variable's contents matches any one of those fields.

local TheText
gettext "Enter selection criteria:",TheText
select " "+Customer+" "+Company+" "+Address+" "+Comments contains TheText
if info("empty")

beep
message "No records selected."

endif

Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
selectadditional statement
selectall statement

Page 5712
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5713
SELECTADDITIONAL
SELECTADDITIONAL

Syntax: SELECTADDITIONAL true-false test

Description: The selectadditional statement may add unselected records to a previously selected
group if they match the true-false test.

Parameters: This statement has one parameter: true-false test.

true-false test may be one or more functions or equations which result in a true or a false
condition. Multiple true-false tests must be separated by an and or an or operator.
Grouping true-false tests inside parenthesis () will give those tests priority in the pro-
cessing order when Panorama evaluates them.

Action: This statement is used to add records to a previously selected group that match the true
portion of the true-false test. All records not matching the true-false test will remain
invisible. If a subset of records are already selected from the database selectadditional
will examine all invisible records looking for a match. You do not need to have the cursor
on the field you are performing the select on prior to executing the selectadditional.

Compound true-false tests connected by an or operator(s) requires only one of the tests
to be true to make the test true. Compound true-false tests connected by an and opera-
tor(s) requires all tests to evaluate true to make the test true.

The record count, in the horizontal scroll bar, will reflect any change in the visible record
count after the result of a successful selectadditional operation. The record count option
can be turned on or off by using the Show Record Count command under the Setup
menu.

Note: If no records match a true test and the selectadditional statement is the last proce-
dure statement executed Panorama will display an alert dialog warning your that no
records were selected and reverts you back to the previous selection. If the selectaddi-
tional statement is not the last procedure statement and the selectadditional fails the
warning will be suppressed. You may use the info("empty") function to test to see if a
selectadditional fails (see examples below.)

This statement will work on all fields except Picture type fields.

This statement has the same effect as clicking on the Select Additional button in the
Find/Select... dialog, Search menu.

Examples: This example selects all records for Hawaii and then selects additional records for Cali-
fornia.

select State = "HI"
selectadditional State = "CA"

 This example selects all records for shipments on or after January 1 1995 and then selects
all records marked Backorder.

select «Date Shipped» ≥ date("1/1/95")
selectadditional «Status» = "Backorder"

This procedure will allow you to keep adding records to the selection until you enter a
blank (null) for the City name, then it stops.

Page 5714
getscrap "Enter City"
select «City» = clipboard()
SelectMore: ;This is a label for the goto
getscrap "Enter City"
if clipboard() ≠ ""

selectadditional «City» = clipboard()
goto SelectMore

else
stop

endif

In this example the info("empty") function is used to test to see if no records were
selected for the dates entered.

local ADate
gettext "Enter Process Date ex. 12/31/95",ADAte
select «Process Date» = date(ADate)
if info("empty")

beep
message "No records match this date: "+ADate
stop

else
gettext "Enter Release Date ex. 12/31/95",ADAte
selectadditional «Release Date» = date(ADate)
if info("empty")

beep
message "No records match this date: "+ADate
stop

endif
endif
field «Sales Rep»
...
...

Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectall statement
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5715
SELECTALL
SELECTALL

Syntax: SELECTALL

Description: The Selectall statement allows you to make all records in the database previously unse-
lected visible.

Parameters: This statement has no parameters.

Action: This statement is used to make all previously unselected (or invisible) records selected
(or visible). After successful completion the record count, in the horizontal scroll bar,
should reflect success by showing that the number of visible records is the same as the
total number of records. The record count option can be turned on or off by using the
Show Record Count command under the Setup menu.

Note: If the record count shows a discrepancy between the number of visible records and
the total number of records after the selectall statement is used it may be due to having
previously collapsed a database to a summary level with either the collapse or the out-
linelevel statements or commands. Combining the statement outlinelevel "data" in your
procedure either before or after a selectall statement should make visible all records pre-
viously collapsed and made unselected. See example two below for more information.

This statement has the same effect as choosing the Select All command from the Search
menu.

Examples: This example selects all records in the active database that were previous unselected.

selectall

This example illustrate three statements you should place at the beginning of a proce-
dure as a general housekeeping task to make certain you are working with all of the data
records only in your database.

selectall
outlinelevel "data"
removesummaries 7

 This example uses the previous example combined with a procedure to export today's
sales records, if they exist, and then selecting all the records at the end.

selectall
outlinelevel "data"
removesummaries 7
select «Purchase Date» = today()
if info("empty")

opensound "SoundStuff"
playsound "Bummer"
message "No sales today."
stop

endif
openform "Export Sales Data"
saveastext datepattern(today(),"mm/dd")+"Sales.txt"
closewindow
selectall

Page 5716
Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectadditional statement
selectreverse statement
selectsummaries statement
selectwithin statement

Page 5717
SELECTALLOBJECTS
SELECTALLOBJECTS

Syntax: SELECTALLOBJECTS

Description: The selectallobjects statement will select all the graphic objects in the current form. (This
is the same concept as going into graphics mode and choosing the Select All command.)
After the objects are selected you can get information about them or change the
attributes of certain objects.

Parameters: This statement has no parameters.

Action: This statement allows a procedure to select all the graphic objects within a form. Once
the objects are selected they can be examined or changed. This gives Panorama a limited
capability to actually change forms on the fly.

Examples: This example will reduce the brightness of every object in the form by 20%.

selectallobjects
changeobjects "color", hsb(
hue(objectinfo("color")),
saturation(objectinfo(),0.8* brightness(objectinfo("color")))
selectnoobjects

Views: This statement may be used in Form views.

See Also: changeobjects statement
selectobjects statement
selectnoobjects statement
object statement
objectid statement
objectnumber statement
objectinfo(function

Page 5718
SELECTDUPLICATES
SELECTDUPLICATES

Syntax: SELECTDUPLICATES formula

Description: The selectduplicates statement locates duplicate information in the database.

Parameters: This statement has one parameter: formula.

formula tells Panorama what data to check for duplicates. If the formula is empty ("")
Panorama will check in the current field. If the formula is not empty the formula will
build the data that is actually checked for duplicates. For example to look for records
where both the first name and last name are duplicated the formula would be First-
Name+" "+Last Name. (Note: The formula must produce a text item as the result. If you
want to include numeric fields they must be converted to text with the str(or pattern(
function. If you want to include date fields they must be converted to text with the date-
pattern(function.)

Action: This statement selects duplicate records. To work properly, the database must be sorted
according to the formula used (see the examples below).

This statement has the same effect as choosing the Select Duplicates command in the
Search menu.

Examples: This example selects records with duplicate check numbers.

field «Check#»
sortup
selectduplicates ""

This example selects all records with duplicate names (both first and last name must be
duplicated).

field FirstName
sortup
field LastName
selectwithin
selectduplicates FirstName+" "+LastName

Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectall statement
selectreverse statement

Page 5719
selectsummaries statement
selectwithin statement
sortup statement

Page 5720
SELECTNOOBJECTS
SELECTNOOBJECTS

Syntax: SELECTNOOBJECTS

Description: The selectnoobjects statement will unselect all the graphic objects in the current form.
(This is the same concept as going into graphics mode and clicking on an empty spot.)

Parameters: This statement has no parameters

Action: This statement allows a procedure to unselect all the graphic objects within a form. Usu-
ally this is done to “clean up” after a procedure has selected graphic objects.

Examples: This example will reduce the brightness of every object in the form by 20%. When it is
done it politely unselects the graphic objects.

selectallobjects
changeobjects "color", hsb(
hue(objectinfo("color")),
saturation(objectinfo(),0.8* brightness(objectinfo("color")))
selectnoobjects

Views: This statement may be used in Form views.

See Also: changeobjects statement
selectobjects statement
selectallobjects statement
object statement
objectid statement
objectnumber statement
objectinfo(function

Page 5721
SELECTOBJECTS
SELECTOBJECTS

Syntax: SELECTOBJECTS formula

Description: The selectobjects statement will select one or more objects in the current form based on
the formula supplied. (This is the same concept as going into graphics mode and clicking
on objects to select them.) The formula will usually use the objectinfo(function to get
and compare information about each object. After the objects are selected you can get
information about them or change the attributes of certain objects.

Parameters: This statement has one parameter: formula.

formula is a formula that is used to decide which objects in the current form will be
selected. The selectobjects statement scans the form object by object. For each object it
checks the formula to see if the result is true or false. If the result is true, the object is
selected, otherwise it is not selected.

In order to make a true-false decision about a graphic object, the formula needs to be able
to get information about the object. The only way to do this is with the objectinfo(func-
tion. This function can return one of 17 different object attributes, including the location,
size, name, font, text size, color, and more. Within the formula you can compare these
attributes with the attributes you are looking for to decide which objects should be
selected.

Action: This statement allows a procedure to select graphic objects within a form. Once the
objects are selected they can be examined or changed. This gives Panorama a limited
capability to actually change forms on the fly.

Examples: This example will change all objects in the top 2 inches (144 pixels) of the form to red.

selectobjects rtop(objectinfo("rectangle"))<144
changeobjects "color", rgb(65535,0,0)
selectnoobjects

 This example will change all objects that contain 9 point text to Monaco.

selectobjects objectinfo("textsize")=9
changeobjects "font","Monaco"
selectnoobjects

Views: This statement may be used in Form views.

See Also: changeobjects statement
selectallobjects statement
selectnoobjects statement
object statement
objectid statement
objectnumber statement
objectinfo(function

Page 5722
SELECTREVERSE
SELECTREVERSE

Syntax: SELECTREVERSE

Description: The selectreverse statement allows you to make all visible records invisible and all invis-
ible records visible for the active database.

Parameters: This statement has no parameters.

Action: This statement is used to reverse the selected and unselected with each other in the
active database. For example, if a database has 10 records and 3 are selected prior to
doing a selectreverse, afterwards 7 records will be selected and 3 will be unselected.
After running this statement in a procedure the record count, in the horizontal scroll bar,
should reflect the correct number of visible records. The record count option can be
turned on or off by using the Show Record Count command under the Setup menu.

Since you must have at least one visible record in a Panorama database at any time, if all
records are selected prior to doing a selectreverse the selectreverse will have no effect.

Note: If the visible record count differs from the viewed records on screen it may be due
to having previously collapsed a database to a summary level with either the collapse or
the outlinelevel statements or commands. Combining the statement outlinelevel "data"
in your procedure either before or after a selectreverse statement should make the visible
count match the viewed records on screen.

This statement has the same effect as choosing the Select All command from the Search
menu.

Examples: This example reverses the selection, if one took place, in the active database.

selectreverse

This example uses the select, selectadditional, and selectreverse statements to make visi-
ble group of records not from California, Alaska, or Hawaii and who have paid more
than $50.00 for their product, so that you can print mailing labels for them.

selectall
outlinelevel "data"
removesummaries 7
select «Purchase Price» > 50
selectadditional State="CA" or State="AK" or State="HI"
selectreverse
openform "Avery Labels 5160"
print ""
closewindow
selectall

Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function

Page 5723
info("records") function
info("selected") function
next statement
select statement
selectadditional statement
selectall statement
selectsummaries statement
selectwithin statement

Page 5724
SELECTSUMMARIES
SELECTSUMMARIES

Syntax: SELECTSUMMARIES

Description: The selectsummaries statement selects all the summary records, and makes the data
records invisible. It then converts the summary records into data records.

Parameters: This statement has no parameters

Examples: The selectsummaries statement lets you use summary records in a non standard way. In
the data sheet you can convert an individual record into a summary record by clicking
on the left edge of the record. Using this technique you can arbitrarily scan through a
database and convert a few records to summary records. Then you could use this proce-
dure to select the summary records and turn them back into data records.

selectsummaries

ProVUE does not recommend this use for summary records. Instead, we suggest that
you add a field to your database for marking records. You can easily set up a checkbox to
mark or unmark a record, and then use a procedure like this to select the marked
records.

select Marked ≠""

Views: This statement may be used in a Data Sheet or Form view.

See Also: info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
outlinelevel statement
removedetail statement
select statement
selectadditional statement
selectall statement
selectreverse statement
selectwithin statement
summarylevel statement

Page 5725
SELECTWITHIN
SELECTWITHIN

Syntax: SELECTWITHIN true-false test

Description: The selectwithin statement may reduce a selected group of records to a smaller group
provided they match the true-false test.

Parameters: This statement has one parameter: true-false test.

true-false test may be one or more functions or equations which result in a true or a false
condition. Multiple true-false tests must be separated by an and or an or operator.
Grouping true-false tests inside parenthesis () will give those tests priority in the pro-
cessing order when Panorama evaluates them.

Action: This statement is used to remove records from a previously selected group. The records
kept in the group must match the true portion of the true-false test for selectwithin. All
records not matching the true-false test will become invisible. If a subset of records are
already selected from the database selectwithin will examine only the visible records
looking for a match. You do not need to have the cursor on the field you are performing
the select on prior to executing the selectadditional.

Compound true-false tests connected by an or operator(s) requires only one of the tests
to be true to make the test true. Compound true-false tests connected by an and opera-
tor(s) requires all tests to evaluate true to make the test true.

The record count, in the horizontal scroll bar, will reflect any change in the visible record
count after the result of a successful selectwithin operation. The record count option can
be turned on or off by using the Show Record Count command under the Setup menu.

Note: If no records match a true test and the selectwithin statement is the last procedure
statement executed Panorama will display an alert dialog warning your that no records
were selected and reverts you back to the previous selection. If the selectwithin state-
ment is not the last procedure statement and the selectwithin fails the warning will be
suppressed. You may use the info("empty") function to test to see if a selectwithin fails
(see examples below.)

This statement will work on all fields except Picture type fields.

This statement has the same effect as clicking on the Select Within button in the Find/
Select dialog, Search menu.

Examples: This example selects all records for Hawaii and then narrows that group down to records
in Maui only.

select State = "HI"
selectwithin City = "Maui"

 The previous example's results could also have been achieved by this single procedure
statement.

select State = "HI" and City = "Maui"

This example selects all records for shipments on or after January 1 1995 and then
reduces that group to shipments in New Jersey.

Page 5726
select «Date Shipped» ≥ date("1/1/95")
selectwithin «City» = "NJ"

 This procedure will allow you to reduce the selected group by a maximum purchase
price.

getscrap "Enter cut-off date."
select «Purchase Date» = date(clipboard())
if info("empty")

message "No records selected, try again."
stop

endif
TryAgain:
getscrap "Enter maximum price."
selectwithin «Price» < val(clipboard())
if info("empty")

message "No records below "+ clipboard()+", try again."
goto TryAgain

endif

This procedure uses a compound true-false test for the selectwithin statement to narrow
down the selection of records to ones with a blank Ship To field and that match the first
three digits of Zip to the numbers entered.

getscrap "Enter cut-off date."
select «Purchase Date» = date(clipboard())
if info("empty")

message "No records selected, try again."
stop

endif
getscrap "Enter Zip[1,3]."
selectwithin «Ship To» = "" and Zip[1,3] = clipboard()
if info("empty")

message "No records selected, try again."
stop

endif

Views: This statement may be used in any view.

See Also: find statement
findselect statement
formulafindselect statement
info("empty") function
info("found") function
info("records") function
info("selected") function
next statement
select statement
selectadditional statement
selectall statement
selectreverse statement
selectsummaries statement

Page 5727
SEQ(...)
SEQ(

Syntax: SEQ()

Description: The seq(function returns a sequential numbers (1, 2, 3, etc.). This function only works in
conjunction with the formulafill, select, find, and arrayfilter statements.

Parameters: This function has no parameters.

Result: When it is used with the formulafill, find or select statements, the seq() function return a
sequential number for each record (the first selected record is 1, the second is 2, etc.).

When it is used with the arrayfilter statement, the seq() function returns a sequential
number for each element in the array being processed (the first array element is 1, the
second is 2, the third is 3, etc.).

When it is used at any other time, the seq() function returns the number 1.

Examples: This procedure selects the first 10 records in the database:

select seq() ≤10

The procedure below will select every 5th record in the database.

select (seq() mod 5)=0

By changing the 0 in this formula to 1, 2, 3, or 4 you can select different sets of data, but
still 20% of the database each time. This procedure can be used as a subroutine. It takes
the array passed to the subroutine as parameter 1 and adds line numbers to it. Parameter
2 is the separator character for the array. The line numbers will be surrounded by paren-
thesis, for example (1) New York, (2) Tokyo, etc.

local tempArray
tempArray=parameter(1)
arrayfilter tempArray,tempArray, parameter(2),"("+ str(seq())+") "+ import()
setparameter 2,tempArray

Errors: This function does not produce any errors.

See Also: select statement
find statement
formulafill statement
import(function

Page 5728
SEQUENCE
SEQUENCE

Syntax: SEQUENCE values

Description: The sequence statement fills every visible cell in the current field with a numeric
sequence, for example 1, 2, 3 or 12, 24, 36, ….

Parameters: This statement has one parameter: values

values is a text item that specifies the starting and increment values for the sequence. If
values contains two numbers the first number is the starting value and the second num-
ber is the increment value (amount that will be added each time). If values contains one
number this number is used as the starting value and the increment value is one. Here
are some examples of values parameters and the resulting sequence of numbers:

When values is the word dialog Panorama will pause the procedure and present the user
with the Sequence dialog. This allows the user to enter his or her own starting value and
increment. Clicking on the Ok button will allow the procedure to continue.

Action: This statement fills the current field with numbers according to an arithmetic sequence.
It has the same effect as using the Sequence command from the Math menu.

Note: This statement may only be used if the current field is a Numeric field. The
sequence statement will not work with text, dates, or pictures.

Examples: This example assigns numbers to invoices that don’t have a number yet, starting with
1000.

field InvoiceNumber
select sizeof(InvoiceNumber)=0
sequence "1000 1"

 This example adds a new field for customer number, and automatically assigns num-
bers to each customer.

addfield CustNumber
fieldtype "0 digits"
sequence "1 1"

Views: This statement may be used in any view.

Values Generated Sequence

"1" 1, 2, 3, 4, 5, 6, …

"100" 100, 101, 102, 103, 104, 105, …

"5 5" 5, 10, 15, 20, 25, 30, 35, …

"100 -1" 100, 99, 98, 97, 96, 95, …

"0.1 0.1" 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, …

Page 5729
See Also: fill statement
runningtotal statement
runningdifference statement
emptyfill statement
formulafill statement
propagate statement
propagateup statement
unpropagate statement
unpropagateup statement

Page 5730
SERVERFILE
SERVERFILE

Syntax: SERVERFILE filename

Description: The serverfile statement changes the name of the SQL server file that this Partner/Server
database is attached to (if any). This statement should only be used after you rename the
SQL server file using the Finder. It cannot be used to attach the Panorama database to a
different SQL server database.

Parameters: This statement has one parameter: filename.

filename is the name of the SQL server database that this Panorama database should be
linked to. The file name must contain only upper case letters, numbers, and underscore
(_) characters. It must not contain any spaces, lower case letters, or any other punctua-
tion or symbol. Here are some examples of valid SQL file names:

INVOICES_96
HUMAN_RESOURCES
FALL_REGISTRATION

Here are some examples of illegal SQL file names:

INVOICES 96
Human Resources
FALL_REGISTRATION@UCSD

Action: This statement changes the name of the server file that this database is linked to. This is
a very dangerous statement! You should only use this statement if you have renamed
the server database file on the server computer. (Note: The info("serverfile") function
allows a procedure to find out the current name of the server file linked to this database.)

Examples: Suppose you have an SQL database file named STUDENT_RECORDS, and you rename
that file as TRANSCRIPTS on the server machine (using the Finder to rename the file).
The statement shown below would re-establish the connection between the local Pan-
orama file and the server database.

serverfile "TRANSCRIPTS"

Views: This statement may be used in the Data Sheet and Form views.

See Also: info("serverfile") function
sqlconnection statement

Page 5731
SERVERLOOKUP
SERVERLOOKUP

Syntax: SERVERLOOKUP status

Description: The serverlookup statement controls whether lookups are made in the local database or
refer to the SQL server

Parameters: This statement has one parameter: status.

status should be either 0 or 1. If the value is 0 then lookups in this procedure will come
from the local database. If the value is 1 then lookups will be made directly from the SQL
Server database. Note: In addition to 0 and 1, you may also use "off" or "on, "no" or "yes",
or "false" or "true".

Action: This statement allows the database designer to trade off speed vs. up-to-the-minute
accuracy in lookups made in a procedure. This option only affects Partner/Server data-
bases that are linked to an SQL server database. For up-to-the minute accuracy lookups
should be made directly from the server. However lookups from the server are substan-
tially slower than lookups from the local database. This statement only affects lookups
made in this procedure.

Examples: The example forces the status to be looked up from the local database instead of from the
server.

serverlookup "off"
Status= lookup("Patients","SSN","SSN","Status","",0)
serverlookup "on"

Views: This statement may be used in any view.

See Also: lookup(function

Page 5732
SERVERPLUGOPTIONS
SERVERPLUGOPTIONS

Syntax: SERVERPLUGOPTIONS options

Description: The serverplugoptions statement allows a procedure to control how Panorama will
resolve conflicts when synchronizing between the client and server (after the client data-
base has been modified off-line).

Parameters: This statement has one parameter: options.

options is one of three possible values.

client This means that if a record has been modified by both the client and the server, the
clients changes will be kept and the servers changes will be discarded.

server This means that if a record has been modified by both the client and the server, the
servers changes will be kept and the clients changes will be discarded.

manual This means that if a record has been modified by both the client and the server,
the user will be presented with a list of the changed record and allowed to "cherry pick"
which records to keep.

Action: This statement controls how Panorama resolves conflicts between the server and client.
This option can also be set manually with the Local Options dialog (in the design sheet
Server menu.) (Note: The info("plugandrun") function allows a procedure to find out the
current settings for this database.)

Examples: This example tells Panorama to resolve conflicts in favor of the client.

serverplugoptions "client"

Views: This statement may be used in the Data Sheet and Form views.

See Also: info("plugandrun") function
lockrecord statement
lockorstop statement
unlockrecord statement

Page 5733
SERVERTIMEOUT
SERVERTIMEOUT

Syntax: SERVERTIMEOUT seconds

Description: The servertimeout statement sets the maximum time that the local computer will keep a
record locked if there is no keyboard or mouse activity.

Parameters: This statement has one parameter: seconds.

seconds is the maximum amount of time that the local computer will keep a record
locked if there is no keyboard or mouse activity. If you do not want any timeout (infinite
seconds) set this parameter to 0.

Action: This statement sets the maximum time that the local computer will keep a record locked
if there is no keyboard or mouse activity. This option can also be set manually with the
Local Options dialog (in the design sheet Server menu.) (Note: The info("servertimeout")
function allows a procedure to find out the current timeout value for this database.)

Examples: This example sets the database record locking timeout to 3 minutes.

servertimeout 180

Views: This statement may be used in the Data Sheet and Form views.

See Also: info("servertimeout") function
lockrecord statement
lockorstop statement
unlockrecord statement

Page 5734
SERVERUPDATE
SERVERUPDATE

Syntax: SERVERUPDATE truefalse

Description: The serverupdate statement allows you to temporarily disable record locking and server
updates when using Panorama with an SQL server.

Parameters: This statement has one parameter: truefalse.

truefalse indicates whether you want to disable or enable record locking and server
updates. To disable updates and record locking, use "off", "no", or "false. To enable
updates and record locking, use "on", "yes", or "true"

Action: When using a client/server database, Panorama normally updates the server with full
record locking every time any change is made to the database. If this is unnecessary, you
can make your procedure run much faster by temporarily disabling record locking and
server updates with the serverupdate statement. Important: You should only disable
server updates if you don’t plan to keep the changes you have made. For example, per-
haps you need to use the formulafill statement to prepare data for printing, but will no
longer need the calculated data after the report is printed.

Examples: The example below turns off server updates, then uses the formulafill statement to calcu-
late P/E ratios. Since server updates are turned off, the formulafill will be very fast. In
this case we don’t need to keep the calculated P/E ratios after we are finished printing,
so it is acceptable to turn off the server update.

serverupdate "off"
field Ratio
formulafill Price/Earnings
print dialog
serverupdate "on"
subsetselectall /* restore original data from server */

The last line in this example may not be necessary. If you don't use this line, the data in
the Ratio field will gradually change back to the server values as you work with the
database.

Views: This statement may be used in any view.

See Also: attachserver statement
detachserver statement
formserverlookup statement
info("serverfile") statement
info("serverstatus") statement
lockorstop statement
lockrecord statement
subsetselect statement
subsetselectall statement
unlockrecord statement

Page 5735
SET
SET

Syntax: SET destination,formula

Description: The set statement performs an assignment, much like an equals sign. However, the desti-
nation of the assignment can be calculated on the fly.

Parameters: This statement has two parameters: destination and formula.

destination is a formula that calculates the name of the field or variable that you want to
modify.

formula calculates the value that will be placed into the destination.

Action: Panorama normally copies data info fields or variables with an assignment. For example,
this assignment statement copies the value Westside into the field (or variable) named
City.

City="Westside"

Assignment statements work fine as long as it is known where the data needs to be cop-
ied into when the program is written. But sometimes this is not known, or it needs to
change on the fly. The set statement essentially lets the left hand side of the = change on
the fly.

Examples: The procedure below assumes that the current database contains a field for each day of
the week: Sunday, Monday, Tuesday, etc. The example copies the variable Departure-
Time into the field for the current day (the second line of the procedure calculates the
name of the day.

set
datepattern(today(),"DayOfWeek"),
DepartureTime

Here is the same procedure rewritten without the set statement. This illustrates the
power of the set statement, which in this case is doing the same work as 17 statements.

local dayName
dayName=datepattern(today(),"DayOfWeek")
case dayName="Sunday"

Sunday=DepartureTime
case dayName="Monday"

Monday=DepartureTime
case dayName="Tuesday"

Tuesday=DepartureTime
case dayName="Wednesday"
 Wednesday=DepartureTime
case dayName="Thursday"

Thursday=DepartureTime
case dayName="Friday"

Friday=DepartureTime
case dayName="Saturday"

Saturday=DepartureTime
endcase

Page 5736
Views: This statement may be used in any view.

See Also: formulacalc statement
define statement

Page 5737
SETABOUTMENU
SETABOUTMENU

Syntax: SETABOUTMENU name

Description: The setaboutmenu statement allows you to customize the first item of the Apple Menu.
This item normally displays About Panorama or About Panorama Direct, but you can
customize it to display anything you want.

Note: By using the .CustomAbout and .About procedures you can almost completely
hide the fact that your application is created in Panorama. (However, the Application
Menu in the upper right hand corner of the screen will always show the name Pan-
orama.)

Don’t forget that you must include the Panorama copyright message in any custom
About window that you create with the .About procedure!

Parameters: This statement has one parameter: name.

name is a formula that specifies what should be displayed in the first item of the Apple
Menu. The formula must generate text, for example "My Killer Application" or
info("formname").

Action: The setaboutmenu statement can only be used in a special procedure named ..Custom-
About. This procedure should only have one statement in it, the setaboutmenu state-
ment. If the ..CustomAbout procedure contains any other statements, Panorama may
crash (and possibly burn).

Examples: This example sets the About menu item to About Jim's Killer Database.

setaboutmenu "About Jim's Killer Database"

This example shows how you can create an About menu that dynamically changes.
Depending on the currently active form the Apple menu will display a different name,
for example About Calcu-Metric or About Calcu-Time.

setaboutmenu "About Calcu-"+ info("formname")

The .CustomAbout procedure only applies to the forms and data sheet in the same data-
base as the procedure. As you click from window to window, the About item in the
Apple Menu may change (as in the previous example). When a procedure, flash art, or
design sheet window is open the Apple Menu will display the standard About Pan-
orama…or About Panorama Direct…message. The standard message will also be dis-
played when a window from any other database is active (unless that database also has a
..CustomAbout procedure).

Views: Does not apply. This statement must only be used in the ..CustomAbout procedure.

See Also: None

Page 5738
SETAUTONUMBER
SETAUTONUMBER

Syntax: SETAUTONUMBER number

Description: The setautonumber statement changes the automatically generated number for the next
record that will be added to database. This allows you to generate numbers out of
sequence, or to start the sequence at a specific value.

Parameters: This statement has one parameter: number.

number is the number that should be assigned to the next record that is created. This
must be an integer.

Action: Panorama can automatically number new records as they are added to the database.
This statement allows a procedure to change what the next number will be. A procedure
can find out what the next number will be with the getautonumber statement.

Examples: The example skips autonumbering ahead by 100.

local xNumber
getautonumber xNumber
setautonumber xNumber+100

Views: This statement may be used in a Data Sheet or Form view.

See Also: getautonumber statement
addrecord statement
insertrecord statement

Page 5739
SETAUTOSAVE
SETAUTOSAVE

Syntax: SETAUTOSAVE file,time

Description: The setautosave statement allows a procedure to turn auto save on or off, and to control
the frequency of auto save.

Parameters: This statement has two parameters: file and time.

file is the name of the database. This database must be open (in memory).

time is the number of minutes between automatic saves. To turn autosave off, set the
time to zero (0). (Note: A procedure can find out the current auto-save setting for any
database with the dbinfo("autosave",…) function.

Action: Panorama can automatically save a database every few minutes. This feature is normally
controlled from the Save As dialog, but can also be controlled by a procedure.

Examples: This example turns on auto-save for the current database. The database will be saved
every 10 minutes.

setautosave info("databasename") ,10

This example turns off auto-save for the current database.

setautosave info("databasename") ,0

Views: This statement may be used in a procedure run from any view.

See Also: save statement
dbinfo(function

Page 5740
SETCHANGES
SETCHANGES

Syntax: SETCHANGES count

Description: The setchanges statement allows a procedure to arbitrarily change the count of the num-
ber of changes made to the current database since the last save.

Parameters: This statement has one parameter: count.

count is a positive integer number.

Action: As you work, Panorama keeps track of how many changes have been made to each data-
base file. It keeps track of this number so that it knows whether or not to ask if you want
to save changes when you close the file. If the number of changes is zero, it will not ask
and will not save the file (since it is already saved).

This statement allows a procedure to arbitrarily change this count. The primary use for
this is to force Panorama to not count any changes the procedure itself makes. (Note: A
procedure can find out the current count of changes using the iinfo("changes") function.

Examples: This example analyzes the data and prints a report. Even though the database is the
same before and after the report is printed, Panorama would normally think the data-
base had been changed. The example “fools” Panorama into thinking the database has
not been changed by the seven statements in between info("changes") and setchanges.

local WasChanges
WasChanges=info("changes")
field Date
group by month
field Amount
total
outlinelevel 1
print dialog
removesummaries 7
setchanges WasChanges

Views: This statement may be used in any view.

See Also: info("changes") function
save statement

Page 5741
SETFILEFINDERINFO
SETFILEFINDERINFO

Syntax: SETFILEFINDERINFO folder,filename,typecreator,position, flags,
creationdate, modificationdate

Description: The setfilefinderinfo statement modifies a collection of information about a file, includ-
ing when it was created and last modified and its position within the window.

Parameters: This statement has seven parameters: folder, filename, typecreator, position, flags, cre-
ationdate, and modificationdate.

folder is a 6 byte binary data item (a path id) that unambiguously describes the location
of the folder where the file should be saved. A path id is a binary data item that unam-
biguously describes the location of a folder on the hard disk. Path id’s are created by the
folder(, dbinfo(and some info(functions, and the openfiledialog and savefiledialog
statements. If this parameter is empty text ("") the folder containing the current database
is assumed.

filename is the name of the file you wish to save. The file name may be up to 31 charac-
ters long, and may not contain / characters.

typecreator is the new 4 character type code and 4 character creator code for this file. If
you don't want to change these codes you can simply specify "".

position is the visual x-y position of this file within the folder (see graphic coordinates).
If you don't want to change the position use 0.

flags is a number that specifies operating system specific options for this file. If bit 14 of
this value is set then the file is invisible. If you don't want to change the flags use 0.

creationdate is contains the time and date the file was created, in SuperDate format (see
superdate(). If you don't want to change this date use 0.

modificationdate contains the time and date the file was last modified, in SuperDate for-
mat (see superdate(). If you don't want to change this date use 0.

Action: The setfilefinderinfo statement allows a procedure to modify the visible properties of a
disk file. It can be used with the getfilefinderinfo statement to examine and modify those
properties.

Examples: This program sets the creation date/time and modification date/time to 9 am today
while leaving all of the other file options undisturbed.

setfilefinderinfo "","Sunset.jpg","",0,0,
superdate(today(), time("9am")),
superdate(today(), time("9am"))

Views: This statement may be used in any view.

See Also: getfilefinderinfo statement
filerename statement
filetypecreator statement
filesave statement
filetrash statement
folder(function

Page 5742
SETMENUMARK
SETMENUMARK

Syntax: SETMENUMARK menu,item,mark

Description: The setmenumark statement adds, changes or removes a mark to a menu item. The
mark is usually a checkmark (for example ✔ Fast), but may be any character.

Parameters: This statement has three parameters: menu, item and mark.

menu is the name or ID number of the menu that contains the item to be marked. The
menu ID is assigned in ResEdit.

item is the name of the menu item, or the number of the menu item within the menu
(starting with 1 at the top). For example, suppose the third item in the Books menu is
Cleared. This menu item may be specified as either "Cleared" or 3.

mark is the character to be used to mark the menu item. To mark the menu item with a
checkmark (✔) use the formula chr(18). To mark the item with a diamond (◆) use the
formula chr(19). To remove any mark from this menu item use the formula "" (empty
text).

Action: This statement adds a mark to a menu item, changes the mark associated with a menu
item, or removes the mark associated with a menu item. (Note: Only custom menus can
be marked by a procedure. A procedure cannot add a mark to one of Panorama’s stan-
dard menus or to an item in the Action menu.)

Examples: Suppose a database has a Rush menu item in the Order custom menu. The example
below could be part of the .CustomMenu procedure, and handles adding and removing
a checkmark from the Rush menu item (Rush/Rush).

if info("trigger") = "Menu.Order.Rush"
getmenumark "Order","Rush"
if clipboard() = "

setmenumark "Order","Rush", chr(18)
else

setmenumark "Order","Rush",""
endif

endif

Another common use for menu checkmarks is to check one item from a group. The
example below is designed to work with a Shipper custom menu that contains a list of
shipping companies. This example is designed to be part of the .CustomMenu proce-
dure.

global PreferredShipper
local MenuName,MenuItemName
MenuName=info("trigger") [6,"-."][1,-2]
MenuItemName=info("trigger") ["-.",-1][2,-1]
if MenuName="Shipper"

clearmenumarks "Shipper"
PreferredShipper=MenuItemName
setmenumark "Shipper",MenuItemName,chr(18)
stop

endif

Page 5743
Views: This statement may be used in any view that has custom menus installed.

See Also: getmenumark statement
clearmenumarks statement
getmenutext statement
setmenutext statement
menudisable statement
menuenable statement
menubuild statement
getmenus statement
setmenus statement

Page 5744
SETMENUS
SETMENUS

Syntax: setmenus menulist

Description: The setmenus statement sets up a new custom menu bar configuration. Using this state-
ment you can add or remove menus from the top of the screen.

Parameters: This statement has one parameter: menulist.

menulist is a text item that must contain a list of the menus you want to appear in the
menu bar (across the top of the screen). The menu numbers in the list should be sepa-
rated by one or more spaces. Menu numbers below 128 are standard Panorama menus
(see the list of standard menus below). Menus above 128 are custom menus which you
create with a resource editing program like ResEdit.

Action: This statement allow menus to be added, removed or re-arranged in the menu bar at any
time. Only the menus for the current form or data sheet are affected. This statement is
the same as using the Install Custom Menus command in the Setup Menu.

Examples: The example below will change the configuration of the menu bar. If the userMode vari-
able indicates that the user is an expert, the menu will contain the menus: Apple, File,
Edit and four custom menus. If the user is not an expert there will be only one custom
menu.

if userMode="Expert"
setmenus "1 27 S18 E37 3004 3005 3006 3008"

else
setmenus "1 27 S18 E37 3006"

endif

Menu Number Notes

Apple 1 Apple Menu

File 7 Use in Data Sheet window

File 27 Use in Form windows

Window S18 Arrange (submenu of FIle menu)

Edit E19 Use in Data Sheet window

Edit E37 Use in Form windows

Fields 28 Normally used in Data Sheet window

Text 73 Normally used in Data Sheet window

Font S3 Submenu of Text menu

Size S4 Submenu of Text Menu

Search 8

Sort 9

Math 10

Setup 68 Normally used in Data Sheet window

Setup 70 Normally used in Form window

Page 5745

Views: This statement may be used in Data Sheet and Form views.

See Also: menubuild statement
getmenus statement
setmenutext statement
getmenutext statement
setmenumark statement
getmenumark statement
clearmenumarks statement
menudisable statement
menuenable statement

Page 5746
SETMENUTEXT
SETMENUTEXT

Syntax: SETMENUTEXT menu,item,text

Description: The setmenutext statement changes the text of a menu item. For example you could use
this to change Locked to Unlocked, or Fast to Slow.

Parameters: This statement has three parameters: menu, item and text.

menu is the name or ID number of the menu that contains the item to be changed. The
menu ID is assigned in ResEdit.

item is the name of the menu item, or the number of the menu item within the menu
(starting with 1 at the top). For example, suppose the third item in the Books menu is
Post Now, and you want to change this item to Post Later. The item parameter may be
either "Post Now" or 3.

text is the new text for the menu item. This may be up to 40 characters long.

Action: This statement renames a single item within a menu. Be careful when you change menu
items on the fly. This can create a very confusing user interface. (Note: Only custom
menus can be changed. You cannot change Panorama’s standard menus or the items in
the Action menu with this statement.)

Examples: This example changes the third menu item in the Books custom menu.

if Cash>2500
setmenutext "Books",3,"Post Now"

else
setmenutext "Books",3,"Post Later"

endif

This example toggles the fifth menu item in the Preferences custom menu between Fast
and Slow.

getmenutext "Invoice",5
if clipboard() contains "Fast"

setmenutext "Preferences",5,"Slow"
else

setmenutext "Preferences",5,"Fast"
endif

Views: This statement may be used in any view that has custom menus installed.

See Also: getmenutext statement
setmenumarkk statement
getmenumark statement
clearmenumarks statement
menudisable statement
menuenable statement
menubuild statement
getmenus statement
setmenus statement

Page 5747
SETPARAMETER
SETPARAMETER

Syntax: SETPARAMETER parameter#,value

Description: The setparameter statement is used to transfer data from a subroutine back to the main
procedure that called it.

Parameters: This statement has two parameters: parameter# and value.

parameter# is a number specifying what parameter you want to modify. All parameters
are numbered, starting with 1 (1, 2,3, 4, etc.). A parameter may only be modified if it is a
field or variable. If a parameter is a more complex formula, it cannot be modified. For
example if the parameter is Name or BookCount it can be modified. If the parameter is
upper(Name), "Frank", or City+", "+State it cannot be modified. If you attempt to modify
a parameter that is not a simple field or variable, an error will occur (which can be
trapped with if error.)

value is a formula that calculates the value that will be placed into the parameter. If the
parameter is a variable this value must be a text value. If it is a numeric value it will be
converted into a text value before it is placed in the variable.

Action: When a procedure uses the call statement to activate a subroutine, it can pass one or
more values to the subroutine. These values are called parameters. If a parameter is in a
field or variable, the subroutine can use the setparameter statement to modify the value
and pass it back to the original procedure.

Examples: The procedure below (called .GetNumber) assumes that two parameters will be passed
to it, and it modifies the second parameter.

; Subroutine: .GetNumber
;
; This subroutine expects two parameters:
; (1) prompt text
; (2) new value (a number)
;
; Example:
; call .GetNumber,"How many weeks",WeekCount
;
local temptext
temptext= str(parameter(2))
gettext parameter(1),temptext
setparameter 2,temptext

The procedure below uses the .GetNumber procedure to ask the user to enter a number.
It then uses that number (which is placed in the addCount variable, the second parame-
ter to the call statement) to determine how many records to add to the database. Notice
that the addCount value must be converted to a number after it is returned by the sub-
routine.

local addCount
addCount=1
call .GetNumber,"Add how many records?",addCount
addCount=val(AddCount)
loop

stoploopif addCount=0

Page 5748
addrecord
addCount=addCount-1

while forever

Views: This statement may be used in any view.

See Also: call statement
farcall statement
parameter(function

Page 5749
SETPLUGANDRUN
SETPLUGANDRUN

Syntax: SETPLUGANDRUN mode

Description: The setplugandrun statement controls how Panorama will resolve conflicts between the
client and server when the client database is reconnected to the server after being used
off line.

Parameters: This statement has one parameter: mode.

mode specifies the way this database will handle records that have changed on both the
server and client when synchronizing with the server database. There are four possible
mode:

Action: This statement changes the plug-and-run mode of the current database. You can also
change this mode manually using the Local Setup dialog (in the Server menu of the
Design Sheet window).

Examples: This statement changes the plug-in-run mode so that changes made to the current data-
base will override changes made by other users when synchronizing.

setplugandrun "client"

Views: This statement may be used in any view.

See Also: info("plugandrun") function

Mode Description

"off" Don’t allow plug-and-run (database may not
be modified if not connected to server).

"client" In this mode if a record has been modified by
both the client and the server, the client’s

changes will be kept and the server’s
changes will be discarded.

"server" In this mode if a record has been modified by
both the client and the server, the server’s

changes will be kept and the client’s changes
will be discarded.

"manual" In this mode if a record has been modified by
both the client and the server, the user will

be presented with a list of the changed
record and allowed to "cherry pick" which

records to keep.

Page 5750
SETREPORTCOLUMNS
SETREPORTCOLUMNS

Syntax: SETREPORTCOLUMNS columns

Description: The setreportcolumns statement allows a procedure to control the number of columns of
a report, and the direction (across or down). (Note: These options can be set manually
with the Report Preferences dialog.)

Parameters: This statement has one parameter: columns.

columns is the number of columns in the report. This should be a text value, for example
"2", not 2. Use "0" to print as many columns as will fit on the page (the automatic option).
The report normally defaults to printing down, but you may follow the number with
either down or across, for example "3 across" or "2 down". You may abbreviate down
with d and across with a, for example "3a" or "2d".

Action: This statement changes the report preferences for the current form. The statement can
change the number and direction of printed columns.

Examples: The example shows four different options for report columns.

setreportcolumns "2 Down"
setreportcolumns "3 Across"
setreportcolumns "0" /* defaults to down */
setreportcolumns "3a" /* a=across */

Views: This statement may be used in a form view.

See Also: print statement
printonerecord statement
printonemultiple statement

Page 5751
SETRULERS
SETRULERS

Syntax: SETRULERS units

Description: The setrulers statement changes the measurement units (inches, centimeters, etc.) for the
rulers in the current form.

Parameters: This statement has one parameter: units.

units is the measurement unit type to select. There are five choices for measurement
units:

Inches
Centimeters
Pixels
Deca-Pica
Deca-Elite

The first three choices may be abbreviated with their first letter: I , C, or P.

Action: This statement changes the measurement units (inches, centimeters, etc.) for the rulers in
the current form. This setting is also used for the rulers in any word processing objects in
the current form.

Examples: All three of the examples below set the measurement units to centimeters.

setrulers "centimeters"
setrulers "C"
setrulers "c"

 This example sets the units to Deca-Elite.

setrulers "Deca-Elite"

This example toggles the units between inches and centimeters. Each time the procedure
is run it flips to the opposite setting.

if info("rulers") beginswith "i"
setrulers "centimeters"

else
setrulers "inches"

endif

Views: This statement may be used in a form view.

See Also: info("rulers") function

Page 5752
SETTRIGGER
SETTRIGGER

Syntax: SETTRIGGER value

Description: The settrigger statement changes the value returned by the iinfo("trigger") function.
Usually this value is set by Panorama when it triggers a procedure. The settrigger state-
ment allows a procedure to simulate this action.

Parameters: This statement has one parameter: value.

value is the text to be placed into the info("trigger") buffer. The value may be up to 40
characters long.

Action: This statement can fake other procedures into thinking that the user has selected menu
items, pressed buttons, etc.

Examples: The example below triggers the print section of the .CustomMenu procedure. As far as
the .CustomMenu procedure is concerned, it thinks that the user selected Print from the
File menu.

settrigger "Menu.File.Print"
call .CustomMenu

Views: This statement may be used in any view.

See Also: info("trigger") function

Page 5753
SETWINDOW
SETWINDOW

Syntax: SETWINDOW top,left,height,width,options

Description: The setwindow statement specifies the dimensions (size and location) of the next win-
dow that is opened with the openform, opensheet, opencrosstab, openprocedure,
opendesignsheet, or opendialog commands

Parameters: This statement has five parameters: top,left, height, width and options.

top is the position of the top edge of the rectangle. This must be a number between -
32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down and nega-
tive is up.)

left is the position of the left edge of the rectangle. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right and negative
is left.)

height is the height of the rectangle. This must be a number between 0 and +32,767.

width is the width of the rectangle. This must be a number between 0 and +32,767.

options is an item of text that optionally turns off elements of the new window. If the
text contains NoPalette, the window will not have a tool palette. If the text contains
NoVertScroll, the window will not have a vertical scroll bar. If the text contains
NoHorzScroll, the window will not have a horizontal scroll bar. If the text contains
NoDragBar, the window will not have a drag bar across the top (the window will look
like a dialog box). A procedure may combine several options separated by spaces. If the
option text is empty ("") the window will appear normal.

Action: When a new window opens it normally fills almost the entire screen. By using the set-
window statement before opening the window, the procedure can control where the
window appears on the screen. Note: There are two other statements that can perform
the same function: setwindowrectangle and windowbox. Another statement, fitwindow,
can be used to make sure that the new window is completely visible on the screen.

Examples: The procedure below opens the form Balance Options as a 3 inch by 4 inch window with
no scroll bars.

setwindow 72,96,216,288,"noHorzScroll noVertScroll"
openform "Balance Options"

Views: This statement may be used in any view.

See Also: setwindowrectangle statement windowbox statement
opensheet statement
opendesignsheet statement
openform statement
opencrosstab statement
openprocedure statement
opendialog statement
fitwindow statement
zoomwindow statement

Page 5754
rectangle(function
rectanglesize(function
rectanglecenter(function
rectangleadjust(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("maximumwindow") function
info("minimumwindow") function

Page 5755
SETWINDOWRECTANGLE
SETWINDOWRECTANGLE

Syntax: SETWINDOWRECTANGLE rectangle,options

Description: The setwindowrectaangle statement specifies the dimensions (size and location) of the
next window that is opened with the openform, opensheet, opencrosstab, openproce-
dure, opendesignsheet, or opendialog commands

Parameters: This statement has two parameters: rectangle and options. rectangle defines the size and
location of the new window. Most procedures will use the rectangle(or rectanglesize(
functions to create the rectangle.

options is an item of text that optionally turns off elements of the new window. If the
text contains NoPalette, the window will not have a tool palette. If the text contains
NoVertScroll, the window will not have a vertical scroll bar. If the text contains
NoHorzScroll, the window will not have a horizontal scroll bar. If the text contains
NoDragBar, the window will not have a drag bar across the top (the window will look
like a dialog box). A procedure may combine several options separated by spaces. If the
option text is empty ("") the window will appear normal.

Action: When a new window opens it normally fills almost the entire screen. By using the set-
window statement before opening the window, the procedure can control where the
window appears on the screen. Note: There are two other statements that can perform
the same function: setwindow and windowbox. Another statement, fitwindow, can be
used to make sure that the new window is completely visible on the screen.

Examples: The procedure below opens the form Check List in a new window. The new window is
the same size as the current window, but offset 10 pixels down and to the right. The new
Check List window will not have a tool palette or horizontal scroll bar, but it will have a
vertical scroll bar and a drag bar across the top.

local newWindowRect
newWindowRect= rectangleadjust(info("windowrectangle") ,10,10,10,10)
setwindowrectangle newWindowRect,"nopalette nohorzscroll"
openform "Check List"

 The procedure below opens the form Balance Options as a 3 inch by 4 inch dialog box
centered on the main screen. Notice that since the form is opened with the opendialog
statement, the options parameter of the setwindowrectangle statement is ignored.

local newWindowRect
newWindowRect= rectanglecenter(
info("screenrectangle") ,
rectanglesize(1,1,3*72,4*72))
setwindowrectangle newWindowRect,""
opendialog "Balance Options"

Views: This statement may be used in any view.

See Also: setwindow statement windowbox statement
opensheet statement
opendesignsheet statement
openform statement
opencrosstab statement

Page 5756
openprocedure statement
opendialog statement
fitwindow statement
zoomwindow statement
rectangle(function
rectanglesize(function
rectanglecenter(function
rectangleadjust(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("maximumwindow") function
info("minimumwindow") function

Page 5757
SHELLOPENDOCUMENT
SHELLOPENDOCUMENT

Syntax: SHELLOPENDOCUMENT document

Description: The shellopendocument statement opens a document in another application. This state-
ment works on Windows only. On Macintosh systems you must use an AppleScript to
open a document in another application.

Parameters: This statement has one parameter: document.

document is the name and location of the document to be opened.

Action: Use the shellopendocument statement when you need to view a document in another
application, including HTML pages.

Examples: This example opens the Adobe Acrobat document Manual.pdf in the folder My Docu-
ments.

shellopendocument "C:\My Documents\Manual.pdf"

This example opens the HTML document Roadshow.html in the folder My Test Site. The
HTML document will be opened using Internet Explorer.

shellopendocument "C:\My Test Site\Roadshow.html"

Views: This statement may be used in any view (but only on Windows based PC sytems).

See Also: fileinfo(function
fileload(function
folder(function
folderpath(function
import(function
importcell(function
info("files") function
html tables

Page 5758
SHORTCALL
SHORTCALL

Syntax: SHORTCALL label

Description: The shortcall statement allows a procedure to call a sequence of statements within the
current procedure as a “mini-subroutine”. If you want to call an entire procedure as a
subroutine, use the call statement. (Note: Unlike the call statement, the shortcall state-
ment does not allow parameters to be passed to the subroutine.)

Parameters: This statement has one parameter: label.

label identifies the beginning of the mini-subroutine. (The end of the mini-subroutine is
defined by a rtn statement or the end of the procedure.) A label is a unique series of let-
ters and numbers that identifies a location within the procedure. The label may not con-
tain any spaces or punctuation except for . and %, and must always end with a colon.
The colon is not actually part of the label, it simply identifies the series of letters and
numbers as a label instead of a field or variable.

Action: This statement allows a procedure programmer to call a mini-procedure within the cur-
rent procedure as a subroutine. Subroutines make it easy to use the same sequence of
statements at different times within the same procedure. This allows you to write the
statements once and use them again and again rather than duplicating the same state-
ments over and over again.

Subroutines normally finish when the end of the procedure is reached. To stop the sub-
routine before the end of the procedure, use the rtn statement. The rtn statement makes
Panorama return control to the statement just after the shortcall statement.

Examples: The example groups and totals two fields in the database. Instead of repeating the state-
ments that group and total, they have been placed in a mini-subroutine. They can be
called as many times as needed with the shortcall statement. The arrows on the left show
how the procedure will skip back and forth from the main program to the mini-subrou-
tine.

field "GL Category"
shortcall GroupTotal
field "Pay To"
shortcall GroupTotal
stop

GroupTotal:
groupup
field "Debit"
total
rtn

 This example has only one mini-subroutine, but a procedure may contain as many mini-
subroutines as you wish. Each one must begin with a label and end with a rtn statement.

Views: This statement may be used in any view.

Page 5759
See Also: call statement
farcall statement
goto statement
rtn statement

Page 5760
SHOW
SHOW

Syntax: SHOW

Description: The show statement restores normal screen drawing after the hide
statement has been used.

Note: Panorama 3.1 introduced the noshow and endnoshow commands, which we rec-
ommend you use instead of hide and show.

Parameters: This statement has no parameters.

Action: To eliminate unnecessary erasing and display of screens, you should use the hide and
show statements. The hide statement tells Panorama not to redraw windows after each
procedure statement or command. Redrawing remain off until the end of the procedure,
or until the show or showfields statement turns them back on again. The show statement
redraws the window immediately and restores normal operation. Warning: Never
switch windows or open new windows while redrawing is turned off! This may cause
crashes, or in rare cases, data corruption.

Examples: The example below would normally erase and re-display the window four times. Add-
ing the hide and show statements suppresses the extra drawing. The window is only
erased and re-displayed once at the end of the procedure.

hide
field State
groupup
field City
groupup
field Fees
total
outlinelevel "1"
Show

Views: This statement may be used in the Data Sheet, Design Sheet, Crosstab or Form Views.

See Also: noshow statement
endnoshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
noundo statement

Page 5761
SHOWCOLUMNS
SHOWCOLUMNS

Syntax: SHOWCOLUMNS fields

Description: The showcolumns statement forces Panorama to display specified fields. If a data sheet
or view-as-list form is active, the entire column of each field will be updated. This state-
ment should be used when you use the noshow statement and update a field with a
Math Menu statement (total, formulafill, etc.).

Parameters: This statement has one parameter: fields.

fields is a list of fields to be updated. Each field should be separated from the next by a
comma. If a field name contains spaces or punctuation it should be surrounded by chev-
ron (« ») characters.

Action: To eliminate unnecessary erasing and display of screens, you can use the noshow and
showcolumns statements. The noshow statement tells Panorama not to redraw win-
dows after each procedure statement or command. The showcolumns statement
redraws the entire column of the specified fields immediately.

Examples: The example below would normally erase and re-display the window two times. Add-
ing the noshow and showcolumns statements suppresses the extra drawing. The Bal-
ance field is erased and re-displayed only once at the end of the procedure.

noshow
field Balance
Balance=Credit-Debit
runningtotal
showcolumns Balance
endnoshow

Views: This statement may be used in the Data Sheet, Design Sheet, Crosstab or Form Views.

See Also: noshow statement
endnoshow statement
showpage statement
showline statement
showvariables statement
showfields statement
showrecordcounterr statement
showother statement
hide statement
show statement
noundo statement

Page 5762
SHOWFIELDS
SHOWFIELDS

Syntax: SHOWFIELDS fields

Description: The showfields statement forces Panorama to display specified fields. When used with
the noshow statement, showfields restores normal screen drawing. When used with the
endnoshow statement, showfields does not restore normal screen drawing.

Parameters: This statement has one parameter: fields.

fields is a list of fields to be updated. Each field should be separated from the next by a
comma. If a field name contains spaces or punctuation it should be surrounded by chev-
ron (« ») characters.

Action: To eliminate unnecessary erasing and display of screens, you can use the hide or noshow
and showfields statements. The hide or noshow statement tells Panorama not to redraw
windows after each procedure statement or command. The showfields statement
redraws the specified fields immediately. If the hide command is being used, showfields
restores normal display from this point forward. If using the noshow statement, only the
endnoshow statement turns the display back on. Warning: When using hide, never
switch windows or open new windows while redrawing is turned off! This may cause
crashes, or in rare cases, data corruption.

Examples: The example below would normally erase and re-display the window three times. Add-
ing the noshow and showfields statements suppresses the extra drawing. Even though
three fields are modified, only the Balance field is erased and re-displayed once at the
end of the procedure.

noshow
Date= today()
Time= now()
Balance=Credit-Debit
showfields Balance
endnoshow

Views: This statement may be used in the Data Sheet, Design Sheet, Crosstab or Form Views.

See Also: noshow statement
endnoshow statement
showpage statement
showline statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5763
SHOWLINE
SHOWLINE

Syntax: SHOWLINE

Description: The showline statement forces Panorama to redisplay the current record in all windows
in the current database.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to redisplay all of the data in the current record in every
open window of the current database. Use this command after the noshow command
when you have only modified the current record. ShowLine does not turn the display
back on. To do that you must use the endnoshow statement.

Examples: Here is an example that clears the current record in the database, but doesn’t display
anything until it is completely finished.

noshow
field (array(dbinfo("fields",""),1,¶)) /* goto first field */
loop

clearcell
right

until stopped
showline
endnoshow

Views: This statement should only be used when a form or data sheet is active.

See Also: noshow statement
endnoshow statement
showpage statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5764
SHOWOTHER
SHOWOTHER

Syntax: SHOWOTHER field,code

Description: The showother statement forces Panorama to update some data on the screen. The sho-
wother statement allows you to access Panorama's internal display routines. However,
you should avoid using this routine when one of the other show statements can be used
instead (showpage, showline, showvariables, showcolumns, showvariables, or showre-
cordcounter).

Parameters: This statement has two parameters: field and code.

field is the name of the field to update. If you want all fields to be updated, use «».

code is a number that specifies what information should be displayed. The available
codes are:

 0 Current Cell (use ShowFields instead)
 1 Entire page (use ShowPage instead)
 2 cursor moved, data sheet must be updated
 3 cursor moved, data sheet already updated
 4 update after insertline
 5 move cursor up/down
 6 new line with cursor move
97 record count (use ShowRecordCounter instead)
98 column header change (changed field name)
99 database redesign (insert field, etc)

Action: This statement forces Panorama to re-display some data. All windows in the current
database will be affected.

Examples: This example renames all of the fields in the database, using the data in the current
record as the new field names. The new field names are not displayed until the end of the
procedure.

noshow
field array(dbinfo("fields",""),1,¶)
loop

fieldname «»
right

until stopped
showother «»,98 /* display all new field names */
endnoshow

Views: This statement may be used in any view, but it usually only make sense in the form or
data sheet views.

See Also: noshow statement
endnoshow statement
showline statement
showpage statement
showfields statement
showvariables statement
showcolumns statement

Page 5765
showrecordcounter statement
hide statement
show statement
noundo statement

Page 5766
SHOWPAGE
SHOWPAGE

Syntax: SHOWPAGE

Description: The showpage statement forces Panorama to redisplay all windows in the current data-
base.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to redisplay all of the data in every open window of the
current database. ShowPage does not turn the display back on. To do that you must use
the endnoshow statement.

Examples: Here is an example that performs several operations on the current database, but only
updates the display once.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage
showfields

Views: This statement should only be used when a form or data sheet is active.

See Also: noshow statement
endnoshow statement
 showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5767
SHOWRECORDCOUNTER
SHOWRECORDCOUNTER

Syntax: SHOWRECORDCOUNTER

Description: The showrecordcounter statement forces Panorama to redisplay the record counter in all
windows in the current database.

Parameters: This statement has no parameters.

Action: This statement tells Panorama to redisplay the record counter in every open window of
the current database. Use this command after the noshow command when you have
added or deleted records.

Examples: Here is an example that adds three new records to the database but only updates the dis-
play once.

noshow
addrecord
addrecord
addrecord
showpage
showrecordcounter
endnoshow

Views: This statement should only be used when a form or data sheet is active.

See Also: noshow statement
endnoshow statement
showline statement
showpage statement
showfields statement
showvariables statement
showcolumns statement
showother statement
hide statement
show statement
noundo statement

Page 5768
SHOWVARIABLES
SHOWVARIABLES

Syntax: SHOWVARIABLES variables

Description: The showvariables statement forces Panorama to update the display of one or more
variables on a form

Parameters: This statement has one parameter: variables.

variables is a list of variables to be updated. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: When a variable is changed by a procedure, any display of that variable on a form is not
normally updated to show the new value. (Continuously updating all variables would
make Panorama procedures much slower.) However, sometimes you do need Panorama
to update the display of a variable, so that is what the showvariables statement does.
Every graphic object that displays the variable will be updated, including auto-wrap
text, Text Display SuperObjects, and Flash Art. (Note: The showvariables statement will
cause the variable to update in all windows of the current database. It will not affect win-
dows of other database files, even if they happen to display one or more of the specified
variables.

Examples: The example counts and displays the number of times the word um appears in a field
named Transcript. If there is a form open that displays the variable umCount, the num-
ber will update to show the new value when the procedure is finished. However if a
form displays the variable wordCount, that number will not update.

global umCount,wordCount
umCount=0
wordCount=1
loop

if array(Transcript,wordCount," ") contains "um"
umCount=umCount+1

endif
wordCount=wordCount+1
while wordCount< arraysize(Transcript," ")
showvariables umCount

The example is a variation on the previous example. It also counts and displays the num-
ber of times the word um appears in a field named Transcript. This procedure will
update the counts continuously as the procedure loops around and around, letting the
user watch the progress of both the umCount and wordCount variables. The disadvan-
tage is that this procedure will take longer to finish.

global umCount,wordCount
umCount=0
wordCount=1
loop
if array(Transcript,wordCount," ") contains "um"

umCount=umCount+1
endif
showvariables umCount,wordCount
wordCount=wordCount+1
while wordCount< arraysize(Transcript," ")

Page 5769

Views: This statement may be used in a Form view.

See Also: global statement
local statement
noshow statement
endnoshow statement
showline statement
showpage statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5770
SIMULATEDIRECT
SIMULATEDIRECT

Syntax: SIMULATEDIRECT

Description: The simulatedirect statement temporarily downgrades a full version of Panorama and
makes it behave as if it was Panorama Direct. This is sometimes useful for testing a data-
base that is going to be used with Panorama Direct.

Parameters: This statement has no parameters.

Examples: This procedure tells Panorama to simulate Panorama Direct. If you are already using a
copy of Panorama Direct or Panorama Engine this statement will be ignored.

simulatedirect

This procedure restores full Panorama operation (assuming that you started with a full
copy of Panorama).

endsimulate

Views: This statement may be used in any view.

See Also: simulateengine statement
endsimulate statement
info("serialnumber") function

Page 5771
SIMULATEENGINE
SIMULATEENGINE

Syntax: SIMULATEENGINE

Description: The simulateengine statement temporarily downgrades a full version of Panorama and
makes it behave as if it was Panorama Engine (the free trial version of Panorama). This is
sometimes useful for testing a database that is going to be used with the free Panorama
Engine.

Parameters: This statement has no parameters.

Examples: This procedure tells Panorama to simulate Panorama Engine. If you are already using a
copy of Panorama Direct or Panorama Engine this statement will be ignored.

simulateengine

This procedure restores full Panorama operation (assuming that you started with a full
copy of Panorama).

endsimulate

Views: This statement may be used in any view.

See Also: simulatedirect statement
endsimulate statement
info("serialnumber") function

Page 5772
SIN(...)
SIN(

Syntax: SIN(angle)

Description: The sin(function calculates the sine of an angle.

Parameters: This function has one parameter: angle.

angle is a numeric value, an angle. The angle is usually specified in a mathematical unit
of measurement called radians, however, within a procedure you can temporarily force
Panorama to use degrees (see below). One radian is equal to approximately 57.2958
degrees (the exact value is 180/π).

Result: The result of this function is a numeric floating point value between -1 and 1.

Examples: The graph below shows the result of the sine function given input values from 0 to +20
radians.

This formula calculates the sine of an angle in degrees.

sin(Angle*180/ π)

In this example the angle is in a field or variable named Angle, however, you may use
any formula that produces a numeric result in this location. The pi symbol (π) is pro-
duced by pressing OPTION-P. Here is another way to calculate angles in degrees in a
procedure.

degree
NewAngle=sin(Angle)

The degree statement tells Panorama to use degrees instead of radians in all trigonome-
try calculations. Panorama will continue to use degrees until the end of the procedure, or
until a radian statement is encountered.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example sin("23") . If you have a numeric
value in a text item you must convert the text to the number data type before calculating
the sine, for example sin(val("34")) .

Page 5773
See Also: cos(function
tan(function
degree statement
radian statement
arcsin(function
arccos(function
arctan(function
val(function

Page 5774
SINH(...)
SINH(

Syntax: SINH(value)

Description: The sinh(function calculates the hyperbolic sine of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the hyperbolic sine function given input values
from -6 to +6.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example sinh("23") . If you have a numeric
value in a text item you must convert the text to the number data type before taking the
hyperbolic sine, for example sinh(val("34")) .

See Also: cosh(function
tanh(function
arcsinh(function
arccosh(function
arctanh(function
val(function

Page 5775
SIZE
SIZE

Syntax: SIZE size

Description: The size statement specifies the font's point size for the current Data Sheet, Design Sheet,
or Cross Tab window.

Parameters: This statement has one parameter: size

size assigns the point size of the font you've chosen for the active Data Sheet, Design
Sheet, or Cross Tab window. This parameter may be a literal value, field, variable, or for-
mula which results in an integer value for the point size required. System loaded print
fonts will show available point sizes in outline style on Panorama's Size submenu (Text
menu), non-outline point sizes will need to be calculated at print time. However, any
integer point size may be specified for display purposes.

Action: This statement will immediately set the font's point size for the active window to the one
specified provided the window is a Data Sheet, Design Sheet, or Cross Tab window. All
other views will ignore the size statement.

You may also change the font for the window using the font statement or change the
style using the style statement.

This statement has the same effect as using the Size submenu from the Text menu.

Examples: This example changes the point size for the Data Sheet to 10.

opensheet
size 10

 This example allows you to specify the point size you wish to set provided you are in
the proper window.

getscrap "Enter point size: "
size clipboard()

 This example opens a cross tab window called Budget, changes the font to palatino,
changes the point size to 14, prints the window and then returns to the original form.

local form
form = info("formname")
gocrosstab "Budget"
calccrosstab
font "palatino"
size 14
print ""
goform form

Views: This statement may be used in the Data Sheet, Design Sheet, or Cross Tab views only.

Page 5776
See Also: fieldstyle() function
font statement
style statement

Page 5777
SIZEOF(...)
SIZEOF(

Syntax: SIZEOF(fieldvariablename)

Description: The sizeof(function calculates the amount of memory used by a field cell or a variable.

Parameters: This function has one parameter: fieldvariablename.

fieldvariablename is the name of the field or variable that you want to calculate the size
of.

Result: The function returns the number of bytes of memory used by the variable or field cell.

Examples: The sizeof(function can be used to decide if a numeric or date field is empty or not. The
example below selects all the records with no price (not the same as records with a price
of zero).

select sizeof(Price)=0

Another use for the sizeof(function is to check if a variable is taking up too much scratch
memory. This example checks to see if the variable importLetter is more than 500 bytes
long. If it is, the procedure clears the variable.

if sizeof(importLetter)>500
importLetter=""

endif

Errors: Field or variable does not exist. This error occurs if there is no variable or field in the cur-
rent database with the name you have specified. You probably misspelled the field or
variable name.

See Also: length(function

Page 5778
SORTBYCOLOR
SORTBYCOLOR

Syntax: SORTBYCOLOR

Description: The sortbycolor statement sorts the database by the color of cells in the current field.
This is useful if you have assigned a meaning to each color. The sort order is: black, red,
green, blue, cyan, magenta, yellow. To assign colors to individual cells use the style state-
ment.

Parameters: This statement has no parameters.

Examples: This example assumes that the City field is color coded. Black cities will move to the top,
with yellow cities at the bottom.

field City
sortbycolor

Views: This statement may be used in the Data Sheet or Form views.

See Also: groupbycolor statement
sortup statement
sortupwithin statement
sortdown statement
sortdownwithin statement
groupup statement

Page 5779
SORTDOWN
SORTDOWN

Syntax: SORTDOWN

Description: The sortdown statement sorts the database by the current field. The database is sorted in
descending order (high to low).

Parameters: This statement has no parameters.

Examples: This example sorts checks from largest to smallest. To sort in normal order use sortup. To
sort additional fields use sortdownwithin. To sort and divide the database into groups
with summary records use groupup.

field Debit
sortdown

Views: This statement may be used in the Data Sheet or Form views.

See Also: sortup statement
sortupwithin statement
sortdownwithin statement
sortbycolor statement
groupup statement
groupbycolorr statement

Page 5780
SORTDOWNWITHIN
SORTDOWNWITHIN

Syntax: SORTDOWNWITHIN

Description: The sortdownwithin statement sorts the database from high to low by the current field.
However, it leaves any previous sort intact. For example, suppose a procedure sorts by
state, then uses sortdownwithin on the City field. The states will remain in order, but
within each state the cities will now be sorted from Z to A. This process can be repeated
as many times as necessary.

Parameters: This statement has no parameters.

Examples: This example sorts checks by category, then sorts by check amount from hi to low within
each category.

field Category
sortup
field Debit
sortdownwithin

The sortdownwithin can be used over and over again to sort 3, 4, or more fields with
each other. Always start with the regular sortup or sortdown statement followed by as
many sortdownwithin statements as required for additional fields. Since Panorama uses
a “stable” sort algorithm there is another way to sort multiple fields. Instead of using the
sortupwithin statement, a procedure can use the regular sort statement, but sort the
fields in reverse order. Like the previous example, this example sorts by check amount
within categories.

field Debit
sortdown
field Category
sortup

Views: This statement may be used in the Data Sheet or Form views.

See Also: sortup statement
sortupwithin statement
sortdown statement
sortbycolor statement
groupup statement
groupbycolorr statement

Page 5781
SORTUP
SORTUP

Syntax: SORTUP

Description: The sortup statement sorts the database by the current field. The database is sorted in
ascending order (low to high).

Parameters: This statement has no parameters.

Examples: This example sorts a database in zip code order from low to high. To sort in reverse order
use sortdown. To sort additional fields use sortupwithin. To sort and divide the database
into groups with summary records use groupup.

field Zip
sortup

Views: This statement may be used in the Data Sheet or Form views.

See Also: sortdown statement
sortupwithin statement
sortdownwithin statement
sortbycolor statement
groupup statement
groupbycolorr statement

Page 5782
SORTUPWITHIN
SORTUPWITHIN

Syntax: SORTUPWITHIN

Description: The sortupwithin statement sorts the database from low to high by the current field.
However, it leaves any previous sort intact. For example, suppose a procedure sorts by
state, then uses sortupwithin on the City field. The states will remain in order, but
within each state the cities will now be sorted. This process can be repeated as many
times as necessary.

Parameters: This statement has no parameters.

Examples: This example sorts a database by both city and state at the same time.

field State
sortup
field City
sortupwithin

 The sortupwithin can be used over and over again to sort 3, 4, or more fields with each
other. Always start with the regular sortup or sortdown statement followed by as many
sortupwithin statements as required for additional fields. Since Panorama uses a “sta-
ble” sort algorithm there is another way to sort multiple fields. Instead of using the sor-
tupwithin statement, a procedure can use the regular sort statement, but sort the fields
in reverse order. Like the previous example, this example sorts by cities within states.

field City
sortup
field State
sortup

Views: This statement may be used in the Data Sheet or Form views.

See Also: sortdown statement
sortup statement
sortdownwithin statement
sortbycolor statement
groupup statement
groupbycolorr statement

Page 5783
SOUND
SOUND

Syntax: SOUND file sound

Description: The sound statement plays a digitally recorded sound stored in a resource file. Sounds
can be recorded using Sound control panel.

Parameters: This statement has two parameters: file and sound.

file is the name of the resource file that contains the sound. If the resource file is not in
the same folder as the current database, you must specify the entire path name in addi-
tion to the file name, for example: "Disk:Sounds:Star Trek".

sound is the name of the resource that contains the sound.

Action: This statement opens a resource file, plays a sound in that file, then closes the resource
file. If a procedure needs to play several sounds in a row it is faster to explicitly open the
resource file with the opensound statement, then use playsound to play the sound.

Examples: This procedure complains audibly if you attempt to sell an item for less than its cost.

if Price<Cost
sound "Greetings" "Breaking Glass"

endif

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: opensound statement
playsound statement
closesound statement
resources(function

Page 5784
SPEEDCOPY
SPEEDCOPY

Syntax: SPEEDCOPY start,end,from

Description: The speedcopy statement can copy several fields from one database to another very
quickly, or between different records in the same database. The fields in both database
files must be in the same order and be of the same type. WARNING: This statement is for
expert users only! There is very little error checking, and this statement can quickly turn
your database into swiss cheese.

Parameters: This statement has three parameters: start, end and from.

start is the first field to be replaced in the current database. The field name must be sur-
rounded with quotes, for example: "City", not City.

end is the last field to be replaced in the current database. This field must be to the right
of the start field in the data sheet. The field name must be surrounded with quotes, for
example: "Zip", not Zip.

from is the field in the second database that corresponds to the start field in the current
database. The field name must be surrounded with quotes, for example: "City", not City.

Action: This statement is designed to be used in combination with a lookup(function. First you
lookup, then you copy. The speedcopy will copy additional data from the record that
was located by the lookup(function. The speedcopy statement is much faster than mul-
tiple lookups.

Examples: Assume that you have two databases named Customers and Organizer, and both have
fields name Address, City, State and Zip. The example below will quickly look up a cus-
tomer and copy their address into the Organizer database.

Address = lookup("Customers",Company,Company,Address,"",0)
if Address ≠""

speedcopy "City","Zip","City"
endif

 Here is the same procedure but written without using the speedcopy statement.

Address = lookup("Customers",Company,Company,Address,"",0)
City= lookup("Customers",Company,Company,City,"",0)
State= lookup("Customers",Company,Company,State,"",0)
Zip= lookup("Customers",Company,Company,Zip,"",0)

Views: This statement may be used in a Data Sheet or Form view.

See Also: lookup(function
lookuplast(function
lookupselected(function
table(function

Page 5785
SPELLING
SPELLING

Syntax: SPELLING text,position,wordlength

Description: The spelling statement checks the spelling of a section of text. If it finds a spelling error it
identifies the location of the error. This statement requires that the optional Panorama
dictionary be installed.

Parameters: This statement has three parameters: text, position and wordlength.

text is a formula that creates the text the procedure wants to check. This may be a field, a
variable or a more complex formula.

position is a variable that identifies a location within the text. Unlike most other parts of
Panorama, the spelling statement considers the first character to be number 0, the second
to be number 1, etc. See the Action: section for details.

wordlength is a variable that identifies the length of a word that starts at position. See
the Action: section for details.

Action: This statement checks a section of text for spelling errors. If it finds an error, it returns the
position of the incorrect word in the position parameter and the length of the incorrect
word in the wordlength parameter. If it does not find any errors, the wordlength param-
eter will be zero.

The spelling statement does not start with the first word of the text. Instead, it computes
the starting point from the position and wordlength parameters. The starting point is
position+wordlength. This allows the spelling statement to continue scanning after it has
found an error. To start at the beginning set both the position and wordlength parame-
ters to zero.

Examples: This procedure makes a list of all the misspelled words in the Transcript field. It ignores
words that contain non-alphabetic characters.

global misSpellings
local position,size,badWord
position=0 size=0
misSpellings=""
loop

spelling Transcript,position,size
stoploopif size=0
badWord=Letter[position+1;size]
if badWord= striptoalpha(badWord)

misSpelled= sandwich("",misSpellings,",")+badWord
endif

while forever

Views: This statement may be used in any view

See Also: wordlist statement

Page 5786
SPLITLINES
SPLITLINES

Syntax: SPLITLINES raw,pattern1,line1,…,patternN,lineN

Description: The splitlines statement takes a big chunk of text and splits it into two or more smaller
chunks. The statement works by starting at the top and splitting off one or more lines at
a time (hence the name splitlines).

Parameters: This statement has one fixed parameter: raw. It also has two repeating parameters: pat-
tern and line.

raw is the big chunk of text that you want to split into two or more smaller chunks.

pattern is a template for taking the next slice out of the raw chunk of text. The pattern
may be one or two characters long. The first character tells Panorama how many lines
long the next chunk should be (from 1 to 9 lines). You can also specify 0 lines, which tells
Panorama to include all the remaining raw text. The second character, which is optional,
specifies whether or not Panorama should force the text to upper case as it splits it. If this
character is “U” the line will be converted to all upper case. If this character is “W” the
first character of each word in each line will be converted to upper case. However, in
either case this upper case conversion will happen only if the raw text being split off is
entirely lower case to begin with. If the second character is not U or W the text will be left
as is.

line is the name of a field or variable where this slice of the raw text should be placed.

Action: This statement can be used to split up data that is organized line by line.

Examples: Suppose you had an address like the one shown below an you wanted to split it up into
individual fields.

The example below will quickly split the data into the three fields. (Note: The procedure
could split these fields up further with the getname and getaddress statements.)

splitlines Combined,"1W",Name,"1W",Company,"0",Address

Views: This statement may be used in any view.

See Also: getname statement
getcitystatezip statement
getaddress statement
getphone statement
array(function
arrayrange(function
extract(function

Page 5787
SQLCOMMAND
SQLCOMMAND

Syntax: SQLCOMMAND command

Description: The sqlcommand statement sends one or more SQL commands directly to the SQL
server. This command is for SQL propeller heads only (you know who you are)!

Parameters: This statement has one parameter: command.

command is one or more SQL commands.

Action: This statement allows you to program directly in SQL, bypassing all of Panorama’s auto-
matic Partner/Server features. You can use this command to access SQL databases that
are not part of the Partner/Server system. If your SQL command generates any data,
make sure that you read all of the data with the sqlreadcommand. Any leftover data will
confuse the logic of Panorama’s Partner/Server system and possibly cause lost data or
data corruption.

The SQLCommand and sqlread statements must be used in a Partner/Server database.
You may want to set up a “dummy” Partner/Server database just for this purpose. Since
the “dummy” database doesn't contain any data that you will use, it can simply contain
one field and one record. Opening the “dummy” database opens the connection to the
server, allowing SQL commands to be sent to the server.

Examples: This example “prints” a list of field names and types for the SALES table in the FY96
database. The “printed” data must be read by the sqlread command.

sqlcommand "describe columns of FY96.SALES;"+
"for each print -> name,type;"

Views: This statement may be used in the Data Sheet and Form views.

See Also: sqlread statement

Page 5788
SQLCONNECTION
SQLCONNECTION

Syntax: SQLCONNECTION

Description: The sqlconnection statement opens the Server Connection dialog. This is only necessary
if the SQL server file linked to this Panorama database has been moved to a different
server computer.

Parameters: This statement has no parameters.

Action: This statement opens the Server Connection dialog. This dialog is normally opened by
the Server Connection command in the design sheet, however you may use this state-
ment in the data sheet or any form. The only time this statement is needed is if you move
the server to a different machine or change the network connection to the server.

Examples: This example simply opens the Server Connection dialog. This example might be part of
a larger procedure, perhaps the .CustomMenu procedure.

if info("trigger") contains "Server Connection"
sqlconnection
save

endif

Views: This statement may be used in the Data Sheet and Form views.

See Also: attachserver statement
serverfile statement
info("serverstatus") function

Page 5789
SQLREAD
SQLREAD

Syntax: SQLREAD buffer,separator,count

Description: The sqlread statement directly reads one or more items of data from the SQL server. This
command is designed to be used with the sqlcommand statement, and is for SQL propel-
ler heads only (you know who you are)!

Parameters: This statement has three parameters: buffer, separator and count.

buffer is a field or variable that will be used to hold the data from the SQL server. Only
text fields can be used as buffers, not numeric or date fields. If you use a variable, keep in
mind the amount of data you plan to transfer from the server. If you plan to transfer
large amounts of data in one chunk, you may need to increase Panorama’s scratch mem-
ory allocation. This can be done by holding down the SHIFT key while selecting Mem-
ory Usage from the Apple menu, or in a procedure with the scratchmemory statement.

separator is the separator character that will be used in the buffer between SQL data
items Typical separators include carriage returns (¶), tabs (¬), commas, semicolons and
slashes.

count is the number of SQL data items you want to read into the buffer. The SQL server
sends data to the server item by item. For example, suppose you have a database with
fields Name, Address, City, State and Zip and you tell the server to print a record. The
server will send 5 items to the client. You have the choice of reading all five of these items
at once, or of reading them one at a time.

If you don’t know how many data items to expect, you can use 0 as the count. In this case
Panorama will transfer all of the data sent by the SQL server into the buffer. Be careful,
however, that there is enough memory to fit all the data in the buffer. You can use the
arraysize(function to find out how many data items were actually transferred.

Action: This statement allows you to program directly in SQL, bypassing all of Panorama’s auto-
matic Partner/Server features. You can use this command to access SQL databases that
are not part of the Partner/Server system. To generate data, use the sqlcommand state-
ment with SQL print or printall statements. Make sure that you read all of the data you
generate with the sqlread command. Any leftover data will confuse the logic of Pan-
orama’s Partner/Server system and possibly cause lost data or data corruption.

The sqlcommand and sqlread statements must be used in a Partner/Server database.
You may want to set up a “dummy” Partner/Server database just for this purpose. Since
the “dummy” database doesn't contain any data that you will use, it can simply contain
one field and one record. Opening the “dummy” database opens the connection to the
server, allowing SQL commands to be sent to the server.

Examples: This example displays a list of all the SQL databases on the server, with each file name
separated by a comma.

local dbList
sqlcommand "describe databases;printall;"
sqlread dbList,",",0
message dbList

 This procedure returns a carriage return separated array of tables in a databases.

Page 5790
/* Parameters: (1) Name of database, (2) list of tables */
local db,tblList,qc
db=parameter(1)
qc=

"open database "+{"}+db+{"}+";"+
"describe tables of "+{"}+db+{"}+";"+
"for each print -> name;"+
"close database "+{"}+db+{"}+";"

clipboard=qc
sqlcommand qc
sqlread tblList,¶,0
setparameter 2,tblList

Views: This statement may be used in the Data Sheet and Form views.

See Also: sqlcommand statement

Page 5791
SQR(...)
SQR(

Syntax: SQR(

Description: The sqr(function computes the square root of a value.

Parameters: This function has one parameter: value.

value is a numeric value. Only positive numbers can be used as the value.

Result: The result of this function is a numeric floating point value.

Examples: This function calculates the square root of a value. The graph below shows the result of
the square root function given input values from -10 to +10.

If you want to calculate the square root of a negative value you must convert it to a posi-
tive value first using the abs(function.

sqr(abs(myNegativeValue))

(Of course the square root of a negative number is really a complex number, but we’ll
leave that to the mathematics majors!)

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example sqr("23") . If you have a numeric
value in a text item you must convert the text to the number data type before calculating
a square root, for example sqr(val("34")) .

Floating point error. The common logarithm of values 0 or less (negative numbers) is
undefined. If you attempt to calculate the common logarithm of such a number, a float-
ing point error will occur.

See Also: val(function
abs(function

Page 5792
STARTSCRIPT
STARTSCRIPT

Syntax: STARTSCRIPT script

Description: The startscript statement launches an AppleScript script.

Parameters: This statement has one parameter: script.

script is the name of the script that you want to launch. This script should be a file in the
same folder as the current database. If the script is in a different folder you must supply
the complete path to the script, for example "Disk:My Scripts:Check E-Mail".

Action: Starting with System 7.1 the Macintosh has a built in programming language called
AppleScript. The startscript statement allows a Panorama procedure to use Apple-
Script’s to do work that cannot be done by Panorama alone. Panorama itself is scriptable,
so the AppleScript you trigger may change fields or variables within Panorama, or even
call another Panorama procedure.

Examples: The example below is from a database of e-mail messages. When the procedure is started
it finds the first message that has not been sent yet. It then starts an AppleScript called
Send E-Mail, which is supposed to grab the address and body from the letter and send
the e-mail, then mark the Status field to indicate the letter is sent. At this point Panorama
loops back to the top and looks for another unsent message.

loop
find Status="Unsent"
stoploopif notfound
startscript "Send E-Mail"

while forever
save

Views: This statement may be used in any view

See Also: call statement
farcall statement

Page 5793
STATE(...)
STATE(

Syntax: STATE(zip)

Description: The state(function uses Panorama’s optional zip code dictionary to look up the name of
a state associated with a zip code.

Parameters: This function has one parameter: zip.

zip is a US 5 digit zip code. You can specify the zip code either as a number or as text.

Result: The function returns the name of the state for the zip code. If the optional zip code dictio-
nary is not installed, the function will return -- instead of a state name.

Examples: One primary use for the state(function is to enter the state automatically when the zip
code is entered, saving keystrokes and reducing the probability of data entry errors. This
example assumes that the database has a ZipCode field that contains text. The example
uses a text funnel to strip off any extra characters in the zip code (for example 9 digit zip
codes).

City= city(ZipCode[1,5])
State=state(ZipCode[1,5])

Another use for the state(function is to double-check data entry. This example locates all
records where the zip code does not match the state name.

select State ≠state(ZipCode[1,5])

Errors: This function does not generate any error message. However, if the zip code dictionary is
not installed the function will always return -- instead of a state name.

See Also: city(function
county(function

Page 5794
STATEMENTS
STATEMENTS

Introduction: A statement is a single step in a procedure. Most statements start with a special word
(sometimes called a keyword) that identifies this statement, for example sortup, select,
print, or open. Panorama 3 understands over 300 different keywords.

A statement may consist of a keyword all by itself, but many statements require addi-
tional options. These additional options are called parameters. If a keyword uses param-
eters they must immediately follow the keyword in the program.

Statements are not functions! A statement can only be used as a step in a procedure—
not as an element within a formula. Since a procedure may use functions within a for-
mula, statements and functions are sometimes confused.

(Note to experienced programmers: Unlike many programming languages, Panorama’s
keywords are not reserved words. This means, for example, that a database field or vari-
able may be called print or open, even though these are keywords. However, using field
or variable names this way can easily result in programs that are very confusing to read,
so we recommend that you avoid keywords when you are defining fields and variables.

See Also: functions

Page 5795
STATUSMESSAGE
STATUSMESSAGE

Syntax: STATUSMESSAGE message

Description: The statusmessage statement displays a message in the status bar at the bottom of the
procedure window. If the procedure window is not open this statement is ignored.

Parameters: This statement has one parameter message.

message is the text that is to be displayed. You may use any formula to create the text.

Action: Use the statusmessage statement to display information in the status bar at the bottom
of the procedure window. Panorama normally displays the result of each assignment in
this status bar while single stepping, the statusmessage statement allows you to write
anything you want.

Examples: This example uses the statusmessage statement to help monitor the progress of a loop.

local theWord,n,words,sentences
n=1 words=0 sentences=0
loop

theWord= array(replace(replace(Joke,¶," ")," "," "),n," ")
stoploopif theWord=""
theWord= strip(theWord)
words=words+1
statusmessage " ("+ pattern(sentences,"###")+

"-"+ pattern(words,"####")+")"
if theWord contains "." or theWord contains "?" or theWord contains "!"

sentences=sentences+1
endif
n=n+1

while forever
message "Average number of words per sentence: "+ str(words/sentences)

Here is an example of the status bar display after the statusmessage statement.

Views: This statement may be used in any view, but it is ignored if the procedure window is not
open.

See Also: debug statement
message statement
logmessage statement

Page 5796
STOP
STOP

Syntax: STOP

Description: The Stop statement stops the current procedure immediately.

Parameters: This statement has no parameters.

Action: A procedure continues running until it reaches the last statement in the procedure or it
encounters a stop statement. The rtn statement will also stop a procedure if the proce-
dure has not been called as a subroutine. If you only want the procedure to stop under
certain conditions you should use the stop statement with if or case statements.

Examples: This following example will cause the procedure to stop running if the current value of
prices is less that the current value of cost.

if price<cost
message "That's all folks"
stop

endif
Qty=Qty+1

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: rtn statement
debug statement
if statement
case statement

Page 5797
STOPLOOPIF
STOPLOOPIF

Syntax: STOPLOOPIF true-false test

Description: The stoploopif statement decides whether to continue with a loop or to stop and skip to
the end of the loop.

Parameters: This statement has one parameter: true-false test.

true-false test is a formula that should result in a true (-1) or false (0) answer. Usually the
formula is created with a combination of comparison operators (=, ≠, <, >, etc.) and bool-
ean combinations (and, or, etc.) For example the formula Name="Smith" will be true if
the field or variables Name contains the value Smith, and false if it contains any other
value.

Action: This statement decides whether to continue with a loop or to stop and skip to the end of
the loop. If the test is true, the loop will stop and Panorama will skip to the first state-
ment after the loop. If the test is false, the loop will continue normally

Examples: The example builds a list of the alphabetic letters used in the field Notes. The stoploopif
statement is used to test if there are no more characters to check.

local X,aLetter,LetterList
X=1
LetterList=""
loop

aLetter=upper(array(Notes,X,¶))
stoploopif aLetter=""
X=X+1
repeatloopif aLetter ≠striptoalpha(aLetter)
if LetterList notcontains aLetter

LetterList=LetterList+aLetter
endif

while forever

Views: This statement may be used in any view.

See Also: loop statement
until statement
while statement
repeatloopif statement
if statement
else statement
endif statement

Page 5798
STOPTAB
STOPTAB(

Syntax: STOPTAB

Description: The stoptab statement aborts any pending TAB operation.

Parameters: This statement has no parameters.

Action: The StopTab statement is designed to be used in an automatic procedure that is triggered
by data entry. If the procedure was triggered by the Tab key, this statement will prevent
the Tab from occurring after the procedure finishes.

Examples: This example automatically rejects negative values. If the user enters a negative value, an
alert appears, then the input box re-opens so the data can be edited. (Note: In a formula
chevrons with nothing in between («») returns the value of the current field.)

if «» < 0
message "Negative values are not allowed"
stoptab
editcellstop

endif

Views: This statement may be used in a Data Sheet, Design Sheet or Form view.

See Also: editcell statement
editcellstop statement
info("trigger") function

Page 5799
STR(...)
STR(

Syntax: STR(number)

Description: The str(function converts a number into text. A plain format is used. If you want to for-
mat the number, use the pattern(function.

Parameters: This function has one parameter: number.

number is the number that you want to convert to text.

Result: This function returns an item of text containing the converted number.

Examples: The str(function is useful when you need to combine numbers and text together. This
example converts the number Orders to text so that it can be placed in the middle of a
sentence.

message "There have been "+str(Orders)+" orders this week."

If you need to format the number instead of converting with a plain number format, use
the pattern(function.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the number parameter.

See Also: pattern(function
val(function

Page 5800
STRING255(...)
STRING255(

Syntax: STRING255(text,space)

Description: The string255(function converts text into a Pascal string. A Pascal String is a special text
format that is sometimes used by the Macintosh ROM's (also called a String255 or Str255
because the text is limited to a maximum length of 255 characters). (Pascal is the name of
a computer language, which in turn is named after a famous mathematician.)

Parameters: This function has two parameters: text and space.

text is the text that you want to convert into a Pascal string. This text should be less than
255 characters long.

space is a number defining the amount of space taken up by the Pascal string. If space is
zero, the string may be up to 255 characters, and is not padded. If space is from 1 to 255,
the string255(function makes sure that the string takes up exactly this amount of space.
If the string is too long, it will be cut off. If the string is too short, it will be padded with
nulls (bytes containing zeroes).

Result: This function returns a text data item containing a Pascal string.

Examples: See c/pascal structures for examples of the string255(function.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to convert a number to a Pascal string.

Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the space parameter.

See Also: text255(function
byte(function
word(function
longword(function
radix(function
radixstr(function
c/pascal structures

Page 5801
STRIP(...)
STRIP(

Syntax: STRIP(text)

Description: The strip(function strips off leading and trailing blanks and other whitespace (carriage
returns, tabs, etc.)

Parameters: This function has one parameter: text.

text is the item of text that you want to strip.

Result: The result of this function is always a text item.

Examples: The table below shows some examples of how the strip(function affects various items of
text:

As you can see, this function removes blanks at the beginning or end of the text, but does
not affect blanks in the middle of the text. It also removes carriage returns, tabs, or any
character with an ASCII value less than 32. This function can be used to modify fields or
variables, or to display data. This example makes sure that there are no extra blank char-
acters at the beginning or end of a name.

field Name
formulafill strip(Name)

For example, you might use this procedure after you imported data that had extra
blanks.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example strip(34) . If you
have a number you must convert the number to text before using it with this function,
for example strip(str(34)) . Of course this function really doesn’t make much sense
when applied to a number, even if it is converted to text first.

See Also: striptoalpha(function
striptonum(function
stripchar(function
replace(function

Page 5802
STRIPCHAR(...)
STRIPCHAR(

Syntax: STRIPCHAR(text,range)

Description: The stripchar(function removes characters you don’t want from a text item. You specify
exactly what kinds of characters you want and don’t want included in the final output.

Parameters: This function has two parameter: text and range.

text is the item of text that you want to strip.

range specifies what kinds of characters you want to keep and what kinds of characters
you want to strip away. The range consists of one or more pairs of characters. Each pair
specifies a set of characters you want to keep. For example, the pair AZ means that you
want to keep the characters from A to Z. For alphanumeric characters the set is pretty
obvious. For other types of characters you should check an ascii chart. For example the
pair #& specifies a set of four characters: #, $, % and &.

If a pair consists of the same character repeated twice in a row, the set is just that single
character. For instance the pair ## means you want to keep one character: #.

The range may consist of several pairs put together. For example the range AZaz09.. con-
sists of four pairs, and specifies that all letters, numbers, and periods will be kept, with
all other characters stripped away.

Result: The result of this function is always a text item.

Examples: One handy use for this function is to quickly check if a field or variable contains any
inappropriate characters. If a field or variable changes when you run it through the strip-
char(function it must contain characters that are not part of the specified range. The pro-
cedure below checks to make sure that the field StartTime does not have any non-time
characters in it (a %, for example).

if StartTime ≠stripchar(StartTime,"09:: AAaaMMmmPPpp")
message "Invalid character in start time!"

endif

The partial ascii charts below shows exactly how text is affected by different combina-
tions of this function. Characters in the colored area get through, everything else is
removed. (Any part of the ascii chart that is not displayed consists of characters that are
removed.)

Positive/negative numbers with decimal point

stripchar(…,"09-.")

Page 5803
Floating point numbers

stripchar(…,"09-.EEee")

Letters and spaces

stripchar(…,"AZaz ")

US and International Letters

stripchar(…,"AZazÄü")

Page 5804
Everything Except Spaces

stripchar(…,"!ÿ")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example
stripchar(34,"09") . If you have a number you must convert the number to text
before using it with this function, for example stripchar(str(34),"09") .

See Also: ascii
striptoalpha(function
striptonum(function
replace(function

Page 5805
STRIPTOALPHA(...)
STRIPTOALPHA(

Syntax: STRIPTOALPHA(text)

Description: The striptoalpha(function removes everything but alphabetic letters from a text item.
Everything else (numbers, spaces, punctuation, non-English letters, etc.) will be removed
from the text.

Parameters: This function has one parameter: text.

text is the item of text that you want to strip.

Result: The result of this function is always a text item.

Examples: The table below shows some examples of how the striptoalpha(function affects various
items of text:

One handy use for this function is to quickly check if a field or variable contains all
alphabetic characters. If a field or variable changes when you run it through the strip-
toalpha(function it must contain non-alphabetic characters.

if State ≠striptoalpha(State)
message "Hey, I think this state is confused!"

endif

The ascii chart below shows exactly how text is affected by this function. Characters in
the colored area get through, everything else is removed.

Page 5806
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example
striptoalpha(34) . If you have a number you must convert the number to text before
using it with this function, for example striptoalpha(str(34)) . Of course this func-
tion really doesn’t make much sense when applied to a number, even if it is converted to
text first.

See Also: ascii
striptonum(function
stripchar(function
replace(function

Page 5807
STRIPTONUM(...)
STRIPTONUM(

Syntax: STRIPTONUM(text)

Description: The striptonum(function removes everything but numeric digits from a text item.
Everything else (letters, spaces, punctuation, etc.) will by removed from the text.

Parameters: This function has one parameter: text.

text is the item of text that you want to strip.

Result: The result of this function is always a text item.

Examples: The table below shows some examples of how the striptonum(function affects various
items of text:

One handy use for this function is to quickly check if a field or variable contains all
numeric digits. If a field or variable changes when you run it through the striptonum(
function it must contain non-numeric characters.

if CheckNo ≠striptonum(CheckNo)
message "Invalid character in check number!"

endif

The ascii chart below shows exactly how text is affected by this function. Characters in
the colored area get through, everything else is removed.

Page 5808
Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example striptonum(34) .
If you have a number you must convert the number to text before using it with this func-
tion, for example striptonum(str(34)) . Of course this function really doesn’t make
much sense when applied to a number, even if it is converted to text first.

See Also: ascii
striptoalpha(function
stripchar(function
replace(function

Page 5809
STYLE
STYLE

Syntax: STYLE options

Description: The style statement changes the style and color of one or more data dells. (Note: This is
identical to the stylecolor statement.)

Parameters: This statement has one parameter: options.

options is a text item that controls what cells get changed (cell, record, field, all), what
color the cells should be changed to (black, red, green, blue, cyan, yellow, magenta) and
what style (bold, italic, underline, shadow).

If the options start with the word cell, only the current cell will be changed. If the options
start with the word record, all the cells in the current record will be changed. If the
options start with the word field, all the selected cells in the current field will be
changed. If the options start with the word all, every cell in every selected record will be
changed. Here are some examples of different option combinations.

style "field blue bold"
style "all black"
style "cell red italic"
style "record bold"

Action: This statement changes the color and/or style of certain cells. (The color appears in the
data sheet and in data cells displayed in a form if the Use Data Style/Color option in
Form Preferences is turned on.) The cell will retain this color and style until it is changed
again, or until the cell is edited. (When a cell is edited it reverts to plain black.)

Examples: This example makes all negative values in the Balance field red.

select Balance
field Balance
style "field red"
selectall

Views: This statement may be used in a Data Sheet or Form view.

See Also: sortbycolor statement
groupbycolor statement
fieldstyle((function

Page 5810
STYLECOLOR
STYLECOLOR

Syntax: STYLECOLOR options

Description: The stylecolor statement changes the style and color of one or more data dells. (Note:
This is identical to the style statement.)

Parameters: This statement has one parameter: options.

options is a text item that controls what cells get changed (cell, record, field, all), what
color the cells should be changed to (black, red, green, blue, cyan, yellow, magenta) and
what style (bold, italic, underline, shadow).

If the options start with the word cell, only the current cell will be changed. If the options
start with the word record, all the cells in the current record will be changed. If the
options start with the word field, all the selected cells in the current field will be
changed. If the options start with the word all, every cell in every selected record will be
changed.

Here are some examples of different option combinations.

stylecolor "field blue bold"
stylecolor "all black"
stylecolor "cell red italic"
stylecolor "record bold"

Action: The statement changes the color and/or style of certain cells. (The color appears in the
data sheet and in data cells displayed in a form if the Use Data Style/Color option in
Form Preferences is turned on.) The cell will retain this color and style until it is changed
again, or until the cell is edited. (When a cell is edited it reverts to plain black.)

Examples: This example makes all negative values in the Balance field red.

select Balance field Balance
stylecolor "field red"
selectall

Views: This statement may be used in a Data Sheet or Form view.

See Also: sortbycolor statement
groupbycolor statement
fieldstyle(function

Page 5811
SUBSETFORMULASELECT
SUBSETFORMULASELECT

Syntax: SUBSETFORMULASELECT

Description: The subsetformulaselect statement opens the Formula Select from Server dialog. This
dialog is normally opened from the Search Menu.

Parameters: This statement has no parameters.

Action: This statement opens the Formula Select from Server dialog. The user may then type in
a formula which is used to extract a subset from the SQL server database.

Examples: This example simply opens the dialog.

subsetformulaselect

Views: This statement may be used in the Data Sheet and Form views.

See Also: subsetselect statement
selectall statement
subsetselectdialog statement
info("serverstatus") function

Page 5812
SUBSETSELECT
SUBSETSELECT

Syntax: SUBSETSELECT formula

Description: The subsetselect statement selects a subset of the SQL server database and loads it into
the local Panorama database.

Parameters: This statement has one parameter: formula.

formula is a formula that specifies what subset of the SQL server database is to be
loaded into the local Panorama database. There are some very significant restrictions on
this formula compared to a regular Panorama formula. The formula must consist of one
or more comparisons between a field and a value, like this

Field compare-operator Constant

The Field must be just that—one field. You cannot concatenate multiple fields, use text
funnels, or modify the field value with a function. The Constant must also be a single
value like "Smith" or 89. You may not use fields, variables, operators or functions as part
of the constant. The one exception is if the comparison is with a date field. In that case
you may use the date(function, for example date("1/1/97"). However, in this case the
text inside the date function ("1/1/"97") must be a single value with no fields, variables
or operators.

The compare-operator is also restricted. You may not use the soundslike , match ,
matchexact , notmatch , or notmatchexact operators. In addition the endswith, con-
tains, notcontains, like and notlike operators will not be able to take advantage of any
indexes, so they may be quite slow depending on the size of the SQL database and
whether any other indexed compares are part of your formula.

You may combine multiple comparisons with the and or or operators, and you may use
parentheses to control the order in which comparisons are combined.

Action: This statement selects a subset of the SQL server database and loads it into the local Pan-
orama database. If there is not enough room for the entire subset Panorama will load as
much as possible. As a side effect all summary records will be removed from the local
database.

Examples: This example will load all Oregon records into the local Panorama database.

subsetselect State = "OR"

Here are some examples of invalid subsetselect formulas. This example will not work
because the left hand side of the comparison contains the + operator.

subsetselect City+", "+State="Carson, NV"

This example can be rewritten to work correctly like this.

subsetselect City="Carson" and State="NV"

Here is another bogus example that attempts to select all records within the last 30 days.

subsetselect Date>today()-30

Making this example work correctly is a bit tricker. To do so we must assemble the selec-
tion formula in the clipboard.

Page 5813
clipboard={Date>date("}+
datepattern(today()-30,"mm/dd/yyyy")+{")}
subsetselect clipboard

If today's date is August 31, 1997 the first line of this procedure will put Date>date("8/2/
1997") on the clipboard. The subsetselect then uses this formula directly from the clip-
board. Warning: If you use clipboard() instead of clipboard this example will not work!

Views: This statement may be used in the Data Sheet and Form views.

See Also: select statement
subsetselectall statement
subsetselectdialog statement
subsetformulaselect statement
info("subsetformula") statement

Page 5814
SUBSETSELECTALL
SUBSETSELECTALL

Syntax: SUBSETSELECTALL

Description: The subsetselectall statement loads the entire SQL server database into the local Pan-
orama database (if there is enough memory).

Parameters: This statement has no parameters.

Action: This statement copies the entire SQL server database into the local Panorama database. If
there is not enough room for the entire database Panorama will load as much as possible.
As a side effect all summary records will be removed from the local database

Examples: This example loads the entire SQL server database into the local Panorama database,
then analyzes the data.

subsetselectall
field "Date"
groupup by month
field "Amount"
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: subsetselect statement
subsetselectdialog statement
selectall statement
subsetformulaselect statement
info("subsetformula") statement

Page 5815
SUBSETSELECTDIALOG
SUBSETSELECTDIALOG

Syntax: SUBSETSELECTDIALOG

Description: The subsetselectdialog statement opens the Select from Server dialog. This dialog is
normally opened from the Search Menu.

Parameters: This statement has no parameters.

Action: This statement opens the Select from Server dialog. The user may then specify compari-
sons which are used to extract a subset from the SQL server database.

Examples: This example simply opens the dialog.

subsetselectdialog

Views: This statement may be used in the Data Sheet and Form views.

See Also: subsetselect statement
selectall statement
subsetformulaselect statement
info("serverstatus") function

Page 5816
SUM(...)
SUM(

Syntax: SUM(field)

Description: The sum(function adds up all instances of a line item field in the current record. For
example, Sum(QtyΩ) will add up all Qty1+Qty2+Qty3+... for as many line items fields
are in the database. The sum(function has two advantages over simple addition: 1) it’s
easier to type, and 2) it actually calculates faster

Parameters: This function has one parameters: field.

field is the line item field you want to add up. This must be a numeric field, not text. You
must use the Ω symbol (type option-Z) at the end of the field name.

Result: The result of this function is always a numeric value. If the line item field is an integer
the result will be an integer, if the line item field is floating point the result will be float-
ing point.

Examples: This example adds up the Amount line item fields, Amount1+Amount2+Amount3+… .

sum(Amount Ω)

This formula adds up the Tax line item fields.

sum("Tax Ω")

The quotes shown in this example are optional (although they were required in Pan-
orama 2.1 and earlier versions).

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example sum(Description‰) .

Page 5817
SUMMARYLEVEL
SUMMARYLEVEL

Syntax: SUMMARYLEVEL level

Description: The summarylevel statement changes the summary level of the current line.

Parameters: This statement has one parameter: level.

level is a number that specifies the new summary level of the record. This value may be
between 0 (data record) and 7 (highest level summary).

Action: This statement will arbitrarily change the summary level of the current line. This is usu-
ally not a very useful thing to do. It is generally better to let summary records be manip-
ulated by the groupup, removesummaries, and removedetail statements. Note: A
procedure can find out the summary level of the current record with the info("sum-
mary") function.

Examples: This example increases the summary level of the current record. If the current record is a
data record, it becomes a level 1 summary, if it is a level 1 summary it becomes level 2.
(Don’t ask me why you would do this, it’s just an example!)

if info("summary") < 7
summarylevel 1+ info("summary")

endif

Views: This statement may be used in a Data Sheet or Form view.

See Also: groupup statement
groupdown statement
groupbycolor statement
removesummaries statement
removedetail statement
outlinelevel statement
info("summary") function

Page 5818
Super Flash Art Programming
SUPER FLASH ART PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick Refer-
ence:

"FindText"
"ExtractText"

FindText ,<POINT>,<TEXT>

This command returns the text at the specified point in the picture.

Finding out what text a user clicked on takes three components: 1) a Super Flash Art
object, 2) a transparent Standard Button with the click/release option turned off, and 3) a
procedure triggered by the Standard Button. The transparent button should be overlaid
exactly on top of the Super Flash Art object…use the Align command to get exact align-
ment. If the Flash Art object has scroll bars, however, they should not be covered by the
button. Only cover the area where the picture is displayed. The example below shows a
procedure that will figure out what text was clicked on, and what font, size, and style the
text is. The example assumes that the Super Flash Art object is named HyperFlash. (To
give an object a name, first select the object, then use the Object Name command in the
Edit menu or click on the object name in the Graphic Control Strip.)

local v,h,clickPoint
local clickText, clickFont, clickSize, clickStyle
v=v(info("mouse"))- rtop(info("buttonrectangle"))
h=h(info("mouse"))- rleft(info("buttonrectangle"))
clickPoint= point(v,h)
superobject "HyperFlash","FindText",clickPoint,clickText
clickFont= objectinfo("font")
clickSize= objectinfo("textsize")
clickStyle= objectinfo("textstyle")

ExtractText ,,<SIZE>,<STYLE>,<CONNECTOR>,<RESULT>

The SuperObject "ExtractText" command allows all the text that matches specified crite-
ria to be extracted from the picture currently displayed in a Super Flash Art object. This
command has several parameters as shown here:

The first parameter, , specifies the font of the text you want to extract. If you
don’t care what the font is, leave this parameter empty ("").

The second parameter, <SIZE>, specifies the size of the text you want to extract. If you
don’t care, this parameter should be zero.

The third parameter, <STYLE>, specifies the style of the text you want to extract. This
parameter allows you extreme flexibility in selecting what styles you want to extract.

If the Style parameter is zero, any style is ok. For example, if you want to extract all
Monaco 9 point text of any style into a variable named Samples, here’s how you would
do it:

superobject "HyperFlash", "ExtractText","Monaco",9,0,";",Samples

Page 5819
If the Style parameter is 1-255, it specifies the exact style you want. Add up the numbers
for each individual style. For example, for underlined text you would specify 4, for bold
text, 1. The example below will extract all bold text, but not bolditalic or bold under-
lined.

superobject "HyperFlash","ExtractText","",0,1,¶,Samples

If the Style parameter is 256 or greater, it specifies both the style and a mask for the style.
The mask allows you to isolate individual styles. The mask uses the same style numbers
as the individual styles, but multiplied by 256. (Why 256? 256 is 2 the 8th power (28), an
even number in the computer's binary numbering system.) For example, suppose you
wanted to extract all bold text, even bold text that is combined with other styles. By
using a mask of 4*256 you tell the ExtractText command that you only care about the
underlined style. The example below will extract all underlined, underlined-italic,
underlined-bold; any text that is underlined no matter what other attributes it may have.

superobject "HyperFlash","ExtractText","",0,(4*256)+4,¶,Samples

The fourth parameter, <CONNECTOR>, specifies what connector character(s) should be
used between segments as they are extracted. Usually this is a carriage return (¶),
comma, space, slash, etc. The character "t" is a special separator. When this separator is
used, Panorama checks each piece of extracted text to see if it is on the same line as the
previously extracted piece of text. If it is on the same line, Panorama will connect the
pieces with a space. If the two pieces are on different lines, they will be connected with a
carriage return. This allows the extracted text to be more or less reconstructed in its orig-
inal form. (Note: Either "t" or "T" will trigger this special operation.) The final parameter,
Result, is the field or variable that you want the extracted text placed into. The procedure
below displays the number of underlined segments in the current picture.

local KeywordList
superobject "HyperFlash","ExtractText","",0,4,¶,KeywordList
message arraysize(KeywordList,¶)

 The next example takes all the Monaco 9 point text in the current picture and combines
it. It then copies the text onto the clipboard.

local SampleText
superobject "HyperFlash","ExtractText","Monaco",9,0,"t",SampleText
clipboard=SampleText

Page 5820
Super Matrix Programming
SUPER MATRIX PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick
Reference

"ReDraw",<AREA>,<START>,<END>
"CellRectangle",<CELL>,<RECTANGLE>
"CellToXY",<CELL>,<ROW>,<COL>
"MatrixSize",<CELLS>

Redraw ,<AREA>,<START>,<END>

This command redraws some or all of the cells in a super matrix. The first parameter,
<AREA>, defines the area that will be redrawn. Legal options for this parameter are:
"all", "column", "row", and "cell".

The <START> and <END> parameters define the start and end of the area to be redrawn.
For example, if the <AREA> parameter was "column" and the last two parameters were
3 and 5, then columns 3 thru 5 would be redrawn. (Note: The start and end values are
ignored if the "all" area is chosen.)

The following examples illustrate different ways a matrix might be updated. This calen-
dar example redisplays the entire month.

superobject "Month","redraw","all",0,0

This example redisplays only weekdays.

superobject "Month","redraw","column",2,6

This example works with a matrix of photographs. The procedure redisplays photo 7
only.

superobject "Photographs","redraw","cell",7,7

This example redisplays all photos after photo 12. This procedure would be used if
someone inserts or deletes a photograph at position 12.

superobject "Thumbnails","redraw","cell",12,9999

CellRectangle ,<CELL>,<RECTANGLE>

This command returns the dimensions of an individual cell in the matrix. The dimen-
sions are in window co-ordinates. The <CELL> parameter should be a number from 1 to
the maximum number of cells in the matrix. The <RECTANGLE> parameter should be a
field or variable where the rectangle will be stored.

This example uses the "CellRectangle" command to open a new window over the current
matrix cell (the matrix cell that was clicked on).

local subWindowRectangle
superobject "Calendar",
"CellRectangle", info("matrixcell") ,subWindowRectangle
setwindowrectangle subWindowRectangle,""
openform "Day"

Page 5821
CellToXY ,<CELL>,<ROW>,<COL>

This command converts a matrix cell number into a row and column. The example
below displays what row and column were clicked on.

local mRow,mCol
superobject "Thumbnail","CellToXY",info("matrixcell"),mRow,mCol
message "You clicked on row "+ str(mRow)+" and column "+ str(mCol)

MatrixSize ,<CELLS>

This command calculates the current number of cells in the matrix. Here is a procedure
that displays all the vital statistics for a matrix.

local mCells,mRows,mCols
superobject "Images","MatrixSize",mCells
superobject "Images","CellToXY",mCells,mRows,mCols
message "This matrix contains "+ str(mCells)+" cells ("+
str(mRows)+" rows by "+ str(mCols)+ "columns).

This information can be very useful if you want to attach the matrix to a scroll bar.

Page 5822
SUPERDATE(...)
SUPERDATE(

Syntax: SUPERDATE(date,time)

Description: The superdate(function converts a regular date and a regular time into a superdate.
SuperDates combine the date and time into a single number…the number of seconds
since January 1, 1904. SuperDates make it easy to calculate time intervals across multiple
days. However, SuperDates take up more storage than regular dates, and are not as easy
to work with. In addition, SuperDates are limited to dates between 1904 and 2040.

Parameters: This function has two parameters: date and time.

date is a regular Panorama date (the number of days since January 1, 4713 B.C.). This
date must be between 1904 and 2040 A.D.

time is a regular Panorama time (the number of seconds since midnight).

Result: This function returns a value that combines both the date and time into a single number.

Examples: In its heyday, the Santa Fe Super Chief train would travel between Chicago and Los
Angeles in 39 and1/2 hours. This example uses SuperDates to calculate the arrival time
and day after the user enters the departure time.

local Arrival,Departure,xTime
xTime="7:30 pm"
gettext "Departure Time",xTime
Departure=superdate(today(), time(xTime))
Arrival=Departure+superdate(0, time("39:30:00"))
message "Arrives "+datepattern(regulardate(Arrival),"DayOfWeek")+

" at "+ timepattern(regulartime(Arrival),"hh:mm am/pm")

 If the train leaves at 7:30 pm on Monday, the message will be Arrives Wednesday at
10:00 am. As you can see, SuperDate arithmetic is very easy, just add or subtract. There’s
no need to worry about crossing midnight, because that simply is the start of a new day.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the date or time parameters.

See Also: regulardate(function
regulartime(function
date(function
time(function
today((function
now(function

Page 5823
SUPEROBJECT
SUPEROBJECT

Syntax: SUPEROBJECT object,command,param1,param2,…paramN

Description: The superobject statement allows a procedure to communicate with a SuperObject on
the current form. This statement is similar to the activesuperobject statement, but
requires you to specify a named object in the form (instead of using the currently active
object.) For information on using this command with specific types of SuperObjects, see:

text editor programming
word processor programming
super flash art programming
list superobject programming
super matrix programming
scroll bar programming

Parameters: This statement has a variable number of parameters, but always at least two: object and
command.

object is the name of the graphic object you want to send the command to. If a graphic
object does not have a name, you cannot send a command to it with the superobject
statement.

There are two ways to give a name to an object. Both start by selecting the object (in
Graphics Mode). Once the object is selected, you can use the Object Name command (in
the Edit menu) to assign the name. Or you can click on the object name portion of the
Graphic Control Strip along the bottom of the window. (If the object name is not visible,
click the triangle on the right side of the strip until you see the object name.

It is possible to have two or more graphic objects on a form with the same name, but this
is usually not a good idea. If the SuperObject statement finds more than one object with
the same name it will attempt to send the command to all of them, which may or may
not make sense. It definitely doesn't make sense if the command is supposed to return
information about the object (GetSelection, FindCell, etc.) or if this is a command that
requires the SuperObject to be active for editing (since only one SuperObject may be
active at once).

command is an instruction that will be sent to a specific SuperObject. Different types of
SuperObjects understand different types of commands. For example the Text Editor
SuperObject understands commands like "InsertText" and "GetSelection", while the List
SuperObject understands commands like "AddCell" and "FindCell".

param1...paramN are additional parameters used by individual commands, if required.
For example the Text Editor’s "InsertText" command requires one additional parameter
which specifies the text to be inserted. The List SuperObject’s "DeleteCell" command
requires two additional parameters, the numbers of the first and last cells to be deleted.
Parameters may also receive values from the SuperObject. For example the List Super-
Object’s "GetCount" command has one parameter into which the number of items in the
list is stored. If a parameter is used to receive a value from the SuperObject, that parame-
ter must be a single field or variable with no operators (myValue , not myValue+your-
Value or strip(myValue)).

Page 5824
Action: This statement allows a procedure to communicate with a SuperObject on the current
form. You specify what object you want to communicate with by it’s name. Many Super-
Objects have one or more commands that they understand. For example, the Text Editor
SuperObject has commands for selecting text, locating text, modifying text, etc.

Examples: This example insert the current date and time into whatever SuperObject is currently
being edited. This procedure will work with both Text Editor and Word Processor Super-
Objects. The first few lines of the procedure check to make sure that there actually is an
active SuperObject (i.e. something is really being edited at this time).

local EditingObject
EditingObject=info("activesuperobject")
if EditingObject ≠""

superobject EditingObject,"InsertText",
datepattern(today(),"mm/dd/yy")+"@"+
timepattern(now(),"hh:mm am/pm")

endif

Views: This statement may be used in Form views.

See Also: activesuperobject statement
info("activesuperobject") statement
text editor programming
word processor programming
super flash art programming
list superobject programming
super matrix programming
scroll bar programming

Page 5825
SUPEROBJECTCLOSE
SUPEROBJECTCLOSE

Syntax: SUPEROBJECTCLOSE

Description: The superobjectclose statement closes any Text Editor SuperObject or Word Processing
Superobject that is currently open. If nothing is being edited, this statement does noth-
ing.

Parameters: This statement has no parameters.

Action: The superobjectclose statement is equivalent to:

if info("activesuperobject") ≠""
activesuperobject "close"

endif

Examples: This example uses the superobjectclose statement to make sure that editing is finished
before saving the file.

superobjectclose
save

Views: This statement must only be used when a form is active.

See Also: activesuperobject statement
info("activesuperobject") function

Page 5826
T

TABDOWN
TABDOWN

Syntax: TABDOWN

Description: The tabdown statement toggles between tab across and tab down modes. This is the
same as pressing the Tab Down tool in the tool palette. Note: A procedure can find out
the current status of the tab down option with the info("tabdown") function.

Parameters: This statement has no parameters.

Examples: The procedure below turns off the tab down option. In other words, this procedure
makes sure that the tab down option is OFF.

if info("tabdown")
tabdown

endif

Views: This statement may be used in a Data Sheet or View-As-List form view.

See Also: info("tabdown") function

Page 5827
TABLE(...)
TABLE(

Syntax: TABLE(file,keyField,keyValue,dataField,default,level)

Description: The table(function searches a database for a value, then returns other information from
the same record. Unlike the lookup(function, the table(function does not require an
exact match. If it does not find an exact match the table(function will use the closest
match. For example, the table(function can look up a tax rate given an income amount,
or look up a shipping price given a zip code and weight.

Parameters: This function has six parameters: file, keyField, keyValue, dataField, default and level.

file is the name of the database that you want to search and grab data from. The database
must be open. If you want to search and grab from the current database, use info("data-
basename").

keyField is the name of the field that you want to search in. For example if you want to
look up a shipping price by weight, this should be the field that contains weights. The
field must be in the database specified by the first parameter.

keyData is the actual data that you want to search for. For example if you want to look
up a shipping price by weight, this should be the actual weight of the package. This
parameter is often a field in the current database.

dataField is the name of the field that you want to retrieve data from. For example if you
want to retrieve a shipping price, this should be the name of the field that contains
prices. This must be a field in the database specified by the first parameter.

default is the value you want this function to return if it is unable to find the information
specified by the keyField and keyData parameters. This will only happen if the keyData
value is smaller than the smallest value in the keyField field. The data type of the default
value should match the data type of the dataField. If the dataField is numeric, the default
should usually be zero. If the dataField is text, the default should usually be "".

level is the minimum summary level to be searched. Usually this parameter is zero so
that the entire database will be searched. If the level is set to 1 through 7, only summary
records will be searched.

Result: If the function is able to locate the information specified by the keyField and keyData
parameters it returns the contents of the specified field in the specified database. If it can-
not find an exact match, it finds the closest value (but not greater than the keyData value.
If the keyData value is smaller than any value in the keyField the function returns the
default value.

For example, suppose the key field contains the values 5, 25, 100, 250 and 1000. If the key
value is 47, the table(function will match with the record containing 25 in the key field. If
the key value is 4700, the table(function will match with the record containing 1000 in
the key field. If the key value is 4, there is no match, because there is no value in the key
field less than 4. In this case the default value will be used.

Page 5828
Examples: The table function is designed to be used with rate lookup tables like tax tables, shipping
tables, volume discount tables etc. Our example will calculate shipping prices. Suppose
you have a database called Shipping Rates that contains the fields and values shown
here.

The table(function interprets this table like this: From 0-49 pounds in Zone 1, the rate is
$2.50 per pound. From 50-99 pounds the rate is $2.35/pound. From 100-249 the rate is
$2.25 per pound, and so on. Items 2,000 pounds and over are shipped for $1.86 per
pound. The other zones are similar.

The procedure below calculates the shipping charges for a package using the database
shown above.

local PackageWeight,DestinationZone,ShippingCharge
PackageWeight="" DestinationZone=""
gettext "Package weight:",PackageWeight
PackageWeight= val(PackageWeight)
if PackageWeight<=0

message "Sorry, anti-gravity option not available."
stop

endif
gettext "Zone Number (1-3)",DestinationZone
if length(DestinationZone)<>1 or DestinationZone<"1" DestinationZone>"3"

message "Zone must be from 1 to 3"
stop

endif
ShippingCharge=Weight* table("Shipping Rates",Weight,PackageWeight,

"Zone"+DestinationZone,0,0)
message "Shipping charge is: "+ pattern(ShippingCharge,"$#,.##")

 Notice that this example actually calculates the name of the data field on the fly: either
Zone1, Zone2, or Zone3. The data field is still a single field (remember, only one item can
be transferred at a time) but we are using a formula to calculate what the name of that
field is.

In a real database you probably would not ask the user to enter the zone, but would have
another database that would relate zones to zip codes. Here’s a simple Zone Chart data-
base that divides the entire USA into three zones based on the first three digits of the zip
code.

The last value in this table, 99:, is the smallest value that is greater than the last legal zip
code (999) according to the ascii character order. This record can help catch illegal zip
codes. For instance, ABC is greater than 99:, so the Zone will be 0 for this illegal zip code.

The assignment below will turn a regular zip code (Zip) into a zone number according to
the Zone Chart database.

Page 5829
DestinationZone=table("Zone Chart",Zip3,Zip[1,3],Zone,0,0)

This assignment can easily be plugged into the previous example to calculate the ship-
ping charges given the weight and zip code.

Errors: Database does not exist. This error occurs if there is no open database with the name you
have specified. You have either misspelled the name, or the database is not currently
open.

Field or variable does not exist. This error occurs if there is no field in the specified data-
base with the name you have specified. You probably misspelled the field name.

See Also: lookup(function
lookuplast(function
lookupselected(function
grabdata(function
lookupall(function
ascii

Page 5830
TAGARRAY(...)
TAGARRAY(

Syntax: TAGARRAY(text,header,trailer,separator)

Description: The tagarray(function builds an array (see Text Arrays) containing the body of all the
specified tags (usually HTML tags) in the text. Each element in the array is separated
from the next with the separator character (usually ¶ or ,). See html tag parsing for more
information on HTML tags.

Parameters: This function has four parameters: text, header, trailer and separator.

text is the item of text that contains the data you want to extract.

header is the text that you want to use as a tag header. For example, if you want to
extract all HTML tags, use "<" as the header. If you wanted to extract all bold text you
would use "" as the header. (Note: Upper or lower case is ignored, so "" will also
work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to extract
all HTML tags, use ">" as the trailer. If you wanted to extract all bold text you would use
"" as the trailer. (Note: Upper or lower case is ignored, so "" will also work.)

separator is the separator character for the output array. This should be a single charac-
ter. For carriage return delimited arrays, use the ¶ character (option-7). For tab delimited
arrays use the ¬ character (option-L).

Result: This function returns an array that contains the contents of every specified tag, one tag
per array item. The headers and trailers themselves are not included as part of each array
item.

Examples: This example assumes you have a field or variable named myPage that contains an
HTML page. The example will find and list all of the HTML tags in the page.

local myTags
myTags=tagarray(myPage,"<",">",";")
arrayfilter myTags,myTags,";", ?(import() notmatch "/*", import(),"")
arraydeduplicate myTags,myTags,";"
message myTags

The output from this example will be something like this (any tags starting with / have
been removed by the arrayfilter statement):

B,BODY,CENTER,FONT,HTML,TITLE

The more useful example below displays all of the links from this page to any other
page.

message tagarray(myPage,{href="},{"},¶)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header, trailer or separator parameters.

See Also: html tag parsing
text arrays
tagcount(function
tagdata(function

Page 5831
tagstart(function
tagend(function
tagnumber(function
tagparameter(function
tagparameterarray(function

Page 5832
TAGCOUNT(...)
TAGCOUNT(

Syntax: TAGCOUNT(text,header,trailer)

Description: The tagcount(function counts the number of times a specified tag (usually an HTML
tag) appears in the text. See html tag parsing for more information on HTML tags.

Parameters: This function has three parameters: text, header and trailer.

text is the item of text that contains the tags you want to count.

header is the text that you want to use as a tag header. For example, if you want to count
all HTML tags, use "<" as the header. If you wanted to count all bold text items you
would use "" as the header. (Note: Upper or lower case is ignored, so "" will also
work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to count
all HTML tags, use ">" as the trailer. If you wanted to count all bold text itemsyou would
use "" as the trailer. (Note: Upper or lower case is ignored, so "" will also
work.)

Result: This function returns the number of times the specified tag occurs in the text (or zero if it
never occurs).

Examples: This example counts the number of tags on a page, assuming you have a field or variable
named myPage that contains an HTML page.

message "This page contains "+
tagcount(myPage,"<",">")+" tags."

 This example counts the pictures on the page.

message "This page contains "+tagcount(myPage,"")+" images."

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

See Also: html tag parsing
text arrays
tagarray(function
tagdata(function
tagstart(function
tagend(function
tagnumber(function

Page 5833
TAGDATA(...)
TAGDATA(

Syntax: text,header,trailer,item)

Description: The tagdata(function extracts the body of the specified tag (usually an HTML tag) in the
text. See html tag parsing for more information on HTML tags.

Parameters: This function has four parameters: text, header, trailer and item.

text is the item of text that contains the data you want to extract.

header is the text that you want to use as a tag header. For example, if you want to
extract an HTML tag, use "<" as the header. If you wanted to extract a bold text item you
would use "" as the header. (Note: Upper or lower case is ignored, so "" will also
work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to extract
an HTML tag, use ">" as the trailer. If you wanted to extract a bold text item you would
use "" as the trailer. (Note: Upper or lower case is ignored, so "" will also
work.)

item is the number of the tag you want to extract. For example, suppose you are using
"<" and ">" as the tag header and tag trailer. Using an item number of 1 will extract the
first tag, 2 the second tag, 3 the third tag, etc.

Result: This function returns the contents (text) of the specified tag. The headers and trailers
themselves are not included as part of the extracted text.

Examples: This example assumes you have a field or variable named myPage that contains an
HTML page. The example will display the title of the page.

message tagdata(myPage,"<title>","</title>",1)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: html tag parsing
text arrays
tagarray(function
tagcount(function
tagstart(function
tagend(function
tagnumber(function
tagparameter(function
tagparameterarray(function

Page 5834
TAGEND(...)
TAGEND(

Syntax: TAGEND(text,header,trailer,item)

Description: The tagend(function returns the ending position of the specified tag (usually an HTML
tag) in the text. See html tag parsing for more information on HTML tags.

Parameters: This function has four parameters: text, header, trailer and item.

text is the item of text that contains the tag you want to locate.

header is the text that you want to use as a tag header. For example, if you want to locate
an HTML tag, use "<" as the header. If you wanted to locate a bold text item you would
use "" as the header. (Note: Upper or lower case is ignored, so "" will also work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to locate
an HTML tag, use ">" as the trailer. If you wanted to locate a bold text item you would
use "" as the trailer. (Note: Upper or lower case is ignored, so "" will also
work.)

item is the number of the tag you want to extract. For example, suppose you are using
"<" and ">" as the tag header and tag trailer. Using an item number of 1 will locate the
first tag, 2 the second tag, 3 the third tag, etc.

Result: This function returns the position of the end of the specified tag within the text (just
before the tag trailer). If the tag is not found, the result will be zero.

Examples: This example assumes you have a field or variable named myPage that contains an
HTML page that is being edited with a text superobject named PageEditor. The example
will locate and select the title of the web page.

local tStart,tEnd
tStart=tagstart(myPage,"<title>","</title>",1)
if tStart=0

rtn
endif
tEnd= tagend(myPage,"<title>","</title>",1)
superobject "PageEditor","setselection",tStart-1,tEnd-1

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: html tag parsing
text arrays
tagarray(function
tagcount(function
tagdata(function
tagstart(function
ttagnumber(function

Page 5835
TAGNUMBER(...)
TAGNUMBER(

Syntax: TAGNUMBER(text,header,trailer,position)

Description: The tagnumber(function checks to see if a specified position is inside of a tag (usually an
HTML tag). Please see html tag parsing for more information on HTML tags.

Parameters: This function has four parameters: text, header, trailer and position.

text is the item of text that contains the tag you want to locate.

header is the text that you want to use as a tag header. For example, if you want to check
if the position is within any HTML tag, use "<" as the header. If you wanted to check if
the position is inside a bold text area you would use "" as the header. (Note: Upper or
lower case is ignored, so "" will also work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to check if
the position is within any HTML tag, use ">" as the trailer. If you wanted to check if the
position is inside a bold text area you would use "" as the trailer. (Note: Upper or
lower case is ignored, so "" will also work.)

position is the position within the text parameter, starting with 0 for the first character.

Result: This function returns the tag number (1, 2, 3, etc.) or 0 if the position is not within any
specified tag.

Examples: This example assumes you have a field or variable named myPage that contains an
HTML page that is being edited with a text superobject. The example will check the cur-
rently selected text to see if it is inside a tag. If it is, the body of that tag will be selected.

local tStart,tEnd,clickStart,clickEnd,thetag
activesuperobject "getselection",clickStart,clickEnd
thetag=tagnumber(Page,"<",">",clickStart)
if thetag>0

tStart= tagstart(myPage,"<title>","</title>",1)
if tStart=0

rtn
endif
tEnd= tagend(myPage,"<title>","</title>",1)
activesuperobject "setselection",tStart-1,tEnd-1

endif

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: html tag parsing
text arrays
tagarray(function
tagcount(function

Page 5836
tagdata(function
tagstart(function
tagend(function

Page 5837
TAGPARAMETER(...)
TAGPARAMETER(

Syntax: TAGPARAMETER(text,name,item)

Description: The tagparameter(function extracts the value of a tag parameter embedded in some text,
where the tag parameter takes the form name=value.

Parameters: This function has three parameters: text, name and item.

text is the item of text that contains the data you want to extract.

name is the name of the tag parameter you want to extract, including the trailing = sign
(you may use other terminators, for example colons (font:Helvetica) or period
(font.Helvetica). For example, if you want to extract the font name from the text
font=Helvetica size=12 the name would be font=.

item is the number of the parameter you want to extract. This is usually 1, but may be
other values if you expect multiple instances of the parameter (multiple fonts, for exam-
ple).

Result: This function returns the contents (text) of the specified parameter. If the parameter is
surrounded by quotes, the quotes are removed. (Quotes are necessary if the parameter
value contains spaces, for example font="Times Roman" .)

Examples: This example very quickly builds a list of all the GIF and JPEG images displayed in the
page HTMLPage.

local imageTags,imageNames
imageTag= tagarray(HTMLPage,"<IMG",">",¶)
arrayfilter imageTag,imageNames,¶,
tagparameter(import(), "src=",1)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: html tag parsing
text arrays
tagarray(function
tagcount(function
tagstart(function
tagend(function
tagnumber(function
tagparameterarray(function

Page 5838
TAGPARAMETERARRAY(...)
TAGPARAMETERARRAY(

Syntax: TAGPARAMETERARRAY(text,name,separator)

Description: The tagparameter(function extracts the value of multiple tag parameter embedded in
some text, where each tag parameter takes the form name=value.

Parameters: This function has three parameters: text, name and separator.

text is the item of text that contains the data you want to extract.

name is the name of the tag parameter you want to extract, including the trailing = sign
(you may use other terminators, for example colons (font:Helvetica) or period
(font.Helvetica). For example, if you want to extract the font name from the text
font=Helvetica size=12 the name would be font=.

separator is the separator character for the output array. This should be a single charac-
ter. For carriage return delimited arrays, use the ¶ character (Option-7/Alt-0182). For
tab delimited arrays use the ¬ character (Option-L/Alt-0172).

Result: This function returns an array of all instances of the specified parameter within the text.
If the parameter is surrounded by quotes, the quotes are removed. (Quotes are necessary
if the parameter value contains spaces, for example font="Times Roman" .)

Examples: This example assumes that you have a field name Orders that contains food orders like
this:

<pizza topping=pepperoni topping=mushroom>
<pizza topping=olive>
<rigatoni sauce=red>
<pizza topping=clam topping=garlic>
<linguine sauce=white>

The procedure shown below can process this data

local pizzaOrders,pizzaToppings
pizzaOrders= tagarray(Orders,"<pizza",">",¶)
arrayfilter pizzaOrders,pizzaToppings,¶,

tagparameterarray(import(), "topping=",",")

 The final result is a list of toppings

pepperoni,mushroom
olive
clam,garlic

Although this example is not all that practical, this is a very powerful function for pars-
ing languages like HTML, XML, or your own specification languages.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

Page 5839
See Also: html tag parsing
text arrays
tagarray(function
tagcount(function
tagstart(function
tagend(function
tagnumber(function
tagparameter(function

Page 5840
TAGSTART(...)
TAGSTART(

Syntax: TAGSTART(text,header,trailer,item)

Description: The tagstart(function returns the starting position of the specified tag (usually an HTML
tag) in the text. See html tag parsing for more information on HTML tags.

Parameters: This function has four parameters: text, header, trailer and item.

text is the item of text that contains the tag you want to locate.

header is the text that you want to use as a tag header. For example, if you want to locate
an HTML tag, use "<" as the header. If you wanted to locate a bold text item you would
use "" as the header. (Note: Upper or lower case is ignored, so "" will also work.)

trailer is the text that you want to use as a tag trailer. For example, if you want to locate
an HTML tag, use ">" as the trailer. If you wanted to locate a bold text item you would
use "" as the trailer. (Note: Upper or lower case is ignored, so "" will also
work.)

item is the number of the tag you want to extract. For example, suppose you are using
"<" and ">" as the tag header and tag trailer. Using an item number of 1 will locate the
first tag, 2 the second tag, 3 the third tag, etc.

Result: This function returns the position of the specified tag within the text (just after the tag
header). If the tag is not found, the result will be zero.

Examples: This example assumes you have a field or variable named myPage that contains an
HTML page that is being edited with a text superobject named PageEditor. The example
will locate and select the title of the web page.

local tStart,tEnd
tStart=tagstart(myPage,"<title>","</title>",1)
if tStart=0

rtn
endif
tEnd= tagend(myPage,"<title>","</title>",1)
superobject "PageEditor","setselection",tStart-1,tEnd-1

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the text, header or trailer parameters.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the item parameter.

See Also: html tag parsing
text arrays
tagarray(function
tagcount(function
tagdata(function
tagend(function
tagnumber(function

Page 5841
TAN(...)
TAN(

Syntax: TAN(angle)

Description: The tan(function calculates the tangent of an angle.

Parameters: This function has one parameter: angle.

angle is a numeric value, an angle. The angle is usually specified in a mathematical unit
of measurement called radians, however, within a procedure you can temporarily force
Panorama to use degrees (see below). One radian is equal to approximately 57.2958
degrees (the exact value is 180/π).

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the sine function given input values from -3 to +3
radians.

This formula calculates the tangent of an angle in degrees.

tan(Angle*180/ π)

In this example the angle is in a field or variable named Angle, however, you may use
any formula that produces a numeric result in this location. The pi symbol (π) is pro-
duced by pressing OPTION-P.

Here is another way to calculate angles in degrees in a procedure.

degree
NewAngle=tan(Angle)

The degree statement tells Panorama to use degrees instead of radians in all trigonome-
try calculations. Panorama will continue to use degrees until the end of the procedure, or
until a radian statement is encountered.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example. If you have a numeric value in a text
item you must convert the text to the number data type before calculating the tangent,
for example tan(val("34")) .

Page 5842
Floating point error. The tangent of π/2 radians (90°) is ∞. If you attempt to calculate the
tangent of π/2 a floating point error will occur.

See Also: sin(function
cos(function
degree statement
radian statement
arcsin(function
arccos(function
arctan(function
val(function

Page 5843
TANH(...)
TANH(

Syntax: TANH(value)

Description: The tanh(function calculates the hyperbolic tangent of a numeric value.

Parameters: This function has one parameter: value.

value is a numeric value.

Result: The result of this function is a numeric floating point value.

Examples: The graph below shows the result of the hyperbolic tangent function given input values
from -6 to +6.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use a text value with this function, for example tanh("23") . If you have a numeric
value in a text item you must convert the text to the number data type before taking the
hyperbolic tangent, for example tanh(val("34")) .

See Also: sinh(function
cosh(function
arcsinh(function
arccosh(function
arctanh(function
val(function

Page 5844
TEXT ARRAYS
TEXT ARRAYS

Background: An array is a numbered collection of data items. Panorama includes a number of func-
tions and statements that treat a single text data item as if it were a numbered collection
of smaller items. The smaller text data items must be separated from each other by a
delimiter, for instance a comma or carriage return.

A typical text array is shown below. Panorama would normally treat this as a single text
item with a length of 40 characters. When treated as a text array, however, this text
would be considered as a collection of 7 elements separated by slashes.

white/red/orange/yellow/green/blue/black

In this example, the / is the separator character. You can use any character you want for
a separator character. Here is the same array, but using the • character (option-8) as the
separator character.

white•red•orange•yellow•green•blue•black

It is possible to use different separator characters at different times. You could even build
a multi-level array by using two different separator characters.

Since text arrays are a secondary data type, it is up to you to keep track of the fact that
you are using an array and what the separator character is. Panorama won’t stop you
from trying to access the array of colors above as if it were delimited with commas
instead of semicolons, but you probably won’t get the results you wanted unless you use
the correct separator character.

Picking a
Separator

Any ASCII character can be used as a separator character, so you have 256 possible
choices. Common separators include comas, semicolons, slashes, carriage returns, spaces
and tabs.

It’s important to pick a separator character that will not occur in the data elements of
your array. If your data may include commas, don’t use the comma as a separator char-
acter. If the data might include carriage returns, don’t use a carriage return. If you want
to be extra sure to avoid conflicts, pick a non-printing character. You can use the chr(
function to generate non-printing characters, for example chr(1), chr(2), chr(3). Most chr
values below 32 are non-printing except for chr(9) and chr(13), which correspond to tab
and carriage return.

Some Panorama user interface elements and functions use text arrays as parameters or to
hold a list of values. For these applications the separator character is usually required to
be a carriage return. For example, the Pop-Up Menu SuperObject uses a carriage return
delimited array to define the list of pop-up menu choices. The lookupall(function
extracts information from another database and places it into an array with whatever
separator you specify. Consult the documentation for each individual statement, func-
tion or SuperObject to see the exact specifications for any arrays they may use.

You can easily change the separator character of an array with the replace(function. The
assignment statement below changes the separator character of the array Elements from
semicolons to carriage returns.

Elements=replace(Elements,";",¶)

Page 5845
See Also: array(function
arraysize(function
arrayrange(function
arraychange(function
arraydelete(function
arrayelement(function
arrayinsert(function
arrayscan(function
arrayreverse(function
arraysearch(function
arraystrip(function
extract(function
arraysort statement
arrayfilter statement
arraydeduplicate statement
arraybuild statement
arrayselectedbuild statement
arraylinebuild statement
chr(function

Page 5846
Text Editor Programming
TEXT EDITOR PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick
Reference:

"Open"
"Close"
"Cut"
"Copy"
"Paste"
"Clear"
"GetSelection",<START>,<END>
"SetSelection",<START>,<END>
"GetText",<TEXT>
"SetText",<TEXT>
"InsertText",<TEXT>
"GetSelectedText",<TEXT>
"Find"
"FindNext"
"Change"
"Spell"
"SetScroll",<VERTICAL>,<HORIZONTAL>
"GetScroll",<VERTICAL>,<HORIZONTAL>
"GetLineCount",<COUNT>

Open This command opens the SuperObject for editing, if it is not already active. This com-
mand is the equivalent of clicking on the object to start editing it. Since the object isn’t
active yet, you can’t use the activesuperobject statement. The example below opens the
Memo field.

superobject "Memo","Open"
if info("activesuperobject") ≠"Memo"

beep
stop

endif

If another data cell or SuperObject is currently active, it’s possible that Panorama won’t
be able to open the SuperObject. If there is an error while attempting to close the cur-
rently active item (for example, incorrect date format or an illegal character in a number),
the user may choose to cancel and re-edit the incorrect data. The example above checks
to make sure that the SuperObject has really been opened for editing—if not, the proce-
dure beeps and stops.

Close This command closes the SuperObject. This is equivalent to pressing the Enter key.

activesuperobject "Close"
if info("activesuperobject") ≠""

stop /* whoops, could not close because of an error */
endif

Page 5847
If there was an error in the data that was being edited (for example, incorrect date format
or an illegal character in a number), the user may choose to cancel and re-edit the incor-
rect data. The procedure above checks for this and stops if this happens.

Cut This command copies the currently selected text to the clipboard, then deletes the
selected text. This is the same as choosing Cut from the Edit Menu. (Technical factoid:
The Edit menu actually works by sending this command to the currently active Super-
Object.)

Copy This command copies the currently selected text to the clipboard, but does not delete the
text. This is the same as choosing Copy from the Edit Menu. (Technical factoid: The Edit
menu actually works by sending this command to the currently active SuperObject.)

Paste This command pastes the text in the clipboard into the text being edited. The new text
will replace any currently selected text, or the text will be inserted at the current insertion
point if no text is currently selected. This is the same as choosing Paste from the Edit
Menu. (Technical factoid: The Edit menu actually works by sending this command to the
currently active SuperObject.)

Clear This command deletes the selected text (without copying it to the clipboard). This is the
same as choosing Clear from the Edit Menu. (Technical factoid: The Edit menu actually
works by sending this command to the currently active SuperObject.)

GetSelection ,<START>,<END>

This command gets the start and end points of the currently selected text. For the pur-
pose of the GetSelection command (and the SetSelection command) each character is
numbered, starting with zero in front of the first character. For example, if the first char-
acter was currently selected, GetSelection will return 0 and 1. If the 3rd through 8th char-
acters are currently selected, GetSelection will return 2 and 8. If there is currently an
insertion point, the starting and ending point will be the same. This command only
returns the position of the selected text; if you want to get the text itself, use the GetSe-
lectedText command.

The example procedure below counts and displays the number of characters selected.

local SelStartPoint,SelEndPoint
SelStartPoint=0
SelEndPoint=0
if info("activesuperobject") ≠""

activesuperobject "GetSelection",SelStartPoint,SelEndPoint
endif
message str(SelEndPoint-SelStartPoint)+" characters selected"

This procedure checks to make sure that a SuperObject is active. If there is no SuperOb-
ject active, it will display the message 0 characters selected. If the procedure did not
check, Panorama would stop the procedure and display an error message if there was no
active SuperObject.

SetSelection ,<START>,<END>

This command allows you to change the selection area. It is equivalent to clicking or
dragging on the text to select it. For the purpose of the SetSelection command (and the
GetSelection command), each character is numbered, starting with zero in front of the
first character. For example, the procedure below would put the insertion point in front
of the first character in the text.

Page 5848
if info("activesuperobject") ≠""
activesuperobject "SetSelection",0,0

endif

 The next example will select all of the text. Notice that the end position may be past the
end of the text…Panorama will automatically adjust this for you.

if info("activesuperobject") ≠""
activesuperobject "SetSelection",0,32768

endif

 Here’s a similar example that places the insertion point at the end of the text.

if info("activesuperobject") ≠""
activesuperobject "SetSelection",32768,32768

endif

 This final example will increase the length of the current selection by one character.

local SelStartPoint,SelEndPoint
SelStartPoint=0
SelEndPoint=0
if info("activesuperobject") ≠""

activesuperobject "GetSelection",SelStartPoint,SelEndPoint
SelEndPoint=SelEndPoint+1
activesuperobject "SetSelection",SelStartPoint,SelEndPoint

endif

GetText ,<TEXT>

This command gets all of the text being edited and puts it in a variable you specify.
(Note: If you want only the selected text, use the GetSelectedText command.) The exam-
ple procedure below searches for text in chevrons («») and if found, selects it. Using this
procedure you could create templates with blanks to be filled in, for example …«Gal-
lery»…«Artist»…«Title». (Of course it might be better to store this information in fields
and merge it into the text with a formula.)

local someText,selStart,selEnd
if info("activesuperobject") = "" stop endif
activesuperobject "GetText",someText
selStart= search(someText,"«")
selEnd= search(someText,"»")
if selStart>0

selStart=selStart-1
endif
if selEnd<selStart

selEnd=selStart+1
endif
activesuperobject "SetSelection",selStart,selEnd

SetText ,<TEXT>

This command replaces the text currently being edited with completely new text! This is
a very powerful command.

Page 5849
Here is a very simple example that simply erases all of the text. This is similar to Clear,
except that all the text is erased, not just the selected text.

if info("activesuperobject") = "" stop endif
activesuperobject "SetText",""

The next example adds a new line with a date and time stamp to the currently edited
text. It also moves the insertion point to the end of the new time and date stamp, so the
user can immediately type in a note.

local someText
if info("activesuperobject") = "" stop endif
activesuperobject "GetText",someText
activesuperobject "SetText",someText+¶+

datepattern(today(),"mm/dd/yy")+" @"+
timepattern(now(),"hh:mm am/pm")+" - "

activesuperobject "SetSelection",32768,32768

InsertText ,<TEXT>

This command inserts text. The new text replaces the currently selected text, or is
inserted at the insertion point if no text is selected. The example below inserts the current
time into the text.

if info("activesuperobject") = "" stop endif
activesuperobject "InsertText",
timepattern(now(),"hh:mm am/pm")

GetSelected-
Text

 ,<TEXT>

This command gets the selected text and puts it into a variable. The example below uses
this command to change the case of the selected text. Each time the procedure is used the
case will toggle: if the text is all lower case, it will be converted to initial caps; if it is ini-
tial caps, it will be converted to all upper case; otherwise it will be converted to all lower
case.

local someText
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetSelectedText",someText
case someText= lower(someText)

someText= upperword(someText)
case someText= upperword(someText)

someText= upper(someText)
defaultcase

someText= lower(someText)
endcase
activesuperobject "InsertText",someText

Find This command displays a dialog asking the user what they would like to find, then
locates the word or phrase within the text being edited. This is the same as using the
Find in Cell command in the Edit Menu.

Another way to find is to use the search(function. For an example of this, see the GetText
command earlier in this section.

Page 5850
FindNext This command locates the next occurrence of the word or phrase searched for with the
Find command. This is the same as using the Find Next in Cell command in the Edit
Menu.

Change This command displays a dialog asking the user what they would like to change, then
changes every occurrence it finds in the text being edited. This is the same as using the
Change in Cell command in the Edit Menu.

Another way to change is to use the GetText command and the replace(function. The
example below replaces the initials rdb with Robert D. Bryce, then moves the insertion
point to the end of the text.

local someText
if info("activesuperobject") = "" stop endif
activesuperobject "GetText",someText
activesuperobject "SetText", replace(someText,"rdb","Robert D. Bryce")
activesuperobject "SetSelection",32768,32768

Spell This command locates the next misspelled word in the text being edited. This is the same
as using the Spelling command in the Edit Menu.

SetScroll ,<VERTICAL>,<HORIZONTAL>

This command scrolls the text, just like dragging on the scroll bar. The scrolling is speci-
fied in pixels (one pixel equals 1/72 inch). The example below scrolls to the top of the
text.

activesuperobject "setscroll",0,0

GetScroll ,<VERTICAL>,<HORIZONTAL>

This command gets the current amount of scrolling in both the vertical and horizontal
directions. The parameters should be variables into which the values will be placed. The
example below scrolls down one inch:

local vScroll,hScroll
activesuperobject "getscroll",vScroll,hScroll
activesuperobject "setscroll",vScroll+72,hScroll

GetLineCount ,<COUNT>

This command calculates the actual number lines in the text being edited, taking auto-
matic line wraps into account. For example, even if the text has no carriage returns in it,
the text may wrap over several lines. The GetLineCount command will return the actual
number of lines, not the number of carriage returns.

local LCount
activesuperobject "getlinecount",LCount

Page 5851
TEXT255(...)
TEXT255(

Syntax: TEXT255(binarydata)

Description: The text255(function converts binary data containing a Pascal String into regular text. A
Pascal String is a special text format that is sometimes used by the Macintosh ROM's
(also called a String255 or Str255 because the text is limited to a maximum length of 255
characters). (Pascal is the name of a computer language, which in turn is named after a
famous mathematician.)

Parameters: This function has one parameter: binarydata.

binarydata is a text data item containing a Pascal String.

Result: This function returns the text equivalent of the Pascal String passed to it.

Examples: See c/pascal structures for examples of the text255(function.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to pass a number as the Pascal String.

See Also: string255(function
byte(function
word(function
longword(function
radix(function
radixstr(function
c/pascal structures

Page 5852
TEXTDISPLAY(...)
TEXTDISPLAY(

Syntax: TEXTDISPLAY(color,style)

Description: The textdisplay(function works with Text Display SuperObjects™. By using this func-
tion as the first part of the formula in a Text Display SuperObject™ you can control the
color and style of the text on the fly. For example, you can automatically display all neg-
ative numbers in red. (Advanced note: The textdisplay(function actually generates a
special header that is intercepted and removed by the Text Display SuperObject™. The
header contains information the Text Display SuperObject™ uses to select the style and
color.)

Parameters: This function has two parameters: color and style.

color is the color that should be used to display the text. See the rgb(function. If you pass
"" for this parameter the text will be displayed in the normal color for this object.

style is the style or combination styles that should be used to display the text. For a sin-
gle style by itself simply use the name of the style: "Plain", "Bold", "Italic",
"Underline", "Outline" or "Shadow" . If you want to combine multiple styles
together you must specify the style numerically. Add up the numbers for the styles you
want from the table listed below. For example, for bold italic text the style should be 3.

0 Plain
1 Bold
2 Italic
4 Underline
8 Outline
16 Shadow

Examples: Here’s an example formula which displays negative Balance values in red. (Remember,
this formula only works in a Text Display SuperObject™.)

textdisplay(rgb(?(Balance<0,65535,0),0,0),0)+ pattern(Balance,"$#,.##")

This example formula displays the Response field in italics if the Priority is Hot.

textdisplay("", ?(Priority="Hot","italic","plain"))+Response

This slightly revised example displays the Response field in bold-italic if the Priority is
Hot. It sets the style to 3 if the Priority is Hot (1=bold, 2=italic, 1+2=bold italic).

textdisplay("", ?(Priority="Hot",3,0))+Response

Errors: This function does not generate any errors. However, if the parameters are not set up
properly, the Text Display SuperObject™ will display the text using the standard color
and style.

See Also: rgb(function
colors

Page 5853
TEXTSTUFF(...)
TEXTSTUFF(

Syntax: TEXTSTUFF(maintext,newtext,position)

Description: The textstuff(function replaces one or more characters in the middle of a piece of text

Parameters: This function has three parameters: maintext, newtext, and position.

maintext is the original text data item that contains one or more characters you want to
replace.

newtext is the new text that you want to use to replace characters in the original text data
item.

position is the location within the original text where you want to replace text. The posi-
tion is a number starting with zero.

Result: This function returns a copy of the original text item with one or more characters
replaced.

Examples: This example replaces two characters in a 24 character text item.

TEMP=textstuff("Temperature: 87 degrees"," 92",13)

The operation of this formula is shown in the table below.

If the new text is positioned beyond the end of the original text, the characters in
between are undefined.

TEMP=textstuff("Temp:"," 92",13)

The operation of this formula is shown in the table below.

The characters in between (in yellow) may be anything. (Of course you could use
another textstuff(function to fill them in, or you could add characters to the original text
before using textstuff(in the first place.)

See c/pascal structures for additional examples of the textstuff(function.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a number for the maintext or newtext parameters.

Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a number for the position parameter.

Page 5854
See Also: chr(function
byte(function
word(function
longword(function
c/pascal structures

Page 5855
TIME(...)
TIME(

Syntax: TIME(text)

Description: The time(function converts text into a number representing a time. See also seconds(.

Parameters: This function has one parameter: text.

text is the text that you want to convert to a number representing a time. The text must
contain a valid time. The time function allows you to leave out the colons in the time,
and also allows you to leave off the am/pm. Here are some examples of valid times:

4:13 PM
11:00 AM
2:30
18:45
230
4p
midnight
noon
morning
afternoon
evening
night
nite

The seconds(function also converts text into a number, but is more strict about the time
formats it will accept.

Result: This function returns a number representing the time. The number is the number of sec-
onds since midnight. For example, if the time is 10:23 AM this function will return the
number 37,380.

Examples: The time(function is very lenient about the format you use to enter the time. It will
accept a time without colons, for example 425 pm instead of 4:25 pm. If there is no am or
pm the time function will try to make an intelligent guess. For example, 230 is almost
certainly 2:30 pm, not 2:30 am. By default, the time(function assumes that any time from
6:00 to 11:59 is AM, and any time from 12:00 to 5:59 is PM, but you can change these
assumptions with the timedefaults statement described below.

The time(function will also convert “named” times: noon, midnight, morning, after-
noon, evening, and night. This function assumes that morning is 9:00 am, afternoon is
1:00 pm, evening is 6:00 pm, and night is 10:00 pm. These assumptions can be changed
with the timedefaults statement. This statement has five parameters: the earliest hour
that should default to AM, and the times for morning, afternoon, evening, and night.
Here is a procedure that uses the time(function to help locate flights departing in a ±3
hour period from a specified time of day.

local xTime
timedefaults 7,time("7a"),time("3p"),time("8p"),time("1a")
xTime=""
gettext "Select flights around what time?",xTime
select DepartureTime ≥time(xTime)-3*3600 and

DepartureTime ≤time(xTime)+3*3600

Page 5856
Since the first parameter of the timedefaults statement is 7, any time from 7:00 to 11:59
will default to AM unless the user types PM, and any time from 12:00 to 6:59 will default
to PM unless the user types AM. If the user types morning the procedure will select all
flights from 4:00 am to 10:00 am (within three hours of 7:00 am). If the user types evening
the procedure will select all flights from 5:00 pm to 11:00 pm (within three hours of 8:00
pm).

If the time(function is supplied with text it cannot interpret as a time, the procedure will
stop and an error message is displayed. You can trap this error with the if error statement
and handle it yourself within the procedure, as you can see in this example.

local xTime,depTime
timedefaults 7,time("7a"),time("3p"),time("8p"),time("1a")
xTime=""
gettext "Select flights around what time?",xTime
depTime=time(xTime)
if error
message "Invalid time…all flights will be displayed."
selectall
else
select DepartureTime ≥depTime-(3*3600) and

DepartureTime ≤depTime+(3*3600)
endif

This example has another advantage: the select statement will run slightly faster. This is
because it does not have to convert the text to seconds over and over again for each
record in the database. Note: This example will not work properly if the user selects a
time within 3 hours of midnight. See timedifference(and timeinterval(for solutions to
this problem.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to convert a numeric value.

Illegal time. This error occurs if the text does not contain a valid time.

See Also: seconds(function
timepattern(function
now(function
timedefaults statement

Page 5857
TIME24(...)
TIME24(

Syntax: TIME24(TIME)

Description: The time24(function takes a time and makes sure it falls within a 24 hour period. If the
time is less than 24 hours, it is unchanged. If the time is greater than 24 hours, it is con-
verted to the equivalent time in a 24 hour period (for example 30:00:00 is converted to
6:00:00).

Parameters: This function has one parameter: time.

time is a time (number of seconds) that may be greater than 23 hours, 59 minutes, 59 sec-
onds

Result: This function returns a time between 0 and 86,399 seconds (23:59:59). If the original time
is greater than this value, the time is reduced in 24 hour increments until it is smaller
than 24 hours.

Examples: The time24(function can help with calculations of an ending time from a start time and
duration. The basic formula for such a calculation is shown here.

EndTime=StartTime+Duration

This formula works fine unless the interval extends over midnight. The time24(function
adjusts the result to make sure it starts over at zero as it crosses midnight.

EndTime=time24(StartTime+Duration)

This formula will correctly calculate that 10:30 PM + 4 hours is 2:30 AM.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the time parameters. You must convert text values to
numbers with the seconds(or time(function before they can be used with this function.

See Also: timeinterval(function
timedifference(function
seconds(function
time(function
now(function

Page 5858
TIMEDEFAULTS
TIMEDEFAULTS

Syntax: TIMEDEFAULTS default12,morning,afternoon,evening,nite

Description: The timedefaults statement sets the defaults for the time(function.

Parameters: This statement has five parameters: default12, morning, afternoon, evening and nite.

default12 is an integer specifying the first hour of the default 12 hour period if no am/
pm is supplied. For example, if you want the default period to be 8am to 8pm this
parameter should be 8.

morning is the time that should be used if the text morning is passed to the time(func-
tion.

afternoon is the time that should be used if the text afternoon is passed to the time(func-
tion.

evening is the time that should be used if the text evening is passed to the time(function.

nite is the time that should be used if the text night (or nite) is passed to the time(func-
tion.

Action: This statement has no immediate effect, but changes the way the time(function behaves.

Examples: The procedure below uses the time(function to help locate flights departing in a ±3 hour
period from a specified time of day. If the user enters evening the procedure will select
flights from 5pm to 11pm, for afternoon flights from noon to 6pm will be selected.

local xTime
timedefaults 7,time("7a"),time("3p"),time("8p"),time("1a")
xTime=""
gettext "Select flights around what time?",xTime
select DepartureTime ≥time(xTime)-3*3600 and
DepartureTime ≤time(xTime)+3*3600

Views: This statement may be used in any view.

See Also: time(function
seconds(function
timepattern(function
now(function

Page 5859
TIMEDIFFERENCE(...)
TIMEDIFFERENCE(

Syntax: TIMEDIFFERENCE(startTime,endTime)

Description: The timedifference(function calculates the difference between two times. It works cor-
rectly even if the interval between the two times crosses over midnight. This function
returns a time interval between -12 and +12 hours. See also the timeinterval(function,
which returns a time interval between 0 and 24 hours.

Parameters: This function has two parameters: startTime and endTime.

startTime is a number (number of seconds) representing the starting point of the time
interval.

endTime is a number (number of seconds) representing the ending point of the time
interval.

Result: This function returns the number of seconds between the two times. For example, if the
start tine is 9:30 PM and the end time is 2:05 AM, the difference would be 4:35. But if the
parameters are reversed and the start time is 2:05 AM and the end time is 9:30 PM, the
difference is -4:35. If the result is positive, the endTime is after the startTime. But if the
result is negative, the startTime is after the endTime.

Examples: This sample procedure selects flights that depart within ±3 hours of a specified time. By
using the timedifference(function this procedure is able to work correctly even if the
specified time is near midnight.

local xTime
timedefaults 7,time("7a"),time("3p"),time("8p"),time("1a")
xTime=""
gettext "Select flights around what time?",xTime
select
abs(timedifference(DepartureTime, time(xTime))

The result of the timedifference(function is positive if the second time is later than the
first time, and negative if the first time is later. The example uses the abs(function to
make the difference always positive, making the comparison simpler.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for either of the time parameters. You must convert text
values to numbers with the seconds(or time(function before they can be used with this
function.

See Also: seconds(function
time(function
now(function

Page 5860
TIMEINTERVAL(...)
TIMEINTERVAL(

Syntax: TIMEINTERVAL(startTime,endTime)

Description: The timeinterval(function calculates the time interval between two times. It works cor-
rectly even if the interval between the two times crosses over midnight. This function
returns a time interval between 0 and 24 hours. See also the timedifference(function,
which returns a time interval between -12 and +12 hours.

Parameters: This function has two parameters: startTime and endTime. startTime is a number (num-
ber of seconds) representing the starting point of the time interval. endTime is a number
(number of seconds) representing the ending point of the time interval.

Result: This function returns the number of seconds in the interval between the two times. For
example, if the start tine is 9:30 PM and the end time is 2:05 AM, the interval would be
4:35. But if the parameters are reversed and the start time is 2:05 AM and the end time is
9:30 PM, the interval is 19:25.

Examples: This example calculates the flight time of an airplane flight. This procedure will work
correctly even if the flight leaves in the evening and arrives the next morning.

local fltHours,fltMinutes,fltSeconds
fltSeconds=timeinterval(ArrivalTime,DepartureTime)
fltMinutes=fltSeconds/60
fltHours=fltMinutes/60
fltMinutes=fltMinutes mod 60
message "Flight time from "+OriginCity+" to "+
DestinationCity+" is "+

str(fltHours)+" hours "+ str(fltMinutes)+" minutes"

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for either of the time parameters. You must convert text
values to numbers with the seconds(or time(function before they can be used with this
function.

See Also: timeinterval(function
seconds(function
time(function
now(function

Page 5861
TIMEPATTERN(...)
TIMEPATTERN(

Syntax: TIMEPATTERN(number,pattern)

Description: The timepattern(function converts a number representing a time into text. The function
uses a pattern to control how the date is formatted.

Parameters: This function has two parameters: number and pattern.

number is the number that you want to convert to text. This number is treated as the
number of seconds since midnight. (the seconds(and time(functions can convert text
into such a number).

pattern is text that contains a pattern for formatting the date. The pattern is assembled
from four components: hh (hours), mm (minutes) ss (seconds), and am/pm. Some of the
more common time patterns are listed here:

If am/pm is left off the pattern the time will be formatted in 24 hour format, as shown on
the last line of the table above. You should also leave off am/pm for converting elapsed
times.

Result: This function returns an item of text containing the formatted date.

Examples: Here’s a simple example that displays a flight arrival time.

message "Flight "+FlightNumber+" from "+
OriginCity+" is due at "+
timepattern(ArrivalTime,"hh:mm am/pm")

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the pattern parameter.

Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the number parameter.

See Also: seconds(function
time(function
now(function

Pattern Typical Output

"hh:mm:ss am/pm" 4:32:17 pm

"hh:mm am/pm" 4:32 pm

"hh:mm:ss" 16:32:17

Page 5862
TODAY(...)
TODAY(

Syntax: TODAY()

Description: The today(function returns a number corresponding to today’s date.

Parameters: This function has no parameters

Result: This function calculates today’s date. The date is represented as a number which is the
number of days since January 1, 4713 B.C. For example, if today’s date is August 7, 1991
this function will return the number 2,448,476.

Examples: This example procedure selects records that have been printed today (assuming that
PrintDate is a date field).

select PrintDate=today()

This formula could be used in an auto-wrap text object or Text Display SuperObject™ to
display today’s date.

datepattern(today(),"Month ddnth, yyyy")

Errors: *** This function does not produce any errors. ***

See Also: date(function
datepattern(function
now(function

Page 5863
TODO
TODO

Syntax: TODO reminder,status

Description: The todo statement allows a procedure to change the status (incomplete vs. complete) of
a to-do reminder (see reminder data).

Parameters: This statement has two parameters: reminder and status.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. See
reminder data for detailed information about reminders. In this case you are not specify-
ing the reminder itself, but the field containing the reminder data.

status is a number which controls the completion status for this reminder. The status
may be 0 (not complete), or 1 (complete) Note: A procedure can find out the current sta-
tus of a to-do reminder with the remindertodo(function.

Action: This statement changes the status of a to-do reminder. It is ignored for appointment
reminders.

Examples: This example marks all reminders for Frank Johnson as completed.

find Contact = "Frank Johnson"
loop

stoploopif (not info("found"))
todo Reminders,1
next

while forever

Views: This statement may be used in a Data Sheet or Form view.

See Also: remindertodo(function
reminder(function
reminderdate(function
remindertime(function
remindertype(function
buildreminder statement
alarmedit statement
reminder data

Page 5864
TODOPRIORITY
TODOPRIORITY

Syntax: TODOPRIORITY reminder,priority

Description: The todopriority statement allows the procedure to change the priority (hi-medium-
low) of a to-do reminder (see reminder data).

Parameters: This statement has two parameters: reminder and priority.

reminder is a special data type that holds scheduling information about an appointment
or to-do item. Reminders are usually used in calendar database applications. See
reminder data for detailed information about reminders. In this case you are not specify-
ing the reminder itself, but the field containing the reminder data.

priority is a number which describes how important this reminder is. The priority may
be 0 (blank), 1 (low), 2 (medium), or 3 (high). Note: A procedure can find out the current
priority of a to-do reminder with the reminderpriority(function.

Action: This statement changes the priority of a to-do reminder. It is ignored for appointment
reminders.

Examples: This example changes all reminders for Frank Johnson to high priority.

find Contact = "Frank Johnson"
loop

stoploopif (not info("found"))
todopriority Reminders,3
next

while forever

Views: This statement may be used in a Data Sheet or Form view.

See Also: reminderpriority(function
reminder(function
reminderdate(function
remindertime(function
remindertype(function
buildreminder statement
todo statement
alarmedit statement
reminder data

Page 5865
TOTAL
TOTAL

Syntax: TOTAL

Description: The total statement calculates totals and subtotals for the current field.

Parameters: This statement has no parameters.

Action: This statement calculates totals for the current field. The current field must be numeric. If
the database contains summary records, this statement will calculate subtotals for each
summary record, along with an overall total for the whole database. If there are not any
summary records in the database, one will be added at the end of the database and the
overall total calculated and placed into the summary record. This statement has the same
effect as choosing the Total command in the Math menu.

Examples: This simple example calculates the total of all checks in the database.

field Debit
total

 This example calculates the total sales for each state, along with the overall grand total.

field State
group
field Sales
total

Views: This statement may be used in the Data Sheet and Form views.

See Also: average statement
sum(function
count statement
minimum statement
maximum statement
group statement
outlinelevel statement

Page 5866
U

UNDEFINE
UNDEFINE

Syntax: UNDEFINE variables

Description: The undefine statement destroys one or more variables.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be destroyed. Each variable should be separated from
the next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement destroys one or more variables. The variables may be have been created
with the local, windowglobal, fileglobal or global statements, or any combination.
Destroying a variable completely removes it as if it had never been created in the first
place.

Examples: The example destroys two variables, Counter and Operating Ratio.

undefine Counter, «Operating Ratio»

Before you undefine a permenent variable you should make it unpermanent, like this:

unpermanent timeStamp
undefine timeStamp

Views: This statement may be used in any view.

See Also: global statement
fileglobal statement
local statement
globalize statement
windowglobal statement
permanent statement
unpermanent statement

Page 5867
UNDO
UNDO

Syntax: UNDO

Description: The undo statement reverses the effect of the previous statement. Not all statements can
be reversed, however you can undo the effect of sort, select, and fill statements. The
undo statement would not normally be used in a procedure. However, it may be
recorded in a procedure if the user chooses the Undo item in the Edit menu. If this hap-
pens you should remove the undo statement and the procedure statement from the pro-
cedure, they will simply waste time.

Parameters: This statement has no parameters.

Examples: The examples below shows an undo recorded by the procedure recorder. In effect the
first three lines of this procedure don’t do anything, and they should probably be
removed.

field "Price"
sortup
undo
field "Name"
sortup

Views: This statement may be used in the Data Sheet and Form views.

See Also: noundo statement

Page 5868
UNIONRECTANGLE(...)
UNIONRECTANGLE(

Syntax: UNIONRECTANGLE(rectangle1,rectangle2)

Description: The unionrectangle(function creates a rectangle by combining two rectangles. The new
rectangle is large enough to exactly cover both of the input rectangles. A rectangle is 8
bytes or raw binary data (see binary data, graphic coordinates).

Parameters: This function has two parameters: rectangle1 and rectangle2.

rectangle1 is the first rectangle.

rectangle2 is the second rectangle.

Result: This function returns a rectangle that is just large enough to cover both of the input rect-
angles.

Examples: The illustration below shows how this function combines two rectangles, creating a third
rectangle where the original two rectangles overlap:

The unionrectangle(function can be used to check if a smaller rectangle is inside a larger
rectangle. If the smaller rectangle is completely inside the larger rectangle, the result of
this function will be the same as the larger rectangle. The procedure below checks to see
if the current window is completely inside the main screen, or if it partially extends past
the edge of the main screen.

if unionrectangle(
info("windowrectangle") ,
info("screenrectangle")
) ≠info("screenrectangle")

message "This window sticks out from the main screen"
endif

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for any of the four parameters.

Page 5869
See Also: point(function
rectangle(function
rectanglesize(function
rtop(function
rbottom(function
rleft(function
rright(function
rheight(function
rwidth(function
inrectangle(function
intersectionrectangle(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5870
UNIQUEID(...)
UNIQUEID(

Syntax: UNIQUEID(field,root)

Description: The uniqueid(function is designed for generating unique ID codes for each record in a
database. The function generates ID codes with a text root and a numeric suffix (for
example Jeff261). By using the machine name as the text root you can guarantee that the
ID will be unique even for multiple copies of the database on different machines.

Parameters: This function has one parameters: field and root.

field is the name of the field that will contain the ID code. The function needs to know
the name of this field so that it can scan the field to find an ID code that has not been
used yet. The field name should be surrounded by quotes. For example, if the name of
the field is ID, you should use "ID" as the parameter.

root is the text root that the ID code will be based on. This root may contain any kind of
character, but it should not end with a numeric digit. To get a root that will be unique for
each different computer you have, use the info("user") function for the root. This func-
tion returns the user name specified in the Sharing Setup control panel.

Result: The function returns a unique ID code based on the root you have supplied.

Examples: Although you may find other uses for it, the uniqueid(function was designed specifi-
cally for creating unique Smart Merge serial numbers. Whenever a new record is added
to a database that supports Smart Merge you must make sure that the ID and Modified
fields are filled in. The best way to do this is to add a .AddRecord automatic procedure to
your database. The two lines shown below will fill in the proper values.

Modified= superdate(today(), now())
ID=uniqueid("ID",info("user"))

The uniqueid(function will scan the ID field to find the next serial number available. For
example, if you are using a computer with a chooser name of Sam and the highest Sam
serial number is 296, the uniqueid(function will return the value Sam297. Creating an
.AddRecord procedure may not be enough to insure that the ID and Modified fields are
always filled in. If your database has procedures that create new records, the
.AddRecord procedure will not automatically be called. You must modify these proce-
dures to call the .AddRecord procedure (using the call statement). Another possible
problem area is imported data. When you import data into the database you must make
sure that the ID and Modified fields are filled in. The procedure listed below will do the
job. You should also run this procedure when you first add Smart Merge to your data-
base, so that all your existing data will be properly identified.

select ID=""
field Modified
formulafill superdate(today(), now())
field ID
formulafill uniqueid("ID",info("user"))
selectall

Errors: Field or variable does not exist. This error occurs if there is no field in the current data-
base with the name you have specified. You probably misspelled the field name.

Page 5871
See Also: info("user") function

Page 5872
UNLOCKRECORD
UNLOCKRECORD

Syntax: UNLOCKRECORD

Description: The unlockrecord statement unlocks the currently active record. This statement only
applies to Partner/Server databases. It is ignored when used with a standard Panorama
database.

Parameters: This statement has no parameters.

Action: This statement unlocks the current record. If the current record is not locked, this state-
ment does nothing. (Note: The current record is automatically unlocked when Panorama
moves to another record.)

Examples: The first line of this example automatically locks the record. Since this procedure is not
planning to make any further modifications to the record, it immediately unlocks it so
that other users can access the record.

Status="Complete" /* automatically locks record */
unlockrecord

Views: This statement may be used in the Data Sheet and Form views.

See Also: lockrecord statement
lockorstop statement
info("serverstatus") function
info("servertimeout") function

Page 5873
UNPERMANENT
UNPERMANENT

Syntax: UNPERMANENT variables

Description: The unpermanent statement converts one or more permanent variables into regular file-
global variables. The variables will no longer be saved as part of the database.

Parameters: This statement has one parameter: variables.

variables is a list of permanent variables to be converted into regular fileglobal variables.
Each variable should be separated from the next by a comma. If a variable name contains
spaces or punctuation it should be surrounded by chevron (« ») characters.

Action: This statement “destroys” one or more permanent variables. Actually, the variables still
exist, but they are no longer linked to a database, and thus no longer saved with the
database. To use this statement the database that contains the permanent variables must
be the current database. If you want to completely destroy the variable use the undefine
statement.

Examples: The example converts the permanent variable EarlyDiscount into a fileglobal variable.

unpermanent EarlyDiscount

Views: This statement may be used in any view.

See Also: fileglobal statement
global statement
local statement
dbinfo(function
undefine statement

Page 5874
UNPROPAGATE
UNPROPAGATE

Syntax: UNPROPAGATE

Description: The unpropagate statement removes repeating data from the currently selected field. If
several records in a row contain the same data, this statement erases all but the first (top)
value.

Parameters: This statement has no parameters.

Examples: This example removes duplicate names from a mailing list. If two records have the same
name, this procedure will keep the one that was originally closer to the top of the data-
base. (If you want to keep the one that was bottom to the top of the database, use the
propagateup statement.)

field Name
sortup
unpropagate
select Name ≠ ""
removeunselected

Views: This statement may be used in a Data Sheet or Form view.

See Also: unpropagateup statement
propagate statement
propagateup statement
selectduplicates statement

Page 5875
UNPROPAGATEUP
UNPROPAGATEUP

Syntax: UNPROPAGATEUP

Description: The unpropagateup statement removes repeating data from the currently selected field.
If several records in a row contain the same data, this statement erases all but the last
(bottom) value.

Parameters: This statement has no parameters.

Examples: This example removes duplicate names from a mailing list. If two records have the same
name, this procedure will keep the one that was originally closer to the top of the data-
base. (If you want to keep the one that was bottom to the top of the database, use the
propagate statement.)

field Name
sortup
unpropagateup
select Name ≠ ""
removeunselected

Views: This statement may be used in a Data Sheet or Form view.

See Also: unpropagate statement
propagate statement
propagateup statement
selectduplicates statement

Page 5876
UNTIL
UNTIL

Syntax: UNTIL true-false test

Description: The until statement is used at the end of a loop. A loop is a sequence of statements that
are executed over and over again.

Parameters: This statement has one parameter: true-false test.

true-false test is a formula that should result in a true (-1) or false (0) answer. Usually the
formula is created with a combination of comparison operators (=, ≠, , etc.) and boolean
combinations (and, or, etc.) For example the formula Name="Smith" will be true if the
field or variables Name contains the value Smith, and false if it contains any other value.

Action: The true-false test may be replaced with an integer. In that case, the loop will repeat the
number of times specified by the number.

The until statement decides whether to jump back up to the top of the loop, or to con-
tinue with the next statement after the loop. The formula in the until statement is evalu-
ated each time Panorama reaches the end of the loop. Panorama will continue looping as
long as the result of the formula remains false. If the result of the formula is true, the loop
stops and the procedure continues with the next statement after the until statement.

Examples: This example adds 10 new records to the current database.

local NewCount
NewCount=10
loop

NewCount=NewCount-1
addrecord

until NewCount=0

 Here is a simpler example that also adds 10 records to the database.

loop
addrecord

until 10

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: loop statement
while statement
stoploopif statement
repeatloopif statement

Page 5877
UPDATEWIZARDMENU
UPDATEWIZARDMENU

Syntax: UPDATEWIZARDMENU

Description: The updatewizardmenu statement tells Panorama to update the contents of the Wizard
menu with the items in the variable PanoramaWizardMenu.

Parameters: This statement has no parameters.

Action: This statement is used by the Wizard Manager wizard, but it can be used by anyone. The
PanoramaWizardMenu variable must contain a list of wizards to list in the menu, one
line per wizard.

Examples: This example saves the contents of the wizard menu and then zaps the wizard menu.

global wasWizards
wasWizards=PanoramaWizardMenu
PanoramaWizardMenu=""
updatewizardmenu

This example restores the wizard menu.

global wasWizards
PanoramaWizardMenu=wasWizards
updatewizardmenu

Views: This statement may be used in any view.

See Also: global statement

Page 5878
Updating Database Structures
UPDATING DATABASE STRUCTURES

Background: Panorama 3.1 includes a mechanism that lets you update the structure of a database
while retaining the data. Let’s say that you have created a database and distributed it to
many users far and wide…perhaps you are even selling the database. Your many users
are each filling their databases with their own data. In the meantime, you are creating a
new version. This new version of the database may have new fields, new forms, new
procedures, and there are probably changes to existing forms/procedures/fields as well.
Once you have finished your update you need a way to distribute the update and let
each user update his or her copy of the database so that it has the new structure but
retains the old data. The following paragraphs will explain how this can be done.

ChangeName, DetachName, and HiJack

These three statements are the key to letting one database take over the structure of
another. The three statements are designed to work together. Instead of attempting a
detailed explanation of each statement, take a look at this example. This procedure
assumes the old version of the database is currently open. The procedure allows the user
to locate the update file, then updates the structure.

local oldFile,newFolder,newFile,newFType
/* let user locate the update file */

openfiledialog newFolder,newFile,newFType,"KAS1ZEPD"
if newFile="" stop endif /* user pressed cancel */

/* save name of original database*/
oldFile= info("databasename")

/* change name of original database IN MEMORY ONLY */
changename oldFile+".old"

/* open the file with the new structure */
openfile folderpath(newFolder)+newFile

/* suck the data from the old file into the new structure */
openfile "&"+oldFile+".old"

/* name of new database=name of old database (IN MEMORY ONLY) */
detachname oldFile

/* now connect to the original databases file on disk */
/* it's a "filejacking"! */

hijack oldFile+".old"
/* save the new, update file */

save
/* finally close the old database - we're done with it */

window oldFile+".old:SECRET"
closefile /* this file is really gone now */

 If you look closely at this example, you will see that it doesn’t really update the structure
of the original database. Instead, it loads the data from the old database into the new
database using Panorama’s standard "append with matching names" feature. Once this
is done the old database is “detached” from its disk file. The new file then takes over or
“hijacks” the detached disk file. As part of this “hijack” process Panorama also copies the
auto-increment value, so if the database uses auto-numbering the numbers will continue
to be generated in sequence.

Permanent Variables

If the original database has permanent variables that you want to keep, insert the follow-
ing statements just before the detachname statement in the procedure above. This proce-
dure assumes that the new updated database has at least the same permanent variables
as the original database, and it copies the values from the old database to the new.

Page 5879
local oldPermanentVariables,opv,pv
/* build a list of the permanent variables */

oldPermanentVariables= dbinfo("permanent",oldFile+".old")
opv=1
loop

/* get name of permanent variable */
pv= array(oldPermanentVariables,opv,¶)
stoploopif pv=""

/* transfer value from old to new */
set pv, grabfilevariable(oldFile+".old",pv)
opv=opv+1

while forever

 The procedure above will not work if the old database is not in author mode, since the
dbinfo(function will not be able to build a list of permanent variables. In that case you
must rely on your knowledge of the original database and hard code the permanent vari-
able names, like this:

pAreaCode= grabfilevariable(oldFile+".old","pAreaCode")
pDialingPrefix= grabfilevariable(oldFile+".old","pDialingPrefix")
pCallingCard= grabfilevariable(oldFile+".old","pCallingCard")

This procedure transfers three permanent variables from the old database to the new:
pAreaCode, pDialingPrefix, and pCallingCard.

Verifying Database Identity

The procedure listed above for updating the database relies on the user to pick the cor-
rect update database. If they pick the wrong database, there will be a big problem. You
can use permanent variables to create a database identity system that will permanently
identify a database, even if it has been renamed. We recommend creating three perma-
nent variables with the names dbVendor, dbName and dbVersion. Here is an example
showing how these variables can be created in the .Initialize procedure.

permanent dbVendor,dbName,dbVersion
dbVendor="ProVUE Development"
dbName="Power Team Phone Book"
dbVersion="2.0"

 Once these variables have been created they can be used to verify the identity of a data-
base. In the database update routine you can add verification code in between the two
openfile statements. This verification code will stop the update if the user selected the
wrong database.

if dbVendor ≠grabfilevariable(oldFile+".old",dbVendor) or
dbName≠grabfilevariable(oldFile+".old",dbName)

message "Please pick another database. "+
"The file you picked is not an update for "+oldFile+"."

closefile /* close the bogus update file */
changename oldFile /* and restore the original name */

endif

You could even make this procedure more robust by adding a check to make sure that
the version number of the update file is newer than the version number of the old file.

Page 5880
UPPER(...)
UPPER(

Syntax: UPPER(text)

Description: The upper(function converts text to UPPER CASE (all caps).

Parameters: This function has one parameter: text.

text is the item of text that you want to force to all upper case.

Result: The result of this function is always a text item.

Examples: This function can be used to modify fields or variables, or to display data. This example
makes sure that every state abbreviation is capitalized, i.e. CA not Ca or ca.

field State
formulafill upper(State)

For example, you might use this procedure after you imported data that was not prop-
erly capitalized. Another handy use for this function is to make comparisons when you
don’t know how the data is capitalized. The procedure below will select all data where
the terms are NET 30, Net 30, or net 30.

select upper(Terms)="NET 30"

The table below shows how the upper(function affects various items of text:

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example upper(34) . If you
have a number you must convert the number to text before using it with this function,
for example upper(str(34)) . Of course this function really doesn’t make much sense
when applied to a number, even if it is converted to text first.

See Also: upperword(function
lower(function

Page 5881
UPPERWORD(...)
UPPERWORD(

Syntax: UPPERWORD(text)

Description: The upperword(function converts text to Initial Caps. In other words, the first letter of
each word is changed to upper case, and all other letters are changed to lower case.

Parameters: This function has one parameter: text.

text is the item of text that you want to force to word capitalization.

Result: The result of this function is always a text item.

Examples: This function can be used to modify fields or variables, or to display data. This example
makes sure that every city name is properly capitalized, i.e. San Francisco not SAN
FRANCISCO or san francisco.

field City
formulafill upperword(City)

 For example, you might use this procedure after you imported data that was not prop-
erly capitalized. Another handy use for this function is to make comparisons when you
don’t know how the data is capitalized. The procedure below will select all data where
the terms are NET 30, Net 30, or net 30.

select upperword(Terms)="Net 30"

The table below shows how the upperword(function affects various items of text:

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value with this function, for example upperword(34) . If
you have a number you must convert the number to text before using it with this func-
tion, for example upperword(str(34)) . Of course this function really doesn’t make
much sense when applied to a number, even if it is converted to text first.

See Also: upper(function
lower(function

Page 5882
UPRECORD
UPRECORD

Syntax: UPRECORD

Description: The uprecord statement moves the cursor up one visible record in the active window.
This is the opposite of the downrecord statement.

Parameters: This statement has no parameters.

Action: This statement moves the cursor up one visible record in the Data Sheet, Design Sheet,
Cross Tab view, or View-as-list Form view. In a Individual Record Form view the view
will change to the next record up in the database. If the cursor is already on the first visi-
ble record this statement will do nothing.

You can use this statement in conjunction with the info("bof") or info("stopped") func-
tions to test to see if you are on the first visible record in the window.

This statement has the same effect as clicking on the Up Record tool on a tool palette
(when available).

Examples: This simple example could be used in either the Data Sheet, Form view or Cross Tab
view to move the cursor to the next visible record below the current record, making this
next record the current record.

uprecord

This example adds up the Qty field for the current record and every record above it.

local UpQty
UpQty=Qty
loop

uprecord
UpQty=UpQty+Qty

until info("bof")

Views: This statement may be used in any view.

See Also: firstrecord statement
info("eof") function
info("stopped") function
lastrecord statement
downrecord statement

Page 5883
URLDECODE(...)
URLDECODE(

Syntax: URLDECODE(url

Description: The urldecode(function takes standard ASCII text and converts into a format guaran-
teed to be legal in an internet URL (Universal Resource Locator). For example the url
my%20web%20page is converted to my web page .

Parameters: This function has one parameter: url.

url is the ASCII text you want to convert from URL format.

Result: This function returns regular ascii text. Any special characters in the text are converted to
regular ASCII format.

Examples: The example assumes that you have a field named WebAddress that contains web page
addresses. The example uses the urldecode(function to convert the url to a more
readable format before storing it in the database. Be sure to use the urlencode(function
to convert back to url format before passing this web address to the browser again.

global ActiveURL
startscript webScriptPath+"GetCurrentURL"
WebAddress=urldecode(ActiveURL)

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the url parameter.

See Also: urlencode(function

Page 5884
URLENCODE(...)
URLENCODE(

Syntax: URLENCODE(URL)

Description: The urlencode(function takes standard ASCII text and converts into a format guaran-
teed to be legal in an internet URL (Universal Resource Locato)r. For example the url my
web page is converted to my%20web%20page.

Parameters: This function has one parameter: url.

url is the ASCII text you want to convert to URL format.

Result: This function returns regular ascii text. Any special characters in the text are converted to
their URL equivalent (% followed by the hexadecimal value of the character).

Examples: The example assumes that you have a field named WebAddress that contains web page
addresses. The example uses the urlencode(function to make sure that the url is valid
before passing it to the browser.

global ActiveURL
ActiveURL=urlencode(WebAddress)
startscript webScriptPath+"SetCurrentURL"

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the url parameter.

See Also: urldecode(function

Page 5885
V

V(...)
V(

Syntax: V(point)

Description: The v(function extracts the vertical position from a point (see point(, graphic coordi-
nates).

Parameters: This function has one parameter: point

point is a number that includes both the vertical and horizontal components of a posi-
tion. This number is usually created with the point(, info("click"), or info("mouse") func-
tions.

Result: This function returns a number (an integer) that describes the vertical position of the
point. This number will be between -32,768 and +32,767. (Unlike standard cartesian co-
ordinates, positive is down and negative is up.)

Examples: The procedure below displays a message if you click on a spot less than 50 pixels from
the top of the screen.

if v(info("click")) ≤ 50
message "You’re near the top!"

endif

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the point parameter.

See Also: xytoxy(function
point(function
h(function
info("click") function
info("mouse") function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5886
VAL(...)
VAL(

Syntax: VAL(text)

Description: The val(function converts text into a number. The text must contain a valid number.

Parameters: This function has one parameter: text.

text is the text that you want to convert to a number. The text must contain a valid num-
ber, with no additional characters on the beginning or the end

Result: This function returns the number that was converted from the text.

Examples: The example below assumes that the current database has a numeric field called Dis-
tance. The procedure will ask the user for the speed, then display a message like this: At
45mph the elapsed time to travel 92 miles is 123 minutes.

local Speed
Speed="60"
gettext "Enter the Speed",Speed
Speed=val(Speed)
message "At "+ str(Speed)+

"mph the elapsed time to travel "+
str(Distance)+" miles is "+
str(Distance*60/Speed)+" minutes."

The gettext statement (line 3) allows the user to enter the speed, but as it name implies,
the result is a text data item. Line 4 uses the val(function to convert the Speed from text
to numeric. (Note: If the user typed in any non-numeric characters, the procedure will
stop at this point and display an error message.)

Trapping
Numeric
Conversion
Errors:

The val(function converts a text data item into a numeric value, but what if the text
doesn’t contain a valid number. For example, what is the numeric value of abc? Accord-
ing to Panorama it doesn’t have any value at all, and the procedure will normally stop
and display an alert. If you don’t want the procedure to stop, you can trap the error with
the if error statement. The example below traps the error and forces the user to enter the
speed over and over again until they enter a valid numeric value.

local Speed
loop

Speed="60"
gettext "Enter the Speed",Speed
Speed=val(Speed)
if error

message "Please enter a numeric value for the speed!"
Speed=0

endif
while Speed=0
message "At "+ str(Speed)+

"mph the elapsed time to travel "+
str(Distance)+" miles is "+
str(Distance*60/Speed)+" minutes."

Another possible way to handle this error is to fill in a default value and continue with
the procedure.

Page 5887
You can also attempt to strip out conversion errors in advance, by using the striptonum(
function. This function removes all non-numeric characters from a text item.

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to convert a value that is already a number.

See Also: pattern(function
str(function
striptonum(function

Page 5888
W

Page 5889
WATCHCURSOR
WATCHCURSOR

Syntax: WATCHCURSOR

Description: The watchcursor statement re-enables the watch cursor (after it has been disabled with
the nowatchcursor statement)..

Parameters: This statement has no parameters.

Action: This statement enables the watch and pie cursors that Panorama noramally uses when
performing a potentially slow operation. The watch cursor is also automatically re-
enabled when the procedure is finished,even if you do not use the watchcursor state-
ment.

Examples: While the operations in this example are performed the cursor stays as an arrow or cross
until the data is exported, at which time it will flip into a watch.

noshow
nowatchcursor
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
watchcursor
export "Summaries.txt",exportline()+¶
showpage
endnoshow

Views: This statement may be used in any view.

See Also: nowatchcursor statement
noshow statement
endnoshow statement
showpage statement
showline statement
showfields statement
showvariables statement
showcolumns statement
showrecordcounter statement
showother statement
hide statement
show statement
noundo statement

Page 5890
WEEK1ST(...)
WEEK1ST(

Syntax: WEEK1ST(date)

Description: The week1st(function computes the first day of a week (Sunday).

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: This function calculates the first day of the month. For example, if the date passed to this
function is July 12, 1995 (a Wednesday), this function will return the date July 9, 1995 (a
Sunday). The date is returned as a number.

Examples: The example below selects the orders placed this week, then displays the count.

select OrderDate ≥week1st(today()) and
OrderDate<week1st(today()+7)
message str(info("records"))+" orders this week"

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: monthlength(function
monthmath(function
dayofweek(function
month1st(function
quarter1st(function
year1st(function
date(function
datepattern(function

Page 5891
WHILE
WHILE

Syntax: WHILE true-false test

Description: The while statement is used at the end of a loop. A loop is a sequence of statements that
are executed over and over again.

Parameters: This statement has one parameter: true-false test.

true-false test is a formula that should result in a true (-1) or false (0) answer. Usually the
formula is created with a combination of comparison operators (=, ≠, , etc.) and boolean
combinations (and, or, etc.) For example the formula Name="Smith" will be true if the
field or variables Name contains the value Smith, and false if it contains any other value.
The test may also consist of the word forever, in which case the loop will never stop
(unless the loop has a stop, rtn, or stoploopif statement inside it).

Action: The while statement decides whether to jump back up to the top of the loop, or to con-
tinue with the next statement after the loop. The formula in the while statement is evalu-
ated each time Panorama reaches the end of the loop. Panorama will continue looping as
long as the result of the formula remains true. If the result of the formula is false, the loop
stops and the procedure continues with the next statement after the while statement.

Examples: This example adds 10 new records to the current database.

local NewCount
NewCount=10
loop

NewCount=NewCount-1
addrecord

while NewCount>0

This example prints all unprinted records using the appropriate form. In this case the
loop can only stop at the top (because of the stoploopif), because this while is forever!

find PrintedStatus=""
loop

stoploopif (not info("found"))
openform PrintForm
print ""
PrintedStatus="Complete"
closewindow
next

while forever

Views: This statement may be used in a procedure run from any view, and also works when no
windows are open at all.

See Also: loop statement
until statement
stoploopif statement
repeatloopif statement

Page 5892
WINDOW
WINDOW

Syntax: WINDOW

Description: The window statement brings a Panorama window to the front. It can also open a
“secret” invisible window.

Parameters: This statement has one parameter, name.

name is the exact name of the window that is to be brought to the front. This must be a
window that is currently open. If necessary, the procedure can find out the name of the
current window with the info("windowname") function. It can get a list of all open win-
dows with the info("windows") or listwindows(function.

To open a “secret” window, the window name should be <databasename>:Secret. A
secret window is just like any other window that contains a form, except that it is invisi-
ble. A procedure can flip to a secret window in another database (the database must be
open), perform some operation on that database (search, sort, etc.) then go back to the
original window—all without the flashing and updating that usually occur when you
flip from window to window. Secret windows are temporary. The secret window ceases
to exist as soon as the procedure brings another window to the top (or as soon as the pro-
cedure stops.) Note: The word Secret in the window name may be capitalized any way
you want: secret, Secret or SECRET.

Action: This statement will bring a window to the front, on top of all other windows. The win-
dow must already be open (unless it is a secret window) and its name must be spelled
correctly with all punctuation. If the window is not already open, an error will be gener-
ated, which can be trapped by if error (otherwise the procedure will stop). A window
that is not already opened may be opened using the openform, opensheet, opencrosstab,
openprocedure or opendesignsheet statements.

If you simply want to open any window in another database but you don’t care what
window, use the openfile statement. If the database is already open this statement will
simply bring one of its windows to the top.

Examples: This example prints using the Label form. If the Label window is already open it simply
brings it to the top, otherwise it opens the form.

window "Clients:Label"
if error

openform "Label"
endif
print dialog

This example updates an inventory database. It temporarily switches to the Inventory
data sheet window to do the update, then switches back to the original window when it
is done.

local wasWindow
wasWindow=info("windowname")
window "Inventory"
if error

message "Sorry, cannot update inventory."
stop

endif
find Description= grabdata("Invoice",Description)
if info("found")

Page 5893
QtyOnHand=QtyOnHand- grabdata("Invoice","Qty")
endif
window wasWindow

This example is exactly the same as the previous example, except that it uses a secret
invisible window instead of the data sheet.

local wasWindow
wasWindow=i info("windowname")
window "Inventory:SECRET" /* use secret window */
if error

message "Sorry, cannot update inventory."
stop

endif
find Description= grabdata("Invoice",Description)
if info("found")

QtyOnHand=QtyOnHand- grabdata("Invoice","Qty")
endif
window wasWindow

Views: This statement may be used in any view

See Also: windowtoback statement
openfile statement
opensecret statement
opencrosstab statement
opendesignsheet statement
opendialog statement
openform statement
openprocedure statement
info("windowname") function
info("windows") function
listwindows((function

Page 5894
WINDOWBOX
WINDOWBOX

Syntax: WINDOWBOX coordinates

Description: The windowbox statement allows a procedure to specify the size and location of a new
window. It should be used just prior to one of the following statements: opensheet, open-
form, opendialog, openprocedure, opencrosstab, or opendesignsheet.

Parameters: This statement has one parameter, coordinates.

coordinates is a text item that must contain four numbers within the item. The four num-
bers are the top, left, bottom, and right pixel coordinates of the new rectangle.

The coordinates may also contain window options, which must be at the end (after the
four numbers). If the text contains NoPalette, the window will not have a tool palette. If
the text contains NoVertScroll,, the window will not have a vertical scroll bar. If the text
contains NoHorzScroll, the window will not have a horizontal scroll bar. If the text con-
tains NoDragBar, the window will not have a drag bar across the top (the window will
look like a dialog box). A procedure may combine several of these options separated by
spaces.

Action: This statement allows the procedure to specify the size and location of the next window
to be opened.

Examples: This simple example opens a new window for the Credit Card form. The top is 120 pixels
down, the left side at 70 pixels in and the bottom at 280 pixels down and the right side at
440 pixels.

windowbox "120 70 280 440"
openform "Credit Card"

 This example opens the same window but without a tool palette or horizontal scroll bar.

windowbox "120 70 280 440 noPalette noHorzScroll"
openform "Credit Card"

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: setwindow statement
setwindowrectangle statement
zoomwindow statement
fitwindow statement
opensheett statement
opencrosstab statement
opendesignsheet statement
opendialog statement
openform statement
info("windowrectangle") function

Page 5895
WINDOWGLOBAL
WINDOWGLOBAL

Syntax: WINDOWGLOBAL variables

Description: The windowglobal statement creates one or more variables that are specific to the cur-
rent window. Window global variables may be used by any procedure as long as the
same window is open, and remain active until you close the window.

Parameters: This statement has one parameter: variables.

variables is a list of variables to be created. Each variable should be separated from the
next by a comma. If a variable name contains spaces or punctuation it should be sur-
rounded by chevron (« ») characters.

Action: This statement creates one or more window specific variables. Variables can be used to
hold pieces of information (numbers or text). Each variable has a name.

The windowglobal statement reduces that chance for conflict between windows in the
same database. It allows you to define the same variable name over and over again in
different windows, with each window having a separate value. This is very useful when
using window clones.

Window Clones

Panorama normally allows only a single window per form. However, Panorama 3.1
allows a single form to be opened over and over again into multiple windows. This is
called window "cloning." To allow a form to be cloned you must open the Form Prefer-
ences dialog and select the Allow Clones option.

A window clone cannot be opened manually...clone windows must be created with the
openform statement in a procedure. Here is a typical procedure that opens a slightly off-
set clone of the current window:

setwindowrectangle rectangleadjust(info("windowrectangle") ,10,10,10,10))
openform info("formname")

This procedure will not create a clone window unless the Allow Clones option is turned
on.

Designing Forms for Clone Windows

Although any form can be cloned if the Allow Clones option is turned on, most forms
will not work very intelligently if they are cloned. In general, a form that is designed to
be cloned should not contain any fields or global variables, only windowglobal vari-
ables. If your form contains SuperObjects and the Allow Clones option is turned on, the
SuperObjects will automatically create windowglobal variables instead of global vari-
ables. Since the windowglobal variables can be manipulated separately for each clone
window you can control each clone window individually, even though all the clone win-
dows use the same form template.

Examples: The example assumes that you have create a form called File Display that displays the
contents of a text file using a Text Display object with the formula

fileload(wFolder,wFile)

The procedure below will open a new window and display the file.

Page 5896
local folder,file,type
openfile folder,file,type,"TEXT"
if file="" stop endif
openform "File Display"
windowname file
windowglobal wFolder,wFile
wFolder=folder
wFile=file
showvariables wFolder,wFile

Each time you run this procedure another window will open. The only limit to the num-
ber of windows that can be opened is Panorama’s ultimate limit of 32 windows.

Views: This statement should only be used in a form view.

See Also: global statement
local statement
windowglobal statement
permanent statement
globalize statement
grabfilevariable(function
grabwindowvariable(function
info("windowvariables") function
undefine statement

Page 5897
WINDOWNAME
WINDOWNAME

Syntax: WINDOWNAME name

Description: The windowname statement changes the name of the current window.

Parameters: This statement has one parameter: name.

name is the text that will be used as the new name for the window.

Action: Panorama windows have a name that appears in the middle of the title bar. Usually the
window name is a combination of the database name and the current form (or other
view) name, for example Invoice:Report. The windowname statement allows you to
change the name of the window to anything you want. However, the change is tempo-
rary. As soon as the view is changed (for example with the goform statement, the win-
dow name will revert to the usual database/view combination (until you use the
windowname statement again).

Examples: The example below is from a database called Finances. Normally the window name for
this form would be Finances:Summary. However, in this case the window name will be
something like 1997.

local year
year= datepattern(today(),"yyyy")
gettext "What Year",year
openform "Summary"
select datepattern(Date,"yyyy")=year
windowname year

Views: This statement may be used in any view.

See Also: info("windowname") function

Page 5898
WINDOWPROC
WINDOWPROC

Syntax: WINDOWPROC

Description: The windowproc statement allows a procedure to open windows using any kind of
Macintosh window, not just the standard windows normally supported. For example a
procedure can open a rounded corner window (like a calculator) or a window with no
border at all. If you are an advanced C or assembly language programmer you can even
write your own window proc and use it with Panorama (refer to Inside Mac for informa-
tion on writing your own window procs). This statement is ignored on Windows sys-
tems.

Parameters: This statement has one parameter: procid.

procid is a number that specifies the Window Proc ID. You can use the window proce-
dures built in to the Mac ROM (listed below) or specify your own. The standard built in
mac window procedures are listed in Inside Mac Vol I pg 273, but here is a quick sum-
mary of what is available:

Window Proc 0 - This is the standard window. If you want a standard window don’t use
this, because Panorama has it’s own standard window that supports the pop-up view
menu.

Window Proc 1 - This is the standard dialog window. You can get the same effect simply
by specifying “nodragbar” with the setwindow command.

WindowProc 2 - This is a plain dialog box with no border.

WindowProc 3 - This is a plain dialog box with no border but with a drop shadow.

WindowProc 16 - This is a rounded corner window with a black drag bar. This window
is often used for calculator DA’s.

Action: Most Macintosh windows have a standard appearance: a drag bar across the top and a
slight shadow on the bottom and right hand sides. However, there are several other
styles available, and a C or Pascal programmer can even create their own style of win-
dow. The windowproc statement allows Panorama to use any style of window available.
This statement must be used just before the statement that actually opens the window
(usually openform). Once the window is opened, you cannot change its style. The only
way to change the style is to close the window and then re-open it.

If you use a custom window proc, keep in mind that the window proc is not saved as
part of the database file. If the file is saved with a custom window open, then re-opened,
the window will re-open using the standard window procedure. Only windows that
have been opened with the proper procedure statements will use custom window proce-
dures.

Examples: The example below will open a form named Calculator. The form will appear in a win-
dow with rounded corners, just like the Calculator desk accessory.

windowproc 16
openform "Calculator"

Views: This statement may be used in any view.

Page 5899
See Also: openform statement
opendialog statement

Page 5900
WINDOWTOBACK
WINDOWTOBACK

Syntax: WINDOWTOBACK name

Description: The windowback statement moves a Panorama window to the back, behind all other
Panorama windows.

Parameters: This statement has one parameter, name.

name is the exact name of the window that is to be sent to the back. This must be a win-
dow that is currently open. If necessary, the procedure can find out the name of the cur-
rent window with the info("windowname") function. It can get a list of all open windows
with the info("windows") or listwindows((function.

Action: This statement will send a window to the back, below all other windows. The window
must already be open and its name must be spelled correctly with all punctuation. If the
window is not already open, an error will be generated, which can be trapped by if error
(otherwise the procedure will stop).

Examples: This example prints using the Label form. When it is finished, it sends the window
behind all other windows.

window "Clients:Label"
if error

openform "Label"
endif
print dialog
windowtoback "Clients:Label"

Views: This statement may be used in any view.

See Also: window statement
closewindow statement
info("windowname") function
info("windows") function
listwindows((function

Page 5901
Word Processor Programming
WORD PROCESSOR PROGRAMMING

Background: The superobject and activesuperobject statements allow a procedure to communicate
and send commands to SuperObjects. Each type of SuperObject has its own list of com-
mands and parameters for those commands.

Quick Please refer to text editor programming for details of the following commands:

"Open"
"Close"
"Cut"
"Copy"
"Paste"
"Clear"
"GetSelection",<START>,<END>
"SetSelection",<START>,<END>
"GetText",<TEXT>
"SetText",<TEXT>
"InsertText",<TEXT>
"GetSelectedText",<TEXT>
"Find"
"FindNext"
"Change"
"Spell"

The commands shown below are defined in this section.

"GetFont",<TEXT>
"SetFont",<TEXT>
"GetFontSize",<INTEGER>
"SetFontSize",<INTEGER>
"GetJustification",<TEXT>
"SetJustification",<TEXT>
"GetLeading",<NUMBER>
"SetLeading",<NUMBER>
"GetLeftIndent",<NUMBER>
"GetRightIndent",<NUMBER>
"GetFirstIndent",<NUMBER>
"SetLeftIndent",<NUMBER>
"SetRightIndent",<NUMBER>
"SetFirstIndent",<NUMBER>

"ClearTabs"
"GetTab",<Tab>,<Position>,<Type>,<Leader>
"AddTab",<Position>,<Type>,<Leader>
"GetStyle",<Style Name>,<Status>
"SetStyle",<Style Name>,<Status>
"GetTextColor",<Color>
"GetTextBackgroundColor",<Color>
"SetTextColor",<Color>
"SetTextBackgroundColor",<Color>
"ShowRuler",<Status>
"LockDocument",<Status>

Page 5902
GetFont ,<TEXT>
This command gets the font of the selected text. If the selected text contains more than
one font, only the first font is listed. The example below displays the font of the selected
text.

local MyFont,MyFontSize
activesuperobject "GetFont",MyFont
activesuperobject "GetFontSize",MyFontSize
message "The font is: "+ str(MyFontSize)+"pt "+MyFont

SetFont ,<TEXT>
This command changes the font of the selected text. All the selected text is changed to
the same font. The example below inserts the current time into the text using 15 point
American Typewriter.

if info("activesuperobject") = "" stop endif
activesuperobject "SetFont","American Typewriter"
activesuperobject "SetFontSize",15
activesuperobject "InsertText",
timepattern(now(),"hh:mm am/pm")

GetFontSize ,<INTEGER>
This command gets the font size of the selected text. If the selected text contains more
than one size, only the first size is listed. See GetFont (above) for an example of this com-
mand.

SetFontSize ,<INTEGER>
This command changes the size of the selected text. All the selected text is changed to the
same size. See GetFontSize (above) for an example of this command.

GetJustifica-
tion

 ,<TEXT>
This command gets the text justification status of the selected text. The result may be one
of these values: Left, Center, Right or Full. If the selected text contains more than one jus-
tification, only the first justification is listed.

SetJustifica-
tion

 ,<TEXT>
This command changes the justification of the selected text. The new justification may be
one of these values: Left, Center, Right or Full. All the selected text is changed to the
same justification. The example below adds a new, right justified line to the end of the
document, then types the current time into that line.

if info("activesuperobject") = "" stop endif
activesuperobject "SetSelection",999999,999999
activesuperobject "InsertText",¶
activesuperobject "SetJustification","Right"
activesuperobject "InsertText",
timepattern(now(),"hh:mm am/pm")

Page 5903
GetLeading ,<NUMBER>
This command gets the leading of the selected text. If the selected text contains more
than one leading, only the first leading is returned. For normal single spaced text the
leading value is zero.

SetLeading ,<NUMBER>
This command changes the leading of the selected text. All the selected text is changed to
the same leading. For normal single spaced text the leading value should be zero.

GetLeftIndent
GetRightIn-
dent
GetFirstIn-
dent

 ,<NUMBER>
These command gets the indents of the selected text. If the selected text contains more
than one indent value, only the first indent value is returned. The GetLeftIndent and
GetRightIndent commands return the left and right indent values, respectively. The Get-
FirstIndent command returns the indent of the first line of the paragraph. All indent val-
ues are specified in points (72 points per inch).

SetLeftIndent
SetRightIn-
dent
SetFirstIndent

 ,<NUMBER>
This command changes the indents of the selected text. All the selected text is changed to
the same indents. All indent values are specified in points (72 points per inch). The
example below sets the margins for the currently selected text at 1/2 inch (36 points).

activesuperobject "SetLeftIndent",36
activesuperobject "SetRightIndent",36

ClearTabs This command clears all tabs from the selected text.

GetTab ,<Tab>,<Position>,<Type>,<Leader>
This command gets information about a tab stop active with the currently selected text.
The first parameter, <Tab>, is the number of the tab you want to get information about
(starting with 1). The remaining three parameters are filled in by the command. The
<Position> is the position of the tab, in points. The <Type> is the type of tab. The possi-
ble types are Left, Center, Right, Decimal and None. A <Type> of None indicates that the
requested tab does not exist. In that case values of the <Position> and <Leader> charac-
ters are not defined. The <Leader> parameter is the tab leader character, if any. The
example below will display a list of the current tab stops.

local tabList,theTab,tabSpot,tabType,tabLeader
theTab=1
tabList=""
tabType="None"
loop

activesuperobject "GetTab",theTab,
tabSpot,tabType,tabLeader
stoploopif tabType = "None"
tabList= sandwich("",tabList,", ")+
tabType+" "+ pattern(tabSpot/72,"#.##")+{"}
theTab=theTab+1

while forever
message tabList

Page 5904
AddTab ,<Position>,<Type>,<Leader>
This command adds a new tab stop. The <Position> is the position of the tab, in points.
The <Type> is the type of tab. The possible types are Left, Center, Right and Decimal.
The <Leader> parameter is the tab leader character, if any. The example below will add
a tab stop and then add several lines of pricing information.

if info("activesuperobject") = "" stop endif
activesuperobject "SetSelection",999999,999999
activesuperobject "InsertText",¶
activesuperobject "ClearTabs"
activesuperobject "AddTab",220,"Decimal",""
activesuperobject "InsertText",

"Widget"+¬+"6.56"+¶+
"Micro Widget"+¬+"3.12"+¶+
"Deluxe Widget"+¬+"18.63"

GetStyle ,<Style Name>,<Status>
This command will check the selected text to see if it is a certain style. If there is more
than one style in the selected text, the style of the first character will be returned. If the
selected text matches the specified cell the result is -1, if it does not match, the result is 0.
The style names are:

Plain
Bold
Italic
Outline
Shadow
Condensed
Extended
Hidden Text
Strikeout
SuperScript
SubScript
SmallCaps
AllCaps
AllLowerCase
FormulaMerge
UnderLine
DoubleUnderLine
WordUnderLine
DottedUnderLine
OverLine

A text selection may contain more than one of these styles. You must test for each style
separately. Here is an example that checks for bold strikeout text.

local isBold,isStrike
activesuperobject "GetStyle","Bold",isBold
activesuperobject "GetStyle","Strikeout",isStrike
if isBold=-1 and isStrike-1

yesno "Delete this?"
if clipboard() contains "yes"

activesuperobject "Cut"
endif

endif

Page 5905
SetStyle ,<Style Name>,<Status>
This command will change the style of the selected text. If the status is -1, the specified
style is turned on. If the status is 0, the specified style is turned off. The style names are
listed in the previous section.

The SetStyle command adds or subtracts the specified style from the styles the selected
text already has. If you want to make sure the selected text has only the styles you spec-
ify, start by making the text plain. The example below sets the selected text to bold dou-
ble underline.

activesuperobject "SetStyle","Plain",-1
activesuperobject "SetStyle","Bold",-1
activesuperobject "SetStyle","DoubleUnderLine",-1

GetTextColor
GetTextBack-
groundColor

 ,<Color>
These commands will return the color of the selected text (See colors).

SetTextColor
SetTextBack-
groundColor

 ,<Color>
These commands will set the color of the selected text (See colors). The example below
sets the selected text to a pure blue.

activesuperobject "SetTextColor",rgb(0,0,65535)

ShowRuler ,<Status>
This command will turn the display of the ruler on and off. If the <Status> is -1, the ruler
will be shown; if the <Status> is 0, the ruler will not be shown. The example below
makes sure the ruler is visible.

 activesuperobject "ShowRuler",-1

LockDocu-
ment

 ,<Status>
This command allows the document to be locked. If the <Status> is -1, the document will
be locked and cannot be edited. If the <Status> is 0, the document will be unlocked and
may be edited again. The example below locks the current document.

activesuperobject "LockDocument",-1

Page 5906
WORD(...)
WORD(

Syntax: WORD(number)

Description: The word(function converts a number into a single word (2 bytes) of binary data (see
binary data).

Parameters: This function has one parameter: number.

number is the value that you want to convert into a binary number. This value must be
between 0 and 65,535.

Result: This function converts the number into a single word of binary data (16 bits). This binary
data should be handled as text data.

Examples: This example converts the number 9837 into a binary word, then copies that binary data
into the variable X.

local X
X=word(9837)

If you check the size of X with the sizeof(function, you’ll find that it is 2 bytes long.

See c/pascal structures for additional examples of the word(function.

Errors: Type mismatch: text argument used when number was expected. This error occurs if you
attempt to use a text value for the number parameter.

Illegal number. This error occurs if you attempt to convert a value less than 0 or greater
than 65,535.

See Also: byte(function
longword(function
radix(function
radixstr(function

Page 5907
WORDLIST
WORDLIST

Syntax: WORDLIST array,separator,word

Description: The wordlist statement builds an array of words from the dictionary. This statement
requires that the optional Panorama dictionary be installed.

Parameters: This statement has three parameters: array, separator and word.

array is a field or variable. The wordlist statement will put the list of words into this field
or variable.

separator is the character that will be placed in between each word (see text arrays).

word specifies what words are to be included in the list of words. You can pick either
words that sound like a word, or words that start with certain letters.

To build a list of words that sound like a word simply use that word as the parameter.
For example to find words that sound like abalone use the parameter "abalone".

To build a list of words that start with certain letters the parameter should be those let-
ters followed by an asterisk. For example to find all words that begin with non use the
parameter "non*". (Note: Unlike the match operator, you may use only one * and it must
be at the end of the text.)

Action: This statement uses the Panorama dictionary to build a list of English words.

Examples: This procedure will check the spelling in the currently active text editor or word proces-
sor SuperObject™. If an incorrect word is located this procedure will fill the variable sug-
gestionList with a list of words that sound like the incorrect word. This list could be used
for a pop-up menu or List SuperObject.

global suggestionList
local badWord
activesuperobject "spell"
activesuperobject "getselectedtext",badWord
wordlist suggestionList,¶,badWord

Views: This statement may be used in any view.

See Also: spelling statement

Page 5908
WRITERESOURCE
WRITERESOURCE

Syntax: WRITERESOURCE type,id,data

Description: The writeresource statement modifies and/or creates a resource item. The resource file
must be opened with the openresourcerw statement.

Parameters: This statement has three parameter: type, id and data.

type is the resource type. This must be a four letter text item. Standard resource types
include "STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dia-
log items), "MENU" (menu).

id is the identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item).

data is the actual data that will be placed into the item. This may be in a field, variable, or
constructed with a formula.

Action: This statement saves data directly into a resource item. If there is more than one resource
file open the resource will be written into the file that was most recently opened (see the
activeresource statement).

Examples: The procedure below writes some text (for example Last update: 10/18/02) into STR
resource number 2000. If the resource does not exist it will be created.

writeresource "STR ",2000,
string255("Last update: "+ datepattern(today(),"mm/dd/yy")

Views: This statement may be used in any view.

See Also: openresource statement
openresourcerw statement
closeresource statement
deleteresource statement
renameresource statement
activeresource statement

Page 5909
X

XCALL
XCALL

Syntax: XCALL procedure,parameters

Description: The xcall statement calls an external procedure. External procedures are usually written
in C or Pascal. Before an external procedure can be used it must be installed in a resource
file, and the resource file must be opened with the openresource statement.

Parameters: This statement has at least one parameter: procedure. It may have additional parameters
which are not processed by the xcall statement itself but simply passed through to the
external procedure.

procedure is name of the external procedure. This is actually the name of the resource
containing the external procedure.

parameters are additional parameters used by the external procedure. The exact param-
eters required and their meanings will be different depending on what external proce-
dure you are calling. If a parameter is used to pass information to the external procedure
you may use any formula to calculate the value of the parameter. Parameters may also
receive values from the external procedure. If a parameter is used to receive a value, that
parameter must be a single field or variable with no operators (myValue, not
myValue+yourValue or strip(myValue)).

Action: This statement calls an external procedure.

Examples: The example uses an external procedure called SerialIO in a resource file called Serial
Access Package to read a line of data from the serial port.

openresource "Serial Access Package"
local SerialErr
SerialERR=0
xcall "SerialIO","Open","PortA",SerialERR
local AC, ioerr, line, char
line=""
char="" AC=0
ioerr=0
loop

xcall "SerialIO","GetAvailable","PortA",AC,ioerr
if AC>0

xcall "SerialIO","ReadChar","PortA",char,ioerr
line=line+char

endif
while char ≠chr(13)

Views: This statement may be used in any view.

See Also: openresource statement

Page 5910
XYTOXY(...)
XYTOXY(

Syntax: XYTOXY((point/rectangle,fromrelative,torelative)

Description: The xytoxy(function converts a point or rectangle from one co-ordinate system to
another. There are three possible co-ordinate systems: Screen Relative, Window Rela-
tive, and Form Relative (see graphic coordinates).

Parameters: This function has three parameters: point/rectangle, fromrelative and torelative.

point/rectangle is the point or rectangle that you want to convert to another co-ordinate
system.

fromrelative is the co-ordinate system that the point or rectangle is in now. The three
options for this parameter are:

"Screen" (may be abbreviated "S" or "s")
"Window" (may be abbreviated "W" or "w")
"Form" (may be abbreviated "F" or "f")

torelative is the co-ordinate system that you want to convert the point or rectangle into.
This parameter accepts the same three options listed above.

Result: This function returns a point or rectangle (whatever was passed to it). This point or rect-
angle has been converted to a different co-ordinate system (for example screen relative to
window relative).

Examples: The point shown below has window relative co-ordinates of (100,50). Its screen relative
co-ordinates are (160,110).

The formula below will convert this point from window co-ordinates (100,50) to screen
co-ordinates (160,110).

xytoxy(point(100,50),"w","s")

The info("click") function returns the screen relative co-ordinates of the last mouse click.
This procedure will convert the mouse click point to form relative, then check to see if
the mouse was clicked in the top inch of the form.

Page 5911
local mousePoint
mousePoint=xytoxy(info("click") ,"s","f")
if v(mousePoint)<=72

message "You clicked in the top inch of the form"
endif

Errors: Type mismatch: numeric argument used when text was expected. This error occurs if
you attempt to use a numeric value for the fromrelative or torelative parameters.

See Also: point(function
v(function
h(function
info("click") function
info("mouse") function
rectangle(function
rtop(function
rbottom(function
rleft(function
rright(function
info("screenrectangle") function
info("windowrectangle") function
info("buttonrectangle") function
info("cursorrectangle") function

Page 5912
Y

YEAR1ST(...)
YEAR1ST(

Syntax: YEAR1ST(date)

Description: The year1st(function computes the first day of a yea

Parameters: This function has one parameter: date.

date is a number representing the date.

Result: This function calculates the first day of the year. For example, if the date passed to this
function is July 12, 1995, this function will return the date January 1, 1995. The date is
returned as a number.

Examples: The example below calculates the number of days remaining in the current year.

Remaining=year1st(today()+366)- today()

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you attempt to use a text value for the date parameter.

See Also: monthlength(function
monthmath(function
week1st(function
month1st(function
quarter1st(function
date(function
datepattern(function

Page 5913
YESEVENT
YESEVENT

Syntax: YESEVENT

Description: The yesevent statement enables Panorama’s event processing after it has been disabled
with the noevent statement.

Parameters: This statement has no parameters.

Action: This statement turns on Panorama’s event processing after it has been turned off with
the noevent statement. You should only use this statement in one place—at the begin-
ning of the .CustomMenu procedure as shown in the example below. In this application
the noevent statement allows AppleEvents to open a database properly via your .Cus-
tomMenu procedure. This is important because the Finder uses AppleEvents to open a
file when you double click on its icon. Using noevent in any other way will probably
cause Panorama to crash! No kidding.

Examples: If your database uses a custom menu for the File menu your .CustomMenu procedure
should contain the following statements at the very beginning of the procedure. The
noevent statement must be the very first statement in the procedure. This will allow the
Finder to open files with AppleEvents.

noevent
if info("trigger") beginswith "Menu.File.Open"

openfile dialog
stop

endif
yesevent

Views: This statement may be used in any view.

See Also: noevent statement
openfile statement

Page 5914
YESNO
YESNO

Syntax: YESNO text

Description: The yesno statement displays an alert with a message and two buttons: Yes and No. The
default is Yes.

Parameters: This statement has one parameter: text.

text is the message that will appear in the dialog when it is displayed. You may use any
formula to create this text, but usually a text constant is used (text surrounded by double
quote marks (Example: "Do you want to continue?").

Action: This statement allows the procedure to pause and asks a question requiring one of two
responses: Yes or No. The response will be written to the clipboard so that it can be
tested for later in the procedure.

Examples: This example asks the user if they want to remove old records. If they press the Yes but-
ton the procedure will remove all records that are more than 1 year old, otherwise the
procedure will do nothing.

yesno "Remove old records?"
if clipboard() contains "Yes"

select Date> today()-365
removeunselected

endif

Views: This statement may be used in any view, and also works when no windows are open at
all.

See Also: noyes statement
alert statement
cancelok statement
customalert statement
customdialog statement
getscrap statement
gettext statement
message statement
okcancel statement
alertmode statement
clipboard() function
info("dialogtrigger") function

Page 5915
Z

ZEROBLANK(...)
ZEROBLANK(

Syntax: ZEROBLANK(value)

Description: The zeroblank(function tells Panorama to treat zeroes as empty space.

Parameters: This function has one parameter: value.

value is any numeric value or formula. If any field in this value or formula is blank
(empty), the result of the formula will be blank (empty).

Result: The result of this function is either a numeric value, or empty if one of the source fields is
empty.

Examples: This example calculates a line item in an invoice. The amount is calculated by multiply-
ing the quantity times the price. However, if either the quantity or the price is blank (not
zero, but actually blank) the amount will also be blank. This avoids the cluttered look in
your invoices.

Amount Ω=zeroblank(Qty Ω*Price Ω)

Notes: If this is a SQL database, blank numbers are not allowed. The number will appear blank
temporarily, but will turn into a zero the next time the database is synchronized with the
SQL server.

Errors: Type mismatch: text argument used when numeric was expected. This error occurs if
you use text fields with this function, for example zeroblank(FName+LName) .

Page 5916
ZOOMWINDOW
ZOOMWINDOW

Syntax: ZOOMWINDOW Top,Left,Height,Width,Options

Description: The zoomwindow statement allows a procedure to move, resize, and change the
attributes of an existing window.

Parameters: This statement has five parameters: top,left, height, width and options.

top is the position of the top edge of the rectangle. This must be a number between -
32,768 and +32,767. (Unlike standard cartesian co-ordinates, positive is down and nega-
tive is up.)

left is the position of the left edge of the rectangle. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right and negative
is left.)

height is the height of the rectangle. This must be a number between 0 and +32,767.

width is the width of the rectangle. This must be a number between 0 and +32,767.

options is an item of text that optionally turns off elements of the new window. If the
text contains NoPalette, the window will not have a tool palette. If the text contains
NoVertScroll, the window will not have a vertical scroll bar. If the text contains
NoHorzScroll, the window will not have a horizontal scroll bar. The NoDragBar option,
which can be used with the setwindow and setwindowrectangle statements, has no
effect when used with the zoomwindow statement. A procedure may combine several
options separated by spaces. If the option text is empty ("") the window will appear nor-
mal.

Action: This statement allows the procedure to move a window to a new location, change the
size of a window, or add or remove scroll bars and tool palettes.

Examples: This example enlarges a window to its maximum size for 10 seconds, then reduces it
back to it's original size.

local wasWindowRect,startDelay
wasWindowRect= info("windowrectangle")
zoomwindow

rtop(info("maximumwindow")),
rleft(info("maximumwindow")),
rheight(info("maximumwindow")),
rwidth(info("maximumwindow")),
""

startDelay= now()
loop until now()>startDelay+10
zoomwindow

rtop(wasWindowRect),
rleft(wasWindowRect),
rheight(wasWindowRect),
rwidth(wasWindowRect),""

Views: This statement may be used in any view.

Page 5917
See Also: setwindowrectangle statement
setwindow statement
window statement
getwindow statement
closewindow statement
info("windowrectangle") function
info("minimumwindow") function
info("maximumwindow") function
info("windowbox") function

	Panorama Reference
	Navigation Using the Search Panel and Topic List
	The Full Text Search Option
	Navigation Using the Topic, Statement and Function Menus
	Navigation Using HyperLinks
	Built In vs. Custom Statements and Functions
	Using the Template Panel
	Minimizing the Programming Reference Wizard
	?(...)
	A
	ABS(...)
	ACTIVERESOURCE
	ACTIVESUPEROBJECT
	ADDFIELD
	ADDLINES
	ADDRECORD
	ADDWINDOWSFONT
	ADJUSTXY(...)
	ALARMDELETE
	ALARMEDIT
	ALARMRESET
	ALERT
	ALERTMODE
	ALLINDEX
	ARCCOS(...)
	ARCCOSH(...)
	ARCSIN(...)
	ARCSINH(...)
	ARCTAN(...)
	ARCTANH(...)
	ARRAY(...)
	ARRAYBUILD
	ARRAYCHANGE(...)
	ARRAYDEDUPLICATE
	ARRAYDELETE(...)
	ARRAYELEMENT(...)
	ARRAYFILTER
	ARRAYINSERT(...)
	ARRAYLINEBUILD
	ARRAYRANGE(...)
	ARRAYREVERSE(...)
	ARRAYSCAN(...)
	ARRAYSEARCH(...)
	ARRAYSELECTEDBUILD
	ARRAYSIZE(...)
	ARRAYSORT
	ARRAYSTRIP(...)
	ASC(...)
	ASCII
	ASCII7TO8(...)
	ASCII8TO7(...)
	ATTACHSERVER
	AVERAGE

	B
	BACKSPACEKEY
	BAUD
	BEEP
	BINARY DATA
	BINARYVALUE(...)
	BLUE(...)
	BRIGHTNESS(...)
	BUILDREMINDER
	BYTE(...)

	C
	C/Pascal Structures
	CALCCROSSTAB
	CALENDARDATE(...)
	CALENDARDAY(...)
	CALL
	CANCELOK
	CARDVALIDATE
	CASE
	CELL
	CHANGE
	CHANGEOBJECTS
	CHR(...)
	CITY(...)
	CLEAR
	CLEARCELL
	CLEARMENUMARKS
	CLEARRECORD
	CLIPBOARD(...)
	CLIPTOPICTFILE
	CLOSEFILE
	CLOSERESOURCE
	CLOSESOUND
	CLOSEWINDOW
	COLLAPSE
	COLORS
	COLORWHEEL
	CONVERTIMAGE
	COPY
	COPYCELL
	COPYFORM
	COPYRECORD
	COS(...)
	COSH(...)
	COUNT
	COUNTY(...)
	CUSTOMALERT
	CUSTOMDIALOG
	CUT
	CUTCELL
	CUTRECORD

	D
	DATAFORK
	DATATYPE(...)
	DATE PATTERNS
	DATE(...)
	DATEPATTERN(...)
	DAYOFWEEK(...)
	DBINFO(...)
	DEBUG
	DEFAULTCASE
	DEFINE
	DEGREE
	DELETEABOVE
	DELETEALL
	DELETEFIELD
	DELETERECORD
	DELETERESOURCE
	DELETEWINDOW
	DETACHSERVER
	DIAL
	DIALDESKTOP
	DIALMODEM
	DIALPRINTER
	DIALVOLUME
	DISABLEABORT
	DIVZERO(...)
	DOWNRECORD
	DRAGGRAYBOX
	DRAWMENUS
	DRAWOBJECTS

	E
	EDITCELL
	EDITCELLSTOP
	EDITSELECT
	ELSE
	EMPTYFIELD
	EMPTYFILL
	ENABLEABORT
	ENDCASE
	ENDIF
	ENDNOSHOW
	ENDSIMULATE
	EXECUTE
	EXP(...)
	EXPAND
	EXPANDALL
	EXPORT
	EXPORTCELL(...)
	EXPORTLINE(...)
	EXTRACT(...)
	EXTRAPAGES(...)

	F
	FACT(...)
	FARCALL
	FIELD
	FIELDMAX(...)
	FIELDNAME
	FIELDSTYLE(...)
	FIELDTYPE
	FILEAPPEND
	FILEGLOBAL
	FILEINFO(...)
	FILELOAD(...)
	FILELOADPARTIAL(...)
	FILERENAME
	FILESAVE
	FILESIZE(...)
	FILETRASH
	FILETYPECREATOR
	FILL
	FIND
	FINDSELECT
	FINDWINDOW(...)
	FIRSTRECORD
	FITWINDOW
	FIX(...)
	FIXED(...)
	FLOAT(...)
	FLOATINGEDIT
	FOLDER(...)
	FOLDERPATH(...)
	FONT
	FORMCOLOR
	FORMCOMMENT(...)
	FORMCOMMENTS
	FORMCOMMENTTYPE
	FORMSELECT
	FORMSERVERLOOKUP
	FORMTYPE(...)
	FORMULABUFFER
	FORMULACALC
	FORMULAFILL
	FORMULAFINDSELECT
	FORMULASUM
	FORMXY
	FUNCTIONS
	FV(...)

	G
	GENERATEVALUES
	GESTALT(...)
	GETADDRESS
	GETAUTONUMBER
	GETBUTTON
	GETCITYSTATEZIP
	GETCLICK
	GETCURSOR
	GETFILEFINDERINFO
	GETINTERNALBUTTON
	GETLOCALBUTTON
	GETLOCALCLICK
	GETMAXWINDOW
	GETMENUMARK
	GETMENUS
	GETMENUTEXT
	GETNAME
	GETNSTRING(...)
	GETPHONE
	GETPROCEDURETEXT
	GETRESOURCE(...)
	GETSCRAP
	GETSCRAPOK
	GETSTRING(...)
	GETSTRINGMATCH(...)
	GETTEXT
	GETWINDOW
	GLOBAL
	GLOBALIZE
	GOCROSSTAB
	GODESIGNSHEET
	GOFORM
	GOPROCEDURE
	GOSHEET
	GOTO
	GRABDATA(...)
	GRABFILEVARIABLE(...)
	GRABWINDOWVARIABLE(...)
	Graphic Coordinates
	GRAPHICSMODE
	GREEN(...)
	GROUP
	GROUPBYCOLOR
	GROUPDOWN
	GROUPUP

	H
	H(...)
	HIDE
	HSB(...)
	HTML TABLES
	HTML TAG PARSING
	HTMLDECODE(...)
	HTMLENCODE(...)
	HUE(...)

	I
	IF
	IMAGEQUALITY
	IMPORT(...)
	IMPORTCELL(...)
	IMPORTUSING
	info("abort")
	info("activesuperobject")
	info("applemenufolder")
	info("bof")
	info("buttonrectangle")
	info("changecount")
	info("changes")
	info("click")
	info("cursorrectangle")
	info("databasefilename")
	info("databasename")
	info("datatype")
	info("desktopfolder")
	info("dialogtrigger")
	info("empty")
	info("eof")
	info("error")
	info("expandable")
	info("fieldname")
	info("files")
	info("filevariables")
	info("formcolor")
	info("formcomment")
	info("formname")
	info("found")
	info("freememory")
	info("globalvariables")
	info("imagepack")
	info("keyboard")
	info("keycode")
	info("localvariables")
	info("magicwindow")
	info("matrixcell")
	info("matrixcolumn")
	info("matrixname")
	info("matrixrow")
	info("maximumwindow")
	info("minimumwindow")
	info("modifiers")
	info("mouse")
	info("mousedown")
	info("mousestilldown")
	info("multiuser")
	info("openresourcefiles")
	info("pagenumber")
	info("panoramabuild")
	info("panoramafolder")
	info("panoramaname")
	info("panoramatoolsfolder")
	info("plugandrun")
	info("preferencesfolder")
	info("records")
	info("reportcolumns")
	info("rulers")
	info("scratchmemory")
	info("screenrectangle")
	info("selected")
	info("serialname")
	info("serialnumber")
	info("serialorganization")
	info("serialphone")
	info("serverfile")
	info("serverrecordid")
	info("serverrecordts")
	info("serverstatus")
	info("servertimeout")
	info("startupfolder")
	info("stopped")
	info("subsetformula")
	info("summary")
	info("systemfolder")
	info("tabdown")
	info("tempfolder")
	info("tickcount")
	info("trigger")
	info("typeofwindow")
	info("user")
	info("userid")
	info("userlevel")
	info("username")
	info("version")
	info("volumes")
	info("windowbox")
	info("windowdepth")
	info("windowoptions")
	info("windowname")
	info("windowrectangle")
	info("windows")
	info("windowtype")
	info("windowvariables")
	info("windowview")
	INFO("WINDOWNAME") function INFO("WINDOWTYPE") function INFO("TYPEOFWINDOW") function
	WINDOW statement OPENSHEET statement OPENFORM statement OPENPROCEDURE statement GOSHEET statement...
	INFO(...)
	INRECTANGLE(...)
	INSERTBELOW
	INSERTFIELD
	INSERTRECORD
	INT(...)
	INTERSECTIONRECTANGLE(...)

	K
	KEY
	KEYNOW

	L
	LASTRECORD
	LEFT
	LENGTH(...)
	LINEITEMARRAY(...)
	List SuperObject Programming
	LISTCHOICES(...)
	LISTFILES(...)
	LISTWINDOWS(...)
	LOADFILEVARIABLES
	LOADGLOBALVARIABLES
	LOADLOCALVARIABLES
	LOADVARIABLES
	LOADWINDOWVARIABLES
	LOCAL
	LOCKORSTOP
	LOCKRECORD
	LOG(...)
	LOG10(...)
	LOGMESSAGE
	LOGNORMAL
	LOGON
	LOGPROGRAMMER
	LONGWORD(...)
	LOOKUP(...)
	LOOKUPALL(...)
	LOOKUPCALENDAR(...)
	LOOKUPLAST(...)
	LOOKUPLASTSELECTED(...)
	LOOKUPRTIME(...)
	LOOKUPRTYPES(...)
	LOOKUPSELECTED(...)
	LOOP
	LOWER(...)

	M
	MAGICFORMWINDOW
	MAGICWINDOW
	MAGNIFICATION
	MAKEFOLDER
	MAKESECRET
	MAX(...)
	MAXIMUM
	MENUBUILD
	MENUDISABLE
	MENUENABLE
	MESSAGE
	MIN(...)
	MINIMUM
	MONTH1ST(...)
	MONTHLENGTH(...)
	MONTHMATH(...)

	N
	NEWDATABASE
	NEWFORM
	NEWGENERATION
	NEXT
	NODEFAULTEXTENSION
	NOEDITSCROLL
	NOEVENT
	Non Decimal Numbers
	NOP
	NOSHOW
	NOUNDO
	NOW(...)
	NOWATCHCURSOR
	WATCHCURSOR statement NOSHOW statement ENDNOSHOW statement SHOWPAGE statement SHOWLINE statement ...
	NOWINDOWSAVE
	NOYES
	NUMERIC PATTERNS

	O
	OBJECT
	OBJECTID
	OBJECTINFO(...)
	OBJECTNUMBER
	OKCANCEL
	ONERROR
	OPENAS
	OPENCROSSTAB
	OPENDESIGNSHEET
	OPENDIALOG
	OPENFILE
	OPENFILEDIALOG
	OPENFORM
	OPENPROCEDURE
	OPENRESOURCE
	OPENRESOURCERW
	OPENSECRET
	OPENSHEET
	OPENSOUND
	OPENTEXTFILE
	OUTLINELEVEL
	OVERFLOW(...)

	P
	PAGESETUP
	PANORAMA CGI
	PARAMETER(...)
	PASTE
	PASTECELL
	PASTEFORM
	PASTERECORD
	PATHID(...)
	PATHSTR(...)
	PATTERN(...)
	PAUSE
	PERMANENT
	PLAYSOUND
	PMT(...)
	POINT(...)
	POPUP
	POPUPBYNUMBER
	POPUPSTYLE
	PRINT
	PRINTONEMULTIPLE
	PRINTONERECORD
	PRINTPREVIEW
	PRINTUSINGFORM
	PROPAGATE
	PROPAGATEUP
	PV(...)

	Q
	QUARTER1ST(...)
	QUIT

	R
	RADIAN
	RADIX(...)
	RADIXSTR(...)
	RBOTTOM(...)
	RECTANGLE(...)
	RECTANGLEADJUST(...)
	RECTANGLECENTER(...)
	RECTANGLESIZE(...)
	RED(...)
	REGISTRYDELETE
	REGISTRYINFO(...)
	REGISTRYWRITE
	REGULARDATE(...)
	REGULARTIME(...)
	REMINDER
	REMINDER DATA
	REMINDER(...)
	REMINDERCAPTION(...)
	REMINDERCOMPARE(...)
	REMINDERDATE(...)
	REMINDERPRIORITY(...)
	REMINDERTIME(...)
	REMINDERTODO(...)
	REMINDERTYPE(...)
	REMOVEDETAIL
	REMOVESUMMARIES
	REMOVEUNSELECTED
	RENAMERESOURCE
	RENAMEWINDOW
	REP(...)
	REPEATLOOPIF
	REPLACE(...)
	REPLACEMULTIPLE(...)
	RESOURCEFORK
	RESOURCES(...)
	RESOURCETYPES(...)
	RESUME
	RESYNCHRONIZE
	RETURNKEY
	REVERT
	RGB(...)
	RHEIGHT(...)
	RIGHT
	RLEFT(...)
	RND(...)
	ROUND(...)
	RRIGHT(...)
	RTN
	RTOP(...)
	RUNNINGDIFFERENCE
	RUNNINGTOTAL
	RWIDTH(...)

	S
	SANDWICH(...)
	SATURATION(...)
	SAVE
	SAVEACOPYAS
	SAVEALL
	SAVEAS
	SAVEASTEXT
	SAVEFILEDIALOG
	SAVEVARIABLES
	SCRAPCALC
	SCRATCHMEMORY
	SCRATCHMEMORYTEMPORARY
	Scroll Bar Programming
	SEARCH(...)
	SECONDS(...)
	SELECT
	SELECTADDITIONAL
	SELECTALL
	SELECTALLOBJECTS
	SELECTDUPLICATES
	SELECTNOOBJECTS
	SELECTOBJECTS
	SELECTREVERSE
	SELECTSUMMARIES
	SELECTWITHIN
	SEQ(...)
	SEQUENCE
	SERVERFILE
	SERVERLOOKUP
	SERVERPLUGOPTIONS
	SERVERTIMEOUT
	SERVERUPDATE
	SET
	SETABOUTMENU
	SETAUTONUMBER
	SETAUTOSAVE
	SETCHANGES
	SETFILEFINDERINFO
	SETMENUMARK
	SETMENUS
	SETMENUTEXT
	SETPARAMETER
	SETPLUGANDRUN
	SETREPORTCOLUMNS
	SETRULERS
	SETTRIGGER
	SETWINDOW
	SETWINDOWRECTANGLE
	SHELLOPENDOCUMENT
	FILEINFO(function FILELOAD(function FOLDER(function FOLDERPATH(function IMPORT(function IMPO...
	SHORTCALL
	SHOW
	SHOWCOLUMNS
	SHOWFIELDS
	SHOWLINE
	SHOWOTHER
	SHOWPAGE
	SHOWRECORDCOUNTER
	SHOWVARIABLES
	SIMULATEDIRECT
	SIMULATEENGINE
	SIN(...)
	SINH(...)
	SIZE
	SIZEOF(...)
	SORTBYCOLOR
	SORTDOWN
	SORTDOWNWITHIN
	SORTUP
	SORTUPWITHIN
	SOUND
	SPEEDCOPY
	SPELLING
	SPLITLINES
	SQLCOMMAND
	SQLCONNECTION
	SQLREAD
	SQR(...)
	STARTSCRIPT
	STATE(...)
	STATEMENTS
	STATUSMESSAGE
	STOP
	STOPLOOPIF
	STOPTAB
	STR(...)
	STRING255(...)
	STRIP(...)
	STRIPCHAR(...)
	STRIPTOALPHA(...)
	STRIPTONUM(...)
	STYLE
	STYLECOLOR
	SUBSETFORMULASELECT
	SUBSETSELECT
	SUBSETSELECTALL
	SUBSETSELECTDIALOG
	SUM(...)
	SUMMARYLEVEL
	Super Flash Art Programming
	Super Matrix Programming
	SUPERDATE(...)
	SUPEROBJECT
	SUPEROBJECTCLOSE

	T
	TABDOWN
	TABLE(...)
	TAGARRAY(...)
	TAGCOUNT(...)
	TAGDATA(...)
	TAGEND(...)
	TAGNUMBER(...)
	TAGPARAMETER(...)
	TAGPARAMETERARRAY(...)
	TAGSTART(...)
	TAN(...)
	TANH(...)
	TEXT ARRAYS
	Text Editor Programming
	TEXT255(...)
	TEXTDISPLAY(...)
	TEXTSTUFF(...)
	TIME(...)
	TIME24(...)
	TIMEDEFAULTS
	TIMEDIFFERENCE(...)
	TIMEINTERVAL(...)
	TIMEPATTERN(...)
	TODAY(...)
	TODO
	TODOPRIORITY
	TOTAL

	U
	UNDEFINE
	UNDO
	UNIONRECTANGLE(...)
	UNIQUEID(...)
	UNLOCKRECORD
	UNPERMANENT
	UNPROPAGATE
	UNPROPAGATEUP
	UNTIL
	UPDATEWIZARDMENU
	Updating Database Structures
	UPPER(...)
	UPPERWORD(...)
	UPRECORD
	URLDECODE(...)
	URLENCODE(...)

	V
	V(...)
	VAL(...)

	W
	WATCHCURSOR
	NOWATCHCURSOR statement NOSHOW statement ENDNOSHOW statement SHOWPAGE statement SHOWLINE statemen...
	WEEK1ST(...)
	WHILE
	WINDOW
	WINDOWBOX
	WINDOWGLOBAL
	WINDOWNAME
	WINDOWPROC
	WINDOWTOBACK
	Word Processor Programming
	WORD(...)
	WORDLIST
	WRITERESOURCE

	X
	XCALL
	XYTOXY(...)

	Y
	YEAR1ST(...)
	YESEVENT
	YESNO

	Z
	ZEROBLANK(...)
	ZOOMWINDOW

